Skip to main content

Lessons from the Murine Models of West Nile Virus Infection

  • Protocol
  • First Online:
Book cover West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1435))

Abstract

West Nile virus (WNV), a mosquito-borne, single positive-stranded RNA virus, has been the leading cause of arboviral encephalitis in the U.S. and other parts of the world over the past decade. Up to 50 % of WNV convalescent patients were reported to have long-term neurological sequelae or chronic kidney diseases. However, there are neither antiviral drugs nor vaccines available for humans. The underlying mechanism of the long-term sequelae is not clearly understood either. Animal models have been an effective tool to investigate viral pathogenesis and host immunity in humans. Here, we will review several commonly used murine models of WNV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson JF, Andreadis TG, Vossbrinck CR, Tirrell S, Wakem EM et al (1999) Isolation of West Nile virus from mosquitoes, crows, and a Cooper’s Hawk in Connecticut. Science 286:2331–2333

    Article  CAS  PubMed  Google Scholar 

  2. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M et al (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337

    Article  CAS  PubMed  Google Scholar 

  3. Bakonyi T, Ferenczi E, Erdelyi K, Kutasi O, Csorgo T et al (2013) Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet Microbiol 165:61–70

    Article  PubMed  Google Scholar 

  4. Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X et al (2012) Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis 18:792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carson PJ, Konewko P, Wold KS, Mariani P, Goli S et al (2006) Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis 43:723–730

    Article  PubMed  Google Scholar 

  6. Cook RL, Xu X, Yablonsky EJ, Sakata N, Tripp JH et al (2010) Demographic and clinical factors associated with persistent symptoms after West Nile virus infection. Am J Trop Med Hyg 83:1133–1136

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sadek JR, Pergam SA, Harrington JA, Echevarria LA, Davis LE et al (2010) Persistent neuropsychological impairment associated with West Nile virus infection. J Clin Exp Neuropsychol 32:81–87

    Article  PubMed  Google Scholar 

  8. Nolan MS, Podoll AS, Hause AM, Akers KM, Finkel KW et al (2012) Prevalence of chronic kidney disease and progression of disease over time among patients enrolled in the Houston West Nile virus cohort. PLoS One 7, e40374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA et al (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75:4040–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kramer LD, Bernard KA (2001) West Nile virus infection in birds and mammals. Ann N Y Acad Sci 951:84–93

    Article  CAS  PubMed  Google Scholar 

  11. Ratterree MS, Gutierrez RA, Travassos da Rosa AP, Dille BJ, Beasley DW et al (2004) Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J Infect Dis 189:669–676

    Article  CAS  PubMed  Google Scholar 

  12. Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB (2001) West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:519–529

    Article  PubMed  Google Scholar 

  14. Solomon T, Ooi MH, Beasley DW, Mallewa M (2003) West Nile encephalitis. BMJ 326:865–869

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang T, Fikrig E (2004) Immunity to West Nile virus. Curr Opin Immunol 16:519–523

    Article  CAS  PubMed  Google Scholar 

  16. Brien JD, Uhrlaub JL, Hirsch A, Wiley CA, Nikolich-Zugich J (2009) Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med 206:2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Welte T, Lamb J, Anderson JF, Born WK, O'Brien RL et al (2008) Role of two distinct gammadelta T cell subsets during West Nile virus infection. FEMS Immunol Med Microbiol 53:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Penn RG, Guarner J, Sejvar JJ, Hartman H, McComb RD et al (2006) Persistent neuroinvasive West Nile virus infection in an immunocompromised patient. Clin Infect Dis 42:680–683

    Article  PubMed  Google Scholar 

  19. Murray K, Walker C, Herrington E, Lewis JA, McCormick J et al (2010) Persistent infection with West Nile virus years after initial infection. J Infect Dis 201:2–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saxena V, Xie G, Li B, Farris T, Welte T et al (2013) A hamster-derived west nile virus isolate induces persistent renal infection in mice. PLoS Negl Trop Dis 7, e2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston LJ, Halliday GM, King NJ (1996) Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 70:4761–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Welte T, Reagan K, Fang H, Machain-Williams C, Zheng X et al (2009) Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J Gen Virol 90:2660–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu X, Lu L, Guzman H, Tesh RB, Xiao SY (2008) Persistent infection and associated nucleotide changes of West Nile virus serially passaged in hamsters. J Gen Virol 89:3073–3079

    Article  CAS  PubMed  Google Scholar 

  24. Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA et al (2001) Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol 167:5273–5277

    Article  CAS  PubMed  Google Scholar 

  25. Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B et al (2003) A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198:1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arjona A, Foellmer HG, Town T, Leng L, McDonald C et al (2007) Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E et al (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  CAS  PubMed  Google Scholar 

  28. Beasley DW, Li L, Suderman MT, Barrett AD (2002) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Wang J, Pang L, Xie G, Welte T et al (2014) The co-stimulatory effects of MyD88-dependent Toll-like receptor signaling on activation of murine gammadelta T cells. PLoS One 9, e108156

    Article  PubMed  PubMed Central  Google Scholar 

  30. Appler KK, Brown AN, Stewart BS, Behr MJ, Demarest VL et al (2010) Persistence of West Nile virus in the central nervous system and periphery of mice. PLoS One 5, e10649

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stewart BS, Demarest VL, Wong SJ, Green S, Bernard KA (2011) Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection. BMC Immunol 12:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skallova A, Iezzi G, Ampenberger F, Kopf M, Kopecky J (2008) Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol 180:6186–6192

    Article  CAS  PubMed  Google Scholar 

  33. Schneider BS, Soong L, Girard YA, Campbell G, Mason P et al (2006) Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol 19:74–82

    Article  CAS  PubMed  Google Scholar 

  34. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD et al (2007) Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3:1262–1270

    Article  CAS  PubMed  Google Scholar 

  35. Byrne SN, Halliday GM, Johnston LJ, King NJ (2001) Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol 117:702–709

    Article  CAS  PubMed  Google Scholar 

  36. Johnston LJ, Halliday GM, King NJ (2000) Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114:560–568

    Article  CAS  PubMed  Google Scholar 

  37. Town T, Bai F, Wang T, Kaplan AT, Qian F et al (2009) Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30:242–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Welte T, McGargill M, Town T, Thompson J et al (2008) Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. J Immunol 181:2084–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 AI072060 and R01 AI099123 (to T.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

McGruder, B., Saxena, V., Wang, T. (2016). Lessons from the Murine Models of West Nile Virus Infection. In: Colpitts, T. (eds) West Nile Virus. Methods in Molecular Biology, vol 1435. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3670-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3670-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3668-7

  • Online ISBN: 978-1-4939-3670-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics