Skip to main content

Clinical, Epidemiologic, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus Infections

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2069))

Abstract

Oxacillin-resistant Staphylococcus aureus (abbreviated MRSA for historical reasons) is a major pathogen responsible for both hospital- and community-onset disease. Resistance to oxacillin in most clinical isolates of S. aureus is mediated by PBP2a, a penicillin-binding protein with low affinity to beta-lactams, encoded primarily by the mecA gene. Rapid and accurate methods of susceptibility testing of S. aureus isolates to identify MRSA infections are important tools to limit the spread of this organism. This review focuses on the clinical significance of MRSA infections and new approaches for the laboratory diagnosis and epidemiologic typing of MRSA strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panlilio AL, Culver DH, Gaynes RP, Banerjee S, Henderson S, Tolson JS, Martone WJ (1992) Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975–1991. Infect Control Hosp Epidemiol 13:582–586

    CAS  PubMed  Google Scholar 

  2. Lake JG, Weiner LM, Milstone AM, Saiman L, Magill SS, See I (2018) Pathogen distribution and antimicrobial resistance among pediatric healthcare-associated infections reported to the national healthcare safety network, 2011–2014. Infect Control Hosp Epidemiol 1:1–11

    Article  Google Scholar 

  3. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mera RM, Suaya JA, Amrine-Madsen H et al (2011) Increasing role of Staphylococcus aureus and community-acquired methicillin-resistant Staphylococcus aureus infections in the United States: a 10-year trend of replacement and expansion. Microb Drug Resist 17:321–328

    Article  PubMed  Google Scholar 

  5. Boswihi SS, Udo EE (2018) Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. Curr Med Res Pract 8:18–24

    Article  Google Scholar 

  6. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26:166–174

    Article  PubMed  Google Scholar 

  7. Patel D, Ellington MJ, Hope R, Reynolds R, Arnold C, Desai M (2015) Identification of genetic variation exclusive to specific lineages associated with Staphylococcus aureus bacteraemia. J Hosp Infect 91:136–145

    Article  CAS  PubMed  Google Scholar 

  8. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  9. Kallen AJ, Mu J, Bulens S et al (2010) Health care-associated invasive MRSA infections, 2005–2008. JAMA 304:641–648

    Article  CAS  PubMed  Google Scholar 

  10. Dante R, Mu Y, Belflower R et al (2013) National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Inter Med 173:1970–1978

    Google Scholar 

  11. CDC. Healthcare-associated Infections in the United States, 2006–2016: A Story of Progress. https://www.cdc.gov/hai/surveillance/data-reports/data-summary-assessing-progress.htm. Accessed 06 Oct 2018

  12. Hassoun A, Linden PK, Friedman B (2017) Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit Care 21:211. https://doi.org/10.1186/s13054-017-1801-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palavecino E (2004) Community-acquired methicillin-resistant Staphylococcus aureus infections. Clin Lab Med 24:403–418

    Article  PubMed  Google Scholar 

  14. Francis JS, Doherty MC, Lopatin U, Johnston CP, Sinha G, Ross T, Cai M, Hansel NN, Perl T, Ticehurst JR, Carroll K, Thomas DL, Nuermberger E, Bartlett JG (2005) Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis 40:100–107

    Article  PubMed  Google Scholar 

  15. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C, Danila RN, Lynfield R (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984

    Article  CAS  PubMed  Google Scholar 

  16. Glaser P, Martins-Simões P, Villain A et al (2016) Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. MBio 7:e02183–e02115. https://doi.org/10.1128/mBio.02183-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O’Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289–4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Planet P (2017) Life after USA300: the rise and fall of a superbug. J Infect Dis 215:S71–S77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8:747–763

    Article  CAS  PubMed  Google Scholar 

  20. Moran GJ, Krishnadasan A, Gorwitz RJ (2006) Methicillin-resistant S aureus infections among patients in the emergency department. N Engl J Med 355:666–674

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez BE, Rueda AM, Shelburne SA III et al (2006) Community-associated strains of methicillin-resistant Staphylococcus aureus as the cause of healthcare-associated infection. Infect Control Hosp Epidemiol 27:1051–1056

    Article  PubMed  Google Scholar 

  22. Maree CL, Daum RS, Boyle-Vavra S et al (2007) Community-associated methicillin resistant Staphylococcus aureus isolates causing health-care associated infections. Emerg Infect Dis 13:236–242

    Article  PubMed  PubMed Central  Google Scholar 

  23. Otter JA, French GL (2011) Community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J Hosp Infect 79:189–193

    Article  CAS  PubMed  Google Scholar 

  24. Molla B, Byrne M, Abley M et al (2012) Epidemiology and genotypic characteristics of methicillin-resistant Staphylococcus aureus strains of porcine origin. J Clin Microbiol 50:3687–3693

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kinross P, Petersen A, Skov R et al (2013) Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. Euro Surveill 22(44). https://doi.org/10.2807/1560-7917

  26. Krziwanek K, Metz-Gercek S, Mittermayer H (2009) Methicillin-resistant Staphylococcus aureus ST398 from human patients, upper Austria. Emerg Infect Dis 15:766–769

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mammina C, Cala C, Plano MR, Bonura C, Vella A, Monastero R, Palma DM (2010) Ventilator-associated pneumonia and MRSA ST398, Italy. Emerg Infect Dis 16:730–731

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hetem DJ, Bootsma MC, Troelstra A, Bonten MJ (2013) Transmissibility of livestock-associated methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 19:1797–1802

    Article  PubMed  PubMed Central  Google Scholar 

  29. McCormick JK, Yarwood JM, Schlievert PM (2001) Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 55:77–104

    Article  CAS  PubMed  Google Scholar 

  30. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132

    Article  CAS  PubMed  Google Scholar 

  31. Fey PD, Said-Salim B, Rupp ME, Hinrichs SH, Boxrud DJ, Davis CC, Kreiswirth BN, Schlievert PM (2003) Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Said-Salim B, Mathema B, Braughton K, Davis S, Sinsimer D, Eisner W, Likhoshvay Y, Deleo FR, Kreiswirth BN (2005) Differential distribution and expression of Panton-Valentine leucocidin among community-acquired methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 43:3373–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voyich JM, Otto M, Mathema B et al (2006) Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis 194:1761–1770

    Article  CAS  PubMed  Google Scholar 

  34. Thurlow LR, Joshi GS, Clark JR et al (2013) Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barbier F, Lebeaux D, Hernandez D et al (2011) High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother 66:29–36

    Article  CAS  PubMed  Google Scholar 

  36. McDougal LK, Thornsberry C (1986) The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 23:832–839

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougal L, Bille J (1989) New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother 33:1869–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ubukata K, Yamashita N, Konno M (1985) Occurrence of a beta-lactam-inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 27:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chambers HF (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fasola EL, Peterson LR (1992) Laboratory detection and evaluation of antibiotic-resistant Staphylococcus aureus nosocomial infections. Adv Pathol Lab Med 5:285–306. Mosby-Year Book, Inc.

    Google Scholar 

  41. Hiramatsu K, Cui L, Kuroda M, Ito T (2001) The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 9:486–493

    Article  CAS  PubMed  Google Scholar 

  42. Song MD, Wachi M, Doi M, Ischino F, Matsuhashi M (1987) Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167–171

    Article  CAS  PubMed  Google Scholar 

  43. Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paterson GK, Harrison EM, Holmes MA (2014) The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22:42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Becker K, van Alen S, Idelevich EA et al (2018) Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis 24:242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becker K, Ballhausen B, Köck R, Kriegeskorte A (2014) Methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol 304:794–804

    Article  CAS  PubMed  Google Scholar 

  48. Skov R, Larsen AR, Kearns A, Holmes M, Teale C, Edwards G, Hill R (2014) Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. J Antimicrob Chemother 69:133–135

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, Shirliff ME (2016) Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 101:56–67

    Article  CAS  PubMed  Google Scholar 

  50. Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR, Stegger M (2018) Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol 61:74–76

    Article  CAS  PubMed  Google Scholar 

  51. International Working Group on the Staphylococcal Cassette Chromosome elements. http://www.sccmec.org/Pages/SCC_TypesEN.html. Accessed 03 Oct 2018

  52. Miao J, Chen L, Wang J, Wang W, Chen D, Li L, Li B, Deng Y, Xu Z (2017) Current methodologies on genotyping for nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 107:17–28

    Article  CAS  PubMed  Google Scholar 

  53. Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    Article  CAS  PubMed  Google Scholar 

  54. Centers for Disease Control and Prevention. CDC reminds clinical laboratories and healthcare preventionists of their role in the search and containment of vancomycin-resistant Staphylococcus aureus (VRSA). http://www.cdc.gov/HAI/settings/lab/vrsa_lab_search_contaiment.html. Accessed 27 Sept 2018

  55. Appelbaum PC (2007) Reduced glycopeptides susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Agents 30:398–408

    Article  CAS  Google Scholar 

  56. Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK, Albrecht VS (2014) Report of the 13th vancomycin resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol 52:998–1002

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tiwari HK, Sen MR (2006) Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis 6:156. https://doi.org/10.1186/1471-2334-6-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Azimiam A, Havaei SA, Faseli H et al (2012) Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a University Hospital in Northeastern Iran. J Clin Microbiol 50:3581–3585

    Article  Google Scholar 

  59. Rossi F, Diaz L, Wollam A et al (2014) Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 17:1524–1531

    Article  CAS  Google Scholar 

  60. Tenover FC, McDonald LC (2005) Vancomycin-resistant staphylococci and enterococci: epidemiology and control. Curr Opin Infect Dis 18:300–305

    Article  CAS  PubMed  Google Scholar 

  61. McGuinness WA, Malachowa N, DeLeo FR (2017) Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med 23:269–281

    Google Scholar 

  62. Coldren FM, Palavecino E, Carroll DL (2005) Atomic force microscopy as a potential diagnostic technique in staphylococcal infections. Microsc Microanal 11(Suppl 2):980–981

    Google Scholar 

  63. Coldren FM, Palavecino EL, Levi-Polyachenko NH et al (2009) Encapsulated Staphylococcus aureus strains vary in adhesiveness assessed by atomic force microscopy. J Biomed Mater Res A 89:402–410

    Article  PubMed  CAS  Google Scholar 

  64. Tollersrud T, Berge T, Andersen SR, Lund A (2001) Imaging the surface of Staphylococcus aureus by atomic force microscopy. APMIS 109:541–545

    Article  CAS  PubMed  Google Scholar 

  65. Boyle- Vavra S, Hahm J, Sibener SJ, Daum RS (2000) Structural and topological differences between a glycopeptide-intermediate clinical strain and glycopeptide-susceptible strains of Staphylococcus aureus revealed by atomic force microscopy. Antimicrob Agents Chemother 44:3456–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sievert DM, Rudrik JT, Patel JB et al (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin infect Dis 46:668–674

    Article  CAS  PubMed  Google Scholar 

  67. Crisostomo MI, Westh H, Tomasz A, Chung M, Oliveira DC, de Lencastre H (2001) The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci U S A 98:9865–9870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robinson DA, Enright MC (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47:3926–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, Berendt T, Peacock SJ, Smith JM, Murphy M, Spratt BG, Moore CE, Day NP (2003) How clonal is Staphylococcus aureus? J Bacteriol 11:3307–3316

    Article  CAS  Google Scholar 

  71. Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189

    Article  CAS  PubMed  Google Scholar 

  72. Bartel MD, Boye K, Rhod Larsen A, Skov R, Westh H (2007) Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark. Emerg Infect Dis 13:1533–1540

    Article  Google Scholar 

  73. Wyllie D, Paul J, Crook D (2011) Waves of trouble: MRSA strain dynamics and assessment of the impact of infection control. J Antimicrob Chemother 66:2685–2688

    Article  CAS  PubMed  Google Scholar 

  74. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020–e00018. https://doi.org/10.1128/CMR.00020-18

    Article  PubMed  PubMed Central  Google Scholar 

  75. Monecke S, Slickers P, Gawlik D et al (2018) Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCCmec III element during its intercontinental spread. Front Microbiol 9:1436. https://doi.org/10.3389/fmicb.2018.01436

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tenover F, Arbeit R, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McDougal LK, Steward CD, Killgore GE, Chairtram SK, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stefani S, Chung DR, Lindsay JA (2012) Methicillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 39:273–282

    Article  CAS  PubMed  Google Scholar 

  79. Bowers JR, Driebe EM, Albecht V, McDougal LK, Granade M, Roe CC, Lemmer D, Rasheed JK, Engelthaler DM, Keim P, Limbago BM (2018) Improved subtyping of Staphylococcus aureus Clonal Complex 8 strains based on whole-genome phylogenetic analysis. mSphere 3. pii: e00464–17

    Google Scholar 

  80. van Belkum A, Kluytmans J, van Leeuwen W, Bax R, Quint W, Peters E, Fluit A, Vandenbroucke-Grauls C, van den Brule A, Koeleman H, Melchers W, Meis J, Elaichouni A, Vaneechoutte M, Moonens F, Maes N, Struellens M, Tenover F, Verbrugh H (1995) Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol 33:1537–1547

    PubMed  PubMed Central  Google Scholar 

  81. Babouee B, Frei R, Schultheiss E et al (2011) Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 49:1549–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, Bost DA, Riehman M, Naidich S, Kreiswirth BN (1999) Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Milheirico C, Oliveira DC, de Lencastre H (2007) Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother 51:3374–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliveira DC, Milheirico C, Vinga S et al (2006) Assessment of allelic variation in the ccrAB locus in methicillin-resistant Staphylococcus aureus clones. J Antimicrob Chemother 58:23–30

    Article  CAS  PubMed  Google Scholar 

  85. Dunman PM, Mounts W, McAleese F, Immermann F, Macapagal D, Marsilio E, McDougal L, Tenover FC, Bradford PA, Petersen PJ, Projan SJ, Murphy E (2004) Uses of Staphylococcus aureus GeneChips in genotyping and genetic composition analysis. J Clin Microbiol 42:4275–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holden MT, Hsu LY, Kurt K et al (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23:653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W, Wertheim HFL (2017) Whole-genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clin Microbiol Rev 30:1015–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Price JR, Golubchik T, Cole K, Wilson DJ, Crook DW, Thwaites GE, Bowden R, Walker AS, Peto TE, Paul J, Llewelyn MJ (2014) Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis 58:609–618

    Article  PubMed  Google Scholar 

  89. Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ (2013) Whole-genome sequencing for analysis of an outbreak of methicillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 2:130–136

    Article  CAS  Google Scholar 

  90. CLSI (2019) Performance Standards for Antimicrobial Susceptibility Testing. 29 edn. CLSI supplement. M100. Wayne, PA: Clinical Laboratory Standard Institute

    Google Scholar 

  91. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints. http://www.eucast.org/clinical_breakpoints/. Accessed 27 Sept 2018

  92. Chambers HF, Hackbarth CJ (1987) Effect of NaCl and nafcillin on penicillin-binding protein 2a and heterogeneous expression of methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 31:1982–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swenson JM, Tenover FC, Cefoxitin Disk Study Group (2005) Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol 43:3818–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kriegeskorte A, Idelevich EA, Schlattmann A, Layer F, Strommenger B, Denis O, Paterson GK, Holmes MA, Werner G, Becker K (2017) Comparison of different phenotypic approaches to screen and detect mecc-harboring methicillin-resistant Staphylococcus aureus. J Clin Microbiol 56(1). pii: e00826–17. https://doi.org/10.1128/JCM.00826-17

  95. Swenson JM, Williams PP, Killgore G, O’Hara CM, Tenover FC (2001) Performance of eight methods, including two new rapid methods, for detection of oxacillin resistance in a challenge set of Staphylococcus aureus organisms. J Clin Microbiol 39:3785–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tenover FC, Moellering RC (2007) The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis 44:1208–1215

    Article  CAS  PubMed  Google Scholar 

  97. Swenson JM, Anderson KF, Lonsway DR et al (2009) Accuracy of Commercial and reference susceptibility testing methods for detecting vancomycin-intermediate Staphylococcus aureus. J Clin Microbiol 47:2013–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Steinkraus G, White R, Friedrich L (2007) Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S aureus (MRSA) blood isolates from 2001–2005. J Antimicrob Chemother 60:788–794

    Article  CAS  PubMed  Google Scholar 

  99. Holmes RL, Jorgensen JH (2008) Inhibitory activities of 11 antimicrobial agents and bactericidal activities of vancomycin and daptomycin against invasive methicillin-resistant Staphylococcus aureus isolates obtained from 1999 through 2006. Antimicrob Agents Chemother 52:757–760

    Article  CAS  PubMed  Google Scholar 

  100. Sader HS, Fey PD, Fish DN et al (2009) Evaluation of vancomycin and daptomycin potency trends (MIC Creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother 53:4127–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B (2018) Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis. Clin Microbiol Infect 24:97–104

    Article  CAS  PubMed  Google Scholar 

  102. Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML (2004) Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis 38:448–451

    Article  PubMed  Google Scholar 

  103. Howden BP, Davies JK, Johnson PDR et al (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23:99–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gomez DM, Ward KE, LaPlante KL (2015) Clinical implications of vancomycin heteroresistant and intermediately susceptible Staphylococcus aureus. Pharmacotherapy 35:424–432

    Article  CAS  Google Scholar 

  105. Gu B, Kelesidis T, Tsiodras S et al (2012) The emergent problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68(1):4–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Tenover FC, Williams PP, Stocker S et al (2007) Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol 45:2917–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Palavecino EL, Burnell JM (2012) False daptomycin non-susceptible MIC results by Microscan panel PC29 compared to Etest in Staphylococcus aureus and enterococci. J Clin Microbiol 51(1):281–283

    Article  PubMed  CAS  Google Scholar 

  108. Friedrich L, Thorne G, Steenbergen JN et al (2009) Evidence for daptomycin Etest lot-related MIC elevations for Staphylococcus aureus. Diagn Microbiol Infect Dis 65:306–311

    Article  CAS  PubMed  Google Scholar 

  109. Steed ME, Rybak MJ (2010) Ceftaroline: a new cephalosporin with activity against resistant gram-positive pathogens. Pharmacotherapy 30:375–389

    Article  CAS  PubMed  Google Scholar 

  110. Jones ME (2007) In vitro profile of a new beta-lactam, ceftobiprole, with activity against methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13(Suppl 2):17–24

    Article  CAS  PubMed  Google Scholar 

  111. Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP, Lahiri SD (2014) Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. J Antimicrob Chemother 69:2065–2075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Carlos A. Fasola for helpful suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Palavecino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Palavecino, E.L. (2020). Clinical, Epidemiologic, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus Infections. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 2069. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9849-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9849-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9848-7

  • Online ISBN: 978-1-4939-9849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics