Skip to main content

Biomaterials for Bone Tissue Engineering

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Bone tissue loss caused by various reasons including the accident trauma, tumor removal, or congenital deformity, etc., is a challenging problem in the clinic of orthopeadics, which brings the issue of bone grafting. The scaffold material is generally considered as the most important factor for tissue engineering. The development statuses of ceramics, polymers and their composites for bone tissue engineering have been reviewed in the present chapter. The composite strategy provides an effective way to fabricate scaffold biomaterial with tailorable physiochemical and/or mechanical properties. The composite scaffolds possessing both osteoconductivity and osteoinductivity appear to have a great potential for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurencin CT, et al. The ABJS Nicolas Andry award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res. 2006;447:221–36.

    Article  PubMed  Google Scholar 

  2. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):339–59.

    Article  CAS  PubMed  Google Scholar 

  3. Gazdag AR, et al. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995;3:1–8.

    Article  PubMed  Google Scholar 

  4. Wang M. Composites scaffolds for bone tissue engineering. Am J Biochem Biotech. 2006;2:80–4.

    Article  CAS  Google Scholar 

  5. Laurencin CT, et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Q. Tissue engineering. In: Shi D, editor. Biomaterials and tissue engineering. Beijing: Tsinghua University Press; 2004. p. 195–246.

    Google Scholar 

  7. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  8. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  PubMed  Google Scholar 

  9. Simpson RL, et al. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater. 2008;84(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  10. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27(7):964–73.

    Article  CAS  PubMed  Google Scholar 

  11. Shirtliff VJ, Hench LL. Bioactive materials for tissue engineering, regeneration and repair. J Mater Sci. 2003;38(23):4697–707.

    Article  CAS  Google Scholar 

  12. Cerruti M, Sahai N. Silicate biomaterials for ortho- paedic and dental implants. Med Mineraology Geochemistry. 2006;64:283–313.

    Google Scholar 

  13. Rezwan K, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  14. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003;24(13):2133–51.

    Article  CAS  PubMed  Google Scholar 

  15. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–59.

    Article  CAS  PubMed  Google Scholar 

  16. Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev. 2005;16(3):329–45.

    Article  CAS  PubMed  Google Scholar 

  17. Reis RL, et al. Mechanical behavior of injection-molded starch-based polymers. Poly Adv Technol. 1996;7(10):784–90.

    Article  CAS  Google Scholar 

  18. Cai K, et al. Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering. Adv Eng Mater. 2007;9(12):1082–8.

    Article  Google Scholar 

  19. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  PubMed  CAS  Google Scholar 

  20. Damoulis PD, et al. Osteogenic differentiation of human mesenchymal bone marrow cells in silk scaf- folds is regulated by nitric oxide. In: Zaidi M, editor. Skelet Biol Med Pt B. Oxford: Blackwell Publishing; 2007. p. 367–76.

    Google Scholar 

  21. Liu HF, et al. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials. 2008;29(10):1443–53.

    Article  CAS  PubMed  Google Scholar 

  22. Cloyd JM, et al. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur Spine J. 2007;16(11):1892–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee SJ, Kim SY, Lee YM. Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity. J Biomed Mater Res Part B Appl Biomater. 2007;82B(2):506–18.

    Article  CAS  Google Scholar 

  24. Di Bella C, Farlie P, Penington AJ. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A. 2008;14(4):483–90.

    Article  PubMed  CAS  Google Scholar 

  25. Mikos AG, et al. Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue-culture. Biomaterials. 1994;15(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pitt C, Gratzel M, Kimmel G. Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(ε-caprolactone), and their copolymers in vivo. Biomaterials. 1981;2:215–20.

    Article  CAS  PubMed  Google Scholar 

  27. Toung JS, et al. Repair of a rodent nasal critical-size osseous defect with osteoblast augmented collagen gel. Laryngoscope. 1999;109(10):1580–4.

    Article  CAS  PubMed  Google Scholar 

  28. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–20.

    Article  CAS  PubMed  Google Scholar 

  29. Sims C, Butler P, Cao Y. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101:1580–5.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Design. 2007;85(A7):1051–64.

    Article  CAS  Google Scholar 

  31. Gabelnick H. Biodegradable implants: alternative approaches, in advanced in human fertility and reproductive endocrinology: vol. 2. In: Mishell D, editor. Long acting steroid contraception. New York: Raven Press; 1983. p. 149–73.

    Google Scholar 

  32. Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26(33):6565–78.

    Article  CAS  PubMed  Google Scholar 

  33. Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28(14):4822–8.

    Article  CAS  Google Scholar 

  34. Doyle C, Tanner ET, Bonfield W. Invitro and invivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials. 1991;12(9):841–7.

    Article  CAS  PubMed  Google Scholar 

  35. Williams SF, et al. Medical device containing polyhydroxyalkanoate treated with oxidizing agent to remove endotoxin: US, US 6623749 B2[P]. 2003.

    Google Scholar 

  36. Sakkers RJB, et al. Evaluation of copolymers of polyethylene oxide and polybutylene terephthalate (polyactive): mechanical behaviour. J Mater Sci Mater Med. 1998;9(7):375–9.

    Article  CAS  PubMed  Google Scholar 

  37. Radder AM, et al. The PEO/PBT copolymer-mineralized matrix interface in-vitro. Cells Mater. 1993;3(4):367–76.

    CAS  Google Scholar 

  38. Radder AM, Leenders H, Vanblitterswijk CA. Interface reactions to PEO/PBT copolymers (Polyactive(R)) after implantation in cortical bone. J Biomed Mater Res. 1994;28(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  39. Radder AM, et al. Interfacial behavior of PEO/PBT copolymers (Polyactive(R)) in a calvarial system – an in-vitro study. J Biomed Mater Res. 1994;28(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  40. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835–51.

    Article  CAS  PubMed  Google Scholar 

  41. Mikos AG, et al. Preparation and characterization of poly(l-lactic acid) foams. Polymer. 1994;35(5):1068–77.

    Article  CAS  Google Scholar 

  42. Mikos AG, et al. Laminated 3-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993;14(5):323–30.

    Article  CAS  PubMed  Google Scholar 

  43. Whang K, Goldstick TK, Healy KE. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials. 2000;21(24):2545–51.

    Article  CAS  PubMed  Google Scholar 

  44. Whang K, et al. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36(4):837–42.

    Article  CAS  Google Scholar 

  45. Wu L, Ding J. Advances in fabrication methodology and technology of three-dimensional porous scaffolds for tissue engineering. J Funct Polym. 2003;16(1):91–6.

    CAS  Google Scholar 

  46. Pini R, et al. Sorption and swelling of poly(DL-lactic acid) and poly(lactic-co-glycolic acid) in supercritical CO2: an experimental and modeling study. J Polym Sci B Polym Phys. 2008;46(5):483–96.

    Article  CAS  Google Scholar 

  47. Tai H, et al. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochem Soc Trans. 2007;35:516–21.

    Article  CAS  PubMed  Google Scholar 

  48. Barry JJA, et al. Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Transact R Soc A Math Phys Eng Sci. 2006;364(1838):249–61.

    Article  CAS  Google Scholar 

  49. Collins NJ, et al. The influence of silica on pore diameter and distribution in PLA scaffolds produced using supercritical CO2. J Mater Sci Mater Med. 2008;19(4):1497–502.

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, et al. Porous morphology, porosity, mechanical properties of poly(alpha-hydroxy acid)-tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res A. 2007;82A(3):618–29.

    Article  CAS  Google Scholar 

  51. Park A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed. 1998;9(2):89–110.

    Article  CAS  PubMed  Google Scholar 

  52. Cima LG, et al. Tissue engineering by cell transplantation using degradation using degradable polymer substrates. J Biomech Eng Transact Asme. 1991;113(2):143–51.

    Article  CAS  Google Scholar 

  53. Beaman J. Bachround and definitions. In: Beaman J, et al., editors. Solid free-form fabrications: a new direction in manufacturing. Boston: Kluwer Academic Publishers; 1997. p. 1–20.

    Google Scholar 

  54. Yang S, et al. The design of scaffolds for use in tissue engineering. Part 2. Rapid prototyping techniques. Tissue Eng. 2002;8(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  55. Agarwala M, et al. Structural quality of parts processed by fused deposition. Rapid Prototyping J. 1996;2(4):4–19.

    Article  Google Scholar 

  56. Chua CK, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int J Adv Manuf Technol. 2003;21(4):291–301.

    Article  Google Scholar 

  57. Li HY, Lin KL, Chang J. Preparation of macroporous polymer scaffolds using calcined cancellous bone as a template. J Biomater Sci Polym Ed. 2005;16(5):575–84.

    Article  CAS  PubMed  Google Scholar 

  58. Yoon BH, et al. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scr Mater. 2008;58(7):537–40.

    Article  CAS  Google Scholar 

  59. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27(4):535–43.

    Article  CAS  PubMed  Google Scholar 

  60. Murashima Y, et al. Calcium sulphate as a bone substitute for various osseous defects in conjunction with apicectomy. Int Endod J. 2002;35(9):768–74.

    Article  CAS  PubMed  Google Scholar 

  61. Cui L, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 2007;28(36):5477–86.

    Article  CAS  PubMed  Google Scholar 

  62. Pillar R, et al. Porous calcium pyrophosphate scaffolds for bone substitute applications – in vitro characterization. Biomaterials. 2001;22:963–72.

    Article  Google Scholar 

  63. Yoon BH, et al. In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry. Mater Lett. 2008;62(10–11):1700–3.

    Article  CAS  Google Scholar 

  64. Kumta PN, et al. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005;1(1):65–83.

    Article  PubMed  Google Scholar 

  65. Suzuki O, et al. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem. 2008;15(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  66. Jarcho M, et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11:2027–35.

    Article  CAS  Google Scholar 

  67. de Groot K. Bioceramics consisting of calcium phosphate salts. Biomaterials. 1980;1(1):47–50.

    Article  PubMed  Google Scholar 

  68. Akao H, Aoki H, Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic application. J Mater Sci. 1981;16:809–12.

    Article  CAS  Google Scholar 

  69. Klein C, Patka P, den Hollander W. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegration. Biomaterials. 1989;10:59–62.

    Article  CAS  PubMed  Google Scholar 

  70. Walsh WR, et al. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29(3):266–71.

    Article  CAS  PubMed  Google Scholar 

  71. Ohgushi H, et al. Bone-formation process in porous calcium-carbonate and hydroxyapatite. J Biomed Mater Res. 1992;26(7):885–95.

    Article  CAS  PubMed  Google Scholar 

  72. Ripamonti U, et al. Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates. Plast Reconstr Surg. 1992;90(3):382–93.

    Article  CAS  PubMed  Google Scholar 

  73. Bucholz R, Charlton A, Holmes R. Hydroxyaptite and tricalcium phosphate bone-graft substitutes. Orthop Clin North Am. 1987;18:323–34.

    CAS  PubMed  Google Scholar 

  74. Jensen TB, et al. Bone allograft, Pro-osteon 200 (R) and osteogenic protein-1 device (R) around noncemented implants. Bone. 1999;24(4):428–428.

    Google Scholar 

  75. Okumura N, et al. Organ regeneration in porous hydroxyapatite. Bioceramics. 2006;18(Pts 1 and 2):1017–20.

    Google Scholar 

  76. Wang M. Bioactive materials and processing. In: Shi D, editor. Biomaterials and tissue engineering. Beijing: Tsinghua University Press; 2004. p. 1–82.

    Chapter  Google Scholar 

  77. Bareille R, et al. Various evaluation techniques of newly formed bone in porous hydroxyapatite loaded with human bone marrow cells implanted in an extra-osseous site. Biomaterials. 2000;21(13):1345–52.

    Article  CAS  PubMed  Google Scholar 

  78. Fabbri M, Celotti GC, Ravaglioli A. Hydroxyapatite-based porous aggregates – physicochemical nature, structure, texture and architecture. Biomaterials. 1995;16(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  79. Almirall A, et al. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials. 2004;25(17):3671–80.

    Article  CAS  PubMed  Google Scholar 

  80. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27(32):5480–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tian JT, Tian JM. Preparation of porous hydroxyapatite. J Mater Sci. 2001;36(12):3061–6.

    Article  CAS  Google Scholar 

  82. Tancred DC, McCormack BAO, Carr AJ. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials. 1998;19(24):2303–11.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshikawa T. Bone reconstruction by cultured bone graft. Mater Sci Eng C. 2000;13:29–37.

    Article  Google Scholar 

  84. Mendes SC, et al. Cultured living bone equivalents enhance bone formation when compared to a cell seeding approach. Bioceramics. 2002;14:227–31.

    Google Scholar 

  85. Pietak AM, et al. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28(28):4023–32.

    Article  CAS  PubMed  Google Scholar 

  86. Mastrogiacomo M, et al. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  87. Elliot J. Structure and chemistry of the apatites and other calcium orthophosphates. New York: Elsevier Science; 1994.

    Google Scholar 

  88. Lee Y, et al. Preparation and characterization of macroporous carbonate-substituted hydroxyapatite scaffold. Ind Eng Chem Res. 2008;47(8):2618–22.

    Article  CAS  Google Scholar 

  89. Yasukawa A, et al. Ion-exchange of magnesium-calcium hydroxyapatite solid solution particles with Cd2+ ion. Colloids Surf A Physicochem Eng Aspects. 2008;317(1–3):123–8.

    Article  CAS  Google Scholar 

  90. Barinov SM, et al. Stabilization of carbonate hydroxyapatite by isomorphic substitutions of sodium for calcium. Russ J Inorg Chem. 2008;53(2):164–8.

    Article  Google Scholar 

  91. Kannan S, et al. Ionic substitutions in biphasic hydroxyapatite and beta-tricalcium phosphate mixtures: structural analysis by rietveld refinement. J Am Ceram Soc. 2008;91(1):1–12.

    Article  CAS  Google Scholar 

  92. Kannan S, et al. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 2007;3(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  93. Li MO, et al. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med. 2008;19(2):797–803.

    Article  CAS  PubMed  Google Scholar 

  94. Lin YG, Yang ZR, Jiang C. Preparation, characterization and antibacterial property of cerium substituted hydroxyapatite nanoparticles. J Rare Earths. 2007;25(4):452–6.

    Article  Google Scholar 

  95. Wang XP, Ye JD. Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J Mater Sci Mater Med. 2008;19(3):1183–6.

    Article  CAS  PubMed  Google Scholar 

  96. Kim SR, et al. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24(8):1389–98.

    Article  PubMed  Google Scholar 

  97. Langstaff S, et al. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials. 2001;22(2):135–50.

    Article  CAS  PubMed  Google Scholar 

  98. Chen Y, et al. In vitro behavior of osteoblast-like cells on PLLA films with a biomimetic apatite or apatite/collagen composite coating. J Mater Sci Mater Med. 2008;19(6):2261–8.

    Article  CAS  PubMed  Google Scholar 

  99. Forsgren J, et al. Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater. 2007;3(6):980–4.

    Article  CAS  PubMed  Google Scholar 

  100. Kamitakahara M, Ohtsuki C, Miyazaki T. Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Biomed Mater. 2007;2(4):R17–23.

    Article  CAS  PubMed  Google Scholar 

  101. Klopcic SB, Kovac J, Kosmac T. Apatite-forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomol Eng. 2007;24(5):467–71.

    Article  CAS  PubMed  Google Scholar 

  102. Tuzlakoglu K, Reis RL. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J Mater Sci Mater Med. 2007;18(7):1279–86.

    Article  CAS  PubMed  Google Scholar 

  103. Yang F, Wolke JGC, Jansen JA. Biomimetic calcium phosphate coating on electrospun poly (epsilon-caprolactone) scaffolds for bone tissue engineering. Chem Eng J. 2008;137(1):154–61.

    Article  CAS  Google Scholar 

  104. Leonor IB, et al. Biomimetic apatite formation on different polymeric microspheres modified with calcium silicate solutions. Bioceramics. 2006;18(Pts 1 and 2):279–82.

    Google Scholar 

  105. Zhang EL, Yang K. Biomimetic coating of calcium phosphate on biometallic materials. Transact Nonferrous Met Soc Chin. 2005;15(6):1199–205.

    CAS  Google Scholar 

  106. Carlise E. Si: a possible factor in bone calcification. Science. 1970;167:279–80.

    Article  Google Scholar 

  107. Jugdaohsingh R, et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004;19(2):297–307.

    Article  CAS  PubMed  Google Scholar 

  108. Vallet-Regi M, Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem. 2005;15(15):1509–16.

    Article  CAS  Google Scholar 

  109. Ruys A. Silicon doped hydroxyapatite. J Aust Ceram Soc. 1993;29:71–80.

    CAS  Google Scholar 

  110. Gibson I, et al. Effect of Si content on the chemical and phase composition of novel Si substituted hydroxyaptites. In: LeGeros RaL J, editor. Bioceramics. Singapore: World Scientific Publishing; 1998. p. 105–8.

    Google Scholar 

  111. Gibson I, Best S, Bonfield W. Effect of silicon substitution on the sintering and microstructure of hydroxyaptite. J Am Ceram Soc. 2002;85:2771–7.

    Article  CAS  Google Scholar 

  112. Li XW, Yasuda HY, Umakoshi Y. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200 degrees C: preparation, microstructures and in vitro bone-like layer growth. J Mater Sci Mater Med. 2006;17(6):573–81.

    Article  CAS  PubMed  Google Scholar 

  113. Porter AE, et al. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res A. 2004;69A(4):670–9.

    Article  CAS  Google Scholar 

  114. Xynos ID, et al. Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67(4):321–9.

    Article  CAS  PubMed  Google Scholar 

  115. Black J, Hastings G. Handbook of biomaterials properties. London: Chapman & Hall; 1998.

    Book  Google Scholar 

  116. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23–24):2287–303.

    Article  CAS  PubMed  Google Scholar 

  117. Eggli P, Müller W, Schenk R. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop. 1988;232:127–38.

    CAS  PubMed  Google Scholar 

  118. Kamitakahara M, et al. Control of the microstructure of porous tricalcium phosphate: effects of addition of Mg, Zn and Fe. J Japan Soc Powder Powder Metallurgy. 2005;52:256–359.

    Article  Google Scholar 

  119. Ryu HS, et al. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002;23(3):909–14.

    Article  CAS  PubMed  Google Scholar 

  120. Mastrogiacomo M, et al. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials. 2007;28(7):1376–84.

    Article  CAS  PubMed  Google Scholar 

  121. Descamps M, et al. Synthesis of macroporous [beta]-tricalcium phosphate with controlled porous architectural. Ceram Int. 2008;34(5):1131–7.

    Article  CAS  Google Scholar 

  122. Descamps M, et al. Manufacture of macroporous [beta]-tricalcium phosphate bioceramics. J Eur Ceram Soc. 2008;28(1):149–57.

    Article  CAS  Google Scholar 

  123. Xie YZ, et al. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng. 2006;12(12):3535–43.

    Article  CAS  PubMed  Google Scholar 

  124. Guo XM, et al. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng. 2004;10(11–12):1818–29.

    Article  CAS  PubMed  Google Scholar 

  125. Guo XM, et al. Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng. 2004;10(11–12):1830–40.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang F, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomater. 2007;3(6):896–904.

    Article  CAS  PubMed  Google Scholar 

  127. Nery EB, et al. Tissue-response to biphasic calcium-phosphate ceramic with different ratios of ha/beta-tcp in periodontal osseous defects. J Periodontol. 1992;63(9):729–35.

    Article  CAS  PubMed  Google Scholar 

  128. Wang JX, et al. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials. 1998;19(15):1387–92.

    Article  CAS  PubMed  Google Scholar 

  129. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.

    Article  CAS  PubMed  Google Scholar 

  130. Kwon SH, et al. Synthesis and dissolution behavior of beta-TCP and HA/beta-TCP composite powders. J Eur Ceram Soc. 2003;23(7):1039–45.

    Article  CAS  Google Scholar 

  131. Kohri M, et al. Invitro stability of biphasic calcium-phosphate ceramics. Biomaterials. 1993;14(4):299–304.

    Article  CAS  PubMed  Google Scholar 

  132. Yuan HP, et al. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006;12(6):1607–15.

    Article  CAS  PubMed  Google Scholar 

  133. Yuan HP, et al. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med. 2002;13(12):1271–5.

    Article  CAS  PubMed  Google Scholar 

  134. Ng AMH, et al. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A. 2008;85A(2):301–12.

    Article  CAS  Google Scholar 

  135. Hench LL, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2:117–41.

    Article  Google Scholar 

  136. Cao WP, Hench LL. Bioactive materials. Ceram Int. 1996;22(6):493–507.

    Article  CAS  Google Scholar 

  137. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–28.

    Article  CAS  Google Scholar 

  138. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  PubMed  Google Scholar 

  139. Xynos ID, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276(2):461–5.

    Article  CAS  PubMed  Google Scholar 

  140. Hench LL. Bioceramics – from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Article  CAS  Google Scholar 

  141. Xynos ID, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass? 45S5 dissolution. J Biomed Mater Res. 2001;55(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  142. Hench LL. The challenge of orthopaedic materials. Curr Orthop. 2000;14(1):7–15.

    Article  Google Scholar 

  143. Balamurugan A, et al. Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system-preparation and in vitro characterization. J Biomed Mater Res B Appl Biomater. 2007;83B(2):546–53.

    Article  CAS  Google Scholar 

  144. Karpov M, et al. Sol–gel bioactive glasses support both osteoblast and osteoclast formation from human bone marrow cells. J Biomed Mater Res A. 2008;84A(3):718–26.

    Article  CAS  Google Scholar 

  145. Yi J, et al. Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds. J Solgel Sci Technol. 2008;45(1):115–9.

    Article  CAS  Google Scholar 

  146. Du RL, Chang J. The influence of Zn on the deposition of HA on sol–gel derived bioactive glass. Biomed Mater Eng. 2006;16(4):229–36.

    CAS  PubMed  Google Scholar 

  147. Hamadouche M, et al. Absorbability of bulk sol–gel 1756 bioactive glasses. Bioceramics. 2000;192(1):593–96.

    Google Scholar 

  148. Zhong JP, Greenspan DC. Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res. 2000;53(6):694–701.

    Article  CAS  PubMed  Google Scholar 

  149. Livage J. Sol–gel processes. Curr Opin Solid State Mater Sci. 1997;2(2):132–8.

    Article  CAS  Google Scholar 

  150. Pereira MM, Clark AE, Hench LL. Calcium-phosphate formation on sol–gel-derived bioactive glasses in-vitro. J Biomed Mater Res. 1994;28(6):693–8.

    Article  CAS  PubMed  Google Scholar 

  151. Pereira MM, Clark AE, Hench LL. Homogeneity and bioactivity of sol–gel derived glasses. J Dent Res. 1994;73:276–276.

    Google Scholar 

  152. Ohura K, et al. Bioactivity of CaO•SiO2 glasses added with various ions. J Mater Sci Mater Med. 1992;3:95–100.

    Article  CAS  Google Scholar 

  153. Yuan HP, et al. Bone induction by porous glass ceramic made from Bioglass (R) (45S5). J Biomed Mater Res. 2001;58(3):270–6.

    Article  CAS  PubMed  Google Scholar 

  154. Chen QZZ, Thompson ID, Boccaccini AR. 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  CAS  PubMed  Google Scholar 

  155. Kaufmann E, Ducheyne P, Shapiro IM. Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J Biomed Mater Res. 2000;52(4):783–96.

    Article  CAS  PubMed  Google Scholar 

  156. Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res. 2002;62(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  157. Peitl O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30(4):509–14.

    Article  Google Scholar 

  158. Li P, et al. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer invitro. J Mater Sci Mater Med. 1992;3(6):452–6.

    Article  CAS  Google Scholar 

  159. Jones JR, Hench LL. Effect of surfactant concentration and composition on the structure and properties of sol–gel-derived bioactive glass foam scaffolds for tissue engineering. J Mater Sci. 2003;38(18):3783–90.

    Article  CAS  Google Scholar 

  160. Jones JR, Hench LL. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. 2004;68B(1):36–44.

    Article  CAS  Google Scholar 

  161. Jones JR, Lee PD, Hench LL. Hierarchical porous materials for tissue engineering. Philos Transact R Soc A Math Phys Eng Sci. 2006;364(1838):263–81.

    Article  CAS  Google Scholar 

  162. Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair. J Biomed Mater Res. 2002;59(2):340–8.

    Article  CAS  PubMed  Google Scholar 

  163. White RA, Weber JN, White EW. Replamineform: a new process for preparing porous ceramic, metal, and polymer prosthetic materials. Science. 1972;176(4037):922–4.

    Article  CAS  PubMed  Google Scholar 

  164. Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):234–48.

    Article  CAS  PubMed  Google Scholar 

  165. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61(2):301–11.

    Article  CAS  PubMed  Google Scholar 

  166. Kokubo T, et al. Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ. 1982;60:260–68.

    Google Scholar 

  167. Kokubo T, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  168. Dyson JA, et al. Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics. Tissue Eng. 2007;13(12):2891–901.

    Article  CAS  PubMed  Google Scholar 

  169. Jones JR, Hench LL. Materials perspective – biomedical materials for new millennium: perspective on the future. Mater Sci Technol. 2001;17(8):891–900.

    Article  CAS  Google Scholar 

  170. Ohtsuki C, et al. Apatite formation on the surface of ceravital-type glass-ceramic in the body. J Biomed Mater Res. 1991;25(11):1363–70.

    Article  CAS  PubMed  Google Scholar 

  171. Reck R, Storkel S, Meyer A. Ceravital middle-ear prostheses – long-term follow-ups. Laryngologie Rhinologie Otologie Vereinigt Mit Monatsschrift Fur Ohrenheilkunde. 1987;66(7):373–6.

    Article  CAS  Google Scholar 

  172. Dost P, et al. Reconstruction of the stapes superstructure with a combined glass-ceramic (Bioverit((R))) implant in guinea pigs. ORL J Otorhinolaryngol Relat Spec. 2002;64(6):429–32.

    Article  CAS  PubMed  Google Scholar 

  173. Jutte M, et al. Bioverit(R) enucleation protheses in rabbits. Klin Monatsbl Augenheilkd. 1992;200(6):674–7.

    Article  CAS  PubMed  Google Scholar 

  174. Vitale-Brovarone C, et al. Macroporous glass-ceramic materials with bioactive properties. J Mater Sci Mater Med. 2004;15(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  175. Vitale-Brovarone C, et al. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 2007;3(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  176. Vitale-Brovarone C, et al. Biocompatible glass-ceramic materials for bone substitution. J Mater Sci Mater Med. 2008;19(1):471–8.

    Article  CAS  PubMed  Google Scholar 

  177. Ramp WK, Lenz LG, Kaysinger KK. Medium pH modulates matrix, mineral, and energy-metabolism in cultured chick bones and osteoblast-like cells. Bone Miner. 1994;24(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  178. Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem. 1998;68(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  179. Conzone SD, et al. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis. J Biomed Mater Res. 2002;60(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  180. Day DE, et al. Transformation of borate glasses into biologically useful materials. Glass Technol. 2003;44(2):75–81.

    CAS  Google Scholar 

  181. Liang W, et al. Bioactive borate glass scaffold for bone tissue engineering. J Non Cryst Solids. 2008;354(15–16):1690–6.

    Article  CAS  Google Scholar 

  182. Kasuga T. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater. 2005;1(1):55–64.

    Article  PubMed  Google Scholar 

  183. Wang C, Kasuga T, Nogami M. Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former. J Mater Sci Mater Med. 2005;16(8):739–44.

    Article  CAS  PubMed  Google Scholar 

  184. Kasuga T, Abe Y. Novel calcium phosphate ceramics prepared by powder sintering and crystallization of glasses in the pyrophosphate region. J Mater Res. 1998;13(12):3357–60.

    Article  CAS  Google Scholar 

  185. Kasuga T, Abe Y. Calcium phosphate invert glasses with soda and titania. J Non Cryst Solids. 1999;243(1):70–4.

    Article  CAS  Google Scholar 

  186. Kasuga T, et al. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials. 1999;20(15):1415–20.

    Article  CAS  PubMed  Google Scholar 

  187. Navarro M, et al. Development of a new calcium phosphate glass ceramic porous scaffold for guided bone regeneration. Bioceramics. 2004;16:945–8.

    Google Scholar 

  188. Deaza PN, Guitian F, Deaza S. Bioactivity of wollastonite ceramics – in-vitro evaluation. Scripta Metallurgica Et Materialia. 1994;31(8):1001–5.

    Article  CAS  Google Scholar 

  189. Liu XY, Ding CX, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 2004;25(10):1755–61.

    Article  CAS  PubMed  Google Scholar 

  190. Lin KL, et al. A simple method to synthesize single-crystalline beta-wollastonite nanowires. J Crystal Growth. 2007;300(2):267–71.

    Article  CAS  Google Scholar 

  191. Liu XY, Ding CX. Reactivity of plasma-sprayed wollastonite coating in simulated body fluid. J Biomed Mater Res. 2002;59(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  192. Xue WC, et al. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials. 2005;26(17):3455–60.

    Article  CAS  PubMed  Google Scholar 

  193. Zhang FM, et al. Preparation, mechanical properties and in vitro degradability of wollastonite/tricalcium phosphate macroporous scaffolds from nanocomposite powders. J Mater Sci Mater Med. 2008;19(1):167–73.

    Article  CAS  PubMed  Google Scholar 

  194. De Aza PN, et al. Morphological studies of pseudowollastonite for biomedical application. J Microsc Oxford. 1996;182:24–31.

    Article  Google Scholar 

  195. De Aza PN, et al. Bioactivity of pseudowollastonite in human saliva. J Dent. 1999;27(2):107–13.

    Article  PubMed  Google Scholar 

  196. De Aza PN, et al. Transmission electron microscopy of the interface between bone and pseudowollastonite implant. J Microsc Oxford. 2001;201:33–43.

    Article  Google Scholar 

  197. Siriphannon P, et al. Influence of preparation conditions on the microstructure and bioactivity of alpha-CaSiO3 ceramics: formation of hydroxyapatite in simulated body fluid. J Biomed Mater Res. 2000;52(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  198. Sarmento C, et al. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. J Biomed Mater Res A. 2004;69A(2):351–8.

    Article  CAS  Google Scholar 

  199. de Aza PN, et al. Morphological and structural study of pseudowollastonite implants in bone. J Microsc Oxford. 2000;197:60–7.

    Article  Google Scholar 

  200. Gou ZR, et al. In vitro bioactivity and dissolution of Ca-2(SiO3)(OH)(2) and beta-Ca2SiO4 fibers. J Eur Ceram Soc. 2004;24(13):3491–7.

    Article  CAS  Google Scholar 

  201. Gou ZR, Chang J, Zhai WY. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc. 2005;25(9):1507–14.

    Article  CAS  Google Scholar 

  202. Zhao WY, et al. In vitro bioactivity of novel tricalcium silicate ceramics. J Mater Sci Mater Med. 2007;18(5):917–23.

    Article  CAS  PubMed  Google Scholar 

  203. Zhao WY, Chang J. Sol–gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater Lett. 2004;58(19):2350–3.

    Article  CAS  Google Scholar 

  204. Wu CT, Chang J. A novel akermanite bioceramic: preparation and characteristics. J Biomater Appl. 2006;21(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  205. Wu CT, Chang J. Synthesis and apatite-formation ability of akermanite. Mater Lett. 2004;58(19):2415–7.

    Article  CAS  Google Scholar 

  206. Wu CT, et al. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res A. 2006;76A(1):73–80.

    Article  CAS  Google Scholar 

  207. Wu CT, Chang J. Synthesis and in vitro bioactivity of bredigite powders. J Biomater Appl. 2007;21(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  208. Wu CT, et al. A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med. 2007;18(5):857–64.

    Article  CAS  PubMed  Google Scholar 

  209. Nonami T, Tsutsumi S. Study of diopside ceramics for biomaterials. J Mater Sci Mater Med. 1999;10(8):475–9.

    Article  CAS  PubMed  Google Scholar 

  210. De Aza PN, Luklinska ZB, Anseau M. Bioactivity of diopside ceramic in human parotid saliva. J Biomed Mater Res B Appl Biomater. 2005;73B(1):54–60.

    Article  CAS  Google Scholar 

  211. Iwata NY, et al. Sintering behavior and apatite formation of diopside prepared by coprecipitation process. Colloids Surf B Biointerfaces. 2004;34(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  212. Du RL, Chang J. Preparation and characterization of bioactive sol–gel-derived Na2Ca2Si3O9. J Mater Sci Mater Med. 2004;15(12):1285–9.

    Article  CAS  PubMed  Google Scholar 

  213. Lu WH, Duan W, Guo YP, Ning CQ. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. J Biomater Appl. 2012;26:637–50.

    Article  CAS  PubMed  Google Scholar 

  214. Duan W, Ning CQ, Tang TT. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: silicocarnotite. J Biomed Mater Res A. 2013;101A(7):1955–61.

    Article  CAS  Google Scholar 

  215. El-Ghannam A, Cunningham L, Pienkowski D, Hart A. Bone engineering of the rabbit ulna. J Oral Maxillofac Surg. 2007;65:1495–502.

    Article  PubMed  Google Scholar 

  216. El-Ghannam A, Ning C, Mehta J. Cyclosilicate nanocomposite: A novel resorbable bioactive tissue engineering scaffold for BMP and bone marrow cell delivery. J Biomed Mater Res. 2004;71A:377–90.

    Article  CAS  Google Scholar 

  217. Ni SY, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mater Res A. 2006;76A(1):196–205.

    Article  CAS  Google Scholar 

  218. Ni SY, et al. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res B Appl Biomater. 2007;80B(1):174–83.

    Article  CAS  Google Scholar 

  219. Xu S, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588–96.

    Article  CAS  PubMed  Google Scholar 

  220. Dufrane D, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med. 2003;14(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  221. Lin KL, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int. 2005;31(2):323–6.

    Article  CAS  Google Scholar 

  222. Siriphannon P, et al. Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res. 1999;14(2):529–36.

    Article  CAS  Google Scholar 

  223. Sahai N, Anseau M. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials. 2005;26:5763–70.

    Article  CAS  PubMed  Google Scholar 

  224. Gou ZG, Chang J. Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc. 2004;24(1):93–9.

    Article  CAS  Google Scholar 

  225. Nakajima S, et al. Physicochemical characteristics of new reinforcement ceramic implant. Shikwa Gakuho. 1989;89:1709–17.

    CAS  PubMed  Google Scholar 

  226. Nakajima S. Experimental studies of healing process on reinforcement ceramic implantation in rabbit mandible. Shikwa Gakuho. 1990;4:525–53.

    Google Scholar 

  227. Miake Y, et al. High resolution and analytical electron microscopic studies of new crystals induced by a bioactive ceramic (diopside). J Dent Res. 1995;74(11):1756–63.

    Article  CAS  PubMed  Google Scholar 

  228. Iwata NY, et al. Preparation of diopside with apatite-forming ability by sol–gel process using metal alkoxide and metal salts. Colloids Surf B Biointerfaces. 2004;33(1):1–6.

    Article  CAS  Google Scholar 

  229. Wu CT, et al. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials. 2005;26(16):2925–31.

    Article  CAS  PubMed  Google Scholar 

  230. Arcos D, Greenspan DC, Vallet-Regi M. A new quantitative method to evaluate the in vitro bioactivity of melt and sol–gel-derived silicate glasses. J Biomed Mater Res A. 2003;65A(3):344–51.

    Article  CAS  Google Scholar 

  231. Sun HL, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27(33):5651–7.

    Article  CAS  PubMed  Google Scholar 

  232. De Aza PN, Guitian F, DeAza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials. 1997;18(19):1285–91.

    Article  PubMed  Google Scholar 

  233. De Aza PN, et al. Reactivity of a wollastonite-tricalcium phosphate bioeutectic (R) ceramic in human parotid saliva. Biomaterials. 2000;21(17):1735–41.

    Article  PubMed  Google Scholar 

  234. Huang XA, Jiang DL, Tan SH. Apatite formation on the surface of wollastonite/tricalcium phosphate composite immersed in simulated body fluid. J Biomed Mater Res B Appl Biomater. 2004;69B(1):70–2.

    Article  CAS  Google Scholar 

  235. Ni SY, et al. Beta-CaSiO3/beta-Ca-3(PO4)(2) composite materials for hard tissue repair: in vitro studies. J Biomed Mater Res A. 2008;85A(1):72–82.

    Article  CAS  Google Scholar 

  236. Li HY, Chang J. Preparation and characterization of bioactive and biodegradable Wollastonite/poly(D, L-lactic acid) composite scaffolds. J Mater Sci Mater Med. 2004;15(10):1089–95.

    Article  CAS  PubMed  Google Scholar 

  237. Li HY, Chang J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials. 2004;25(24):5473–80.

    Article  CAS  PubMed  Google Scholar 

  238. Cheng W, Li HY, Chang J. Fabrication and characterization of beta-dicalcium silicate/poly(D, L-lactic acid) composite scaffolds. Mater Lett. 2005;59(17):2214–8.

    Article  CAS  Google Scholar 

  239. Sada E, Kumazawa H, Murakami Y. Hydrothermal synthesis of crystalline hydroxyapatite ultrafine particles. Chem Eng Commun. 1991;103:57–64.

    Article  CAS  Google Scholar 

  240. Fang Y, et al. Ultrasonically accelerated synthesis of hydroxyapatite. J Mater Res. 1992;7(8):2294–8.

    Article  CAS  Google Scholar 

  241. Zhang SM, et al. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr Appl Phys. 2005;5(5):516–8.

    Article  Google Scholar 

  242. Qiu XY, et al. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules. 2005;6(3):1193–9.

    Article  CAS  PubMed  Google Scholar 

  243. Qiu XY, et al. Surface-modified hydroxyapatite linked by L-lactic acid oligomer in the absence of catalyst. J Polym Sci A Polym Chem. 2005;43(21):5177–85.

    Article  CAS  Google Scholar 

  244. Ye LZ, et al. Fabrication of poly-(DL-lactic acid)-wollastonite composite films with surface modified beta-CaSiO3 particles. J Biomater Appl. 2008;22(5):465–80.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congqin Ning PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Ning, C. (2016). Biomaterials for Bone Tissue Engineering. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics