Skip to main content

Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Tissue regeneration from transplanted mesenchymal stromal cells (MSC) either through transdifferentiation or cell fusion was originally proposed as the principal mechanism underlying their therapeutic action. However, several studies have now shown that both these mechanisms are very inefficient. The low MSC engraftment rate documented in injured areas also refutes the hypothesis that MSC repair tissue damage by replacing cell loss with newly differentiated cells. Indeed, despite evidence of preferential homing of MSC to the site of myocardial ischemia, exogenously administered MSC show poor survival and do not persist in the infarcted area. Therefore, it has been proposed that the functional benefits observed after MSC transplantation in experimental models of tissue injury might be related to the secretion of soluble factors acting in a paracrine fashion. This hypothesis is supported by pre-clinical studies demonstrating equal or even improved organ function upon infusion of MSC-derived conditioned medium (MSC-CM) compared with MSC transplantation. Identifying key MSC-secreted factors and their functional role seems a reasonable approach for a rational design of nextgeneration MSC-based therapeutics. Here, we summarize the major findings regarding both different MSC-mediated paracrine actions and the identification of paracrine mediators.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    Article  CAS  PubMed  Google Scholar 

  2. Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  3. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  CAS  PubMed  Google Scholar 

  4. Morigi M, Introna M, Imberti B et al (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082

    Article  CAS  PubMed  Google Scholar 

  5. Morigi M, De Coppi P (2014) Cell therapy for kidney injury: different options and mechanisms—mesenchymal and amniotic fluid stem cells. Nephron Exp Nephrol 126:59

    Article  CAS  PubMed  Google Scholar 

  6. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  7. Wakabayashi K, Nagai A, Sheikh AM et al (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025

    CAS  PubMed  Google Scholar 

  8. Jung KH, Shin HP, Lee S et al (2009) Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver Int 29:898–909

    Article  CAS  PubMed  Google Scholar 

  9. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  CAS  PubMed  Google Scholar 

  10. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin-Rendon E, Sweeney D, Lu F et al (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95:137–148

    Article  CAS  PubMed  Google Scholar 

  12. Pisano F, Altomare C, Cervio E et al (2015) Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation. Stem Cells 33:1187–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rangappa S, Entwistle JW, Wechsler AS et al (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126:124–132

    Article  CAS  PubMed  Google Scholar 

  14. Xu M, Wani M, Dai YS et al (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110:2658–2665

    Article  PubMed  Google Scholar 

  15. Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loffredo FS, Steinhauser ML, Gannon J et al (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850

    Article  CAS  PubMed  Google Scholar 

  18. Duffield JS, Park KM, Hsiao LL et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lange C, Togel F, Ittrich H et al (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617

    Article  PubMed  Google Scholar 

  20. Togel F, Hu Z, Weiss K et al (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42

    Article  PubMed  CAS  Google Scholar 

  21. Togel F, Weiss K, Yang Y et al (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  CAS  PubMed  Google Scholar 

  23. Wu Y, Chen L, Scott PG et al (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki M, Abe R, Fujita Y et al (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Fu X, Ouyang Y et al (2006) Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res 326:725–736

    Article  CAS  PubMed  Google Scholar 

  26. Javazon EH, Keswani SG, Badillo AT et al (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15:350–359

    Article  PubMed  Google Scholar 

  27. Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iso Y, Spees JL, Serrano C et al (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354:700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terrovitis JV, Smith RR, Marban E (2010) Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 106:479–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Song H, Cha MJ, Song BW et al (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28:555–563

    CAS  PubMed  Google Scholar 

  32. Muller-Ehmsen J, Krausgrill B, Burst V et al (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41:876–884

    Article  PubMed  CAS  Google Scholar 

  33. Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  34. Moon MH, Kim SY, Kim YJ et al (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 17:279–290

    Article  CAS  PubMed  Google Scholar 

  35. Imberti B, Morigi M, Tomasoni S et al (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 18:2921–2928

    Article  CAS  PubMed  Google Scholar 

  36. Horita Y, Honmou O, Harada K et al (2006) Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 84:1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang SK, Lee DH, Bae YC et al (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    Article  CAS  PubMed  Google Scholar 

  38. Mora-Lee S, Sirerol-Piquer MS, Gutierrez-Perez M et al (2012) Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One 7, e43683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100

    Article  PubMed  Google Scholar 

  40. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    Article  CAS  PubMed  Google Scholar 

  41. Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    Article  CAS  PubMed  Google Scholar 

  42. Du T, Cheng J, Zhong L et al (2012) The alleviation of acute and chronic kidney injury by human Wharton's jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism. Cytotherapy 14:1215–1227

    Article  CAS  PubMed  Google Scholar 

  43. Fang TC, Pang CY, Chiu SC et al (2012) Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One 7, e46504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bi B, Schmitt R, Israilova M et al (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  45. Kanki S, Segers VF, Wu W et al (2011) Stromal cell-derived factor-1 retention and cardioprotection for ischemic myocardium. Circ Heart Fail 4:509–518

    Article  CAS  PubMed  Google Scholar 

  46. Timmers L, Lim SK, Hoefer IE et al (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6:206–214

    Article  PubMed  Google Scholar 

  47. Beohar N, Rapp J, Pandya S et al (2010) Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol 56:1287–1297

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aejaz HM, Aleem AK, Parveen N et al (2007) Stem cell therapy-present status. Transplant Proc 39:694–699

    Article  CAS  PubMed  Google Scholar 

  49. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:544–548

    Article  CAS  PubMed  Google Scholar 

  50. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  51. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  CAS  PubMed  Google Scholar 

  52. Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401

    Article  PubMed  Google Scholar 

  53. Cantley LG (2005) Adult stem cells in the repair of the injured renal tubule. Nat Clin Pract Nephrol 1:22–32

    Article  CAS  PubMed  Google Scholar 

  54. Morigi M, Benigni A, Remuzzi G et al (2006) The regenerative potential of stem cells in acute renal failure. Cell Transplant 15(Suppl 1):S111–S117

    Article  PubMed  Google Scholar 

  55. Lim BK, Choi JH, Nam JH et al (2006) Virus receptor trap neutralizes coxsackievirus in experimental murine viral myocarditis. Cardiovasc Res 71:517–526

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi M, Li TS, Suzuki R et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886–H893

    Article  CAS  PubMed  Google Scholar 

  57. Uemura R, Xu M, Ahmad N et al (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421

    Article  CAS  PubMed  Google Scholar 

  58. Xu M, Uemura R, Dai Y et al (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 42:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danieli P, Malpasso G, Ciuffreda MC et al (2015) Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med 4:448–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halabian R, Roudkenar MH, Jahanian-Najafabadi A et al (2015) Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury. Cell Biol Int 39:152–163

    Article  CAS  PubMed  Google Scholar 

  61. Drago D, Cossetti C, Iraci N et al (2013) The stem cell secretome and its role in brain repair. Biochimie 95:2271–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen J, Li Y, Katakowski M et al (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    Article  CAS  PubMed  Google Scholar 

  63. Egashira Y, Sugitani S, Suzuki Y et al (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95

    Article  CAS  PubMed  Google Scholar 

  64. Wei X, Du Z, Zhao L et al (2009) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27:478–488

    Article  CAS  PubMed  Google Scholar 

  65. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  PubMed  Google Scholar 

  66. Ohnishi S, Yasuda T, Kitamura S et al (2007) Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 25:1166–1177

    Article  CAS  PubMed  Google Scholar 

  67. Jiang S, Haider HK, Idris NM et al (2006) Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    Article  CAS  PubMed  Google Scholar 

  68. Nagaya N, Fujii T, Iwase T et al (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:H2670–H2676

    Article  CAS  PubMed  Google Scholar 

  69. Tomita S, Mickle DA, Weisel RD et al (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140

    Article  PubMed  Google Scholar 

  70. McFarlin K, Gao X, Liu YB et al (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14:471–478

    Article  PubMed  Google Scholar 

  71. Alfaro MP, Pagni M, Vincent A et al (2008) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 105:18366–18371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen L, Tredget EE, Wu PY et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang Y, Lian F, Li J et al (2012) Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. J Transl Med 10:133

    Article  PubMed  PubMed Central  Google Scholar 

  74. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91:19–26

    Article  CAS  PubMed  Google Scholar 

  75. Klinker MW, Wei CH (2015) Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models. World J Stem Cells 7:556–567

    Article  PubMed  PubMed Central  Google Scholar 

  76. Iyer SS, Rojas M (2008) Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 8:569–581

    Article  CAS  PubMed  Google Scholar 

  77. Zhu XY, Lerman A, Lerman LO (2013) Concise review: mesenchymal stem cell treatment for ischemic kidney disease. Stem Cells 31:1731–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gnecchi M, Danieli P, Cervio E (2012) Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol 57:48–55

    Article  CAS  PubMed  Google Scholar 

  79. Puglisi MA, Tesori V, Lattanzi W et al (2011) Therapeutic implications of mesenchymal stem cells in liver injury. J Biomed Biotechnol 2011:860578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Eliopoulos N, Zhao J, Bouchentouf M et al (2010) Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am J Physiol Renal Physiol 299:F1288–F1298

    Article  CAS  PubMed  Google Scholar 

  81. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang B, Ramesh G, Norbury CC et al (2007) Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int 72:37–44

    Article  CAS  PubMed  Google Scholar 

  83. Morigi M, Rota C, Montemurro T et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28:513–522

    CAS  PubMed  Google Scholar 

  84. Yagi H, Soto-Gutierrez A, Navarro-Alvarez N et al (2010) Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther 18:1857–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duffy MM, Ritter T, Ceredig R et al (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Franquesa M, Hoogduijn MJ, Bestard O et al (2012) Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol 3:212

    Article  PubMed  PubMed Central  Google Scholar 

  87. Raffaghello L, Bianchi G, Bertolotto M et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26:151–162

    Article  CAS  PubMed  Google Scholar 

  88. Spaggiari GM, Capobianco A, Abdelrazik H et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    Article  CAS  PubMed  Google Scholar 

  89. Corridoni D, Arseneau KO, Cominelli F (2014) Inflammatory bowel disease. Immunol Lett 161:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gonzalez MA, Gonzalez-Rey E, Rico L et al (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136:978–989

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Q, Shi S, Liu Y et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao Y, Wang L, Jin Y et al (2012) Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res 91:948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Akiyama K, Chen C, Wang D et al (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ohnishi S, Yanagawa B, Tanaka K et al (2007) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 42:88–97

    Article  CAS  PubMed  Google Scholar 

  95. Van Linthout S, Savvatis K, Miteva K et al (2011) Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur Heart J 32:2168–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fuse K, Kodama M, Hanawa H et al (2001) Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clin Exp Immunol 124:346–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang CC, Shih YH, Ko MH et al (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3, e3336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gerdoni E, Gallo B, Casazza S et al (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61:219–227

    Article  CAS  PubMed  Google Scholar 

  99. Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    Article  CAS  PubMed  Google Scholar 

  100. McCoy MK, Martinez TN, Ruhn KA et al (2008) Autologous transplants of adipose-derived adult stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210:14–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  102. Francois M, Romieu-Mourez R, Li M et al (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20:187–195

    Article  CAS  PubMed  Google Scholar 

  103. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116:1413–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakanishi C, Yamagishi M, Yamahara K et al (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374:11–16

    Article  CAS  PubMed  Google Scholar 

  106. Linke A, Muller P, Nurzynska D et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102:8966–8971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102:11474–11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Galindo LT, Filippo TR, Semedo P et al (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rivera FJ, Kandasamy M, Couillard-Despres S et al (2008) Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. J Neurochem 107:832–843

    Article  CAS  PubMed  Google Scholar 

  110. Constantin G, Marconi S, Rossi B et al (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27:2624–2635

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J, Li Y, Chen J et al (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26

    Article  CAS  PubMed  Google Scholar 

  112. Zhang J, Li Y, Lu M et al (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84:587–595

    Article  CAS  PubMed  Google Scholar 

  113. Bai L, Lennon DP, Caplan AI et al (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15:862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Voulgari-Kokota A, Fairless R, Karamita M et al (2012) Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 236:161–170

    Article  CAS  PubMed  Google Scholar 

  115. Kim WS, Park BS, Sung JH et al (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    Article  CAS  PubMed  Google Scholar 

  116. Lee EY, Xia Y, Kim WS et al (2009) Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 17:540–547

    Article  PubMed  Google Scholar 

  117. Smith AN, Willis E, Chan VT et al (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316:48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  119. Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748

    Article  CAS  PubMed  Google Scholar 

  120. Ninichuk V, Gross O, Segerer S et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129

    Article  CAS  PubMed  Google Scholar 

  121. Ortiz LA, Gambelli F, McBride C et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gnecchi M, Zhang Z, Ni A et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Berry MF, Engler AJ, Woo YJ et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:H2196–H2203

    Article  CAS  PubMed  Google Scholar 

  124. Xu X, Xu Z, Xu Y et al (2005) Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis 16:245–255

    Article  PubMed  Google Scholar 

  125. Ohnishi S, Sumiyoshi H, Kitamura S et al (2007) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 581:3961–3966

    Article  CAS  PubMed  Google Scholar 

  126. Nasir GA, Mohsin S, Khan M et al (2013) Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. J Transl Med 11:78,5876–11-78

    Google Scholar 

  127. Li Q, Zhou X, Shi Y et al (2013) In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One 8, e62363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chang YJ, Liu JW, Lin PC et al (2009) Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci 85:517–725

    Article  CAS  PubMed  Google Scholar 

  129. Rabani V, Shahsavani M, Gharavi M et al (2010) Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biol Int 34:601–605

    Article  PubMed  Google Scholar 

  130. Zhao DC, Lei JX, Chen R et al (2005) Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol 11:3431–3440

    Article  PubMed  PubMed Central  Google Scholar 

  131. Abdel Aziz MT, Atta HM, Mahfouz S et al (2007) Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem 40:893–899

    Article  CAS  PubMed  Google Scholar 

  132. Tanimoto H, Terai S, Taro T et al (2013) Improvement of liver fibrosis by infusion of cultured cells derived from human bone marrow. Cell Tissue Res 354:717–728

    Article  CAS  PubMed  Google Scholar 

  133. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Parekkadan B, van Poll D, Megeed Z et al (2007) Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 363:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Toonkel RL, Hare JM, Matthay MA et al (2013) Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med 188:133–140

    Article  PubMed  Google Scholar 

  136. Rojas M, Xu J, Woods CR et al (2005) Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aguilar S, Scotton CJ, McNulty K et al (2009) Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One 4, e8013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Epperly MW, Guo H, Gretton JE et al (2003) Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 29:213–224

    Article  CAS  PubMed  Google Scholar 

  140. Hashimoto N, Jin H, Liu T et al (2004) Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Phillips RJ, Burdick MD, Hong K et al (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feygin J, Mansoor A, Eckman P et al (2007) Functional and bioenergetic modulations in the infarct border zone following autologous mesenchymal stem cell transplantation. Am J Physiol Heart Circ Physiol 293:H1772–H1780

    Article  CAS  PubMed  Google Scholar 

  143. Gnecchi M, He H, Melo LG et al (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yoon YS, Wecker A, Heyd L et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee RH, Pulin AA, Seo MJ et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parekkadan B, van Poll D, Suganuma K et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2, e941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nguyen BK, Maltais S, Perrault LP et al (2010) Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 3:547–558

    Article  PubMed  Google Scholar 

  149. Park CW, Kim KS, Bae S et al (2009) Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells 2:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Skalnikova H, Motlik J, Gadher SJ et al (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708

    Article  CAS  PubMed  Google Scholar 

  151. Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Choi YA, Lim J, Kim KM et al (2010) Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 9:2946–2956

    Article  CAS  PubMed  Google Scholar 

  153. Estrada R, Li N, Sarojini H et al (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim JM, Kim J, Kim YH et al (2013) Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol 228:216–224

    Article  CAS  PubMed  Google Scholar 

  155. Li N, Sarojini H, An J et al (2010) Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 112:1527–1538

    Article  CAS  PubMed  Google Scholar 

  156. Liu CH, Hwang SM (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32:270–279

    Article  CAS  PubMed  Google Scholar 

  157. Sarojini H, Estrada R, Lu H et al (2008) PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem 104:1793–1802

    Article  CAS  PubMed  Google Scholar 

  158. Tasso R, Gaetani M, Molino E et al (2012) The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials 33:2086–2096

    Article  CAS  PubMed  Google Scholar 

  159. Lee MJ, Kim J, Kim MY et al (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9:1754–1762

    Article  CAS  PubMed  Google Scholar 

  160. Sze SK, de Kleijn DP, Lai RC et al (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 6:1680–1689

    Article  CAS  PubMed  Google Scholar 

  161. Cervio E, Barile L, Moccetti T et al (2015) Exosomes for intramyocardial intercellular communication. Stem Cells Int 2015:482171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Li T, Yan Y, Wang B et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tan CY, Lai RC, Wong W et al (2014) Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 5:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lee C, Mitsialis SA, Aslam M et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sdrimas K, Kourembanas S (2014) MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal 21:1905–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhu YG, Feng XM, Abbott J et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  168. Reis LA, Borges FT, Simoes MJ et al (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7, e44092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tomasoni S, Longaretti L, Rota C et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  171. Martinez MC, Andriantsitohaina R (2011) Microparticles in angiogenesis: therapeutic potential. Circ Res 109:110–119

    Article  CAS  PubMed  Google Scholar 

  172. Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  CAS  PubMed  Google Scholar 

  173. Ratajczak J, Wysoczynski M, Hayek F et al (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  CAS  PubMed  Google Scholar 

  174. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5, e11803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Zhang Y, Chopp M, Meng Y et al (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. EL Andaloussi S, Mager I, Breakefield XO et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  Google Scholar 

  178. Lai RC, Yeo RW, Tan KH et al (2013) Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol Adv 31:543–551

    Article  CAS  PubMed  Google Scholar 

  179. Malik DK, Baboota S, Ahuja A et al (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4:141–151

    Article  CAS  PubMed  Google Scholar 

  180. Zhang G, Nakamura Y, Wang X et al (2007) Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit + cell homing to the infarcted heart. Tissue Eng 13:2063–2071

    Article  CAS  PubMed  Google Scholar 

  181. Segers VF, Tokunou T, Higgins LJ et al (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116:1683–1692

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Laurene Kelly for expert editorial support. This work was supported by the Ministero Italiano della Sanità [Grant number GR-2008-1142781 and GR-2010-2320533], the Fondazione Cariplo [Grant number 2007-5984], and the Ministero Italiano degli Affari Esteri [Grant number ZA11GR2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Gnecchi M.D., Ph.D., F.E.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gnecchi, M., Danieli, P., Malpasso, G., Ciuffreda, M.C. (2016). Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics