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Abstract. Lung image analysis is an essential part in the assessment
of pulmonary diseases. Through visual inspection of CT scans, radiolo-
gists detect abnormal patterns in the lung parenchyma, aiming to estab-
lish a timely diagnosis and thus improving patient outcome. However,
in a generalized disorder of the lungs, such as pulmonary hypertension,
the changes in organ tissue can be elusive, requiring additional inva-
sive studies to confirm the diagnosis. We present a graph model that
quantifies lung texture in a holistic approach enhancing the analysis
between pathologies with similar local changes. The approach extracts
local state-of-the-art 3D texture descriptors from an automatically gen-
erated geometric parcellation of the lungs. The global texture distribu-
tion is encoded in a weighted graph that characterizes the correlations
among neighboring organ regions. A data set of 125 patients with sus-
picion of having a pulmonary vascular pathology was used to evaluate
our method. Three classes containing 47 pulmonary hypertension, 31
pulmonary embolism and 47 control cases were classified in a one vs.
one setup. An area under the curve of up to 0.85 was obtained adding
directionality to the edges of the graph architecture. The approach was
able to identify diseased patients, and to distinguish pathologies with
abnormal local and global blood perfusion defects.
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1 Introduction

An important task in the radiology workflow is detecting subtle alterations in
patient scans that could help to correctly identify and diagnose diseases. How-
ever, when there is a widespread distribution of the disease in an organ, i.e.
the lungs, the pathological changes can be so elusive that require more (inva-
sive) studies to establish a diagnosis [16]. Particularly in the case of pulmonary
hypertension (PH), an invasive catheterization procedure is the gold standard
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for diagnosis and allows the differentiation of PH from pulmonary embolism
(PE) [12]. A correct interpretation of the cases in their early stages is relevant
since both pathologies have similar local manifestations, despite requiring differ-
ent treatments [10]. Moreover, the pulmonary perfusion changes in PH and PE
might not only be present in small regions, but also have a profound impact on
the entire pulmonary circulatory network [11]. A holistic lung blood perfusion
analysis, instead of local independent assessments of haemodynamic alterations,
could improve the clinical evaluation of a patient by providing a global patho-
logical status of the lungs.

Graph modeling is a complete framework that has been previously proposed
for brain connectivity analysis, but has rarely been applied to other organs [14].
In short, graph methods divide the brain into fixed anatomical regions, and com-
pare neural activations between different regions [15]. Based on these approaches,
we propose a graph model of the lungs built from 3D local texture descrip-
tors extracted on an atlas-based parcellation, with the purpose of encoding pul-
monary blood perfusion relations between neighboring regions. An early version
of this method was proposed in [8], combining simple intensity features in a
30 patients dataset of dual energy CT scans, combining 11 energy levels. The
approach was also compared against 8 other methods, including deep learning
approaches in the ImageCLEF tuberculosis challenge 2017 [4], obtaining the 3
top scores for the lung image analysis task in drug resistance detection [7].

In this paper we exploit the graph architecture for the analysis of the whole
pulmonary circulatory network in a relatively large and heterogeneous dataset of
patients with pulmonary vascular pathologies. The global analysis of the lungs
was refined to detect and differentiate between PH and PE, relying only on the
CT scans taken in an emergency radiology service. A novel visual interpretation
of the biomedical tissue texture is presented as well, which can help radiologists
to promptly interpret and localize 3D textural changes in anatomical structures.

Fig. 1. Examples of the three classes in the dataset. Iodine maps showed that both
PH and PE cases presented hypo- and hyper-perfused regions, not apparent in the CT
scans.
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2 Methods

2.1 Dataset

Experiments were carried out on contrast-enhanced chest CT images at 70 KeV
of 125 patients: 31 with diagnosed PE, 47 with diagnosed PH and 47 control
cases (CC) (see Fig. 1). The resolution of the CT slices in x- and y-directions
varied from 0.5742 to 0.9766 mm, while the inter-slice distance was 1.00 mm.
Since 3D rotation-invariant texture features were used in our approach, all CT
images were converted into isometric volumes, with a voxel size of 1×1×1 mm3.

2.2 Holistic Graph Model of the Lungs

A pipeline composed of four steps was developed for building a distinctive graph
per patient (see Fig. 2). Initially, the lung fields were automatically extracted
using the method explained in [6]. Then, the lung masks were geometrically
divided into a 36-region atlas [3,5] derived from the 3D model of the human lung
presented by Zrimec et al. [17]. For each region r of this atlas two texture-based
feature descriptors were extracted: the Fourier histograms of oriented gradients
(FHOG) [13] and the locally-oriented 3D Riesz-wavelet transform (3DRiesz) [9].
These descriptors have been successful for multiple biomedical texture analysis
applications [1,2]. FHOG was computed using 28 3D directions for the histogram,
obtaining a 28-dimensional feature vector per image voxel v (fH(v) ∈ R

28). For
3DRiesz we used the 3rd-order Riesz-wavelet transform, with 4 scales and 1st-
order alignment (see [9]). The feature vector for a single voxel was defined as
the weighted sum of the absolute Riesz response along the 4 scales, obtaining a
10-dimensional feature vector (fR(v) ∈ R

10). Finally, the average and standard
deviation of these descriptors were obtained for each region r: μH(r), σH(r),
μR(r), and σR(r).

Fig. 2. Construction of the graph model: First the lungs were automatically segmented.
Then they were divided using the geometric atlas with 36 regions. Finally, the graph was
built based on the 3D adjacency of the regions (including left-right lung connections).
The edges contained the similarities between 3D texture descriptors computed in the
regions.
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2.3 Undirected Weighted Graph Model of the Lung

In [4] Dicente et al. tested several graph configurations for lung modeling of
tuberculosis cases using the 36-regions atlas. The graph architecture obtaining
the best scores contained 84 edges, based on a region adjacency defined on the
atlas. Formally, there exists an undirected edge Ei,j between nodes Ni and Nj if
regions ri and rj are 3D adjacent in the atlas or symmetric with respect the left-
right division of the lungs (see Fig. 2). Considering fi and fj the feature vectors
of regions ri and rj respectively, the weight wi,j of an edge Ei,j was defined as:
wi,j = 1 − corr(fi, fj) ∈ [0, 2]. The use of rotation-invariant texture descriptors
where each component corresponds to a texture-direction implies that regions
with similar texture will be highly correlated, and thus, with wi,j ≈ 0. Since the
edges used for this graph were undirected, then wi,j = wj,i and this graph has
84 weights. For a patient p this graph will be referred as GU

p .

2.4 Directed Weighted Graph-Model of the Lungs

Using the same graph architecture (36 nodes and 84 edges), we introduce the
notion of directionality. let fi and fj be the feature vectors of regions ri and
rj , respectively. The weight of an edge Ei,j between nodes Ni and Nj is then
defined as wi,j = 1−corr(fi, fj) if ||fi|| ≤ ||fj ||, and 0 otherwise. Since wi,j �= wj,i

(except when ||fi|| = ||fj ||), this graph contains 168 weights, of which 84 are
equal to 0. However, for each patient these 84 weights equal to 0 may be at
different positions since the condition for being 0 relies on the properties of each
patient lung tissue. The idea of this approach is to better exploit the same graph
architecture adding more information about the texture in the regions (nodes),
i.e. which node contained more/less texture than its neighbors For a patient p
this graph is referred as GD

p .

2.5 Graph-Based Patient Descriptor

As mention before, the undirected graph GU
p of a patient p only contained 84

weights. Then, we defined the graph-based patient descriptor wU
p as the vector

containing the 84 weights ordered by their location in the graph. For the directed
graph, wD

p contained the 168 weights ordered by their graph location.

Patient Descriptor Normalization. The descriptor vectors wp were normal-
ized based on the training set, obtaining ŵp. However, since each component of
wp corresponded to a weight in the graph, these can not be seen independently
and the normalization was done for all components simultaneously.

Concatenation of Patient Descriptors. As mentioned before, four different
feature vectors were computed in each atlas region r(μH(r), σH(r), μR(r), and
σR(r)) providing complementary information about the texture and its variabil-
ity. Given a patient p, a different graph was obtained from each of these feature
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vectors. The final patient descriptor vector W p used in our experiments was
defined as the concatenation of the four normalized graph-based descriptors:
W p = (ŵμH ,p||ŵσH ,p||ŵμR,p||ŵσR,p). After this concatenation, WU

p ∈ R
336

when using the undirected graph and WD
p ∈ R

672 for the directed approach.

3 Experimental Setup

Four binary classification experiments were performed: (a) PH vs. PE, (b) PH
vs. CC, (c) PE vs. CC, and (d) (PH+PE) vs. CC. In experiment (d) PH and
PE patients were considered to belong to same class. The dataset was divided
in each experiment in ∼70% for training and ∼30% for testing. This results in
34 PH, 22 PE and 34 CC for training and 13 PH, 9 PE and 13 CC for testing.
As the classes were not balanced in the test sets, the random accuracy (when
assigning the most frequent label to all the patients) was 59.09% for experiments
(a) and (c), 50.00% for experiment (b) and 62.86% for experiment (d). 2-class
SVM classifier with Gaussian kernel was used in each experiment. The parameter
optimization was performed using 10-fold cross-validation on the training set. All
experiments were performed using both the undirected and the directed graph
models.

The descriptor vectors for a given patient WU
p and WD

p had a dimension sig-
nificantly higher than the size of our dataset (336 and 672 vs. 125). To avoid the
known overfitting problems when using large feature spaces, feature dimension-
ality reduction was performed in the training phase. This consisted on selecting
those dimensions that correlate above the average with the training labels. This
method reduced the feature space dimension approximately by two, both when
using the undirected and directed graph models. Moreover, since the random
split of the dataset in training and test sets may have a strong effect in the
classification performance, we ran each experiment using five different random
splits to ensure the robustness of our models.

4 Results

Figure 3 shows the average and standard deviation of the accuracy and the AUC
over the five random splits for each of the four experiments. The accuracy and
the confusion matrices in Fig. 4 are reported using the standard classification
decision threshold of 0.5, and not in the optimal threshold provided by the ROC
curves. The results of each experiment were above the random performance in all
cases (see red line in Fig. 3). When analyzing all the performance measures, the
directed graph model performed better than the undirected in the experiments
(b) and (c). However, both models performed almost equivalent in experiments
(a) and (b). The highest benefit of the directed graph among the undirected
is shown in experiment (b), where the true positive rate increases from 69.23%
and 75.38% to 76.92% and 81.54% in the PH and CC classes respectively. In
experiment (d) the increment is similar, however, the directed graph is still not
able to identify the CC class above random. These results suggest that PH and
PE do not form a clear cluster in the feature space.
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Fig. 3. Average accuracy and AUC over the five random splits of the dataset (both
training and test set). The error bars show the standard deviation. The red line indi-
cates the random performance in each measure and experiment.

Fig. 4. Confusion matrices with the % of TP, FP, TN and FN for the four experiments
over the 5 random dataset splits.

Fig. 5. 3D visualization of the graphs obtained for the three patients shown in Fig. 1.
The first row contains the subgraph corresponding to the regions in the 2D slice. All
six graphs are depicted using the same color code. This example has been generated
using the μR feature. In this case, heterogenous edge connections can be seen in PH
and PE patients.
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5 Discussion

This work presents a comprehensive graph model of the lungs that connects 3D
regional texture nodes enclosing the whole circulatory network of lungs. The
method was evaluated in a large dataset of 125 CT thorax scans from patients
with clinical symptoms commonly associated to vascular pathologies, such as
pulmonary hypertension and pulmonary embolism. Even for experienced radiol-
ogists detecting and differentiating pulmonary hypertension is a challenging task
diagnosed only by using a catheterization procedure. The proposed approach was
able to correctly identify most of the patients with these pulmonary perfusion
defects in a standard CT scan, even without any prior clinical information.

The proposed composite interpretation of the lung circulatory network was
able to distinguish between local defects (PE) and elusive global pathological
patterns (PH). By analyzing the confusion matrices in Fig. 4, it can be seen that
the method had the worse classification scores with the control class. Nonethe-
less, it is important to highlight that all the patients in the dataset were obtained
from an emergency department and may well have other lung malfunctions. A
straightforward 3D visualization of the textural changes in the lungs was addi-
tionally generated from the obtained graph architectures. The graph depicting
both lungs could be useful for radiologists to understand intrinsic parenchymal
texture distributions that might not be apparent in 2D renderings of the organ.

6 Conclusions and Future Work

A precise assessment of pulmonary perfusion can lead to a fast diagnosis and opti-
mal treatment in the presence of haemodynamic changes. A directed weighted
graph model of the lungs encoding blood perfusion relations from an automat-
ically generated geometric atlas of the lungs was evaluated. The approach was
able to not only recognize diseased patients, but also to classify correctly similar
abnormal local and global patterns in the pulmonary parenchymal texture. This
holistic graph descriptor can be expanded to include more lung pathologies and
potentially be applied to other anatomical structures as well.
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11. Galiè, N., et al.: Treatment of patients with mildly symptomatic pulmonary arterial
hypertension with bosentan (early study): a double-blind, randomised controlled
trial. Lancet 371(9630), 2093–2100 (2008)

12. Lador, F., Herve, P.: A practical approach of pulmonary hypertension in the elderly.
Semin. Respir. Crit. Care Med. 34(5), 654–664 (2013)

13. Liu, K., et al.: Rotation-invariant hog descriptors using fourier analysis in polar
and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)

14. Richiardi, J., Bunke, H., Van De Ville, D., Achard, S.: Machine learning with brain
graphs. IEEE Signal Process. Mag. 30, 58 (2013)

15. Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decod-
ing brain states from fMRI connectivity graphs. NeuroImage 56(2), 616–626 (2011)

16. Tuder, R.M.: Relevant issues in the pathology and pathobiology of pulmonary
hypertension. J. Am. Coll. Cardiol. 62(25 SUPPL.), D4–D12 (2013)

17. Zrimec, T., Busayarat, S., Wilson, P.: A 3D model of the human lung with lung
regions characterization. In: ICIP 2004 Proceedings of the IEEE International Con-
ference on Image Processing, vol. 2, pp. 1149–1152 (2004)

http://ceur-ws.org
http://ceur-ws.org
https://doi.org/10.1007/978-3-319-61188-4_6
https://doi.org/10.1007/978-3-319-61188-4_6

	From Local to Global: A Holistic Lung Graph Model
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 Holistic Graph Model of the Lungs
	2.3 Undirected Weighted Graph Model of the Lung
	2.4 Directed Weighted Graph-Model of the Lungs
	2.5 Graph-Based Patient Descriptor

	3 Experimental Setup
	4 Results
	5 Discussion
	6 Conclusions and Future Work
	References




