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Abstract. Dynamic functional connectivity analysis provides valuable infor-
mation for understanding brain functional activity underlying different cognitive
processes. Besides sliding window based approaches, a variety of methods have
been developed to automatically split the entire functional MRI scan into seg-
ments by detecting change points of functional signals to facilitate better char-
acterization of temporally dynamic functional connectivity patterns. However,
these methods are based on certain assumptions for the functional signals, such
as Gaussian distribution, which are not necessarily suitable for the fMRI data. In
this study, we develop a deep learning based framework for adaptively detecting
temporally dynamic functional state transitions in a data-driven way without any
explicit modeling assumptions, by leveraging recent advances in recurrent
neural networks (RNNs) for sequence modeling. Particularly, we solve this
problem in an anomaly detection framework with an assumption that the
functional profile of one single time point could be reliably predicted based on
its preceding profiles within a stable functional state, while large prediction
errors would occur around change points of functional states. We evaluate the
proposed method using both task and resting-state fMRI data obtained from the
human connectome project and experimental results have demonstrated that the
proposed change point detection method could effectively identify change points
between different task events and split the resting-state fMRI into segments with
distinct functional connectivity patterns.
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1 Introduction

Brain network analysis based on intrinsic functional connectivity (FC) derived from
resting-state functional magnetic resonance imaging (fMRI) data enables us to inves-
tigate both static FC, estimated based on the entire fMRI scan, and dynamic FC,
varying over the course of a fMRI scan [1, 2].

Existing studies of dynamic FC typically explore temporal dynamics based on
network nodes defined by regions of interests (ROIs) based on anatomical atlases or
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functional data based brain parcellations, either using sliding-window (SW) based
methods [2, 3] or splitting the entire fMRI scan into segments with quasi-static FC
patterns [4–6]. In the SW methods, dynamic FC measures are estimated based on data
points within multiple time windows, each of them with a fixed width but different
starting positions shifted in time by a fixed number of data points. Notably, the SW
methods’ performance is hinged on the window parameters. Furthermore, it may not be
an optimal way to use windows with a fixed width over the entire fMRI scan since the
FC states may change at unpredictable intervals [7, 8]. To overcome limitations of the
SW methods, a variety of methods have been developed to automatically split the entire
fMRI scan into distinct segments, including Dynamic Connectivity Regression
(DCR) methods [4], Bayesian inference based methods [6], Vector Autoregressive
(VAR) model based methods [9], and statistical test based methods [5]. Different from
the SW methods, these methods adaptively detect fMRI signal transitions to split the
entire fMRI scan into segments. However, these methods are based on certain
assumptions for the fMRI data, such as Gaussian distribution and VAR model, which
are not necessarily well suited for fMRI data.

In this study, we develop a deep learning based framework for adaptively detecting
dynamic functional state transitions in a data-driven way without any explicit model
assumptions, by leveraging recent advances in deep learning based sequence modeling.
Deep learning techniques, particularly recurrent neural networks (RNNs) with a long
short term memory (LSTM) [10] structure, have achieved remarkable advances in
sequence modeling [11], indicating that LSTM-RNNs might be suitable for charac-
terizing fMRI data too. The basic assumption of the proposed deep learning based
model is that the functional profile of one single time point could be reliably predicted
based on its preceding profiles within a stable functional state, while large prediction
errors would occur around change points of functional states. Given the predicted and
real functional profiles, the change points are identified as anomaly time points with
prediction errors larger than a predefined threshold value. We have applied the pro-
posed method to both resting-state and task fMRI data obtained from the human
connectome project (HCP) [12, 13], and experimental results have demonstrated that
the proposed method could obtain better detection accuracy compared with state-of-
the-art alternative methods on the task fMRI data, and also effectively detect change
points that split the resting-state fMRI data into segments with significantly different
functional connectivity patterns.

2 Methods

To identify temporal functional state transitions from fMRI data, recurrent neural
networks (RNNs) with a LSTM structure [10] are trained based on functional profiles
from a training cohort, where the functional profiles are extracted using a functional
brain decomposition technique [14, 15]. Differences between the predicted functional
profiles by the LSTM RNNs and the real ones on a validation cohort are then adopted
to determine the optimal threshold for identifying the change points on the testing
cohort. The overall framework is schematically illustrated in Fig. 1(a).
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2.1 Prediction of Functional Profiles Using LSTM RNNs

Given a group of n subjects, each having a fMRI scan Xi 2 RT�S, i ¼ 1; 2; . . .; n,
consisting of S voxels and T time points, we first obtain K functional networks Vi 2
RK�S

þ and its corresponding functional time courses Ui 2 RT�K for each subject using a
collaborative sparse brain decomposition method [14, 15] which could identify subject-
specific functional networks with group level correspondence for better characterizing
the intrinsic functional connectivity at an individual subject level. The functional time
courses Ui, i ¼ 1; 2; . . .; n, are then used as training data to build a LSTM RNNs model
for predicting functional profiles.

A LSTM RNNs model Mlstm is built to predict the functional profile Ui t; �ð Þ at each
time point t using its preceding functional profiles Ui tp; �

� �
; 1� tp\t

� �
so that

Ui t; �ð Þ � ~Ui t; �ð Þ ¼ Mlstm Ui tp; �
� �

; 1� tp\t
� �� �

: ð1Þ

Particularly, a LSTM RNNs model with 2 hidden layers is adopted, as shown in
Fig. 1(b). Each hidden layer has 256 hidden nodes. A fully connected layer with K
output nodes is adopted for predicting the functional profiles. The Euclidean distance
between real and predicted functional profiles is used as the objective function to
optimize the RNNs model. We implement the model using Tensorflow [16].

2.2 Prediction Based Change Point Detection

Given the trained RNNs model Mlstm, we predict the functional profile for each time
point tðt[ 1Þ of every subject i, and the prediction error Ei is measured by the
deviation from its real functional profiles

Fig. 1. Schematic illustration of our deep learning based change point detection framework.
(a) The overall architecture of the proposed model, (b) the RNNs used in the model.
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Ei tð Þ ¼ Ui t; �ð Þ � ~Ui t; �ð Þ�� ��
2: ð2Þ

Assuming that the functional profiles could be reliably predicted for each time point
based on its preceding functional signals within a quasi-stable functional state, we first
detect the anomaly time points as those with relatively large prediction errors

Ai tð Þ ¼ 1 if Ei tð Þ[ Ti
v; and Ai tð Þ ¼ 0 otherwise; ð3Þ

where Ai is the vector of length T indicating that the t-th time point is one anomaly
point if Ai tð Þ equals to 1, and Ti

v is the threshold value for identifying the predicted
anomaly time points, to be determined as

Ti
v ¼ mean Ei

� �þ k � stdðEiÞ; ð4Þ

where mean xð Þ and stdðxÞ denotes the mean and standard deviation of the vector x, k is
a parameter used to adjust the threshold value.

Due to relatively low signal to noise ratio (SNR) of functional signals from fMRI
data, the prediction errors evaluated at individual time points may oscillate a lot even
for two consecutive time points. To improve the robustness and specificity of the
identified change points, we apply a 1D convolutional operation to Ei as

sEi ¼ conv1DðEi;wðrÞÞ; ð5Þ

where sEi is a smoothed prediction error vector, w is a Gaussian kernel with standard
deviation 1=r, and a larger r corresponding to a narrower kernel. A change point is
finally identified as the one with a local maximum sEi while its Ei value is larger than
the threshold Ti

v, i.e.,

CiðtÞ ¼ 1; if Ai tð Þ ¼ 1 and sEi; tð Þ is a Local Maximum
0; otherwise

�
; ð6Þ

where Ci is the vector of length T indicating that the t-th time point is one functional
change point if Ci tð Þ equals to 1.

3 Experimental Results

We evaluated the proposed method based on both task and resting-state fMRI data of
490 subjects from the HCP [12, 13]. In this study, we focused on two tasks, including
motor and working memory tasks. The motor task consisted of 6 events, including 5
movement events, namely left foot (LF), left hand (LH), right foot (RF), right hand
(RH), tongue (T), and additionally 1 cue event (CUE) prior to each movement event.
The working memory task consisted of 2-back and 0-back task blocks of tool, place,
face and body, and a fixation period. The motor task fMRI scan of each subject
contained 284 time points, while the working memory fMRI scan contained 405 time
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points. The resting-state fMRI scan of each subject contained 1200 time points. The
fMRI data acquisition and task paradigm were detailed in [12, 13].

We applied the collaborative sparse brain decomposition method [14, 15] to the
resting-state fMRI data of 490 subjects and identified 90 subject-specific functional
networks (FNs) and their corresponding resting-state time courses. The number of FNs
was automatically estimated by MELODIC of FSL [17]. The subject-specific FNs were
then used to extract the time courses of task fMRI data for each subject. The proposed
change point detection method was then applied to the motor task data, working
memory data, and resting-state data respectively. Particularly, we split the whole
dataset into training, validation, and testing datasets. The training dataset consisted of
data of 400 subjects for training a LSTM-RNNs model for each task, the validation
dataset included data of 50 subjects for selecting the optimal k and r, and the testing
dataset consisted of data of the remaining 40 subjects.

For the task fMRI data, the real change points were defined as the time points when
each task event started or ended. The performance of change point detection was
quantitatively evaluated using the distance between predicted change points and real
ones. For each real change point, the distance to its nearest predicted change point was
calculated, and the mean distance across all real change points was used to evaluate the
sensitivity of the detection (error_sen). Moreover, the same measure was also calcu-
lated between each predicted change point and its nearest real change point to evaluate
the specificity of the detection (error_spec). We have compared the proposed method
with a Bayesian inference based method [6] in terms of their performance on the task
fMRI data. As the Bayesian inference based method could achieve better performance
on functional connectivity data with a relative small number of nodes, we picked up the
motor and working memory related FNs (13 out of 90, and 24 out of 90 respectively)
and applied the two change point detection methods to their functional profiles.

As no ground truth about change points is available on the resting-state fMRI data,
two-sample covariance matrix testing [18] was adopted to examine if functional con-
nectivity patterns of two consecutive data segments split by the detected change points
were significantly different, and the differences were used as surrogate measures for
evaluating the proposed method based on the resting-state fMRI data. The functional
profiles of 90 FNs were used for change point detection on the resting-state fMRI data.

3.1 Change Point Detection on Task fMRI Data

We first selected the optimal parameters k and r using the validation dataset based on
the error_sen and error_spec measures, as shown in Fig. 2(a) for the motor task fMRI
data. Figure 2(a, top) demonstrates that the error_sen decreased as r increased, a larger
r corresponded a narrower smooth kernel, which led to noisy prediction error vectors
and generated more change points. While generating more change points would
improve the sensitivity of the detection, its specificity would decrease as shown in
Fig. 2(a, bottom). The pattern of prediction errors in term of k had a similar trend as
r’s. We set r to 6, and k to 0 for the task fMRI data, taking into consideration both
error_sen and error_spec, and applied the proposed method to the testing data.

The prediction performance on the motor task fMRI data of two randomly selected
testing subjects are illustrated in Fig. 2(b). Most transitions between two consecutive
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task events were detected, and the identified change points were largely matched with
the starting and ending time points of each task event. The overall prediction perfor-
mance on the testing dataset is illustrated in Fig. 2(c), our method obtained lower
error_sen than the Bayesian method, and the error_spec was significantly lower
(Wilcoxon signed rank test, p\0:05).

The prediction performance on the testing dataset of working memory fMRI is
illustrated in Fig. 3. The proposed method also obtained better performance on the
working memory dataset than the Bayesian inference based method in terms of both
detection sensitivity and specificity (Wilcoxon signed rank test, p\0:05).

We also evaluated our method based on the real change points adjusted by a
hemodynamic lag of 6 s for the task fMRI data, and our method outperformed the
Bayesian inference based method.

3.2 Change Point Detection on Resting-State fMRI Data

We finally evaluated the proposed method using the testing dataset of resting-state
fMRI data. As no ground truth about change points is available for selecting the
optimal parameters k and r, we set k to 1 and r to 3, aiming to detect a small number of
change points and improve the prediction specificity. The identified change points on
the resting-state fMRI data of one randomly selected testing subject are illustrated in
Fig. 4(top). The functional connectivity matrices of temporally dynamic segments
between consecutive change points, as shown in Fig. 4(bottom), demonstrated that the
functional connectivity patterns of consecutive segments were statistically significant

Fig. 2. Detection performance on motor task fMRI dataset. (a) Prediction errors on the
validation dataset using different parameter settings, top: error_sen, bottom: error_spec, lower is
better. (b) Identified change points of two randomly selected testing subjects: the x-axis denotes
the time points, bar plots with different colors denote different task events ongoing at the located
temporal interval, the blue curve is the smoothed prediction error, the dashed black line denotes
the threshold used to identify the change points, and red circles denote the identified change
points. (c) Prediction errors of 40 testing subjects, top: error_sen, bottom: error_spec.
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(two-sample covariance matrix testing, p\0:05), indicating that the change points
detected by our method were functionally meaningful.

4 Discussion and Conclusions

We propose a LSTM RNNs based change point detection framework for identifying
change points of temporal functional state transitions underlying different brain cog-
nitive processes. Different from most of the existing change point detection methods,
our learning based prediction model does not rely on any model assumption regarding
the underlying functional profiles. The experimental results on the task fMRI data have

Fig. 3. Detection performance on the testing dataset of working memory task fMRI.
(a) Identified change points of two randomly selected testing subjects, (b) Prediction error of
40 testing subjects, top: error_sen, bottom: error_spec.

Fig. 4. Change point detection on resting-state fMRI data of one randomly selected testing
subject. (top) the blue curve is the smoothed prediction error, the dashed black line denotes the
threshold used to identify the change points, and red circles denote the identified change points,
(bottom) the functional connectivity matrices of temporal segments split by change points.
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demonstrated that our method could identify functionally meaningful change points
with higher accuracy than a state-of-the-art method. The experimental results on the
resting-state fMRI data further demonstrated that our method could effectively capture
temporally dynamic functional states with distinct connectivity patterns.
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