Skip to main content

Quantitative Analysis with Droplet Digital PCR

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Digital PCR-based methods, such as droplet digital PCR, are one of the best tools for determination of absolute nucleic-acid copy numbers. These techniques avoid the need for reference materials with known target concentrations. Compared to real-time PCR, they provide higher accuracy of quantification at low target concentrations, and have higher resilience to inhibitors. In this Chapter, we describe the droplet digital PCR workflow for the detection and quantification of flavescence dorée phytoplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galetto L, Marzachi C (2010) Real-time PCR diagnosis and quantification of phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford

    Google Scholar 

  2. Prezelj N, Nikolić P, Gruden K et al (2013) Spatiotemporal distribution of flavescence dorée phytoplasma in grapevine. Plant Pathol 62:760–766. https://doi.org/10.1111/j.1365-3059.2012.02693.x

    Article  Google Scholar 

  3. Jarausch W, Fuchs A, Jarausch B (2010) Establishment of a quantitative real-time PCR assay for the specific quantification of Ca. Phytoplasma prunorum in plants and insects. In: 21st International Conference on virus and other graft transmissible diseases of fruit crops. Julius-Kühn-Archiv 427:392–394

    Google Scholar 

  4. Jarausch W, Peccerella T, Schwind N et al (2004) Establishment of a quantitative real-time PCR assay for the quantification of apple proliferation phytoplasmas in plants and insects. Acta Hortic 657:415–420. https://doi.org/10.17660/ActaHortic.2004.657.66

    Article  CAS  Google Scholar 

  5. Cankar K, Stebih D, Dreo T et al (2006) Critical points of DNA quantification by real-time PCR effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37. https://doi.org/10.1186/1472-6750-6-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sedlak RH, Jerome KR (2013) Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 75(1):1–4. https://doi.org/10.1016/j.diagmicrobio.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8):e2876. https://doi.org/10.1371/journal.pone.0002876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005. https://doi.org/10.1038/nmeth.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morisset D, Štebih D, Milavec M et al (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8(5):e62583. https://doi.org/10.1371/journal.pone.0062583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strain MC, Lada SM, Luong T et al (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8(4):e55943. https://doi.org/10.1371/journal.pone.0055943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dreo T, Pirc M, Ramšak Z et al (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406:6513–6528. https://doi.org/10.1007/s00216-014-8084-1

    Article  CAS  PubMed  Google Scholar 

  12. Mehle N, Dreo T, Ravnikar M (2014) Quantitative analysis of “flavescence doreé” phytoplasma with droplet digital PCR. Phytopathogenic Mollicutes 4:9–15. https://doi.org/10.5958/2249-4677.2014.00576.3

    Article  Google Scholar 

  13. Rački N, Dreo T, Gutierrez-Aguirre I et al (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10(1):42. https://doi.org/10.1186/s13007-014-0042-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rački N, Morisset D, Gutierrez-Aguirre I, Ravnikar M (2014) One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem 406(3):661–667. https://doi.org/10.1007/s00216-013-7476-y

    Article  CAS  PubMed  Google Scholar 

  15. Hren M, Boben J, Rotter A et al (2007) Real-time PCR detection systems for Flavescence dorée and Bois noir phytoplasma in grapevine: a comparison with the conventional PCR detection system and their application in diagnostics. Plant Pathol 56:785–796. https://doi.org/10.1111/j.1365-3059.2007.01688

    Article  CAS  Google Scholar 

  16. Mehle N, Nikolić P, Rupar M et al (2013) Automated DNA extraction for large numbers of plant samples. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, Methods in molecular biology, vol 938. Springer Science and Business Media LLC, New York, pp 139–145

    Chapter  Google Scholar 

  17. Pinheiro LB, Coleman VA, Hindson CM et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011. https://doi.org/10.1021/ac202578x

    Article  CAS  Google Scholar 

  18. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544. https://doi.org/10.1038/nmeth.2027

    Article  CAS  Google Scholar 

  19. Mehle N, Dreo T, Jeffries C, Ravnikar M (2014) Descriptive assessment of uncertainties of qualitative real-time PCR for detection of plant pathogens and quality performance monitoring. EPPO Bull 44:502–509. https://doi.org/10.1111/epp.12166

    Article  Google Scholar 

  20. EPPO (2014) PM 7/98 (2): specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. EPPO Bull 44:117–147. https://doi.org/10.1111/epp.12118

    Article  Google Scholar 

  21. Gutiérrez-Aguirre I, Rački N, Dreo T, Ravnikar M (2015) Droplet digital PCR for absolute quantification of pathogens. In: Lacomme C (ed) Plant pathology: techniques and protocols, Methods in molecular biology, vol 1302. Springer Science+Business Media, New York, pp 331–347

    Chapter  Google Scholar 

  22. Corbisier P, Pinheiro L, Mazoua S et al (2015) DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Anal Bioanal Chem 407:1831–1840. https://doi.org/10.1007/s00216-015-8458-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dagata JA, Farkas N, Kramer JA (2016) Method for measuring the volume of nominally 100-μm-diameter spherical water-in-oil emulsion droplets. NIST Spec Publ. https://doi.org/10.6028/NIST.SP.260-184 Accessed 14 Dec 2017

  24. Bogožalec Košir A, Divieto C, Pavšič J et al (2017) Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Anal Bioanal Chem 409:6689–6697. https://doi.org/10.1007/s00216-017-0625-y

    Article  CAS  Google Scholar 

  25. Huggett JF, Foy CA, Benes V et al (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902. https://doi.org/10.1373/clinchem.2013.206375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Slovenian Research Agency (grant number P4-0165) and by Euphresco Project 2016-A-215, financed by the Ministry of Agriculture, Forestry and Food through the Administration of the Republic of Slovenia for Food Safety, Veterinary and Plant Protection. The work was performed using droplet dPCR equipment financed by the Metrology Institute of the Republic of Slovenia (MIRS), with financial support from the European Regional Development Fund. The equipment is wholly owned by the Republic of Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Mehle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mehle, N., Dreo, T. (2019). Quantitative Analysis with Droplet Digital PCR. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics