Skip to main content

Isolation and Culture of Adipose-Derived Stromal Cells from Subcutaneous Fat

  • Protocol
  • First Online:
Book cover Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

Cells with mesenchymal stem cell characteristics can be isolated from human adipose tissue stroma. Relative ease of isolation in large numbers and their ability for expansion and differentiation means that they are becoming a preferred cell type for mesenchymal regenerative medicine applications. In addition to expansion and differentiation capacity, they also express valuable paracrine activities which promote tissue formation and wound healing, including pro- and anti-fibrotic mediators. Here we describe a method for routine isolation of adipose stromal cells, culture expansion, and characterization by differentiation and then production of conditioned media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi:10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  4. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    Google Scholar 

  5. Katz AJ, Tholpady A, Tholpady SS et al (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23(3):412–423. doi:10.1634/stemcells.2004-0021

    Article  CAS  PubMed  Google Scholar 

  6. Moon MH, Kim SY, Kim YJ et al (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 17(5–6):279–290. doi:10.1159/000094140

    Article  CAS  PubMed  Google Scholar 

  7. Hsiao ST, Asgari A, Lokmic Z et al (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21(12):2189–2203. doi:10.1089/scd.2011.0674

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda K, Falkenberg KJ, Woods AA et al (2013) Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A 19(11–12):1327–1335. doi:10.1089/ten.TEA.2012.0391

  9. Ebrahimian TG, Pouzoulet F, Squiban C et al (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510. doi:10.1161/ATVBAHA.108.178962

    Article  CAS  PubMed  Google Scholar 

  10. Le Blanc K, Ringden O (2006) Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 18(5):586–591. doi:10.1016/j.coi.2006.07.004

    Article  PubMed  Google Scholar 

  11. Mazo M, Planat-Benard V, Abizanda G et al (2008) Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 10(5):454–462. doi:10.1016/j.ejheart.2008.03.017

    Article  PubMed  Google Scholar 

  12. Colazzo F, Sarathchandra P, Smolenski RT et al (2011) Extracellular matrix production by adipose-derived stem cells: implications for heart valve tissue engineering. Biomaterials 32(1):119–127. doi:10.1016/j.biomaterials.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Kim WS, Park BS, Sung JH et al (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24. doi:10.1016/j.jdermsci.2007.05.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Dilley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liew, L.J., Ong, H.T., Dilley, R.J. (2017). Isolation and Culture of Adipose-Derived Stromal Cells from Subcutaneous Fat. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics