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    Chapter 14   

 Gene Ontology: Pitfalls, Biases, and Remedies                     

     Pascale     Gaudet      and     Christophe     Dessimoz      

  Abstract 

   The Gene Ontology (GO) is a formidable resource, but there are several considerations about it that are 
essential to understand the data and interpret it correctly. The GO is suffi ciently simple that it can be used 
without deep understanding of its structure or how it is developed, which is both a strength and a weakness. 
In this chapter, we discuss some common misinterpretations of the ontology and the annotations. A better 
understanding of the pitfalls and the biases in the GO should help users make the most of this very rich 
resource. We also review some of the misconceptions and misleading assumptions commonly made about 
GO, including the effect of data incompleteness, the importance of annotation qualifi ers, and the transitivity 
or lack thereof associated with different ontology relations. We also discuss several biases that can confound 
aggregate analyses such as gene enrichment analyses. For each of these pitfalls and biases, we suggest 
remedies and best practices.  

  Key words     Gene ontology  ,   Gene/protein annotation  ,   Data mining  ,   Bias  ,   Confounding  ,   Simpson’s 
paradox  

1      Introduction 

 As we have seen in previous chapters (for example refer to Chap.   1     
[ 1 ], Chap.   12     [ 2 ], Chap.   13     [ 3 ]), by providing a large amount of 
structured information, the Gene Ontology (GO) greatly facili-
tates large-scale analyses and data mining. A very common type of 
analysis entails comparing sets of genes in terms of their functional 
annotations, for instance to identify functions that are enriched or 
depleted in particular subsets of genes (Chap.   13     [ 3 ]) or to assess 
whether particular aspects of gene function might be associated 
with other aspects of genes, such as sequence divergence or regula-
tory networks. 

 Despite conscious efforts to keep GO data as normalized as 
possible, it is heterogeneous in many respects—to a large extent 
simply because the body of knowledge underlying the GO is itself 
very heterogeneous. This can introduce considerable biases when 
the data is used in other analysis, an effect that is magnifi ed in 
large-scale comparisons. 
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 Statisticians and epidemiologists make a clear distinction 
between  experimental data —data from a controlled experiment, 
designed such that the case and control groups are as identical as 
possible in all respects other than a factor of interest—and  observa-
tional data —data readily available, but with the potential presence 
of unknown or unmeasured factors that may confound the analy-
sis. GO annotations clearly falls into the second category. Therefore, 
testing and controlling for potential confounders is of paramount 
importance. 

 Before we go through some of the key biases and known 
potential confounders, let us consider Simpson’s Paradox, which 
provides a stark illustration of the perils of data aggregation. 

   Simpson’s paradox is the counterintuitive observation that a statis-
tical analysis of aggregated data (combining multiple individual 
datasets) can lead to dramatically different conclusions from analy-
ses of each dataset taken individually, i.e., that the whole appears to 
disagree with the parts. Simpson's paradox is easiest to grasp 
through an example. In the classic “Berkeley gender bias case” [ 4 ], 
the University of California at Berkeley was sued for gender bias 
against women applicants based on the aggregate 1973 admission 
fi gures (44 % men admitted vs. 35 % women)—an observational 
dataset. The much higher male fi gure appeared to be damning. 
However, when individually looking at the men  vs.  women, admis-
sion rate for each department, the rate was in fact similar for both 
sexes (and even in favor of women in most departments). The 
lower overall acceptance rate for women was not due to gender 
bias, but to the tendency of women to apply to more competitive 
departments, which have a lower admission rate in general. Thus, 
the association between gender and admission rate in the aggre-
gate data could almost entirely be explained through strong asso-
ciation of these two variables with a third, confounding variable, 
the department. When controlling for the confounder, the associa-
tion between the two fi rst variables dramatically changes. This type 
of phenomenon is referred to as Simpson’s paradox. 

 Because of the inherent heterogeneity of GO data, Simpson’s 
paradox can manifest itself in GO analyses. This illustrates the 
importance of recognizing and controlling for potential biases and 
confounders.  

   The Gene Ontology is a representation of the current state of 
knowledge; thus, it is very dynamic. The ontology itself is con-
stantly being improved to more accurately represent biology across 
all organisms. The ontology is augmented as new discoveries are 
made. At the same time, the creation of new annotations occurs at 
a rapid pace, aiming to keep up with published work. Despite these 
efforts, the information contained in the GO database, that is, the 
ontology and the association of ontology terms with genes and 

1.1  Simpson’s 
Paradox: The Perils 
of Data Aggregation

1.2  The Inherent 
Incompleteness 
of the Gene Ontology 
(Open World 
Assumption)
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gene products, is necessarily incomplete. Thus, absence of evidence 
of function does not imply absence of function. 1  This is referred to 
as the Open World Assumption [ 5 ,  6 ]. 

 Associations between genes/gene products and GO terms 
(“annotations”) are made via various methods: some manual, 
some automated based on the presence of protein domains or 
because they belong to certain protein families [ 7 ]. Annotations 
can also be transferred to orthologs by manual processes [ 8 ], or 
automatically (e.g., [ 9 ,  10 ], reviewed in ref.  11 ). There are cur-
rently over 210 million annotations in the GO database. Despite 
these massive efforts to provide the widest possible coverage of 
gene products annotated, users should not expect each gene prod-
uct to be annotated. 

 A further challenge is that the incompleteness in the GO is 
very uneven. Interestingly, the more comprehensively annotated 
parts of the GO can also pose challenges, presenting users with 
seemingly contradictory information ( see  Subheading  3.2 ). 

 The inherent incompleteness of GO creates problems in the 
evaluation of computational methods. For instance, overlooking 
the Open World Assumption can lead to infl ated false positive rates 
in the assessment of gene function prediction tools [ 6 ]. However, 
there are ways of coping with this uncertainty. For instance, it is 
possible to gauge the effect of incomplete annotations on conclu-
sions by thinning annotations [ 12 ], or analyzing successive, 
increasingly complete database releases [ 13 ,  14 ].   

2    Gene Ontology Structure 

 One potential source of bias is that not all parts of the GO have the 
same level of details. This has a strong implication on measuring the 
similarity of GO annotations (Chap.   12     [ 2 ]). For instance, sister 
terms (terms directly attached to a common parent term) can be 
semantically very similar or very different in different parts of the 
GO structure, which has been called the “shallow annotation 
problem” (e.g., [ 15 ,  16 ]). This problem can partly be mitigated by 
the use of information-theoretic measures of similarity, instead of 
merely counting the number of edges separating terms, at the 
expense of requiring a considerable number of relevant annotations 
from which the frequency of co-occurrence of terms can be esti-
mated (more details in Chap.   13     [ 3 ]). 

1
   Proteins whose function is uncharacterized are annotated to the root of the 

ontology, which formally means “this protein is associated with  some  molecu-
lar function, biological process, or cellular component, but a more specifi c 
assertion cannot be made”. This annotation is associated with the evidence 
code “No biological Data available” (ND). The absence of annotation indi-
cates that no curator has reviewed the literature for this gene product. 
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   The GO is structured as a graph, and one pitfall of using the GO is 
to ignore this structure. Recall that each term is linked to other 
terms via different relationships ( see  Chaps.   1     [ 1 ] and   3     [ 17 ] for 
introductions to ontologies and GO annotations). These relation-
ships need to be taken into account when using GO for data 
analysis. 

 Some relationships, such as “is a” and “part of”, are  transitive , 
which means that any protein annotated to a specifi c term is also 
implicitly annotated to all of its parents. 2  An illustration of this is a 
“serine/threonine protein kinase activity”: it is a child of “protein 
kinase activity” with the relationship “is a”. The transitivity of the 
relation means that the association between the protein and the 
term “serine/threonine protein kinase activity” and all its parents 
has the same meaning: the protein associated with “serine/threo-
nine protein kinase activity” has this function, and it also has the 
more general function “protein kinase.” 

 On the other hand, relations such as “regulates” are  non- 
transitive . This implies that the semantics of the association of a 
gene to a GO term is not the same for its parent: if A is part of B, and 
B regulates C, we cannot make any inferences about the relationship 
between C and A. The same is true for positive and negative regula-
tion. To illustrate, if we follow the term “peptidase inhibitor activ-
ity” (GO:0030414) to its parents, one of the terms encountered is 
“proteolysis” via a combination of “is a”, “part of”, and “regulates” 
relations. However, a “peptidase inhibitor activity” does not  mediate  
proteolysis, but quite the contrary (Fig.  1 ). Thus, any logical reason-
ing on the ontology should take transitivity into account.

2
   With the exception of “NOT” annotations, for which the transitivity applies 

to  children  terms, not  parents  ( see  also Subheading  3.2 ). 

2.1  Understanding 
Relationships 
Between Ontological 
Concepts
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  Fig. 1    Example of transitive ( black arrows ) and non-transitive ( red arrow ) rela-
tionships between classes. A protein annotated to “peptidase inhibitor activity” 
term does not imply it has a role in “proteolysis,” since the link is broken by the 
non- transitive relation  negatively regulates        
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   The relation “ has part ” is the inverse of “ part of ”, and connects 
terms in the opposite direction. Because of this, it generates cycles 
in the ontology. The relation “ occurs in”  connects molecular func-
tion terms to the cellular components in which they occur. Thus, 
taking these relationships into account, it is possible to deduce 
additional cellular component annotations from molecular function 
annotations, without requiring additional experimental or compu-
tational evidence. 

 It important to know that there are three version of the GO 
ontology available: GO-basic, GO, and GO-plus. 3  Only the GO-basic 
fi le is completely acyclic. Therefore, applications requiring the 
traversal of the ontology graph usually assume that the graph is acy-
clic; hence, the GO-basic fi le should be used. The different GO 
ontology fi les are discussed in more detail in Chap.   11     [ 18 ].  

   The “part of” relation, when linking terms across the different 
 aspects  of the Gene Ontology (molecular function to biological pro-
cess, or biological process to cellular component, for instance), trig-
gers an annotation to the second term, using the same evidence 
code and the same reference, but “GOC” as the source of the anno-
tation (“fi eld 15 of the annotation fi le,  see  (Chap.   3     [ 17 ] for a 
description of the contents of the annotation fi le). For example, a 
DNA ligase activity annotation will automatically trigger an anno-
tation to the biological process DNA ligation. The advantage of 
having these annotations inferred directly from the ontology is that 
it increases the annotation coverage by making annotations that 
may have been overlooked by the annotator when making the pri-
mary annotation. However, these inter-ontology links trigger a 
large number of annotations: there are currently 12 million annota-
tions to 7 million proteins in the GO database. Changes in the 
structure of these links (as any change in the ontology), can poten-
tially have a large impact on the annotation set. Indeed, Huntley 
et al. [ 19 ] reported that in November 2011, there was a decrease of 
~2500 manually and automatically assigned annotations to the term 
“transcription, DNA-dependent” (GO:0006351) due to the 
removal of an inter-ontology link between this term and the 
Molecular Function term “sequence- specifi c DNA binding tran-
scription factor activity” (GO:0003700). Figure  2  shows the strong 
and sudden variation in the number of annotations with term 
“ATPase activity” (GO:0016887).

   Such large changes in GO annotations can affect GO enrich-
ment analyses, which are sensitive to the choice of background 
distribution (Chap.   13     [ 3 ]; [ 20 ]). For instance, Clarke et al. [ 21 ] 
have shown that changes in annotations contribute signifi cantly to 
changes in overrepresented terms in GO analysis. To mitigate this 
problem, researchers should analyze their datasets using the most 

3
   http://geneontology.org/page/download-ontology 

2.2  Inter-ontology 
Links and Their 
Impact 
on GO Enrichment 
Analyses
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up-to-date version of the ontology and annotations, and ensure 
that the conclusions they draw hold across multiple recent releases. 
At the time of the writing of this chapter, DAVID, a popular GO 
analysis tool, had not been updated since 2009 (  http://david.
abcc.ncifcrf.gov/forum/viewtopic.php?f=10&t=807    ). Enrichment 
analyses performed with it may thus identify terms whose distribu-
tion has substantially changed irrespective of the analysis of inter-
est. The Gene Ontology Consortium now links to the PantherDB 
GO analysis service (  http://amigo.geneontology.org/rte    ) [ 22 ]. 
This tool uses the most current version of the ontology and the 
annotations. Regardless of the tool used, researchers should dis-
close the ontology and annotation database releases used in their 
analyses.   
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  Fig. 2    Strong and sudden variation in the number of annotations with the GO 
term “ATPase activity” (GO:0016887) over time. Such changes can heavily affect 
the estimation of the background distribution in enrichment analyses. To mini-
mize this problem, use an up-to-date version of the ontology/annotations and 
ensure that conclusions drawn hold across recent releases. Data and plot 
obtained from GOTrack (  http://www.chibi.ubc.ca/gotrack    )       
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3    Gene Ontology Annotations 

 Having discussed common pitfalls associated with the ontology 
structure, we now turn our attention to annotations. Understanding 
how annotations are done is essential to correctly interpreting the 
data. In particular, the information provided for each GO annota-
tion extends beyond the mere association of a term with a protein 
(reference to Chap.   3     [ 17 ]). The full extent of this rich informa-
tion, aimed to more precisely refl ect the biology within the GO 
framework, is often overlooked. 

  
 The Gene Ontology uses three qualifi ers that modify the meaning 
of association between a gene-product and a Gene Ontology term: 
These are “NOT”, “contributes to”, and “co-localizes with” (see 
documentation at   http://geneontology.org/page/go-qualifi ers    ). 

 The “contributes to” qualifi er is used to capture the molecular 
function of complexes when the activity is distributed over several 
subunits. However, in some cases the usage of the qualifi er is more 
permissive, and all subunits of a complex are annotated to the same 
molecular function even if they do not make a direct contribution 
to that activity. For example, the rat G2/mitotic-specifi c cyclin-B1 
CCNB1 is annotated as contributing to histone kinase activity, 
based on data in [ 23 ], although it has only been shown to  regulate  
the kinase activity of CDK1. Finding a cyclin annotated as having 
protein kinase activity may be unintuitive to users who fail to con-
sider the “contributes to” qualifi er. 

 The “co-localizes with” qualifi er is used with two very different 
meanings: it fi rst means that a protein is transiently or peripherally 
associated with an organelle or complex, while the second use is for 
cases where the resolution of an assay is not accurate enough to say 
that the gene product is a bona fi de component member. 
Unfortunately, it is currently not possible to know which of the 
two meanings is meant in any given annotation.  

     The “NOT” qualifi er is the one with the most impact, since it 
means that there is evidence that a gene product does  not  have a 
certain function. The “NOT” qualifi er is mostly used when a spe-
cifi c function may be expected, but has shown to be missing, either 
based on closer review of the protein’s primary sequence (e.g., loss 
of an active site residue) or because it cannot be experimentally 
detected using standard assays. 

 The existence of negative annotations can also lead to apparent 
contradictions. For instance, protein ARR2 in  Arabidopsis thaliana  
is associated with “response to ethylene” (GO:0009723) both 
positively on the basis of a paper by Hass et al. [ 24 ] and negatively 
based on a paper by Mason et al. [ 25 ]. The latter discusses this 
contradiction as follows:

3.1  Modifi cation 
of Annotation Meaning 
by Qualifi ers

3.2  Negative 
and Contradictory 
Results
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  Hass et al. [ 24 ] reported a reduction in the ethylene sensitivity of 
seedlings containing an arr2 loss-of-function mutation. By contrast, 
we observed no signifi cant difference from the wild type in the seed-
ling ethylene response when we tested three independent arr2 inser-
tion mutants, including the same mutant examined by Hass et al. 
[ 24 ]. This difference in results could arise from differences in growth 
conditions, for, unlike Hass et al. [ 24 ], we used a medium containing 
Murashige and Skoog (MS) salts and inhibitors of ethylene 
biosynthesis. 

   Thus, in this case, the contradiction in the GO is a refl ection of 
the primary literature. As Mason et al. note, this is not necessarily 
refl ective of a mistake, as there can be differences in activity across 
space (tissue, subcellular localisation) and time (due to regulation), 
with some of these details not fully captured in the experiment or 
in its representation in the GO. 

 A NOT annotation may also be assigned to a protein that does 
not have an activity typical of its homologs, for instance the 
STRADA pseudokinase (UniProtKB:Q7RTN6); STRADA adopts 
a closed conformation typical of active protein kinases and binds 
substrates, promoting a conformational change in the substrate, 
which is then phosphorylated by a “true” protein kinase, STK11 
[ 26 ]. In this case, the “NOT” annotation is created to alert the 
user to the fact that although the sequence suggests that the pro-
tein has a certain activity, experimental evidence shows otherwise. 

 In contrast to positive annotations, “NOT” annotations 
propagate to children in the ontology graph and not to parents. 
To illustrate, a protein associated with a negative annotation to 
“protein kinase activity” is not a tyrosine protein kinase either, a 
more specifi c term.  

   As also described in Chap.   17     [ 27 ], the Gene Ontology has recently 
introduced a mechanism, the “annotation extensions”, by which 
contextual information can be provided to increase the expressivity 
of the annotations [ 28 ]. Until recently, annotations had consisted 
of an association between a gene product and a term from one of 
the three ontologies comprising the GO. With this new knowledge 
representation model, additional information about the context of 
a GO term such as the target gene or the location of a molecular 
function may be provided. 

 Common uses are to provide data regarding the location of the 
activity/process in which a protein or gene product participates. For 
example, the role of Mouse opsin-4 (MGI:1353425) in rhodopsin 
mediated signaling pathway is biologically relevant in retinal gan-
glion cells. Annotation extensions also allow capture of dynamic 
subcellular localization, such as the  S. pombe  bir1 protein 
(SPCC962.02c), which localizes to the spindle specifi cally during 
the mitotic anaphase. The annotation extensions can also be used 
to capture substrates of enzymes, which used to be outside the 
scope of GO. 

3.3  Annotation 
Extensions
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 The annotation extension data is available in the AmiGO [ 29 ] 
and QuickGO [ 30 ] browsers, as well as in the annotation fi les 
compliant with the GAF2.0 format (  http://geneontology.org/
page/go-annotation-fi le-gaf-format-20    ). However, because 
annotation extensions are relatively new, guidelines are still being 
developed, and some uses are inconsistent across different data-
bases. Furthermore, most tools have yet to take this information 
into account. 

 In effect, extensions of an annotation create a “virtual” GO 
class that can be composed of more than one “actual” GO class, 
and can be traced up through multiple parent lineages. Thus, just 
as with inter-ontology links, accounting for annotation extensions 
can result in a substantial infl ation in the number of annotations, 
which needs to be appropriately accounted for in enrichment anal-
yses and other statistical analyses that require precise specifi cation 
of GO term background distribution.  

   Annotations are backed by different types of experiments or analyses 
categorized according to evidence codes (Chap.   3     [ 17 ]). Different 
types of experiments provide varying degrees of precision and confi -
dence with respect to the conclusions that can be derived from them. 
For most experiment types, it is not possible to provide a quantita-
tive measure of confi dence. Evidence codes are informative but can-
not directly be used to exclude low-confi dence data. 4  Nonetheless, 
the different evidence codes are prone to specifi c biases. 

  Direct evidence.  Taking these caveats into account, the evidence 
code inferred from direct assay (abbreviated as IDA in the annota-
tion fi les) provides the most reliable evidence with respect to the 
how directly a protein has been implicated in a given function, as it 
names implies. 

  Mutant phenotype evidence.  Mutants are extremely useful to impli-
cate genes products in pathways and processes; however exactly how 
the gene product is implicated in the process/function annotated is 
diffi cult to assess using phenotypic data because such data are inher-
ently derivative. Therefore, associations between gene products and 
GO terms based on mutant phenotypes (abbreviated as IMP in the 
annotation fi les) may be weak. The same caveat applies to annota-
tions derived from mutations in  multiple  genes, indicated by evi-
dence code “inferred from genetic interaction” (IGI). 

  Physical interactions.  Evidence based on physical interactions (IPI; 
mostly protein–protein interactions) is comparable in confi dence 
to a direct assay for protein binding annotations or for cellular 
components; however for molecular functions and biological 

4
   An evidence confi dence ontology has been proposed by Bastien et al. [ 31 ] 

but has yet to be adopted by the GO project. 

3.4  Biases 
Associated 
with Particular 
Evidence Codes
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processes, the evidence is of the type “guilt by association” and is 
of low confi dence. Inferences based on expression patterns (IEP) 
are typically of low confi dence. The presence of a protein in a spe-
cifi c subcellular localization, at a specifi c developmental stage, or 
associated with a protein or a protein complex can provide a hint 
to uncover a protein’s role in the absence of other evidence, but 
without more direct evidence that information is very weak. 

  High-throughput experiments.  Schnoes et al. [ 32 ] reported that 
annotations deriving from high-throughput experiments tend to 
consist of high-level GO terms, and tend to represent a limited 
number of functions. This artifi cially decreases the information 
content of these terms, since they are frequently annotated, and 
artifi cially decreased information content affects similarity analyses. 
This potentially has a large impact, since a signifi cant fraction of the 
annotations in the GO database are derived from these types of 
analyses (as much as 25 %, according to Schnoes et al., who used the 
operational defi nition of a high throughput paper as one in which 
over 100 proteins were annotated). The GO does not currently 
record whether particular experimental annotations may be derived 
from high-throughput methods, but this may change in the future. 

  Biases from automatic annotation methods.  The GO association fi le, 
containing the annotations, has information regarding the method 
used to assign electronic annotations. The annotations can be 
assigned by a large number of different methods. Examples include 
domain functions, as assigned for example by InterPro, by Enzyme 
Commission numbers being associated with an entry, by BLAST, 
by orthology assignment, etc. Note that this information is not 
provided as an evidence code, but as a “reference code”. The list of 
methods and their associated reference code is available at   http://
www.geneontology.org/cgi-bin/references.cgi    . The large number 
of electronic annotations can also make them have a dispropor-
tionate impact on the results. Most analysis tools allow for the 
inclusion or exclusion of electronic annotations, but not at the 
more fi ne-grained level of the particular method. It is nevertheless 
possible to use the combination of evidence code plus reference 
(available at:   http://www.geneontology.org/cgi-bin/references.
cgi    ) to automatically deepen the evidence type, see   https://raw.
githubusercontent.com/evidenceontology/evidenceontology/
master/gaf-eco-mapping.txt    ). 

 Note that a gene or gene product can have multiple annota-
tions to the same term but with different evidence. This can pro-
vide corroborating information on particular genes, but may also 
require appropriate normalization in statistical analyses of term 
frequency, as the frequency of terms that can be determined 
through multiple types of experiments may be artifi cially infl ated. 
Furthermore, because different experiments can vary in their 
specifi city—thus resulting in annotations at different levels of 
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granularity for basically the same function—this redundancy only 
becomes conspicuous when the transitivity of the ontology structure 
is appropriately taken into account. 

 For more discussion on evidence codes, and their use in quality 
control pipelines, refer to Chap.   18     [ 33 ].  

   There can be substantial differences in the nature and extent of 
GO annotations across different species. For instance, zebrafi sh is 
heavily studied in terms of developmental biology and embryo-
genesis while the rat is the standard model for toxicology. These 
differences are refl ected in the frequency of GO terms across spe-
cies, which can vary considerably across species [ 34 ]. This has 
important implications on enrichment analyses and other statisti-
cal analyses requiring a background distribution of GO annota-
tions. For instance, consider an experiment trying to establish the 
biological processes associated with a particular zebrafi sh protein 
by identifying its interaction partners and performing an enrich-
ment analysis on them. If we naively use the entire database as 
background, the interaction partners might appear to be enriched 
in developmental genes simply because this class is over-repre-
sented in general in zebrafi sh. Instead, one should use zebrafi sh 
gene-related annotations only as background [ 20 ].  

   Other biases are less obvious but can nevertheless be strong and 
thus have a high potential to mislead. Recently, sets of annotations 
derived from the same scientifi c article were shown to be on aver-
age much more similar than annotations derived from different 
papers (Fig.  3 ; [ 34 ]). For instance, Nehrt et al. compared the 

3.5  Differences 
Among Species

3.6  Authorship Bias
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  Fig. 3    ( a ) Average GO annotation similarity (using the measure of Schlicker et al. [ 35 ] between homologous 
genes, considering experimental annotations partitioned according to the provenance; ( b ) Average GO annota-
tion similarity between homologous genes, partitioned according to their GO annotation evidence tags 
(Experimental: evidence code EXP and subcategories; Uncurated: evidence code IEA; Curated: all other evidence 
codes). Figure adapted from ref.  34        
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functional similarity of orthologs (genes related through speciation) 
across different species and paralogs (genes related through dupli-
cation) within the same species, and observed a much higher level 
of functional conservation among the latter [ 36 ]. However, this 
difference was almost entirely due to the fact that the GO func-
tional annotations of same-species paralogs are ~50 times more 
likely to be derived from the same paper than orthologs; when 
controlling for authorship and other biases, the difference in func-
tional similarity between same-species paralogs and orthologs van-
ished and even became in favor of orthologs [ 34 ].

   Note that the difference is smaller but remains signifi cant if we 
compare annotations established from different papers, but with at 
least one author in common, with annotations from different arti-
cles with no author in common.  

   Just as systematic differences among investigators can lead to the 
authorship bias, systematic differences in the way GO curators capture 
this information can lead to annotator bias. These annotator biases 
can in part be attributed to different annotation focus, but also to dif-
ferent interpretation or application of the GO annotation guidelines 
(  http://geneontology.org/page/go-annotation-policies    ). 

 UniProt provides annotations for all species, which allows us 
to assess the effect of annotator (or database) bias. If we compare 
UniProt annotations for mouse proteins with those done by the 
Mouse Genome Informatics group (MGI), we see that comparable 
fractions of proteins are annotated using the different experimental 
evidence codes, with mutant phenotypes being the most widely 
used (78 % of experimental annotations in MGI, versus 63 % in 
UniProt), followed by direct assays (20 % of annotations in MGI 
and 32 % in UniProt). 

 However when we look at which GO terms are annotated based 
on phenotypes (IMP and IGI) by the two groups, we notice a large 
difference in the terms annotated. The top term annotated by MGI 
supported by the IMP evidence code is “in utero embryonic devel-
opment”, with 1170 annotations to 1020 proteins. UniProt has 
only 4 annotations for this term. On the other hand, UniProt has as 
one of its top-annotated classes “regulation of circadian rhythm”, 
for 49 annotations to 38 proteins; 96 annotations for 69 proteins if 
we also include annotations to more specifi c, descendant terms. 
MGI on the other hand, only has 18 annotations for 19 proteins. 
This indicates that the annotations provided by different groups are 
biased towards specifi c aspects, and are not a uniform representation 
of the biology of all gene products in a species.  

   Another strong and perhaps surprising bias lies in the very different 
average GO similarity between electronic annotations compared 
with between experimental annotations. Indeed, if we consider 

3.7  Annotator Bias

3.8  Propagation Bias
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homologous genes, their similarity in terms of electronic annotations 
tend to be much higher than in terms of experimental annotations, 
with curated annotations lying in-between ([ 34 ]; Fig.  3 ). A likely 
explanation for this phenomenon is that electronic annotations are 
typically obtained by inferring annotations among homologous 
sequences, a process that can only increase the average functional 
similarity of homologs. 

 Because of this homology inference bias, one must exercise 
caution when drawing conclusions from sets of genes whose anno-
tations might have different proportions of experimental vs. elec-
tronic annotations. For instance, this would be the case when 
comparing annotations from model organisms with those from 
non-model organisms (the latter being likely to consist mostly of 
electronic annotations obtained through propagation). 

 More subtly, because function conservation is generally 
believed to correlate with sequence similarity, many computational 
methods preferentially infer function among phylogenetically close 
homologs. This bias can thus confound analyses attempting to 
gauge the conservation of gene function across different levels of 
species divergence.  

