Skip to main content

Peripheral Arterial Disease

  • Chapter
  • First Online:
  • 1203 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

For the purposes of this chapter, peripheral arterial disease (PAD) refers to the development and progression of atherosclerotic disease in the arteries of the lower extremities. A broader definition of peripheral arterial disease would encompass the aorta and all its major visceral branches (carotid arteries, mesenteric arteries, renal arteries, and extremity arteries). This chapter will not cover therapeutic considerations related to disease in each of these arterial beds.

Key Points

• Peripheral arterial disease (PAD) is common and highly underdiagnosed.

• Patients with PAD have a higher rate of cardiovascular events than the highest risk groups predicted by the Framingham risk score, up to 20% over 5 years.

• Over half of PAD patients have concomitant coronary artery disease.

• The National Cholesterol Education Program recognizes PAD as a coronary heart disease (CHD) risk equivalent, which defines these patients as being at high risk for CHD-related events, such as myocardial infarction and death.

• Only one-third of patients with PAD have typical calf symptoms of claudication.

• All patients at risk of PAD should be screened with the simple, non-invasive, inexpensive ankle–brachial index (ABI). The ABI is 95% sensitive and 99% specific for the diagnosis of PAD.

• Management of PAD involves two paths: aggressive treatment of cardiovascular risk factors to decrease cardiovascular events and mortality as well as treatment of lower extremity symptoms.

• Lower extremity revascularization is never indicated in the asymptomatic patient. However, aggressive risk factor modification should be undertaken in all PAD patients.

• Consensus guidelines for PAD are produced by two major societies, the American College of Cardiology/American Heart Association (ACC/AHA) and the Trans-Atlantic Intersociety Consensus Working Group (TASC-II). Recommendations from the two societies are largely concordant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Schwenke DC. Comparison of aorta and pulmonary artery: II. LDL transport and metabolism correlate with susceptibility to atherosclerosis. Circ Res. 1997;81:346–354.

    Article  PubMed  CAS  Google Scholar 

  3. Schwenke DC. Comparison of aorta and pulmonary artery: I. Early cholesterol accumulation and relative susceptibility to atheromatous lesions. Circ Res. 1997;81:338–345.

    Article  PubMed  CAS  Google Scholar 

  4. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis. 1998;139:205–222.

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med. 2002;8:1211–1217.

    Article  PubMed  CAS  Google Scholar 

  6. Navab M, Hama SY, Reddy ST, et al. Oxidized lipids as mediators of coronary heart disease. Curr Opin Lipidol. 2002;13:363–372. Erratum appears in Curr Opin Lipidol. 2002 Oct;13(5):589.

    Google Scholar 

  7. Dansky HM, Barlow CB, Lominska C, et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol. 2001;21:1662–1667.

    Article  PubMed  CAS  Google Scholar 

  8. Cybulsky MI, Gimbrone MA Jr.. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–791.

    Article  PubMed  CAS  Google Scholar 

  9. Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  10. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191:189–194.

    Article  PubMed  CAS  Google Scholar 

  11. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2–/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394:894–897.

    Article  PubMed  CAS  Google Scholar 

  12. Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:275–281.

    Article  PubMed  CAS  Google Scholar 

  13. Gosling J, Slaymaker S, Gu L, et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest. 1999;103:773–778.

    Article  PubMed  CAS  Google Scholar 

  14. Smith JD, Trogan E, Ginsberg M, et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA. 1995;92:8264–8268.

    Article  PubMed  CAS  Google Scholar 

  15. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990;344:254–257.

    Article  PubMed  CAS  Google Scholar 

  16. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–1324.

    Article  PubMed  CAS  Google Scholar 

  17. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the national health and nutrition examination survey, 1999–2000. Circulation. 2004;110(6):738–743.

    Article  PubMed  Google Scholar 

  18. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 1998;18(2):185–192.

    Article  PubMed  CAS  Google Scholar 

  19. Diehm C, Schuster A, Allenberg H, et al. High prevalence of peripheral arterial disease and comorbidity in 6880 primary care patients: cross sectional study. Atherosclerosis. 2004;172:95–105.

    Article  PubMed  CAS  Google Scholar 

  20. Criqui MH, Vargas V, Denenberg JO, et al. Ethnicity and peripheral arterial disease: the san Diego population study. Circulation. 2005;112(17):2703–2707.

    Article  PubMed  Google Scholar 

  21. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients with Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006;47(6):1239–1312.

    Article  PubMed  Google Scholar 

  22. Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–S67.

    Article  PubMed  Google Scholar 

  23. Leng GC, Fowkes FG, Lee AJ, Dunbar J, Housley E, Ruckley CV. Use of ankle brachial pressure index to predict cardiovascular events and death: a cohort study. BMJ. 1996;313(7070):1440–1444.

    Article  PubMed  CAS  Google Scholar 

  24. Fowkes FG, Murray GD, Butcher I, et al. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208.

    Article  PubMed  CAS  Google Scholar 

  25. O‘Hare AM, Katz R, Shlipak MG, Cushman M, Newman AB. Mortality and cardiovascular risk across the ankle-arm index spectrum: results from the cardiovascular health study. Circulation. 2006;113(3):388–393.

    Article  PubMed  Google Scholar 

  26. Ogren M, Hedblad B, Engstrom G, Janzon L. Prevalence and prognostic significance of asymptomatic peripheral arterial disease in 68-year-old men with diabetes. Results from the population study “men born in 1914” from Malmo, Sweden. Eur J Vasc Endovasc Surg. 2005;29(2):182–189.

    Article  PubMed  CAS  Google Scholar 

  27. Criqui MH, Fronek A, Klauber MR, Barrett-Connor E, Gabriel S. The sensitivity, specificity, and predictive value of traditional clinical evaluation of peripheral arterial disease: results from noninvasive testing in a defined population. Circulation. 1985;71(3):516–522.

    Article  PubMed  CAS  Google Scholar 

  28. Hiatt WR, Marshall JA, Baxter J, et al. Diagnostic methods for peripheral arterial disease in the san Luis valley diabetes study. J Clin Epidemiol. 1990;43(6):597–606.

    Article  PubMed  CAS  Google Scholar 

  29. Criqui MH. Peripheral arterial disease—epidemiological aspects. Vascular Medicine. 2001;6(3 Suppl):3–7.

    Article  PubMed  CAS  Google Scholar 

  30. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

    Article  Google Scholar 

  31. Giri J, McDermott MM, Greenland P, et al. Statin use and functional decline in patients with and without peripheral arterial disease. J Am Coll Cardiol. 2006 Mar;47(5):998–1004.

    Article  PubMed  CAS  Google Scholar 

  32. Mohler ER 3rd, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108(12):1481–1486.

    Article  PubMed  CAS  Google Scholar 

  33. Mondillo S, Ballo P, Barbati R, et al. Effects of simvastatin on walking performance and symptoms of intermittent claudication in hypercholesterolemic patients with peripheral vascular disease. Am J Med. 2003;114(5):359–364.

    Article  PubMed  CAS  Google Scholar 

  34. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–2572. Erratum appears in JAMA. 2003;290(2):197.

    Google Scholar 

  35. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):145–153. Erratum appears in N Engl J Med. 2000;342(18):1376.

    Google Scholar 

  36. Ahimastos AA, Lawler A, Reid CM, et al. Brief communication: ramipril markedly improves walking ability in patients with peripheral arterial disease: a randomized trial. Ann Intern Med. 2006;144(9):660–664. Summary for patients in Ann Intern Med. 2006;144(9):I24;PMID:16670129.

    Google Scholar 

  37. Fogoros RN. Exacerbation of intermittent claudication by propranolol. N Engl J Med. 1980;302(19):1089.

    PubMed  CAS  Google Scholar 

  38. Ingram DM, House AK, Thompson GH, et al. Beta-adrenergic blockade and peripheral vascular disease. Med J Aust. 1998;1(12):509–511.

    Google Scholar 

  39. Smith RS, Warren DJ. Effect of beta-blocking drugs on peripheral blood flow in intermittent claudication. J Cardiovasc Pharmacol. 1982;4(1):2–4.

    Article  PubMed  CAS  Google Scholar 

  40. Radack K, Deck C. Beta-adrenergic blocker therapy does not worsen intermittent claudication in subjects with peripheral arterial disease. A meta-analysis of randomized controlled trials. Arch Intern Med. 1991;151(9):1769–1776.

    Article  PubMed  CAS  Google Scholar 

  41. Antithrombotic Trialists C. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86. Erratum appears in BMJ. 2002;324(7330):141.

    Google Scholar 

  42. Creager MA. Results of the CAPRIE Trial: efficacy and safety of clopidogrel. Clopidogrel versus aspirin in patients at risk of ischaemic events. Vasc Med. 1998;3(3):257–260.

    PubMed  CAS  Google Scholar 

  43. Steering Committee CAPRIE. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348(9038):1329–1339.

    Article  Google Scholar 

  44. Belch J, MacCuish A, Campbell I, et al. The Prevention and Progression of Arterial Disease and Diabetes (POPADAD) Trial: factorial randomized placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840.

    Article  PubMed  Google Scholar 

  45. Bhatt DL, Flather MD, Hacke W, et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA Trial. J Am Coll Cardiol. 2007;49(19):1982–1988.

    Article  PubMed  Google Scholar 

  46. Bhatt DL, Fox KA, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354(16):1706–1717.

    Article  PubMed  CAS  Google Scholar 

  47. Anand S, Yusuf S, Xie C, et al. Oral anticoagulant and antiplatelet therapy and peripheral arterial disease. N Engl J Med. 2007;357(3):217–227.

    Article  PubMed  CAS  Google Scholar 

  48. Mohler ER III.. Atherothrombosis—wave goodbye to combined anticoagulation and antiplatelet therapy? N Engl J Med. 2007;357(3):293–296.

    Article  PubMed  CAS  Google Scholar 

  49. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995;274(12):975–980.

    Article  PubMed  CAS  Google Scholar 

  50. Hiatt WR, Regensteiner JG, Hargarten ME, et al. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation. 1990;81(2):602–609.

    Article  PubMed  CAS  Google Scholar 

  51. Hiatt WR, Wolfel EE, Meier RH, et al. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation. 1994;90(4): 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  52. Regensteiner JG. Exercise in the treatment of claudication: assessment and treatment of functional impairment. Vasc Med. 1997;2(3):238–242.

    PubMed  CAS  Google Scholar 

  53. Regensteiner JG, Meyer TJ, Krupski WC, et al. Hospital vs home-based exercise rehabilitation for patients with peripheral arterial occlusive disease. Angiology. 1997;48(4):291–300.

    Article  PubMed  CAS  Google Scholar 

  54. Garg PK, Tian L, Criqui MH, et al. Physical activity during daily life and mortality in patients with peripheral arterial disease. Circulation. 2006;114(3):242–248.

    Article  PubMed  Google Scholar 

  55. Regensteiner JG, Ware JE Jr., McCarthy WJ, et al. Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. J AmGeriat Soc. 2002;50(12):1939–1946.

    Google Scholar 

  56. Ernst E. Pentoxifylline for intermittent claudication: a critical review. Angiology. 1994;45:339–345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giri, J., Mohler, E.R. (2011). Peripheral Arterial Disease. In: Toth, P., Cannon, C. (eds) Comprehensive Cardiovascular Medicine in the Primary Care Setting. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-963-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-963-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-962-8

  • Online ISBN: 978-1-60327-963-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics