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Abstract. Tracking of particles in fluorescence microscopy image
sequences is essential for studying the dynamics of subcellular structures
and virus structures. We introduce a novel particle tracking approach
using an LSTM-based neural network. Our approach determines assign-
ment probabilities jointly across multiple detections by exploiting both
short and long-term temporal dependencies of individual object dynam-
ics. Manually labeled data is not required. We evaluated the performance
of our approach using image data of the ISBI Particle Tracking Challenge
as well as real fluorescence microscopy image sequences of virus struc-
tures. It turned out that the proposed approach outperforms previous
methods.

1 Introduction

Tracking of multiple particles in time-lapse fluorescence microscopy image
sequences is an important task to quantify the dynamic behavior of subcel-
lular and virus structures. Since a large number of particles needs to be tracked
to draw statistically sound conclusions, accurate and robust automatic tracking
approaches are indispensable.

Previous work on tracking biological particles can be subdivided into
deterministic and probabilistic methods. Deterministic approaches follow a
two step-paradigm comprising particle localization and motion correspondence
(e.g., [13,14]). Probabilistic approaches are formulated within a Bayesian frame-
work and take into account uncertainties to improve the robustness. The solution
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is determined using Kalman filters or particle filters (e.g., [1,2,4,9,11]). A disad-
vantage of traditional tracking methods is that a handcrafted similarity measure
is used to determine the degree of correspondence between detections in suc-
cessive images. In addition, a suitable dynamic model needs to be selected, and
often tedious manual tuning of (numerous) parameters is required. Often, these
approaches have difficulties in cluttered environments with clustering objects.
Deep learning methods have the potential to improve the performance. This has
been demonstrated for different tasks such as segmentation and classification
in the fields of computer vision and medical image analysis (e.g., [5]), however,
much less work exists on tracking.

In the field of computer vision, Milan et al. [10] proposed a recurrent neu-
ral network (RNN) for tracking pedestrians in video images of natural scenes.
However, tracking pedestrians is quite different from tracking biological particles
since the motion and shape are very different, and appearance is not a reliable
cue. Also, in [10] a handcrafted similarity measure is used for correspondence
finding. In addition, two separate networks need to be trained for state predic-
tion and data association. Sadeghian et al. [12] introduced an appearance-based
RNN for tracking pedestrians in video images. However, there the similarity mea-
sure for correspondence finding is determined independently for each detection,
and information on missing detections is not provided by the network. Also, a
fixed input sequence length is used (last 6 time points). For training, manually
labeled data was used. Yao et al. [17] used a similar approach as in [12] to track
microtubules in synthetic data. However, the similarity measure for correspon-
dence finding is not jointly computed across multiple detections, and a fixed
input sequence length is used (as in [12]). In addition, objects are not automat-
ically detected but ground truth positions are used, and real microscopy data
was not considered. He et al. [6] introduced an approach based on convolutional
neural networks (CNNs) for tracking of cells. However, this approach does not
use an RNN, and tracking of particles was not considered.

In this contribution, we introduce a new approach for particle tracking in
time-lapse fluorescence microscopy images based on an RNN. Both short- and
long-term temporal dependencies of individual object dynamics are exploited
for state prediction and correspondence finding using a long short-term memory
(LSTM) [7]. The network automatically learns to determine assignment prob-
abilities for correspondence finding, without requiring a handcrafted similarity
measure. In contrast to [12,17], our network computes assignment probabilities
jointly across multiple detections, and also determines the probabilities of miss-
ing detections. In addition, the input sequence length is not limited but can be
arbitrary long. Thus, we exploit more information and intrinsically cope with
missing detections. Moreover our approach does not require manually labeled
data (in contrast to [10,12,17]). Both state prediction and data association are
trained within one network. Compared to traditional tracking methods, the
dynamic model is automatically selected, and tuning of tracking parameters
is not required. We performed a quantitative evaluation using data from the
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ISBI Particle Tracking Challenge as well as using real live cell microscopy data
of human immunodeficiency virus type 1 (HIV-1) particles and hepatitis C virus
(HCV) proteins. It turned out that our approach yields better tracking results
than previous methods.

2 Methods

Our approach, denoted as deep particle tracker (DPT), relies on a tracking-
by-detection paradigm. For spot detection, we use the spot-enhancing filter
(SEF) [13] yielding a set of detections. For correspondence finding, we introduce
an LSTM-based recurrent neural network that determines assignment probabil-
ities between tracked objects and particle detections. To establish one-to-one
correspondences using the computed assignment probabilities of all objects and
the probabilities of missing detections, the Hungarian algorithm is employed.

2.1 Network Architecture

In our DPT approach, for each object we use one neural network with the same
network architecture. We employ both LSTM and fully-connected (FC) layers
each consisting of K units (we used K = 250). We apply Gaussian dropout after
each layer. Below, we describe the network architecture in more detail.

Let the vector xi
t ∈ IRD denote the state of an object i at time point t. In

our work, we used xi
t = (xi

t, y
i
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i
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i
t), i.e. D = 4. (xi
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i
t) is the object position.

The speed and direction of the object motion is denoted by si
t and αi

t (computed
using the positions at two successive time points). The detections (positions as
well as speed and direction for an assignment to object i) are represented by the
vector yi

t ∈ IRM·D, where M is the overall number of detections. Note that M is
often very high (in cluttered environments) and varies strongly between different
images of a sequence. On the other hand, the neural network requires a fixed
input vector size. To address this, in our approach we exploit the M -nearest
detections (we used M = 5). For each time point t − 1, the network computes
two output vectors for the next time point t: x̂i

t ∈ IRD is the predicted object
state, and ai

t ∈ [0, 1]M+1 represents the assignment probabilities between object
i and the M -nearest detections as well as probabilities for missing detections.

We use an LSTM to predict the state of an object i for the next time point t.
The LSTM is composed of layers interacting which each other to determine the
new hidden state hi

t ∈ IRK of dimension K which also represents the output.
The main component of an LSTM is the cell state ci

t ∈ IRK which serves as
long-term memory [7]. At each time point t, different types of gates determine
which information is added to or removed from the previous cell state ci

t−1. Note
that all gates compute their output based on the previous hidden state hi

t−1 and
the current input. In our case, the input is the object state xi

t−1 mapped to the
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vector zi
t ∈ IRK by using a fully-connected (FC) layer and a hyperbolic tangent

activation function. At time point t, the LSTM for an object i is updated as
follows:

iit = σ(Wzizi
t + Whihi

t−1 + bi) (1)

fit = σ(Wzfzi
t + Whfhi

t−1 + bf ) (2)

oi
t = σ(Wzozi

t + Whohi
t−1 + bo) (3)

gi
t = tanh(Wzgzi

t + Whghi
t−1 + bg) (4)

ci
t = fit ⊗ ci

t−1 + iit ⊗ gi
t (5)

hi
t = oi

t ⊗ tanh(ci
t) (6)

where iit is the input gate, fit is the forget gate, oi
t is the output gate, and gi

t is the
input modulation gate. Weight matrices W ∈ IRK×K and bias vectors b ∈ IRK

represent the parameters of a gate. σ is the logistic sigmoid activation function,
and ⊗ denotes element-wise multiplication. We use the new hidden state hi

t of
the LSTM to compute the predicted object state x̂i

t by employing a FC layer
and a hyperbolic tangent activation function. Since hi

t is a function of all object
states xi

1:t−1 from time point 1 to time point t−1, the network can exploit both
short and long-term temporal dependencies for state prediction.

The vector yi
t of the detections is passed to a FC layer with a hyperbolic

tangent activation function for mapping it to a K-dimensional vector, which is
then concatenated with the hidden state hi

t of the LSTM. The resulting vector of
dimension 2K is passed to another FC layer which maps it to a vector of dimen-
sion K. This vector is fed into a fully connected linear output layer with softmax
normalization so that the final network output vector ai

t can be interpreted as
M + 1 assignment probabilities, i.e. ∀i :

∑M+1
j=1 aij

t = 1, where aij
t denote the

assignment probabilities between object i and detection j (j = 1, ...,M), and
a

i(M+1)
t are the probabilities of missing detections. The computed assignment

probabilities and the probabilities for missing detections (dummy detections in
the probability matrix) are used as input for the Hungarian algorithm. Note that
a handcrafted similarity measure for the predicted state and the detections (e.g.,
Euclidean distance) is not required to compute the assignment probabilities.

The LSTM-based neural network is trained by minimizing the loss L over all
trajectories defined by:

L =
N∑

i=1

Li, Li =
T i
∑

t=1

(
1
D

‖x̂i
t − x̃i

t‖2 −
M+1∑

j=1

ãij
t log(aij

t )
)

(7)

where N is the overall number of trajectories, Li denotes the loss for the tra-
jectory of object i, x̂i

t is the predicted state and x̃i
t the true state at time point

t. The deviation between the states is quantified by the mean squared error
(MSE). The cross-entropy is used to measure the deviation between the com-
puted assignment probabilities aij

t and the ground truth ãij
t . T i defines the total

number of time points for a trajectory.
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2.2 Training

Since deep learning architectures involve a large number of parameters, vast
amounts of training data are generally required. However, ground truth for
microscopy image sequences of biological particles is hardly available and manual
annotation is very tedious. Therefore, in our approach we do not use manually
labeled data but rely on synthetic data for training. We generated a large num-
ber of simulated trajectories of particles, which perform Brownian motion or
directed motion. The diffusion coefficients and velocities of individual particles
were sampled from a uniform distribution and the initial positions were chosen
randomly. In addition, we randomly removed particle positions which enables
the network to learn coping with missing detections.

For training our network, we used the RMSprop optimizer [15] with an initial
learning rate of 3 × 10−5, which was decreased by 5% when the validation loss
stopped improving. To avoid overfitting, we employed early stopping and set the
Gaussian dropout rate to p = 0.2. We used a dataset with 85,000 synthetically
generated trajectories with variable track length. The dataset was split into 82%
for training and 18% for validation. We used a mini-batch size of 10 trajectories.

3 Experimental Results

3.1 Particle Tracking Challenge Data

We evaluated our DPT approach based on data of the ISBI Particle Track-
ing Challenge [2] and compared the performance with the overall top-three
approaches (Methods 5, 1, and 2). Method 5 uses the spot-enhancing fil-
ter (SEF) [13] for particle localization and probabilistic data association [4].
Method 1 employs intensity-weighted centroids for particle localization and
combinatorial optimization [14]. Method 2 localizes particles by local maxima
selection and performs linking by multiple hypothesis tracking [3]. In addition,
we compared the performance of DPT with a recent approach employing a
piecewise-stationary motion model smoother (PMMS) [11]. This approach uses
SEF for particle localization and linear programming for linking (extension of
u-track [8]).

To study the performance in cluttered environments, we used data of the vesi-
cle scenario for signal-to-noise ratios of SNR = 4 and SNR = 7 as well as medium
and high particle densities (medium: 500 particles/frame, high: 1000 parti-
cles/frame). The data is challenging due to conflicting correspondences (in total
15,682 trajectories). The image sequences consist of 100 images (512 × 512 pix-
els) with random appearance and disappearance of particles. To quantitatively
assess the performance of the tracking methods, we computed the metrics α,
β, JSC, JSCθ, and RMSE as described in [2]. α ∈ [ 0, 1] indicates the over-
all degree of matching of ground truth and estimated tracks excluding spurious
tracks. β ∈ [ 0, α] includes an additional penalization for spurious tracks com-
pared to α. The Jaccard similarity coefficient JSC ∈ [ 0, 1] represents the overall
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particle detection performance, and JSCθ ∈ [ 0, 1] is the rate of correctly esti-
mated tracks. The overall localization accuracy is indicated by the root mean
square error (RMSE ).

The quantitative results are presented in Table 1 (bold values indicate the
best performance). It can be seen that DPT performs best for all metrics and
cases. Note that for PMMS the results in [11] are given only up to two decimal
places and RMSE is not provided. Note that for our DPT approach, we did
not use the Particle Tracking Challenge data for training, but used our own
generated synthetic data as described in Sect. 2.2 above.

Table 1. Tracking performance of different approaches for data of the vesicle scenario
from the Particle Tracking Challenge. Bold indicates best performance.

Density Meth SNR = 4 SNR = 7

α β JSC JSCθ RMSE α β JSC JSCθ RMSE

Med Meth 5 0.658 0.588 0.641 0.776 0.754 0.677 0.605 0.646 0.783 0.667

Meth 1 0.687 0.609 0.652 0.767 0.607 0.700 0.619 0.650 0.758 0.544

Meth 2 0.582 0.514 0.590 0.757 0.970 0.611 0.547 0.606 0.775 0.828

PMMS 0.67 0.60 0.64 0.77 - 0.68 0.61 0.64 0.78 -

DPT 0.695 0.624 0.658 0.790 0.545 0.711 0.631 0.651 0.790 0.525

High Meth 5 0.488 0.408 0.466 0.671 1.004 0.533 0.453 0.503 0.698 0.931

Meth 1 0.531 0.442 0.487 0.641 0.801 0.582 0.494 0.526 0.683 0.683

Meth 2 0.430 0.356 0.429 0.649 1.208 0.466 0.395 0.458 0.665 1.027

PMMS 0.51 0.44 0.48 0.67 - 0.55 0.48 0.51 0.69 -

DPT 0.547 0.462 0.505 0.680 0.746 0.590 0.507 0.535 0.702 0.677

3.2 Real Fluorescence Microscopy Images of Virus Structures

We also evaluated the performance of the DPT approach using real fluorescence
microscopy image sequences displaying human immunodeficiency virus type 1
(HIV-1) particles and hepatitis C virus (HCV) proteins. The fluorescence labeled
HIV-1 particles were imaged by a confocal spinning disk microscope and an EM-
CCD camera. For our evaluation we used two image sequences (each 50 time
points, 1000 × 1000 pixels, 16-bit) denoted by Seq. A and Seq. B. We also used
one image sequence showing the HCV nonstructural protein 5A (30 time points,
1000 × 1000 pixels, 16-bit) denoted by Seq. C (an example section with 115× 115
pixels is shown in Fig. 1). The images were acquired by a confocal spinning disk
microscope and a CMOS camera. This dataset is challenging due to relatively low
SNRs and clutter (high particle density, often crossing of trajectories). Ground
truth trajectories for regions with clutter and large motion were determined by
manual annotation. Seq. A, Seq. B, and Seq. C comprise 117, 125, and 55 ground
truth trajectories, respectively (with up to 30 time points).
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Fig. 1. Section of image sequence
Seq. C (HCV). The image contrast
was enhanced.

Table 2. Tracking performance of different
approaches for real fluorescence microscopy
images. Bold indicates best performance.

Sequence Meth α β JSC JSCθ RMSE

Seq.A (HIV-1) PT 0.312 0.255 0.348 0.442 2.701

KF 0.388 0.317 0.421 0.456 2.775

MHT 0.367 0.304 0.454 0.440 3.393

DPT 0.413 0.360 0.462 0.497 2.673

Seq. B (HIV-1) PT 0.328 0.261 0.338 0.399 2.559

KF 0.352 0.312 0.396 0.373 2.121

MHT 0.366 0.303 0.429 0.416 2.991

DPT 0.435 0.331 0.444 0.527 2.717

Seq. C (HCV) PT 0.590 0.496 0.629 0.557 1.064

KF 0.559 0.481 0.564 0.550 1.088

MHT 0.540 0.480 0.588 0.611 1.237

DPT 0.647 0.571 0.669 0.625 1.024

We compared the performance of DPT with the ParticleTracker (PT) [14],
a Kalman filter based approach (KF) [16], and multiple-hypothesis tracking
(MHT) using multiple motion models [1]. PT uses intensity-weighted centroids
for particle localization and combinatorial optimization [14]. KF uses SEF for
particle localization and particle linking is based on a linear assignment method
used in u-track [8]. MHT employs a wavelet-based detection scheme for particle
localization. For PT, KF, and MHT we performed a grid search to determine
optimal parameter settings. Note that for DPT, adaption of tracking parame-
ters was not necessary (except the two detection parameters for SEF), i.e. we
directly applied our tracking approach to the real data while training was per-
formed only on synthetic data (see Sect. 2.2 above). Table 2 shows the tracking
performance for all three image sequences. It turns out that DPT outperforms
the other methods for all metrics and sequences (except RMSE for Seq. B).
Sample results for Seq. C are shown in Fig. 2. It can be seen that DPT yields the
best result and maintains the correct identity for all three particles. KF causes
an identity switch (between the blue and green trajectory). MHT yields a broken
trajectory (yellow).

Fig. 2. Ground truth and results of different tracking approaches for image sequence
Seq. C (HCV). The image contrast was enhanced for better visualization. (Color figure
online)
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4 Conclusion

We presented a novel approach for tracking particles in time-lapse microscopy
images using an LSTM-based recurrent neural network which computes assign-
ment probabilities jointly across multiple detections and also determines proba-
bilities for missing detections. Manually labeled data is not required. In addition,
a handcrafted similarity measure is not needed. We evaluated our approach based
on synthetic and real image sequences. It turned out that our approach yields
better results than previous methods.
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