Skip to main content

Biomarkers for Prostate Cancer Detection: Family-Based Linkage Analysis and Case–Control Association Studies

  • Chapter

Part of the book series: Current Clinical Urology ((CCU))

Summary

For decades, it has been well-recognized that genetics plays a critical role in the development of prostate cancer. Numerous epidemiological and molecular biological studies have shown evidence for a significant but heterogeneous hereditary component in prostate cancer susceptibility. Linkage analysis in twin and family-based study designs provided targeted candidate regions for prostate cancer risk and cancer aggressiveness. Subsequent mapping efforts and mutation screening yielded several strong candidate genes. More recent tools allow investigation of gene–gene and gene–environment interactions in population-based designs, such as case–control or cohort studies. These analyses have identified associations between single nucleotide polymorphisms within candidate genes and prostate cancer susceptibility. Understanding the role of these genes may help in defining heterogeneity in prostate cancer etiology and eventually lead to better detection, treatment, and, ultimately, prevention of prostate cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A. and Hemminki, K. (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343, 78–85.

    Article  CAS  PubMed  Google Scholar 

  2. Ostrander, E. A., Markianos, K. and Stanford, J. L. (2004) Finding prostate cancer susceptibility genes. Annu Rev Genomics Hum Genet 5, 151–75.

    Article  CAS  PubMed  Google Scholar 

  3. Schaid, D. J. (2004) The complex genetic epidemiology of prostate cancer. Hum Mol Genet 13 Spec No 1, R103–21.

    Article  PubMed  CAS  Google Scholar 

  4. Ostrander, E. A. and Stanford, J. L. (2000) Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 67, 1367–75.

    Article  CAS  PubMed  Google Scholar 

  5. Ghadirian, P., Howe, G. R., Hislop, T. G. and Maisonneuve, P. (1997) Family history of prostate cancer: a multi-center case-control study in Canada. Int J Cancer 70, 679–81.

    Article  CAS  PubMed  Google Scholar 

  6. Stanford, J. L. and Ostrander, E. A. (2001) Familial prostate cancer. Epidemiol Rev 23, 19–23.

    CAS  PubMed  Google Scholar 

  7. Steinberg, G. D., Carter, B. S., Beaty, T. H., Childs, B. and Walsh, P. C. (1990) Family history and the risk of prostate cancer. Prostate 17, 337–47.

    Article  CAS  PubMed  Google Scholar 

  8. Carter, B. S., Beaty, T. H., Steinberg, G. D., Childs, B. and Walsh, P. C. (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89, 3367–71.

    Article  CAS  PubMed  Google Scholar 

  9. Xu, J., Dimitrov, L., Chang, B. L., Adams, T. S., Turner, A. R., Meyers, D. A., Eeles, R. A., Easton, D. F., Foulkes, W. D., Simard, J., Giles, G. G., Hopper, J. L., Mahle, L., Moller, P., Bishop, T., Evans, C., Edwards, S., Meitz, J., Bullock, S., Hope, Q., Hsieh, C. L., Halpern, J., Balise, R. N., Oakley-Girvan, I., Whittemore, A. S., Ewing, C. M., Gielzak, M., Isaacs, S. D., Walsh, P. C., Wiley, K. E., Isaacs, W. B., Thibodeau, S. N., McDonnell, S. K., Cunningham, J. M., Zarfas, K. E., Hebbring, S., Schaid, D. J., Friedrichsen, D. M., Deutsch, K., Kolb, S., Badzioch, M., Jarvik, G. P., Janer, M., Hood, L., Ostrander, E. A., Stanford, J. L., Lange, E. M., Beebe-Dimmer, J. L., Mohai, C. E., Cooney, K. A., Ikonen, T., Baffoe-Bonnie, A., Fredriksson, H., Matikainen, M. P., Tammela, T., Bailey-Wilson, J., Schleutker, J., Maier, C., Herkommer, K., Hoegel, J. J., Vogel, W., Paiss, T., Wiklund, F., Emanuelsson, M., Stenman, E., Jonsson, B. A., Gronberg, H., Camp, N. J., Farnham, J., Cannon-Albright, L. A. and Seminara, D. (2005) A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77, 219–29.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, J. R., Freije, D., Carpten, J. D., Gronberg, H., Xu, J., Isaacs, S. D., Brownstein, M. J., Bova, G. S., Guo, H., Bujnovszky, P., Nusskern, D. R., Damber, J. E., Bergh, A., Emanuelsson, M., Kallioniemi, O. P., Walker-Daniels, J., Bailey-Wilson, J. E., Beaty, T. H., Meyers, D. A., Walsh, P. C., Collins, F. S., Trent, J. M. and Isaacs, W. B. (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274, 1371–4.

    Article  CAS  PubMed  Google Scholar 

  11. Xu, J., Meyers, D., Freije, D., Isaacs, S., Wiley, K., Nusskern, D., Ewing, C., Wilkens, E., Bujnovszky, P., Bova, G. S., Walsh, P., Isaacs, W., Schleutker, J., Matikainen, M., Tammela, T., Visakorpi, T., Kallioniemi, O. P., Berry, R., Schaid, D., French, A., McDonnell, S., Schroeder, J., Blute, M., Thibodeau, S., Gronberg, H., Emanuelsson, M., Damber, J. E., Bergh, A., Jonsson, B. A., Smith, J., Bailey-Wilson, J., Carpten, J., Stephan, D., Gillanders, E., Amundson, I., Kainu, T., Freas-Lutz, D., Baffoe-Bonnie, A., Van Aucken, A., Sood, R., Collins, F., Brownstein, M. and Trent, J. (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20, 175–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J. and Cannon-Albright, L. A. (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27, 172–80.

    Article  CAS  PubMed  Google Scholar 

  13. Berry, R., Schroeder, J. J., French, A. J., McDonnell, S. K., Peterson, B. J., Cunningham, J. M., Thibodeau, S. N. and Schaid, D. J. (2000) Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 67, 82–91.

    Article  CAS  PubMed  Google Scholar 

  14. Friedrichsen, D. M., Stanford, J. L., Isaacs, S. D., Janer, M., Chang, B. L., Deutsch, K., Gillanders, E., Kolb, S., Wiley, K. E., Badzioch, M. D., Zheng, S. L., Walsh, P. C., Jarvik, G. P., Hood, L., Trent, J. M., Isaacs, W. B., Ostrander, E. A. and Xu, J. (2004) Identification of a prostate cancer susceptibility locus on chromosome 7q11–21 in Jewish families. Proc Natl Acad Sci USA 101, 1939–44.

    Article  CAS  PubMed  Google Scholar 

  15. Rokman, A., Baffoe-Bonnie, A. B., Gillanders, E., Fredriksson, H., Autio, V., Ikonen, T., Gibbs, K. D., Jr., Jones, M., Gildea, D., Freas-Lutz, D., Markey, C., Matikainen, M. P., Koivisto, P. A., Tammela, T. L., Kallioniemi, O. P., Trent, J., Bailey-Wilson, J. E. and Schleutker, J. (2005) Hereditary prostate cancer in Finland: fine-mapping validates 3p26 as a major predisposition locus. Hum Genet 116, 43–50.

    Article  PubMed  CAS  Google Scholar 

  16. Lange, E. M., Ho, L. A., Beebe-Dimmer, J. L., Wang, Y., Gillanders, E. M., Trent, J. M., Lange, L. A., Wood, D. P. and Cooney, K. A. (2006) Genome-wide linkage scan for prostate cancer susceptibility genes in men with aggressive disease: significant evidence for linkage at chromosome 15q12. Hum Genet 119, 400–7.

    Article  CAS  PubMed  Google Scholar 

  17. Berthon, P., Valeri, A., Cohen-Akenine, A., Drelon, E., Paiss, T., Wohr, G., Latil, A., Millasseau, P., Mellah, I., Cohen, N., Blanche, H., Bellane-Chantelot, C., Demenais, F., Teillac, P., Le Duc, A., de Petriconi, R., Hautmann, R., Chumakov, I., Bachner, L., Maitland, N. J., Lidereau, R., Vogel, W., Fournier, G., Mangin, P., Cussenot, O. and et al. (1998) Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 62, 1416–24.

    Article  CAS  PubMed  Google Scholar 

  18. Gibbs, M., Stanford, J. L., McIndoe, R. A., Jarvik, G. P., Kolb, S., Goode, E. L., Chakrabarti, L., Schuster, E. F., Buckley, V. A., Miller, E. L., Brandzel, S., Li, S., Hood, L. and Ostrander, E. A. (1999) Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 64, 776–87.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, J., Zheng, S. L., Hawkins, G. A., Faith, D. A., Kelly, B., Isaacs, S. D., Wiley, K. E., Chang, B., Ewing, C. M., Bujnovszky, P., Carpten, J. D., Bleecker, E. R., Walsh, P. C., Trent, J. M., Meyers, D. A. and Isaacs, W. B. (2001) Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 69, 341–50.

    Article  CAS  PubMed  Google Scholar 

  20. Lange, E. M., Gillanders, E. M., Davis, C. C., Brown, W. M., Campbell, J. K., Jones, M., Gildea, D., Riedesel, E., Albertus, J., Freas-Lutz, D., Markey, C., Giri, V., Dimmer, J. B., Montie, J. E., Trent, J. M. and Cooney, K. A. (2003) Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57, 326–34.

    Article  CAS  PubMed  Google Scholar 

  21. Amundadottir, L. T., Sulem, P., Gudmundsson, J., Helgason, A., Baker, A., Agnarsson, B. A., Sigurdsson, A., Benediktsdottir, K. R., Cazier, J. B., Sainz, J., Jakobsdottir, M., Kostic, J., Magnusdottir, D. N., Ghosh, S., Agnarsson, K., Birgisdottir, B., Le Roux, L., Olafsdottir, A., Blondal, T., Andresdottir, M., Gretarsdottir, O. S., Bergthorsson, J. T., Gudbjartsson, D., Gylfason, A., Thorleifsson, G., Manolescu, A., Kristjansson, K., Geirsson, G., Isaksson, H., Douglas, J., Johansson, J. E., Balter, K., Wiklund, F., Montie, J. E., Yu, X., Suarez, B. K., Ober, C., Cooney, K. A., Gronberg, H., Catalona, W. J., Einarsson, G. V., Barkardottir, R. B., Gulcher, J. R., Kong, A., Thorsteinsdottir, U. and Stefansson, K. (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38, 652–8.

    Article  CAS  PubMed  Google Scholar 

  22. Slager, S. L., Schaid, D. J., Cunningham, J. M., McDonnell, S. K., Marks, A. F., Peterson, B. J., Hebbring, S. J., Anderson, S., French, A. J. and Thibodeau, S. N. (2003) Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72, 759–62.

    Article  CAS  PubMed  Google Scholar 

  23. Schaid, D. J., Stanford, J. L., McDonnell, S. K., Suuriniemi, M., McIntosh, L., Karyadi, D. M., Carlson, E. E., Deutsch, K., Janer, M., Hood, L. and Ostrander, E. A. (2007) Genome-wide linkage scan of prostate cancer Gleason score and confirmation of chromosome 19q. Hum Genet 121, 729–35.

    Article  CAS  PubMed  Google Scholar 

  24. Witte, J. S., Goddard, K. A., Conti, D. V., Elston, R. C., Lin, J., Suarez, B. K., Broman, K. W., Burmester, J. K., Weber, J. L. and Catalona, W. J. (2000) Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 67, 92–9.

    Article  CAS  PubMed  Google Scholar 

  25. Witte, J. S., Suarez, B. K., Thiel, B., Lin, J., Yu, A., Banerjee, T. K., Burmester, J. K., Casey, G. and Catalona, W. J. (2003) Genome-wide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci. Prostate 57, 298–308.

    Article  CAS  PubMed  Google Scholar 

  26. Makridakis, N. M. and Reichardt, J. K. (2001) Molecular epidemiology of hormone-metabolic loci in prostate cancer. Epidemiol Rev 23, 24–9.

    CAS  PubMed  Google Scholar 

  27. Huggins, C. and Hodges, C. V. (2002) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol 168, 9–12.

    Article  PubMed  Google Scholar 

  28. Gnanapragasam, V. J., Robson, C. N., Leung, H. Y. and Neal, D. E. (2000) Androgen receptor signalling in the prostate. BJU Int 86, 1001–13.

    Article  CAS  PubMed  Google Scholar 

  29. Hakimi, J. M., Schoenberg, M. P., Rondinelli, R. H., Piantadosi, S. and Barrack, E. R. (1997) Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin Cancer Res 3, 1599–608.

    CAS  PubMed  Google Scholar 

  30. Irvine, R. A., Yu, M. C., Ross, R. K. and Coetzee, G. A. (1995) The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 55, 1937–40.

    CAS  PubMed  Google Scholar 

  31. Lindstrom, S., Zheng, S. L., Wiklund, F., Jonsson, B. A., Adami, H. O., Balter, K. A., Brookes, A. J., Sun, J., Chang, B. L., Liu, W., Li, G., Isaacs, W. B., Adolfsson, J., Gronberg, H. and Xu, J. (2006) Systematic replication study of reported genetic associations in prostate cancer: strong support for genetic variation in the androgen pathway. Prostate 66, 1729–43.

    Article  PubMed  CAS  Google Scholar 

  32. Ross, R. K., Pike, M. C., Coetzee, G. A., Reichardt, J. K., Yu, M. C., Feigelson, H., Stanczyk, F. Z., Kolonel, L. N. and Henderson, B. E. (1998) Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 58, 4497–504.

    CAS  PubMed  Google Scholar 

  33. Mononen, N., Syrjakoski, K., Matikainen, M., Tammela, T. L., Schleutker, J., Kallioniemi, O. P., Trapman, J. and Koivisto, P. A. (2000) Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 60, 6479–81.

    CAS  PubMed  Google Scholar 

  34. Simard, J., Durocher, F., Mebarki, F., Turgeon, C., Sanchez, R., Labrie, Y., Couet, J., Trudel, C., Rheaume, E., Morel, Y., Luu-The, V. and Labrie, F. (1996) Molecular biology and genetics of the 3 beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. J Endocrinol 150 Suppl, S189–207.

    CAS  PubMed  Google Scholar 

  35. Devgan, S. A., Henderson, B. E., Yu, M. C., Shi, C. Y., Pike, M. C., Ross, R. K. and Reichardt, J. K. (1997) Genetic variation of 3 beta-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 33, 9–12.

    Article  CAS  PubMed  Google Scholar 

  36. Thigpen, A. E., Silver, R. I., Guileyardo, J. M., Casey, M. L., McConnell, J. D. and Russell, D. W. (1993) Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest 92, 903–10.

    Article  CAS  PubMed  Google Scholar 

  37. Hochberg, Z., Chayen, R., Reiss, N., Falik, Z., Makler, A., Munichor, M., Farkas, A., Goldfarb, H., Ohana, N. and Hiort, O. (1996) Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5 alpha-reductase 2 deficiency. J Clin Endocrinol Metab 81, 2821–7.

    Article  CAS  PubMed  Google Scholar 

  38. Makridakis, N. M., di Salle, E. and Reichardt, J. K. (2000) Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics 10, 407–13.

    Article  CAS  PubMed  Google Scholar 

  39. Makridakis, N., Ross, R. K., Pike, M. C., Chang, L., Stanczyk, F. Z., Kolonel, L. N., Shi, C. Y., Yu, M. C., Henderson, B. E. and Reichardt, J. K. (1997) A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 57, 1020–2.

    CAS  PubMed  Google Scholar 

  40. Nam, R. K., Toi, A., Vesprini, D., Ho, M., Chu, W., Harvie, S., Sweet, J., Trachtenberg, J., Jewett, M. A. and Narod, S. A. (2001) V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer presence and progression. Urology 57, 199–204.

    Article  CAS  PubMed  Google Scholar 

  41. Makridakis, N. M., Ross, R. K., Pike, M. C., Crocitto, L. E., Kolonel, L. N., Pearce, C. L., Henderson, B. E. and Reichardt, J. K. (1999) Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354, 975–8.

    Article  CAS  PubMed  Google Scholar 

  42. Van Den Akker, E. L., Koper, J. W., Boehmer, A. L., Themmen, A. P., Verhoef-Post, M., Timmerman, M. A., Otten, B. J., Drop, S. L. and De Jong, F. H. (2002) Differential inhibition of 17alpha-hydroxylase and 17,20-lyase activities by three novel missense CYP17 mutations identified in patients with P450c17 deficiency. J Clin Endocrinol Metab 87, 5714–21.

    Article  CAS  Google Scholar 

  43. Chung, B. C., Picado-Leonard, J., Haniu, M., Bienkowski, M., Hall, P. F., Shively, J. E. and Miller, W. L. (1987) Cytochrome P450c17 (steroid 17 alpha-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci USA 84, 407–11.

    Article  CAS  PubMed  Google Scholar 

  44. Haiman, C. A., Stampfer, M. J., Giovannucci, E., Ma, J., Decalo, N. E., Kantoff, P. W. and Hunter, D. J. (2001) The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev 10, 743–8.

    CAS  PubMed  Google Scholar 

  45. Yamada, Y., Watanabe, M., Murata, M., Yamanaka, M., Kubota, Y., Ito, H., Katoh, T., Kawamura, J., Yatani, R. and Shiraishi, T. (2001) Impact of genetic polymorphisms of 17-hydroxylase cytochrome P-450 (CYP17) and steroid 5alpha-reductase type II (SRD5A2) genes on prostate-cancer risk among the Japanese population. Int J Cancer 92, 683–6.

    Article  CAS  PubMed  Google Scholar 

  46. Gsur, A., Bernhofer, G., Hinteregger, S., Haidinger, G., Schatzl, G., Madersbacher, S., Marberger, M., Vutuc, C. and Micksche, M. (2000) A polymorphism in the CYP17 gene is associated with prostate cancer risk. Int J Cancer 87, 434–7.

    Article  CAS  PubMed  Google Scholar 

  47. Lunn, R. M., Bell, D. A., Mohler, J. L. and Taylor, J. A. (1999) Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 20, 1727–31.

    Article  CAS  PubMed  Google Scholar 

  48. Habuchi, T., Liqing, Z., Suzuki, T., Sasaki, R., Tsuchiya, N., Tachiki, H., Shimoda, N., Satoh, S., Sato, K., Kakehi, Y., Kamoto, T., Ogawa, O. and Kato, T. (2000) Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res 60, 5710–3.

    CAS  PubMed  Google Scholar 

  49. Latil, A. G., Azzouzi, R., Cancel, G. S., Guillaume, E. C., Cochan-Priollet, B., Berthon, P. L. and Cussenot, O. (2001) Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 92, 1130–7.

    Article  CAS  PubMed  Google Scholar 

  50. Riegman, P. H., Vlietstra, R. J., van der Korput, J. A., Brinkmann, A. O. and Trapman, J. (1991) The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol 5, 1921–30.

    Article  CAS  PubMed  Google Scholar 

  51. Cleutjens, K. B., van Eekelen, C. C., van der Korput, H. A., Brinkmann, A. O. and Trapman, J. (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271, 6379–88.

    Article  CAS  PubMed  Google Scholar 

  52. Xue, W., Irvine, R. A., Yu, M. C., Ross, R. K., Coetzee, G. A. and Ingles, S. A. (2000) Susceptibility to prostate cancer: interaction between genotypes at the androgen receptor and prostate-specific antigen loci. Cancer Res 60, 839–41.

    CAS  PubMed  Google Scholar 

  53. Lai, J., Kedda, M. A., Hinze, K., Smith, R. L., Yaxley, J., Spurdle, A. B., Morris, C. P., Harris, J. and Clements, J. A. (2007) PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. Carcinogenesis 28, 1032–9.

    Article  CAS  PubMed  Google Scholar 

  54. Cheung, Y. L., Kerr, A. C., McFadyen, M. C., Melvin, W. T. and Murray, G. I. (1999) Differential expression of CYP1A1, CYP1A2, CYP1B1 in human kidney tumours. Cancer Lett 139, 199–205.

    Article  CAS  PubMed  Google Scholar 

  55. Agundez, J. A. (2004) Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab 5, 211–24.

    Article  CAS  PubMed  Google Scholar 

  56. Hayes, C. L., Spink, D. C., Spink, B. C., Cao, J. Q., Walker, N. J. and Sutter, T. R. (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci USA 93, 9776–81.

    Article  CAS  PubMed  Google Scholar 

  57. Spink, D. C., Eugster, H. P., Lincoln, D. W., 2nd, Schuetz, J. D., Schuetz, E. G., Johnson, J. A., Kaminsky, L. S. and Gierthy, J. F. (1992) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1A1: a comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA. Arch Biochem Biophys 293, 342–8.

    Article  CAS  PubMed  Google Scholar 

  58. Crespi, C. L., Penman, B. W., Steimel, D. T., Smith, T., Yang, C. S. and Sutter, T. R. (1997) Development of a human lymphoblastoid cell line constitutively expressing human CYP1B1 cDNA: substrate specificity with model substrates and promutagens. Mutagenesis 12, 83–9.

    CAS  PubMed  Google Scholar 

  59. Cavalieri, E. L., Devanesan, P., Bosland, M. C., Badawi, A. F. and Rogan, E. G. (2002) Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. Carcinogenesis 23, 329–33.

    Article  CAS  PubMed  Google Scholar 

  60. Williams, J. A., Martin, F. L., Muir, G. H., Hewer, A., Grover, P. L. and Phillips, D. H. (2000) Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue. Carcinogenesis 21, 1683–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sissung, T. M., Price, D. K., Sparreboom, A. and Figg, W. D. (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4, 135–50.

    Article  CAS  PubMed  Google Scholar 

  62. Fukatsu, T., Hirokawa, Y., Araki, T., Hioki, T., Murata, T., Suzuki, H., Ichikawa, T., Tsukino, H., Qiu, D., Katoh, T., Sugimura, Y., Yatani, R., Shiraishi, T. and Watanabe, M. (2004) Genetic polymorphisms of hormone-related genes and prostate cancer risk in the Japanese population. Anticancer Res 24, 2431–7.

    CAS  PubMed  Google Scholar 

  63. Tang, Y. M., Green, B. L., Chen, G. F., Thompson, P. A., Lang, N. P., Shinde, A., Lin, D. X., Tan, W., Lyn-Cook, B. D., Hammons, G. J. and Kadlubar, F. F. (2000) Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics 10, 761–6.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka, Y., Sasaki, M., Kaneuchi, M., Shiina, H., Igawa, M. and Dahiya, R. (2002) Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer. Biochem Biophys Res Commun 296, 820–6.

    Article  CAS  PubMed  Google Scholar 

  65. Cicek, M. S., Liu, X., Casey, G. and Witte, J. S. (2005) Role of androgen metabolism genes CYP1B1, PSA/KLK3, and CYP11alpha in prostate cancer risk and aggressiveness. Cancer Epidemiol Biomarkers Prev 14, 2173–7.

    Article  CAS  PubMed  Google Scholar 

  66. Chang, B. L., Zheng, S. L., Isaacs, S. D., Turner, A., Hawkins, G. A., Wiley, K. E., Bleecker, E. R., Walsh, P. C., Meyers, D. A., Isaacs, W. B. and Xu, J. (2003) Polymorphisms in the CYP1B1 gene are associated with increased risk of prostate cancer. Br J Cancer 89, 1524–9.

    Article  CAS  PubMed  Google Scholar 

  67. Watkins, P. B., Wrighton, S. A., Maurel, P., Schuetz, E. G., Mendez-Picon, G., Parker, G. A. and Guzelian, P. S. (1985) Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci USA 82, 6310–4.

    Article  CAS  PubMed  Google Scholar 

  68. Rebbeck, T. R., Jaffe, J. M., Walker, A. H., Wein, A. J. and Malkowicz, S. B. (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90, 1225–9.

    Article  CAS  PubMed  Google Scholar 

  69. Walker, A. H., Jaffe, J. M., Gunasegaram, S., Cummings, S. A., Huang, C. S., Chern, H. D., Olopade, O. I., Weber, B. L. and Rebbeck, T. R. (1998) Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Mutations in brief no. 191. Online. Hum Mutat 12, 289.

    CAS  PubMed  Google Scholar 

  70. Boiteux, S. and Radicella, J. P. (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377, 1–8.

    Article  CAS  PubMed  Google Scholar 

  71. De Marzo, A. M., Marchi, V. L., Epstein, J. I. and Nelson, W. G. (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155, 1985–92.

    PubMed  Google Scholar 

  72. Hussain, S. P. and Harris, C. C. (1998) Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58, 4023–37.

    CAS  PubMed  Google Scholar 

  73. Xu, J., Zheng, S. L., Turner, A., Isaacs, S. D., Wiley, K. E., Hawkins, G. A., Chang, B. L., Bleecker, E. R., Walsh, P. C., Meyers, D. A. and Isaacs, W. B. (2002) Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62, 2253–7.

    CAS  PubMed  Google Scholar 

  74. Weiss, J. M., Goode, E. L., Ladiges, W. C. and Ulrich, C. M. (2005) Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 42, 127–41.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, L., Elahi, A., Pow-Sang, J., Lazarus, P. and Park, J. (2003) Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J Urol 170, 2471–4.

    Article  CAS  PubMed  Google Scholar 

  76. Frebourg, T. and Friend, S. H. (1993) The importance of p53 gene alterations in human cancer: is there more than circumstantial evidence? J Natl Cancer Inst 85, 1554–7.

    Article  CAS  PubMed  Google Scholar 

  77. Ruijter, E., van de Kaa, C., Miller, G., Ruiter, D., Debruyne, F. and Schalken, J. (1999) Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20, 22–45.

    Article  CAS  PubMed  Google Scholar 

  78. Gumerlock, P. H., Chi, S. G., Shi, X. B., Voeller, H. J., Jacobson, J. W., Gelmann, E. P. and deVere White, R. W. (1997) p53 abnormalities in primary prostate cancer: single-strand conformation polymorphism analysis of complementary DNA in comparison with genomic DNA. The Cooperative Prostate Network. J Natl Cancer Inst 89, 66–71.

    Article  CAS  PubMed  Google Scholar 

  79. Dumont, P., Leu, J. I., Della Pietra, A. C., 3rd, George, D. L. and Murphy, M. (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33, 357–65.

    Article  CAS  PubMed  Google Scholar 

  80. van Heemst, D., Mooijaart, S. P., Beekman, M., Schreuder, J., de Craen, A. J., Brandt, B. W., Slagboom, P. E. and Westendorp, R. G. (2005) Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 40, 11–5.

    Article  PubMed  CAS  Google Scholar 

  81. Zhou, A., Hassel, B. A. and Silverman, R. H. (1993) Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–65.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, A., Paranjape, J., Brown, T. L., Nie, H., Naik, S., Dong, B., Chang, A., Trapp, B., Fairchild, R., Colmenares, C. and Silverman, R. H. (1997) Interferon action and apoptosis are defective in mice devoid of 2’,5’-oligoadenylate-dependent RNase L. Embo J 16, 6355–63.

    Article  CAS  PubMed  Google Scholar 

  83. Castelli, J., Wood, K. A. and Youle, R. J. (1998) The 2-5A system in viral infection and apoptosis. Biomed Pharmacother 52, 386–90.

    Article  CAS  PubMed  Google Scholar 

  84. Hassel, B. A., Zhou, A., Sotomayor, C., Maran, A. and Silverman, R. H. (1993) A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. Embo J 12, 3297–304.

    CAS  PubMed  Google Scholar 

  85. Carpten, J., Nupponen, N., Isaacs, S., Sood, R., Robbins, C., Xu, J., Faruque, M., Moses, T., Ewing, C., Gillanders, E., Hu, P., Bujnovszky, P., Makalowska, I., Baffoe-Bonnie, A., Faith, D., Smith, J., Stephan, D., Wiley, K., Brownstein, M., Gildea, D., Kelly, B., Jenkins, R., Hostetter, G., Matikainen, M., Schleutker, J., Klinger, K., Connors, T., Xiang, Y., Wang, Z., De Marzo, A., Papadopoulos, N., Kallioniemi, O. P., Burk, R., Meyers, D., Gronberg, H., Meltzer, P., Silverman, R., Bailey-Wilson, J., Walsh, P., Isaacs, W. and Trent, J. (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30, 181–4.

    Article  CAS  PubMed  Google Scholar 

  86. Rokman, A., Ikonen, T., Seppala, E. H., Nupponen, N., Autio, V., Mononen, N., Bailey-Wilson, J., Trent, J., Carpten, J., Matikainen, M. P., Koivisto, P. A., Tammela, T. L., Kallioniemi, O. P. and Schleutker, J. (2002) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70, 1299–304.

    Article  CAS  PubMed  Google Scholar 

  87. Casey, G., Neville, P. J., Plummer, S. J., Xiang, Y., Krumroy, L. M., Klein, E. A., Catalona, W. J., Nupponen, N., Carpten, J. D., Trent, J. M., Silverman, R. H. and Witte, J. S. (2002) RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 32, 581–3.

    Article  CAS  PubMed  Google Scholar 

  88. Xiang, Y., Wang, Z., Murakami, J., Plummer, S., Klein, E. A., Carpten, J. D., Trent, J. M., Isaacs, W. B., Casey, G. and Silverman, R. H. (2003) Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2’,5’-oligoadenylates. Cancer Res 63, 6795–801.

    CAS  PubMed  Google Scholar 

  89. Wang, L., McDonnell, S. K., Elkins, D. A., Slager, S. L., Christensen, E., Marks, A. F., Cunningham, J. M., Peterson, B. J., Jacobsen, S. J., Cerhan, J. R., Blute, M. L., Schaid, D. J. and Thibodeau, S. N. (2002) Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am J Hum Genet 71, 116–23.

    Article  CAS  PubMed  Google Scholar 

  90. Nakazato, H., Suzuki, K., Matsui, H., Ohtake, N., Nakata, S. and Yamanaka, H. (2003) Role of genetic polymorphisms of the RNASEL gene on familial prostate cancer risk in a Japanese population. Br J Cancer 89, 691–6.

    Article  CAS  PubMed  Google Scholar 

  91. Smith, G., Stanley, L. A., Sim, E., Strange, R. C. and Wolf, C. R. (1995) Metabolic polymorphisms and cancer susceptibility. Cancer Surv 25, 27–65.

    CAS  PubMed  Google Scholar 

  92. Hein, D. W., Doll, M. A., Fretland, A. J., Leff, M. A., Webb, S. J., Xiao, G. H., Devanaboyina, U. S., Nangju, N. A. and Feng, Y. (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9, 29–42.

    CAS  PubMed  Google Scholar 

  93. Fukutome, K., Watanabe, M., Shiraishi, T., Murata, M., Uemura, H., Kubota, Y., Kawamura, J., Ito, H. and Yatani, R. (1999) N-acetyltransferase 1 genetic polymorphism influences the risk of prostate cancer development. Cancer Lett 136, 83–7.

    Article  CAS  PubMed  Google Scholar 

  94. Lou, Y. R., Qiao, S., Talonpoika, R., Syvala, H. and Tuohimaa, P. (2004) The role of Vitamin D3 metabolism in prostate cancer. J Steroid Biochem Mol Biol 92, 317–25.

    Article  CAS  PubMed  Google Scholar 

  95. Ma, J., Stampfer, M. J., Gann, P. H., Hough, H. L., Giovannucci, E., Kelsey, K. T., Hennekens, C. H. and Hunter, D. J. (1998) Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev 7, 385–90.

    CAS  PubMed  Google Scholar 

  96. Gann, P. H., Ma, J., Hennekens, C. H., Hollis, B. W., Haddad, J. G. and Stampfer, M. J. (1996) Circulating vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer Epidemiol Biomarkers Prev 5, 121–6.

    CAS  PubMed  Google Scholar 

  97. Corder, E. H., Guess, H. A., Hulka, B. S., Friedman, G. D., Sadler, M., Vollmer, R. T., Lobaugh, B., Drezner, M. K., Vogelman, J. H. and Orentreich, N. (1993) Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev 2, 467–72.

    CAS  PubMed  Google Scholar 

  98. Braun, M. M., Helzlsouer, K. J., Hollis, B. W. and Comstock, G. W. (1995) Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States). Cancer Causes Control 6, 235–9.

    Article  CAS  PubMed  Google Scholar 

  99. Coughlin, S. S. and Hall, I. J. (2002) A review of genetic polymorphisms and prostate cancer risk. Ann Epidemiol 12, 182–96.

    Article  PubMed  Google Scholar 

  100. Li, H., Stampfer, M. J., Hollis, J. B., Mucci, L. A., Gaziano, J. M., Hunter, D., Giovannucci, E. L. and Ma, J. (2007) A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4, e103.

    Article  CAS  Google Scholar 

  101. Gudmundsson, J., Sulem, P., Manolescu, A., Amundadottir, L. T., Gudbjartsson, D., Helgason, A., Rafnar, T., Bergthorsson, J. T., Agnarsson, B. A., Baker, A., Sigurdsson, A., Benediktsdottir, K. R., Jakobsdottir, M., Xu, J., Blondal, T., Kostic, J., Sun, J., Ghosh, S., Stacey, S. N., Mouy, M., Saemundsdottir, J., Backman, V. M., Kristjansson, K., Tres, A., Partin, A. W., Albers-Akkers, M. T., Godino-Ivan Marcos, J., Walsh, P. C., Swinkels, D. W., Navarrete, S., Isaacs, S. D., Aben, K. K., Graif, T., Cashy, J., Ruiz-Echarri, M., Wiley, K. E., Suarez, B. K., Witjes, J. A., Frigge, M., Ober, C., Jonsson, E., Einarsson, G. V., Mayordomo, J. I., Kiemeney, L. A., Isaacs, W. B., Catalona, W. J., Barkardottir, R. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A. and Stefansson, K. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39, 631–7.

    Article  CAS  PubMed  Google Scholar 

  102. Gudmundsson, J., Sulem, P., Steinthorsdottir, V., Bergthorsson, J. T., Thorleifsson, G., Manolescu, A., Rafnar, T., Gudbjartsson, D., Agnarsson, B. A., Baker, A., Sigurdsson, A., Benediktsdottir, K. R., Jakobsdottir, M., Blondal, T., Stacey, S. N., Helgason, A., Gunnarsdottir, S., Olafsdottir, A., Kristinsson, K. T., Birgisdottir, B., Ghosh, S., Thorlacius, S., Magnusdottir, D., Stefansdottir, G., Kristjansson, K., Bagger, Y., Wilensky, R. L., Reilly, M. P., Morris, A. D., Kimber, C. H., Adeyemo, A., Chen, Y., Zhou, J., So, W. Y., Tong, P. C., Ng, M. C., Hansen, T., Andersen, G., Borch-Johnsen, K., Jorgensen, T., Tres, A., Fuertes, F., Ruiz-Echarri, M., Asin, L., Saez, B., van Boven, E., Klaver, S., Swinkels, D. W., Aben, K. K., Graif, T., Cashy, J., Suarez, B. K., van Vierssen Trip, O., Frigge, M. L., Ober, C., Hofker, M. H., Wijmenga, C., Christiansen, C., Rader, D. J., Palmer, C. N., Rotimi, C., Chan, J. C., Pedersen, O., Sigurdsson, G., Benediktsson, R., Jonsson, E., Einarsson, G. V., Mayordomo, J. I., Catalona, W. J., Kiemeney, L. A., Barkardottir, R. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A. and Stefansson, K. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39, 977–83.

    Article  CAS  PubMed  Google Scholar 

  103. Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P., Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K., Chatterjee, N., Wang, Z., Welch, R., Staats, B. J., Calle, E. E., Feigelson, H. S., Thun, M. J., Rodriguez, C., Albanes, D., Virtamo, J., Weinstein, S., Schumacher, F. R., Giovannucci, E., Willett, W. C., Cancel-Tassin, G., Cussenot, O., Valeri, A., Andriole, G. L., Gelmann, E. P., Tucker, M., Gerhard, D. S., Fraumeni, J. F., Jr., Hoover, R., Hunter, D. J., Chanock, S. J. and Thomas, G. (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39, 645–9.

    Article  CAS  PubMed  Google Scholar 

  104. Zheng, S. L., Sun, J., Wiklund, F., Smith, S., Stattin, P., Li, G., Adami, H. O., Hsu, F. C., Zhu, Y., Balter, K., Kader, A. K., Turner, A. R., Liu, W., Bleecker, E. R., Meyers, D. A., Duggan, D., Carpten, J. D., Chang, B. L., Isaacs, W. B., Xu, J. and Gronberg, H. (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358,910–9.

    Article  CAS  PubMed  Google Scholar 

  105. Eeles, R. A., Kote-Jarai, Z., Giles, G. G., Olama, A. A., Guy, M., Jugurnauth, S. K., Mulholland, S., Leongamornlert, D. A., Edwards, S. M., Morrison, J., Field, H. I., Southey, M. C., Severi, G., Donovan, J. L., Hamdy, F. C., Dearnaley, D. P., Muir, K. R., Smith, C., Bagnato, M., Ardern-Jones, A. T., Hall, A. L., O’Brien, L. T., Gehr-Swain, B. N., Wilkinson, R. A., Cox, A., Lewis, S., Brown, P. M., Jhavar, S. G., Tymrakiewicz, M., Lophatananon, A., Bryant, S. L., Horwich, A., Huddart, R. A., Khoo, V. S., Parker, C. C., Woodhouse, C. J., Thompson, A., Christmas, T., Ogden, C., Fisher, C., Jamieson, C., Cooper, C. S., English, D. R., Hopper, J. L., Neal, D. E. and Easton, D. F. (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40,316–21.

    Article  CAS  PubMed  Google Scholar 

  106. Thomas, G., Jacobs, K. B., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu, K., Chatterjee, N., Welch, R., Hutchinson, A., Crenshaw, A., Cancel-Tassin, G., Staats, B. J., Wang, Z., Gonzalez-Bosquet, J., Fang, J., Deng, X., Berndt, S. I., Calle, E. E., Feigelson, H. S., Thun, M. J., Rodriguez, C., Albanes, D., Virtamo, J., Weinstein, S., Schumacher, F. R., Giovannucci, E., Willett, W. C., Cussenot, O., Valeri, A., Andriole, G. L., Crawford, E. D., Tucker, M., Gerhard, D. S., Fraumeni, J. F., Jr., Hoover, R., Hayes, R. B., Hunter, D. J. and Chanock, S. J. (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40,310–5.

    Article  CAS  PubMed  Google Scholar 

  107. Gudmundsson, J., Sulem, P., Rafnar, T., Bergthorsson, J. T., Manolescu, A., Gudbjartsson, D., Agnarsson, B. A., Sigurdsson, A., Benediktsdottir, K. R., Blondal, T., Jakobsdottir, M., Stacey, S. N., Kostic, J., Kristinsson, K. T., Birgisdottir, B., Ghosh, S., Magnusdottir, D. N., Thorlacius, S., Thorleifsson, G., Zheng, S. L., Sun, J., Chang, B. L., Elmore, J. B., Breyer, J. P., McReynolds, K. M., Bradley, K. M., Yaspan, B. L., Wiklund, F., Stattin, P., Lindstrom, S., Adami, H. O., McDonnell, S. K., Schaid, D. J., Cunningham, J. M., Wang, L., Cerhan, J. R., St Sauver, J. L., Isaacs, S. D., Wiley, K. E., Partin, A. W., Walsh, P. C., Polo, S., Ruiz-Echarri, M., Navarrete, S., Fuertes, F., Saez, B., Godino, J., Weijerman, P. C., Swinkels, D. W., Aben, K. K., Witjes, J. A., Suarez, B. K., Helfand, B. T., Frigge, M. L., Kristjansson, K., Ober, C., Jonsson, E., Einarsson, G. V., Xu, J., Gronberg, H., Smith, J. R., Thibodeau, S. N., Isaacs, W. B., Catalona, W. J., Mayordomo, J. I., Kiemeney, L. A., Barkardottir, R. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A. and Stefansson, K. (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40,281–3.

    Article  CAS  PubMed  Google Scholar 

  108. Duggan, D., Zheng, S. L., Knowlton, M., Benitez, D., Dimitrov, L., Wiklund, F., Robbins, C., Isaacs, S. D., Cheng, Y., Li, G., Sun, J., Chang, B. L., Marovich, L., Wiley, K. E., Balter, K., Stattin, P., Adami, H. O., Gielzak, M., Yan, G., Sauvageot, J., Liu, W., Kim, J. W., Bleecker, E. R., Meyers, D. A., Trock, B. J., Partin, A. W., Walsh, P. C., Isaacs, W. B., Gronberg, H., Xu, J. and Carpten, J. D. (2007) Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99, 1836–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beuten, J., Johnson-Pais, T.L. (2009). Biomarkers for Prostate Cancer Detection: Family-Based Linkage Analysis and Case–Control Association Studies. In: Ankerst, D.P., Tangen, C.M., Thompson, I.M. (eds) Prostate Cancer Screening. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60327-281-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-281-0_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-280-3

  • Online ISBN: 978-1-60327-281-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics