Skip to main content

Adverse Outcome Pathways as Tools to Assess Drug-Induced Toxicity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

Adverse outcome pathways (AOPs) are novel tools in toxicology and human risk assessment with broad potential. AOPs are designed to provide a clear-cut mechanistic representation of toxicological effects that span over different layers of biological organization. AOPs share a common structure consisting of a molecular initiating event, a series of key events connected by key event relationships, and an adverse outcome. Development and evaluation of AOPs ideally complies with guidelines issued by the Organization for Economic Cooperation and Development. AOP frameworks have yet been proposed for major types of drug-induced injury, especially in the liver, including steatosis, fibrosis, and cholestasis. These newly postulated AOPs can serve a number of purposes pertinent to safety assessment of drugs, in particular the establishment of quantitative structure-activity relationships, the development of novel in vitro toxicity screening tests, and the elaboration of prioritization strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. OECD (2013) Proposal for a template and guidance on developing and assessing the completeness of adverse outcome pathways. Series on Testing and Assessment 184:1–45

    Google Scholar 

  2. US EPA (2005) Guidelines for carcinogen risk assessment. Risk Assessment Forum. EPA/630/P-03/001B. Washington, DC. 1–166.

    Google Scholar 

  3. Bogdanffy MS, Daston G, Faustman EM et al (2001) Harmonization of cancer and noncancer risk assessment: proceedings of a consensus-building workshop. Toxicol Sci 61:18–31

    Article  CAS  PubMed  Google Scholar 

  4. Julien E, Boobis AR, Olin SS (2009) The key events dose-response framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds. Crit Rev Food Sci Nutr 49:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meek ME, Bucher JR, Cohen SM et al (2003) A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol 33:591–653

    Article  PubMed  Google Scholar 

  6. Seed J, Carney EW, Corley RA et al (2005) Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol 35:664–672

    Article  PubMed  Google Scholar 

  7. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DC

    Google Scholar 

  8. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  PubMed  Google Scholar 

  9. https://aopkb.org/ (consulted February 2015)

  10. Villeneuve DL, Crump D, Garcia-Reyero N et al (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Villeneuve DL, Crump D, Garcia-Reyero N et al (2014) Adverse outcome pathway development II: best practices. Toxicol Sci 142:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165

    Article  CAS  PubMed  Google Scholar 

  13. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vinken M, Maes M, Vanhaecke T, Rogiers V (2013) Drug-induced liver injury: mechanisms, types and biomarkers. Curr Med Chem 20:3011–3021

    Article  CAS  PubMed  Google Scholar 

  15. Begriche K, Massart J, Robin MA et al (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    Article  CAS  PubMed  Google Scholar 

  16. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amacher DE (2011) The mechanistic basis for the induction of hepatic steatosis by xenobiotics. Expert Opin Drug Metab Toxicol 7:949–965

    Article  CAS  PubMed  Google Scholar 

  18. Ramachandran R, Kakar S (2009) Histological patterns in drug-induced liver disease. J Clin Pathol 62:481–492

    Article  CAS  PubMed  Google Scholar 

  19. Zimmerman HJ (2000) Drug-induced liver disease. Clin Liver Dis 4:73–96

    Article  CAS  PubMed  Google Scholar 

  20. Landesmann B., Goumenou M., Munn S., Whelan M. (2012): Description of prototype modes-of-action related to repeated dose toxicity. JRC Scientific and Policy Report, 75689

    Google Scholar 

  21. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7:425–436

    Article  PubMed  Google Scholar 

  23. Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schoemaker MH, Conde de la Rosa L, Buist-Homan M et al (2004) Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 39:1563–1573

    Article  CAS  PubMed  Google Scholar 

  25. Woolbright BL, Jaeschke H (2012) Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 18:4985–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofmann AF (2009) Bile acids and the enterohepatic circulation. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW (eds) The liver: biology and pathobiology. Wiley-Blackwell, Oxford, pp 289–304

    Google Scholar 

  27. Padda MS, Sanchez M, Akhtar AJ, Boyer JL (2011) Drug-induced cholestasis. Hepatology 53:1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zollner G, Trauner M (2006) Molecular mechanisms of cholestasis. Wien Med Wochenschr 156:380–385

    Article  PubMed  Google Scholar 

  29. Zollner G, Trauner M (2008) Mechanisms of cholestasis. Clin Liver Dis 12:1–26

    Article  PubMed  Google Scholar 

  30. Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51:565–580

    Article  CAS  PubMed  Google Scholar 

  31. Vinken M, Landesmann B, Goumenou M et al (2013) Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol Sci 136:97–106

    Article  CAS  PubMed  Google Scholar 

  32. Hirano H, Kurata A, Onishi Y et al (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 2:252–265

    Article  Google Scholar 

  33. Saito H, Osumi M, Hirano H et al (2009) Technical pitfalls and improvements for high-speed screening and QSAR analysis to predict inhibitors of the human bile salt export pump (ABCB11/BSEP). AAPS J 11:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warner DJ, Chen H, Cantin LD et al (2012) Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab Dispos 40:2332–2341

    Article  CAS  PubMed  Google Scholar 

  35. Honorio KM, Salum LB, Garratt RC et al (2008) Two- and three-dimensional quantitative structure–activity relationships studies on a series of liver X receptor ligands. Open Med Chem J 2:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Judson R, Kavlock R, Martin M et al (2013) Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX 30:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yozzo KL, McGee SP, Volz DC (2013) Adverse outcome pathways during zebrafish embryogenesis: a case study with paraoxon. Aquat Toxicol 126:346–354

    Article  CAS  PubMed  Google Scholar 

  38. Andersen ME, Clewell R, Bhattacharya S (2012) Developing in vitro tools sufficient by themselves for 21st century risk assessment. In: Gocht T, Schwarz M (eds) Towards the replacement of in vivo repeated dose systemic toxicity testing, vol 2. Imprimerie Mouzet, France, pp 347–360

    Google Scholar 

  39. http://caat.jhsph.edu/ (consulted February 2015)

  40. http://www.seurat-1.eu/ (consulted February 2015)

  41. Vinken M, Pauwels M, Ates G et al (2012) Screening of repeated dose toxicity data present in SCC(NF)P/SCCS safety evaluations of cosmetic ingredients. Arch Toxicol 86:405–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grants of the University Hospital of the Vrije Universiteit Brussel, Belgium (Willy Gepts Fonds UZ-VUB), the University of São Paulo, Brazil (USP), the São Paulo Research Foundation, Brazil (FAPESP), the Fund for Scientific Research, Flanders (FWO-Vlaanderen), the European Research Council (project CONNECT), the European Union (FP7) and Cosmetics Europe (projects DETECTIVE and HeMiBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Vinken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vinken, M. (2016). Adverse Outcome Pathways as Tools to Assess Drug-Induced Toxicity. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics