Skip to main content

Advances in Knowledge and Understanding of Extratropical Cyclones during the Past Quarter Century: An Overview

  • Chapter
Extratropical Cyclones

Abstract

The purpose of this chapter is to present an overview of the progress that has been made in knowledge and understanding of the extratropical cyclone in the roughly quarter-century that has elapsed since Palmen worked actively on the subject. It is recognized that other contributors to this volume will describe more fully Palmén’s own contributions to the subject and will treat in greater detail various aspects of the subject that are only touched upon here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Anderson, R. K., J. P. Ashman, F. Bittner, G. R. Fan, E. W. Ferguson, V. J. Oliver and A. H. Smith, 1969: Application of meteorological satellite data in analysis and forecasting. ESSA Tech. Rep. NESC51, Government Printing Office, Washington D.C. [NTIS AD-6970331.

    Google Scholar 

  • Atlas, R., 1987: The role of ocean fluxes and initial data in the numerical prediction of an intense coastal storm. Dyn. Atmos. Oceans, 10, 359–388.

    Article  Google Scholar 

  • Baldwin, D., E.-Y. Hsie and R. A. Anthes, 1984: Diagnostic studies of a two-dimensional simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2686–2700.

    Article  Google Scholar 

  • Ballentine, R. J., 1980: A numerical investigation of New England coastal frontogenesis. Mon. Wea. Rev., 108, 1479–1497.

    Article  Google Scholar 

  • Bannon, P. R., and M. Mak, 1984: Diabatic quasi-geostrophic surface frontogenesis. J. Atmos. Sci., 41, 2189–2201.

    Article  Google Scholar 

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability — a possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945–962.

    Article  Google Scholar 

  • Bergeron, T., 1928: Über die dreidimensionale verknüpfende Wetteranalyse. Geofys. Publ., 5, No. 6, 111 pp.

    Google Scholar 

  • Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1, No. 2, 1–8.

    Google Scholar 

  • ——, 1937: Theorie der aussertropischen Zyklonenbildung. Meteor. Zeits., 54, 186–190.

    Google Scholar 

  • ——, 1951: Extratropical cyclones. Compendium of Meteorology, T. F. Malone, Ed. American Meteorological Society, 577–598.

    Google Scholar 

  • ——, and H. Solberg, 1921: Meteorological conditions for the formulation of rain. Geofys. Publ., 2, No. 3, 1–60.

    Google Scholar 

  • ——, and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, No. 1, 1–18.

    Google Scholar 

  • ——, and C. Godske, 1936: On the theory of cyclone formation at extratropical fronts. Astrophys. Norv., 1, No. 6, 199–235.

    Google Scholar 

  • ——, and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ., 12, No. 2, 1–62.

    Google Scholar 

  • ——, and J. Holmboe, 1944: On the theory of cyclones. J. Meteor., 1, 1–22.

    Article  Google Scholar 

  • Bond, N. A., and R. G. Fleagle, 1985: Structure of a cold front over the ocean. Quart. J. Roy. Meteor. Soc., 111, 739–760.

    Article  Google Scholar 

  • Bosart, L. F., 1970: Mid-tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 96, 442–471.

    Article  Google Scholar 

  • ——, 1975: New England coastal frontogenesis. Quart. J. Roy. Meteor. Soc., 97, 457–482.

    Google Scholar 

  • ——, 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic scale event. Mon. Wea. Rev., 109, 1542–1566.

    Article  Google Scholar 

  • ——, and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 2148–2177.

    Article  Google Scholar 

  • ——, C. J. Vaudo and J. H. Helsdon, Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11, 1236–1278.

    Article  Google Scholar 

  • Briggs, J., and W. T. Roach, 1963: Aircraft observations near jet streams. Quart. J. Roy. Meteor. Soc., 89, 225–247.

    Article  Google Scholar 

  • Brown, J. A., Jr., 1969a: A numerical investigation of hydrodynamic instability and energy conversions in the quasi-geostrophic atmosphere: Part I. J. Atmos. Sci., 26, 352–365.

    Article  Google Scholar 

  • —— 1969b: A numerical investigation of hydrodynamic instability and energy conversions in the quasi-geostrophic atmosphere: Part II. J. Atmos. Sci., 26, 366–375.

    Article  Google Scholar 

  • Browning, K. A., and T. W. Harrold, 1969: Air motion and precipitation growth in a wave depression. Quart. J. Roy. Meteor. Soc., 95, 288–309.

    Article  Google Scholar 

  • ——, and ——, 1970: Air motion and precipitation at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369–389.

    Article  Google Scholar 

  • ——, and F. F. Hill, 1985: Mesoscale analysis of a polar trough interacting with a polar front. Quart. J. Roy. Meteor. Soc., 111, 445–462.

    Article  Google Scholar 

  • Businger, S., and R. J. Reed, 1989: Cyclogenesis in cold air masses. Weather and Forecasting, 4, 133–156.

    Article  Google Scholar 

  • Buzzi, A., T. Nanni and M. Tagliazucca, 1977: Mid-tropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model. Arch. Meteor. Geophys. Bioklim, A26, 135–178.

    Google Scholar 

  • ——, A. Trevisan and G. Salustri, 1981: Internal frontogenesis: A two-dimensional model in isentropic semi-geostrophic coordinates. Mon. Wea. Rev., 109, 1053–1060.

    Article  Google Scholar 

  • Carbone, R. E., 1982: A severe winter squall line. Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258–279.

    Article  Google Scholar 

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 1498–1509.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.

    Article  Google Scholar 

  • Chen, S.-J., and L. Dell’Osso, 1987: A numerical case study of East Asian coastal cyclogenesis. Mon. Wea. Rev., 115, 477–487.

    Article  Google Scholar 

  • Danard, M. B., and G. E. Ellenton, 1980: Physical influences on East Coast cyclogenesis. Atmos.-Ocean, 18, 65–82.

    Article  Google Scholar 

  • Danielsen, E. F., 1964: Project Springfield Report. Defense Atomic Support Agency, Washington D.C. 20301, DASA 1517 (NTIS #AD-607980), 97 pp.

    Book  Google Scholar 

  • ——, 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502–518.

    Article  Google Scholar 

  • ——, and V. A. Mohnen, 1977: Project dust storm report: ozone transport, in situ measurements and meteorological analyses of tropopause folding. J. Geophys. Res., 82, 5867–5878.

    Article  Google Scholar 

  • ——, R. T. Hipskind, S. E. Gaines, G. W. Sachse, G. L. Gregory and G. F. Hill, 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J. Geophys. Res., 92, No. D2, 2103–2120.

    Article  Google Scholar 

  • Defant, A., 1912: Die Veränderungen in der allgemeinen Zirkulation der Atmosphare in den gemässigten Breiten der Erde. Wiener Akad. Wiss., Sitzungsberichte, 121, 379–586. (Summary in Meteor. Zeits., 30, 126–138.)

    Google Scholar 

  • Duncan, C. N., 1977: A numerical investigation of polar lows. Quart. J. Roy. Meteor. Soc., 103, 255–268.

    Article  Google Scholar 

  • Durran, D. R., and D. B. Weber, 1988: An investigation of the poleward edges of cirrus clouds associated with midlatitude jet streams. Mon. Wea. Rev., 116, 702–714.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 33–52.

    Article  Google Scholar 

  • Edelmann, W., 1963: On the behavior of disturbances in a baroclinic channel. Sum. Rept. No. 2. Research in Objective Forecasting, Part F, Contract No. AF61 (052)-373, Deutscher Wetterdienst, Offenbach, 35 pp.

    Google Scholar 

  • Eliassen, A., 1959: On the formation of fronts in the atmosphere. The Atmosphere and the Sea in Motion, B. Bolin, Ed. Rockefeller Institute Press, 277–287.

    Google Scholar 

  • ——, 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24, 147–160.

    Google Scholar 

  • ——, 1966: Motions of intermediate scale: Fronts and cyclones. Advances in Earth Science, P. M. Hurley, Ed. MIT Press, 111–138.

    Google Scholar 

  • ——, and E. Kleinschmidt, 1957: Dynamic meteorology. Handbuch der Physik, 48, S. Flügge, Ed. Springer-Verlag, 1–154.

    Google Scholar 

  • Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 2016–2033.

    Article  Google Scholar 

  • —— 1985: Frontal circulations in the presence of small moist symmetric instability. J. Atmos. Sci., 42, 1062–1071.

    Article  Google Scholar 

  • ——, M. Fantini and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 1559–1573.

    Article  Google Scholar 

  • Farrell, B., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 1663–1686.

    Article  Google Scholar 

  • ——, 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668–673.

    Article  Google Scholar 

  • ——, 1985: Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 2718–2727.

    Article  Google Scholar 

  • ——, 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 1193–1206.

    Article  Google Scholar 

  • Fjørtoft, R., 1955: On the use of space-smoothing in physical weather forecasting. Tellus, 7, 462–480.

    Article  Google Scholar 

  • Gall, R., 1976a: A comparison of linear baroclinic instability theory with the eddy statistics of a general circulation model. J. Atmos. Sci., 33, 349–373.

    Article  Google Scholar 

  • ——, 1976b: Structural changes of growing baroclinic waves. J. Atmos. Sci., 33, 374–390.

    Article  Google Scholar 

  • ——, 1976c: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 1686–1701.

    Article  Google Scholar 

  • ——, R. T. Williams and T. L. Clark, 1987: On the minimum scale of surface fronts. J. Atmos. Sci., 44, 2562–2574.

    Article  Google Scholar 

  • Green, J. S. A., F. H. Ludlam and J. F. R. McIlveen, 1966: Isentropic relative-flow analysis and the parcel theory. Quart. J. Roy. Meteor. Soc., 92, 210–219.

    Article  Google Scholar 

  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155.

    Article  Google Scholar 

  • ——, 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173.

    Article  Google Scholar 

  • Hayashi, Y., and D. E. Golder, 1981: The effects of condensational heating on midlatitude transient waves in their mature stage: Control experiments with a GFDL general circulation model. J. Atmos. Sci., 38, 2532–2539.

    Article  Google Scholar 

  • Heckley, W. A., and B. J. Hoskins, 1982: Baroclinic waves and frontogenesis in a non-uniform potential vorticity semi-geostrophic model. J. Atmos. Sci., 39, 1999–2016.

    Article  Google Scholar 

  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39, 280–295.

    Article  Google Scholar 

  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology, 2nd ed. Academic Press, 391 pp.

    Google Scholar 

  • Hoskins, B. J., 1971: Atmospheric frontogenesis models: Some solutions. Quart. J. Roy. Meteor. Soc., 97, 139–153.

    Article  Google Scholar 

  • ——, 1972: Non-Boussinesq effects and further development in a model of upper tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 98, 532–547.

    Article  Google Scholar 

  • ——, 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480–482.

    Article  Google Scholar 

  • ——, 1982: The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14, Annual Reviews Inc., 131–151.

    Article  Google Scholar 

  • ——, and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37.

    Article  Google Scholar 

  • ——, I. Draghici and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 31–38.

    Article  Google Scholar 

  • ——, and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—cold and warm fronts. J. Atmos. Sci., 36, 1663–1680.

    Article  Google Scholar 

  • ——, M. E. McIntyre and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, 24, 225–315.

    Article  Google Scholar 

  • Hsie, E.-Y., and R. A. Anthes, 1984: Simulations of frontogenesis in a moist atmosphere using alternative parameterizations of condensation and precipitation. J. Atmos. Sci., 41, 2701–2716.

    Article  Google Scholar 

  • ——, ——, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2581–2594.

    Article  Google Scholar 

  • Keshishian, L. G., and L. F. Bosart, 1987: A case study of extended East Coast frontogenesis. Mon. Wea. Rev., 115, 100–117.

    Article  Google Scholar 

  • Keyser, D., 1986: Atmospheric fronts: an observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed. American Meteorological Society, Ch. 10.

    Google Scholar 

  • ——, and R. A. Anthes, 1982: The influence of planetary boundary layer physics in frontal structure in the Hoskins-Bretherton horizontal shear model. J. Atmos. Sci., 39, 1783–1802.

    Article  Google Scholar 

  • ——, and M. J. Pecnick, 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 1259–1282.

    Article  Google Scholar 

  • ——, and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452–499.

    Article  Google Scholar 

  • Kleinschmidt, E., 1941: Zur theorie der labilen Anordnung. Meteor. Zeits., 58, 157–163.

    Google Scholar 

  • ——, 1957: Cyclones and anticyclones. Chap. IV in Eliassen and Kleinschmidt, 1957 (reference listed above).

    Google Scholar 

  • Kotschin, N., 1932: Über die Stabilität von Margulesschen Diskontinuitäts-flächen. Beitr. Phys. Atmos., 18, 129–164.

    Google Scholar 

  • Kuo, Y.-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the Eastern Pacific. Mon. Wea. Rev., 116, 2081–2105.

    Article  Google Scholar 

  • ——, M. A. Shapiro and E. Donall, 1990: Interaction of baroclinic and diabatic processes in numerical simulations of a rapidly developing marine cyclone. Mon. Wea. Rev., in press.

    Google Scholar 

  • Kutzbach, G., 1979: The Thermal Theory of Cyclones. A History of Meteorological Thought in the Nineteenth Century. American Meteorological Society, 255 pp.

    Google Scholar 

  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 2028–2037.

    Article  Google Scholar 

  • ——, and P. R. Bannon, 1984: Frontogenesis in a moist semi-geostrophic model. J. Atmos. Sci., 41, 3485–3500.

    Article  Google Scholar 

  • McGinnigle, J. B., M. V. Young and M. J. Baker, 1988: The development of instant occlusions in the North Atlantic. Met O 15 Internal Report No. 73, U.K. Meteorological Office, 25 pp.

    Google Scholar 

  • McMurdie, L. A., and K. B. Katsaros, 1985: Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer. Mon. Wea. Rev., 113, 584–598.

    Article  Google Scholar 

  • Mechoso, C. R., and D. M. Sinton, 1983: On the energy analysis of the two-layer frontal model. J. Atmos. Sci., 40, 2069–2074.

    Article  Google Scholar 

  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169–171.

    Article  Google Scholar 

  • Moore, G.W.K., 1987: Frontogenesis in a continuously varying potential vorticity fluid. J. Atmos. Sci., 44, 761–770.

    Article  Google Scholar 

  • ——, and W. R. Peltier, 1987: Cyclogenesis in frontal zones. J. Atmos. Sci., 44, 384–409.

    Article  Google Scholar 

  • Mudrick, S. E., 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869–892.

    Article  Google Scholar 

  • Mullen, S. L., 1979: An investigation of small synoptic scale cyclones in polar air streams. Mon. Wea. Rev., 107, 1636–1647.

    Article  Google Scholar 

  • ——, 1983: Explosive cyclogenesis associated with cyclones in polar air streams. Mon. Wea. Rev., 111, 1537–1553.

    Article  Google Scholar 

  • Namias, J., and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6, 330–336.

    Article  Google Scholar 

  • Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449–461.

    Article  Google Scholar 

  • ——, and A. Trevisan, 1984a: Clinogenesis and frontogenesis in jet-stream waves. Part I: Analytical relations to wave structure. J. Atmos. Sci., 41, 2717–2734.

    Article  Google Scholar 

  • ——, and ——, 1984b: Clinogenesis and frontogenesis in jet-stream waves. Part II: Channel model numerical experiments. J. Atmos. Sci., 41, 2735–2755.

    Article  Google Scholar 

  • Orlanski, I., 1968: Instability of frontal waves. J. Atmos. Sci., 25, 178–200.

    Article  Google Scholar 

  • ——, and B. B. Ross, 1984: The evolution of an observed cold front. Part II: Mesoscale dynamics. J. Atmos. Sci., 41, 1669–1703.

    Article  Google Scholar 

  • ——, ——, L. Palinsky and R. Shaginaw, 1985: Advances in the theory of atmospheric fronts. Advances in Geophysics, 27, 223–252.

    Article  Google Scholar 

  • Palmén, E., 1951: The role of atmospheric disturbances in the general circulation (Symons Memorial Lecture). Quart. J. Roy. Meteor. Soc., 77, 337–354.

    Article  Google Scholar 

  • ——, and K. M. Nagler, 1948: An analysis of the wind and temperature distribution in the free atmosphere over North America in a case of approximately westerly flow. J. Meteor., 5, 58–64.

    Article  Google Scholar 

  • ——, and ——, 1949: The formation and structure of a largescale disturbance in the westerlies. J. Meteor., 6, 227–242.

    Google Scholar 

  • Pedlosky, J., 1964a: The stability of currents in the atmosphere and ocean: Part I. J. Atmos. Sci., 21, 201–219.

    Article  Google Scholar 

  • ——, 1964b: The stability of currents in the atmosphere and ocean: Part II. J. Atmos. Sci., 21, 342–353.

    Article  Google Scholar 

  • Petersen, R. A., L. W. Uccellini, A. Mostek and D. A. Keyser, 1984: Delineating mid- and low-level water vapor patterns in pre-convective environments using VAS moisture channels. Mon. Wea. Rev., 112, 2178–2198.

    Article  Google Scholar 

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11, No. 6, 27 pp.

    Google Scholar 

  • ——, 1956: Weather Analysis and Forecasting, 2nd ed., Vol. 1. McGraw-Hill, 428 pp.

    Google Scholar 

  • ——, and J. M. Austin, 1942: Fronts and frontogenesis in relation to vorticity. Papers in Physical Oceanography and Meteorology, VII, No. 2. MIT and Woods Hole Oceanographic Institution, 37 pp.

    Google Scholar 

  • ——, G. E. Dunn and L. L. Means, 1955: Report of an experiment in forecasting of cyclone development. J. Meteor., 12, 58–67.

    Article  Google Scholar 

  • ——, D. L. Bradbury and K. Pedersen, 1962: The Norwegian cyclone models in relation to heat and cold sources. Geofys. Publ., 24, 243–280.

    Google Scholar 

  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 124–164.

    Article  Google Scholar 

  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 542–552.

    Article  Google Scholar 

  • ——, 1979: Cyclogenesis in polar air streams. Mon. Wea. Rev., 107, 38–52.

    Article  Google Scholar 

  • ——, and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.

    Article  Google Scholar 

  • ——, and M. D. Albright, 1986: A case study of explosive cyclogenesis in the Eastern Pacific. Mon. Wea. Rev., 112, 2297–2319.

    Article  Google Scholar 

  • ——, and W. Blier, 1986a: A case study of comma cloud development in the Eastern Pacific. Mon. Wea. Rev., 114, 1681–1695.

    Article  Google Scholar 

  • ——, and ——, 1986b: A further case study of comma cloud development in the Eastern Pacific. Mon. Wea. Rev., 114, 1696–1708.

    Article  Google Scholar 

  • ——, A. J. Simmons, M. D. Albright and P. Undén, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF Operational Forecasts. Weather and Forecasting, 3, 217–229.

    Article  Google Scholar 

  • Rogers, E., and L. F. Bosart, 1986: An investigation of explosively deepening oceanic cyclones. Mon. Wea. Rev., 114, 702–718.

    Article  Google Scholar 

  • Ross, B. B., and I. Orlanski, 1978: The circulation associated with a cold front. Part II: Moist case. J. Atmos. Sci., 35, 445–465.

    Article  Google Scholar 

  • ——, and ——, 1982: The evolution of an observed front. Part I: Numerical simulation. J. Atmos. Sci., 39, 296–326.

    Article  Google Scholar 

  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12, 542–552.

    Article  Google Scholar 

  • ——, 1987: Skill of NMC operational dynamical models in prediction of explosive cyclogenesis. Weather and Forecasting, 2, 322–336.

    Article  Google Scholar 

  • ——, and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 1589–1606.

    Article  Google Scholar 

  • ——, and L. F. Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 1050–1061.

    Article  Google Scholar 

  • Sawyer, J. S., 1949: The significance of dynamic instability in atmospheric motions. Quart. J. Roy. Meteor. Soc., 75, 364–374.

    Article  Google Scholar 

  • ——, 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346–362.

    Article  Google Scholar 

  • Shapiro, M. A., 1975: Simulation of upper-level frontogenesis with a 20-level isentropic coordinate primitive equation model. Mon. Wea. Rev., 103, 591–604.

    Article  Google Scholar 

  • ——, 1976: The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems. Mon. Wea. Rev., 104, 892–900.

    Article  Google Scholar 

  • ——, 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 1100–1111.

    Article  Google Scholar 

  • ——, 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and the troposphere. J. Atmos. Sci., 37, 994–1004.

    Article  Google Scholar 

  • ——, 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954–973.

    Article  Google Scholar 

  • ——, 1983: Mesoscale weather systems of the central United States. The National STORM program: Scientific and Technological Bases and Major Objectives, R. A. Anthes, Ed. University Corporation for Atmospheric Research, Boulder, CO 80307–3000, 3.1–3.77.

    Google Scholar 

  • ——, 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 1634–1639.

    Article  Google Scholar 

  • ——, T. Hampel, D. Rotzoll and F. Mosher, 1985: The frontal hydraulic head: A micro-α scale (~1 km) triggering mechanism of mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.

    Article  Google Scholar 

  • Simmons, A. J., and B. J. Hoskins, 1976: Baroclinic instability on the sphere: Normal modes of the primitive and quasi-geostrophic equations. J. Atmos. Sci., 33, 1454–1477.

    Article  Google Scholar 

  • ——, and ——, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.

    Article  Google Scholar 

  • ——, and ——, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 35, 1239–1254.

    Article  Google Scholar 

  • Simons, T. J., 1972: The nonlinear dynamics of cyclone waves. J. Atmos. Sci., 29, 38–52.

    Article  Google Scholar 

  • Sinton, D. M., and C. R. Mechoso, 1984: Nonlinear evolution of frontal waves. J. Atmos. Sci., 41, 3501–3517.

    Article  Google Scholar 

  • Solberg, H., 1928: Integrationen der atmospharischen Störungsgleichungen. Geofys. Publ., 5, No. 9, 1–120.

    Google Scholar 

  • Song, R. T., 1971: A numerical study of the three-dimensional structure and energetics of unstable disturbances in zonal currents: Part I. J. Atmos. Sci., 28, 549–564.

    Article  Google Scholar 

  • Staff Members, University of Chicago, 1947: On the general circulation of the atmosphere in middle latitudes. Bull. Amer. Meteor. Soc., 28, 255–280.

    Article  Google Scholar 

  • Staley, D. O., 1960: Evaluation of potential vorticity changes near the tropopause and the related vertical motions, vertical advection of vorticity and transfer of radioactive debris from stratosphere to troposphere. J. Meteor., 17, 591–620.

    Article  Google Scholar 

  • ——, and R. L. Gall, 1977: On the wavelength of maximum baroclinic instability. J. Atmos. Sci., 34, 1669–1688.

    Article  Google Scholar 

  • Stauffer, D. R., and T. T. Warner, 1987: A numerical study of cold-air damming and coastal frontogenesis. Mon. Wea. Rev., 115, 799–821.

    Article  Google Scholar 

  • Stone, P. H., 1966: Frontogenesis by horizontal wind deformation fields. J. Atmos. Sci., 23, 455–465.

    Article  Google Scholar 

  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.

    Article  Google Scholar 

  • Takayabu, I., 1986: Roles of the horizontal advection on the formation of surface fronts and on the occlusion of a cyclone developing in the baroclinic easterly jet. J. Meteor. Soc. Japan, 64, 329–345.

    Article  Google Scholar 

  • Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 1809–1824.

    Article  Google Scholar 

  • Todsen, M., 1964: A study of the vertical circulations in a cold front. Part IV of Final Report, Air Force Cambridge Laboratories, OAR Contr. No. AF61 (052)-525.

    Google Scholar 

  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev., 106, 131–137.

    Article  Google Scholar 

  • Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 1019–1027.

    Article  Google Scholar 

  • ——, P. J. Kocin, R. A. Petersen, C. H. Wash and K. F Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the precyclogenetic period. Mon. Wea. Rev., 113, 31–55.

    Article  Google Scholar 

  • ——, D. Keyser, K. F. Brill and C. H. Wash, 1985: Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 112, 962–988.

    Article  Google Scholar 

  • ——, R. A. Petersen, K. F. Brill, P. J. Kocin and J. J. Toccillo, 1987: Synergistic interactions between an upper level jet streak and diabatic processes that influence the development of a low level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261.

    Article  Google Scholar 

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 417 pp.

    Google Scholar 

  • Welander, P., 1963: Steady plane fronts in a rotating fluid. Tellus, 15, 33–43.

    Google Scholar 

  • Williams, R. T., 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24, 627–641.

    Article  Google Scholar 

  • ——, 1972: Quasi-geostrophic versus non-geostrophic frontogenesis. J. Atmos. Sci., 29, 3–10.

    Article  Google Scholar 

  • ——, 1974: Numerical simulation of steady-state fronts. J. Atmos. Sci., 31, 1286–1296.

    Article  Google Scholar 

  • ——, L. C. Chou and C. J. Cornelius, 1981: Effects of condensation and surface motion on the structure of steady-state fronts. J. Atmos. Sci., 38, 2365–2376.

    Article  Google Scholar 

  • WMO, 1973: The Use of Satellite Pictures in Weather Analysis and Forecasting. Tech. Note No. 124, WMO No. 333. World Meteorological Organization, Geneva, 275 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Reed, R.J. (1990). Advances in Knowledge and Understanding of Extratropical Cyclones during the Past Quarter Century: An Overview. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_3

Download citation

Publish with us

Policies and ethics