   As discussed above, both our knowledge of gene function and its 
representation in the GO remain very incomplete. We have already 
discussed the pitfalls of ignoring this fact altogether (closed vs. 
open world assumption), or assuming similar term frequencies 
across species. But the extent of missing data varies along other 
dimensions as well: for example it can depend on how easy it is to 
experimentally establish a particular function and how interesting 
the potential function might be. The problem is particularly acute 
in the case of negative annotations, because they can be even more 
diffi cult to establish than their positive counterparts (e.g., a nega-
tive result can also be due to inadequate experimental conditions, 
differences in spatiotemporal regulation, etc.)  and  they are often 
perceived as being less useful, and certainly less publishable. As a 
result, currently less than 1 % of all experimental annotations are 
negative ones in UniProt-GOA [ 37 ]. This imbalance causes prob-
lems with training of machine learning algorithms [ 38 ]. Rider 
et al. [ 39 ] investigated the reliability of typical machine learning 
evaluation metrics (area under the “receiver operating characteris-
tic” (ROC) curve, area under the precision-recall curve) under 
different levels of missing negative annotations and concluded 
that this bias could strongly affect the ranking obtained from the 
different metrics. Though this particular study adopted a closed 
world assumption, the effect of a varying proportion of negative 
annotations is likely to be even greater under the open world 
assumption.   

3.9  Imbalance 
Between Positive 
and Negative 
Annotations
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4    Getting Help 

 This chapter provides a broad overview of some of the pitfalls associ-
ated with GO-based analysis. Table  1  summarizes the most impor-
tant pitfalls users encounter using GO.

   Users are advised to make use of a number of excellent 
resources provided by the GO consortium:

     Table 1  
  Main pitfalls or biases discussed in the chapter and their remedies   

 Pitfall or bias  Remedy 

 Wrongly assume that absence of 
annotation implies absence of function. 

 Account for the fact that both ontology and annotations 
are necessary incomplete, for instance by assessing the 
impact of incompleteness on one’s analyses and fi ndings. 

 Not all directed edges in the ontology 
structure have the same meaning: 
depending on their type, the 
relationship they represent may or may 
not be transitive. 

 The transitivity of each type of relations must be taken 
into account when reasoning over the GO. “Is a” and 
“part of” are transitive, but “regulates” is not. 

 To yield meaningful results, GO 
enrichment analyses require accurate 
specifi cation of the background 
distribution, which can vary 
substantially across releases, species, etc. 

 Specify the actual background distribution used in the 
analysis of interest. Short of this, ensure that the 
enrichment analysis is performed on consistent database 
release and subsets of species, terms, etc. To test the 
robustness of results, consider repeating the analysis 
using several releases of GO ontology/annotation 
databases. Avoid tools that are not regularly updated. 

 Inter-ontology links and annotation 
extensions can result in large variations 
in the number of annotations. 
Furthermore, annotation extensions 
may not be consistently implemented, if 
at all, across analyses tools or workfl ows. 

 Keep track of database releases in analyses. If they are 
relevant, make sure that annotation extensions are 
implemented consistently. 

 Qualifi ers such as “NOT” or “co-localizes 
with” are important parts of a gene 
annotation in that they fundamentally 
change the meaning of annotations. 
Because only a small minority of all 
annotations have qualifi ers, such errors 
can easily go unnoticed. 

 Remember to take into account qualifi ers. When using 
tools or software libraries, make sure that these take 
qualifi ers into account as well. 

 Annotations are supported by different 
types of evidence (categorized by 
evidence codes). The annotations 
associated with each code vary in their 
scope, specifi city, and number. These 
differences can confound some analyses. 

 Take evidence code into account. In statistical analyses, 
consider the distribution of annotations in terms of 
evidence codes, and, if needed, control for this potential 
confounder. 

(continued)
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Table 1
(continued)

 Pitfall or bias  Remedy 

 Different species tend to have very 
different types of annotations. For 
instance, model species have many more 
experiment-based annotations. 

 When performing statistical analyses or using information- 
theoretic similarity measures, use species-specifi c 
frequencies of GO term. 

 Experiment-based annotations derived 
from the same research article tend to 
be more similar than annotations 
derived from different articles. Similar 
trends hold for annotations derived 
from same versus different authors, and 
same versus different annotators. 

 Control for authorship bias in analyses that may have 
varying proportion of annotations stemming from the 
same article, lab, or annotation team. 

 Because annotations are preferentially 
propagated among closely related 
sequences, electronic annotations can 
confound analyses seeking to 
characterize relationships between 
evolution and function. 

 Restrict such analyses to experiment-based annotations. 
Avoid circularity. 

 There are many more positive annotations 
than negative annotations. As a result, 
standard accuracy measures used by 
machine learning methods may be 
misleading (“class imbalance problem”). 

 Consider false-positive and false-negative rates separately. 
Focus on subset of data for which the class imbalance 
problem is less pronounced. 

 ●    The GO website   http://geneontology.org      
 ●   The GO FAQ   http://geneontology.org/faq-page      
 ●   The GO team are eager to help with your problems: e-mail go- 

help@geneontology.org  
 ●   The wider bioinformatics community can be consulted via sites 

like Biostars—see the GO tag   https://www.biostars.org/t/go/      
 ●   The GO community can be contacted on Twitter at   @news4go         

5    Conclusion 

 This chapter surveys some of the main pitfalls and biases of the 
Gene Ontology. The number of potential issues, summarized in 
Table  1 , may seem daunting. Indeed, as discussed at the start of this 
chapter, there are some inherent risks in working with observational 
data. However, simple remedies are available for many of these 
(Table  1 ). By understanding the subtleties of the GO, controlling 
for known confounders, trying to identify unknown ones, and 
cautiously proceeding forward, users can make the most of the 
formidable resource that is the GO.     

Gene Ontology: Pitfalls, Biases, and Remedies

http://geneontology.org/
http://geneontology.org/faq-page
https://www.biostars.org/t/go/
https://twitter.com/news4go


204

     1.   Hastings J (2016) Primer on ontologies. In: 
Dessimoz C, Škunca N (eds) The gene ontol-
ogy handbook. Methods in molecular biology, 
vol 1446. Humana Press. Chapter 1  

     2.   Pesquita C (2016) Semantic similarity in the gene 
ontology. In: Dessimoz C, Škunca N (eds) The 
gene ontology handbook. Methods in molecular 
biology, vol 1446. Humana Press. Chapter 12  

       3.   Bauer S (2016) Gene-category analysis. In: 
Dessimoz C, Škunca N (eds) The gene ontol-
ogy handbook. Methods in molecular biology, 
vol 1446. Humana Press. Chapter 13  

    4.    Bickel PJ, Hammel EA, O’connell JW (1975) 
Sex bias in graduate admissions: data from 
Berkeley. Science 187:398–404  

    5.    Thomas PD, Wood V, Mungall CJ et al (2012) 
On the use of gene ontology annotations to 
assess functional similarity among orthologs 
and paralogs: a short report. PLoS Comput 
Biol 8:e1002386  

    6.    Dessimoz C, Skunca N, Thomas PD (2013) 
CAFA and the Open World of protein function 
predictions. Trends Genet 29:609–610  

    7.     Burge S, Kelly E, Lonsdale D et al (2012) 
Manual GO annotation of predictive protein 
signatures: the InterPro approach to GO cura-
tion. Database:bar068      

    8.    Gaudet P, Livstone MS, Lewis SE et al (2011) 
Phylogenetic-based propagation of functional 
annotations within the Gene Ontology consor-
tium. Brief Bioinform 12:449–462  

        9.    Vilella AJ, Severin J, Ureta-Vidal A et al (2008) 
EnsemblCompara GeneTrees: complete, dupli-
cation-aware phylogenetic trees in vertebrates. 
Genome Res 19:327–335  

    10.    Altenhoff AM, Škunca N, Glover N et al 
(2015) The OMA orthology database in 2015: 
function predictions, better plant support, syn-
teny view and other improvements. Nucleic 
Acids Res 43:D240–D249  

    11.   Rentzsch R, Orengo CA (2009) Protein func-
tion prediction--the power of multiplicity. 
Trends Biotechnol 27:210–219  

    12.    Škunca N, Dessimoz C (2015) Phylogenetic 
profi ling: how much input data is enough? 
PLoS One 10:e0114701  

  Acknowledgements 

 We thank Natasha Glover, Rachel Huntley, Suzanna Lewis, Chris 
Mungall, and Paul Thomas for detailed and helpful feedback on 
the manuscript. PG acknowledges National Institutes of Health/
National Human Genome Research Institute grant HG002273. 
CD acknowledges Swiss National Science Foundation grant 
150654 and UK BBSRC grant BB/M015009/1. Open Access 
charges were funded by the University College London Library, 
the Swiss Institute of Bioinformatics, the Agassiz Foundation, and 
the Foundation for the University of Lausanne. 

 Open Access This chapter is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (  http://
creativecommons.org/licenses/by/4.0/    ), which permits use, 
duplication, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, a link is provided to the Creative 
Commons license and any changes made are indicated. 

 The images or other third party material in this chapter are 
included in the work’s Creative Commons license, unless indicated 
otherwise in the credit line; if such material is not included in the 
work’s Creative Commons license and the respective action is not 
permitted by statutory regulation, users will need to obtain per-
mission from the license holder to duplicate, adapt or reproduce 
the material.  

   References 

Pascale Gaudet and Christophe Dessimoz

http://paperpile.com/b/afKg8s/PLi6n
http://paperpile.com/b/afKg8s/PLi6n
http://paperpile.com/b/afKg8s/PLi6n
http://paperpile.com/b/afKg8s/PLi6n
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


205

    13.    Škunca N, Altenhoff A, Dessimoz C (2012) 
Quality of computationally inferred gene 
ontology annotations. PLoS Comput Biol 
8:e1002533  

          14.    Jiang Y, Clark WT, Friedberg I et al (2014) 
The impact of incomplete knowledge on the 
evaluation of protein function prediction: a 
structured-output learning perspective. 
Bioinformatics 30:i609–i616  

     15.    Sevilla JL, Segura V, Podhorski A et al (2005) 
Correlation between gene expression and GO 
semantic similarity. IEEE/ACM Trans Comput 
Biol Bioinform 2:330–338  

    16.    Mistry M, Pavlidis P (2008) Gene Ontology 
term overlap as a measure of gene functional 
similarity. BMC Bioinformatics 9:327  

    17.   Gaudet P, Škunca N, Hu JC, Dessimoz C 
(2016) Primer on the gene ontology. In: 
Dessimoz C, Škunca N (eds) The gene ontol-
ogy handbook. Methods in molecular biology, 
vol 1446. Humana Press. Chapter 3  

    18.   Munoz-Torres M, Carbon S (2016) Get GO! 
retrieving GO data using AmiGO, QuickGO, 
API, fi les, and tools. In: Dessimoz C, Škunca N 
(eds) The gene ontology handbook. Methods 
in molecular biology, vol 1446. Humana Press. 
Chapter 11  

       19.    Huntley RP, Sawford T, Martin MJ et al (2014) 
Understanding how and why the Gene 
Ontology and its annotations evolve: the GO 
within UniProt. GigaScience 3:4  

    20.    Rhee SY, Wood V, Dolinski K et al (2008) Use 
and misuse of the gene ontology annotations. 
Nat Rev Genet 9:509–515  

    21.    Clarke EL, Loguercio S, Good BM et al (2013) 
A task-based approach for Gene Ontology 
evaluation. J Biomed Semantics 4(Suppl 1):S4  

    22.    Mi H, Muruganujan A, Casagrande JT et al 
(2013) Large-scale gene function analysis with 
the PANTHER classifi cation system. Nat 
Protoc 8:1551–1566  

    23.    Granada JF, Ensenat D, Keswani AN et al 
(2005) Single perivascular delivery of mitomy-
cin C stimulates p21 expression and inhibits 
neointima formation in rat arteries. Arterioscler 
Thromb Vasc Biol 25:2343–2348  

    24.    Hass C, Lohrmann J, Albrecht V et al (2004) 
The response regulator 2 mediates ethylene 
signalling and hormone signal integration in 
Arabidopsis. EMBO J 23:3290–3302  

    25.    Mason MG, Mathews DE, Argyros DA et al 
(2005) Multiple type-B response regulators 
mediate cytokinin signal transduction in 
Arabidopsis. Plant Cell 17:3007–3018  

     26.    Baas AF, Boudeau J, Sapkota GP et al (2003) 
Activation of the tumour suppressor kinase 

LKB1 by the STE20-like pseudokinase 
STRAD. EMBO J 22:3062–3072  

        27.   Huntley RP, Lovering RC (2016) Annotation 
extensions. In: Dessimoz C, Škunca N (eds) 
The gene ontology handbook. Methods in 
molecular biology, vol 1446. Humana Press. 
Chapter 17  

    28.    Huntley RP, Harris MA, Alam-Faruque Y et al 
(2014) A method for increasing expressivity of 
Gene Ontology annotations using a composi-
tional approach. BMC Bioinformatics 15:155  

    29.    T. Gene and Ontology Consortium (2010) The 
Gene Ontology in 2010: extensions and refi ne-
ments. Nucleic Acids Res 38:D331–D335  

    30.    Binns D, Dimmer E, Huntley R et al (2009) 
QuickGO: a web-based tool for Gene Ontology 
searching. Bioinformatics 25:3045–3046  

    31.     Bastian FB, Chibucos MC, Gaudet P et al 
(2015) The Confi dence Information Ontology: 
a step towards a standard for asserting confi -
dence in annotations. Database:bav043      

    32.    Schnoes AM, Ream DC, Thorman AW et al 
(2013) Biases in the experimental annotations 
of protein function and their effect on our 
understanding of protein function space. PLoS 
Comput Biol 9:e1003063  

   33.   Chibucos MC, Siegele DA, Hu JC, Giglio M 
(2016) The evidence and conclusion ontology 
(ECO): supporting GO annotations. In: 
Dessimoz C, Škunca N (eds) The gene ontol-
ogy handbook. Methods in molecular biology, 
vol 1446. Humana Press. Chapter 18  

   34.    Altenhoff AM, Studer RA, Robinson-Rechavi 
M et al (2012) Resolving the ortholog conjec-
ture: orthologs tend to be weakly, but signifi -
cantly, more similar in function than paralogs. 
PLoS Comput Biol 8:e1002514  

   35.    Schlicker A, Domingues FS, Rahnenführer J et 
al (2006) A new measure for functional similar-
ity of gene products based on Gene Ontology. 
BMC Bioinformatics 7:302  

   36.    Nehrt NL, Clark WT, Radivojac P et al (2011) 
Testing the ortholog conjecture with compara-
tive functional genomic data from mammals. 
PLoS Comput Biol 7:e1002073  

   37.    Huntley RP, Sawford T, Mutowo-Meullenet P 
et al (2015) The GOA database: gene ontology 
annotation updates for 2015. Nucleic Acids 
Res 43:D1057–D1063  

   38.     Kotsiantis S, Kanellopoulos D (2006) Handling 
imbalanced datasets: a review, Annual Symposium 
on Foundations of Computer Science      

   39.    Rider AK, Johnson RA, Davis DA et al (2013) 
Classifi er evaluation with missing negative class 
labels. In: Advances in Intelligent Data Analysis 
XII. Springer, Berlin, pp 380–391    

Gene Ontology: Pitfalls, Biases, and Remedies

http://paperpile.com/b/afKg8s/u3S8
http://paperpile.com/b/afKg8s/u3S8
http://paperpile.com/b/afKg8s/u3S8
http://paperpile.com/b/afKg8s/u3S8
http://paperpile.com/b/afKg8s/iPDV0
http://paperpile.com/b/afKg8s/iPDV0
http://paperpile.com/b/afKg8s/iPDV0

	Chapter 14: Gene Ontology: Pitfalls, Biases, and Remedies
	1 Introduction
	1.1 Simpson’s Paradox: The Perils of Data Aggregation
	1.2 The Inherent Incompleteness of the Gene Ontology (Open World Assumption)

	2 Gene Ontology Structure
	2.1 Understanding Relationships Between Ontological Concepts
	2.2 Inter-ontology Links and Their Impact on GO Enrichment Analyses

	3 Gene Ontology Annotations
	3.1 Modification of Annotation Meaning by Qualifiers
	3.2 Negative and Contradictory Results
	3.3 Annotation Extensions
	3.4 Biases Associated with Particular Evidence Codes
	3.5 Differences Among Species
	3.6 Authorship Bias
	3.7 Annotator Bias
	3.8 Propagation Bias
	3.9 Imbalance Between Positive and Negative Annotations

	4 Getting Help
	5 Conclusion
	References


