Skip to main content

Molecular Testing in Urothelial Tumors

  • Chapter
Book cover Molecular Testing in Cancer

Abstract

Recent evidence supports the presence of two distinct pathways of urothelial carcinoma. The majority of tumors are superficial noninvasive low-grade tumors which are often multifocal with high recurrence rate and infrequent progression. Muscle-invasive disease, on the other hand, represents 20 % of tumors with approximately 50 % chance of developing metastases. In this chapter, we discuss the molecular pathway involved in the pathogenesis of urothelial carcinoma at the genomic, transcriptomic, proteomic, and epigenetic levels. We also explore the molecular aspects of multifocality, heterogeneity, and tumor recurrence. The recent isolation of cells with cancer stem cell properties can have significant therapeutic implications. We also outline the currently available molecular markers in urothelial carcinoma. These markers can be of great values for screening, early diagnosis, assessment of prognosis, and surveillance for disease recurrence. These include soluble urine markers and cell-based markers. Emerging biomarkers of potential clinical significance include DNA methylation, microRNA analysis, and circulating tumor cells. Molecular profiling or global analysis of molecular changes hold the promise of a better understanding of the mechanisms of aggressive behavior and can lead to new biological, rather than morphological, classification of urothelial tumors. The use of multiparametric approach and the integration of molecular markers with clinical parameters can significantly improve assessment of outcome. Molecular approaches are also the basis to develop new, more effective, targeted therapies in bladder cancer.

Urinary bladder cancer is the fourth most common tumor in North America and the second most common urologic malignancy. Histologically, more than 90 % are urothelial tumors. Molecular studies have shown that urothelial carcinomas (UC) represent a heterogeneous group of tumors that may evolve along two pathways with distinct biological behavior and clinical prognosis, as described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartmann A, Schlake G, Zaak D, et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 2002;62(3):809–18.

    CAS  PubMed  Google Scholar 

  2. Schulze A, Zerfass K, Spitkovsky D, Henglein B, Jansen-Durr P. Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene. 1994;9(12):3475–82.

    CAS  PubMed  Google Scholar 

  3. Keen AJ, Knowles MA. Definition of two regions of deletion on chromosome 9 in carcinoma of the bladder. Oncogene. 1994;9(7):2083–8.

    CAS  PubMed  Google Scholar 

  4. Johansson B, Heim S, Mandahl N, Mertens F, Mitelman F. Trisomy 7 in nonneoplastic cells. Genes Chromosomes Cancer. 1993;6(4):199–205.

    Article  CAS  PubMed  Google Scholar 

  5. Adams J, Cuthbert-Heavens D, Bass S, Knowles MA. Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Lett. 2005;220(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  6. Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S. Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett. 2005;225(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  7. Mahdy E, Pan Y, Wang N, Malmstrom PU, Ekman P, Bergerheim U. Chromosome 8 numerical aberration and C-MYC copy number gain in bladder cancer are linked to stage and grade. Anticancer Res. 2001;21(5):3167–73.

    CAS  PubMed  Google Scholar 

  8. Watters AD, Latif Z, Forsyth A, et al. Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer. Br J Cancer. 2002;87(6):654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bolenz C, Shariat SF, Karakiewicz PI, et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 2010;106(8):1216–22.

    Article  PubMed  Google Scholar 

  10. McConkey DJ, Lee S, Choi W, et al. Molecular genetics of bladder cancer: emerging mechanisms of tumor initiation and progression. Urol Oncol. 2010;28(4):429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin HH, Ke HL, Huang SP, Wu WJ, Chen YK, Chang LL. Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine. Urol Oncol. 2010;28(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  12. Wilhelm CS, Kelsey KT, Butler R, et al. Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res. 2010;16(5):1682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolff EM, Byun HM, Han HF, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6(4):e1000917.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fendler A, Stephan C, Yousef GM, Jung K. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57(7):954–68.

    Article  CAS  PubMed  Google Scholar 

  15. Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61.

    Article  CAS  PubMed  Google Scholar 

  16. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713–25.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Ahmadie HA, Iyer G, Janakiraman M, et al. Somatic mutation of fibroblast growth factor receptor-3 (FGFR3) defines a distinct morphological subtype of high-grade urothelial carcinoma. J Pathol. 2011;224(2):270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000;19(29):3309–20.

    Article  CAS  PubMed  Google Scholar 

  20. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park S, Chapuis N, Tamburini J, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95(5):819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401–4.

    Article  CAS  PubMed  Google Scholar 

  23. Sjödahl G, Lauss M, Gudjonsson S, et al. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One. 2011;6(4):e18583.

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Rhijn BW, van der Kwast TH, Vis AN, et al. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res. 2004;64(6):1911–4.

    Article  PubMed  Google Scholar 

  25. Williams SG, Stein JP. Molecular pathways in bladder cancer. Urol Res. 2004;32(6):373–85.

    Article  PubMed  Google Scholar 

  26. Hernandez S, Lopez-Knowles E, Lloreta J, et al. FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res. 2005;11(15):5444–50.

    Article  CAS  PubMed  Google Scholar 

  27. Grivas PD, Day M, Hussain M. Urothelial carcinomas: a focus on human epidermal receptors signaling. Am J Transl Res. 2011;3(4):362–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol. 2006;24(35):5552–64.

    Article  CAS  PubMed  Google Scholar 

  29. Black PC, Dinney CP. Growth factors and receptors as prognostic markers in urothelial carcinoma. Curr Urol Rep. 2008;9(1):55–61.

    Article  PubMed  Google Scholar 

  30. Kassouf W, Black PC, Tuziak T, et al. Distinctive expression pattern of ErbB family receptors signifies an aggressive variant of bladder cancer. J Urol. 2008;179(1):353–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol. 2012;9(10):583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan KS, Espinosa I, Chao M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106(33):14016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med. 1997;3(6):621–4.

    Article  CAS  PubMed  Google Scholar 

  35. Simon R, Eltze E, Schafer KL, et al. Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res. 2001;61(1):355–62.

    CAS  PubMed  Google Scholar 

  36. Hafner C, Knuechel R, Stoehr R, Hartmann A. Clonality of multifocal urothelial carcinomas: 10 years of molecular genetic studies. Int J Cancer. 2002;101(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng L, Zhang S, Davidson DD, et al. Molecular determinants of tumor recurrence in the urinary bladder. Future Oncol. 2009;5(6):843–57.

    Article  CAS  PubMed  Google Scholar 

  38. Wolff EM, Chihara Y, Pan F, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70(20):8169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hurst CD, Platt FM, Taylor CF, Knowles MA. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin Cancer Res. 2012;18(21):5865–77.

    Article  CAS  PubMed  Google Scholar 

  41. Blaveri E, Simko JP, Korkola JE, et al. Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res. 2005;11(11):4044–55.

    Article  CAS  PubMed  Google Scholar 

  42. Shariat SF, Marberger MJ, Lotan Y, et al. Variability in the performance of nuclear matrix protein 22 for the detection of bladder cancer. J Urol. 2006;176(3):919–26; discussion 926.

    Google Scholar 

  43. Van Le TS, Miller R, Barder T, Babjuk M, Potter DM, Getzenberg RH. Highly specific urine-based marker of bladder cancer. Urology. 2005;66(6):1256–60.

    Article  PubMed  Google Scholar 

  44. Guo B, Che T, Shi B, et al. Screening and identification of specific markers for bladder transitional cell carcinoma from urine urothelial cells with suppressive subtractive hybridization and cDNA microarray. Can Urol Assoc J. 2011;5(6):E129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Konety BR, Getzenberg RH. Urine based markers of urological malignancy. J Urol. 2001;165(2):600–11.

    Article  CAS  PubMed  Google Scholar 

  46. Lokeshwar VB, Soloway MS. Current bladder tumor tests: does their projected utility fulfill clinical necessity? J Urol. 2001;165(4):1067–77.

    Article  CAS  PubMed  Google Scholar 

  47. Hautmann S, Toma M, Lorenzo Gomez MF, et al. Immunocyt and the HA-HAase urine tests for the detection of bladder cancer: a side-by-side comparison. Eur Urol. 2004;46(4):466–71.

    Article  PubMed  Google Scholar 

  48. Hausladen DA, Wheeler MA, Altieri DC, Colberg JW, Weiss RM. Effect of intravesical treatment of transitional cell carcinoma with bacillus Calmette-Guerin and mitomycin C on urinary survivin levels and outcome. J Urol. 2003;170(1):230–4.

    Article  PubMed  Google Scholar 

  49. Moussa O, Abol-Enein H, Bissada NK, Keane T, Ghoneim MA, Watson DK. Evaluation of survivin reverse transcriptase-polymerase chain reaction for noninvasive detection of bladder cancer. J Urol. 2006;175(6):2312–6.

    Article  CAS  PubMed  Google Scholar 

  50. van Oers JM, Zwarthoff EC, Rehman I, et al. FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. Eur Urol. 2009;55(3):650–7.

    Article  PubMed  Google Scholar 

  51. Zuiverloon TC, van der Aa MN, van der Kwast TH, et al. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res. 2010;16(11):3011–8.

    Article  CAS  PubMed  Google Scholar 

  52. Vaish M, Mandhani A, Mittal RD, Mittal B. Microsatellite instability as prognostic marker in bladder tumors: a clinical significance. BMC Urol. 2005;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Takihana Y, Tsuchida T, Fukasawa M, Araki I, Tanabe N, Takeda M. Real-time quantitative analysis for human telomerase reverse transcriptase mRNA and human telomerase RNA component mRNA expressions as markers for clinicopathologic parameters in urinary bladder cancer. Int J Urol. 2006;13(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  54. Lokeshwar VB, Habuchi T, Grossman HB, et al. Bladder tumor markers beyond cytology: international consensus panel on bladder tumor markers. Urology. 2005;66(6 Suppl 1):35–63.

    Article  PubMed  Google Scholar 

  55. Retz M, Lehmann J, Amann E, Wullich B, Roder C, Stockle M. Mucin 7 and cytokeratin 20 as new diagnostic urinary markers for bladder tumor. J Urol. 2003;169(1):86–9.

    Article  CAS  PubMed  Google Scholar 

  56. McKenney JK, Desai S, Cohen C, Amin MB. Discriminatory immunohistochemical staining of urothelial carcinoma in situ and non-neoplastic urothelium: an analysis of cytokeratin 20, p53, and CD44 antigens. Am J Surg Pathol. 2001;25(8):1074–8.

    Article  CAS  PubMed  Google Scholar 

  57. Moonen PM, Merkx GF, Peelen P, Karthaus HF, Smeets DF, Witjes JA. UroVysion compared with cytology and quantitative cytology in the surveillance of non-muscle-invasive bladder cancer. Eur Urol. 2007;51(5):1275–80; discussion 1280.

    Google Scholar 

  58. Zellweger T, Benz G, Cathomas G, et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer. 2006;119(7):1660–5.

    Article  CAS  PubMed  Google Scholar 

  59. Yoder BJ, Skacel M, Hedgepeth R, et al. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol. 2007;127(2):295–301.

    Article  PubMed  Google Scholar 

  60. Allard P, Fradet Y, Tetu B, Bernard P. Tumor-associated antigens as prognostic factors for recurrence in 382 patients with primary transitional cell carcinoma of the bladder. Clin Cancer Res. 1995;1(10):1195–202.

    CAS  PubMed  Google Scholar 

  61. Mian C, Maier K, Comploj E, et al. uCyt+/ImmunoCyt in the detection of recurrent urothelial carcinoma: an update on 1991 analyses. Cancer. 2006;108(1):60–5.

    Article  PubMed  Google Scholar 

  62. Mian C, Lodde M, Comploj E, et al. The value of the ImmunoCyt/uCyt+ test in the detection and follow-up of carcinoma in situ of the urinary bladder. Anticancer Res. 2005;25(5):3641–4.

    PubMed  Google Scholar 

  63. Piaton E, Daniel L, Verriele V, et al. Improved detection of urothelial carcinomas with fluorescence immunocytochemistry (uCyt+ assay) and urinary cytology: results of a French prospective multicenter study. Lab Invest. 2003;83(6):845–52.

    Article  CAS  PubMed  Google Scholar 

  64. Cajulis RS, Haines GK III, Frias-Hidvegi D, McVary K, Bacus JW. Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluorescence in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Diagn Cytopathol. 1995;13(3):214–23; discussion 224.

    Google Scholar 

  65. Chan MW, Chan LW, Tang NL, et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res. 2002;8(2):464–70.

    CAS  PubMed  Google Scholar 

  66. Reinert T. Methylation markers for urine-based detection of bladder cancer: the next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol. 2012;2012:503271.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Friedrich MG, Weisenberger DJ, Cheng JC, et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res. 2004;10(22):7457–65.

    Article  CAS  PubMed  Google Scholar 

  68. Reinert T, Modin C, Castano FM, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17(17):5582–92.

    Article  CAS  PubMed  Google Scholar 

  69. Zuiverloon TC, Beukers W, van der Keur KA, et al. A methylation assay for the detection of non-muscle-invasive bladder cancer (NMIBC) recurrences in voided urine. BJU Int. 2012;109(6):941–8.

    Article  CAS  PubMed  Google Scholar 

  70. Schaefer A, Stephan C, Busch J, Yousef GM, Jung K. Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol. 2010;7(5):286–97.

    Article  CAS  PubMed  Google Scholar 

  71. Guzzo TJ, McNeil BK, Bivalacqua TJ, Elliott DJ, Sokoll LJ, Schoenberg MP. The presence of circulating tumor cells does not predict extravesical disease in bladder cancer patients prior to radical cystectomy. Urol Oncol. 2012;30(1):44–8.

    Article  PubMed  Google Scholar 

  72. Cheng L, Zhang S, MacLennan GT, Williamson SR, Lopez-Beltran A, Montironi R. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol. 2011;42(4):455–81.

    Article  CAS  PubMed  Google Scholar 

  73. Copp HL, Chin JL, Conaway M, Theodorescu D. Prospective evaluation of the prognostic relevance of molecular staging for urothelial carcinoma. Cancer. 2006;107(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  74. Marin-Aguilera M, Mengual L, Burset M, et al. Molecular lymph node staging in bladder urothelial carcinoma: impact on survival. Eur Urol. 2008;54(6):1363–72.

    Article  PubMed  Google Scholar 

  75. Plastiras D, Moutzouris G, Barbatis C, Presvelos V, Petrakos M, Theodorou C. Can p53 nuclear over-expression, bcl-2 accumulation and PCNA status be of prognostic significance in high-risk superficial and invasive bladder tumours? Eur J Surg Oncol. 1999;25(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  76. Stein JP, Ginsberg DA, Grossfeld GD, et al. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst. 1998;90(14):1072–9.

    Article  CAS  PubMed  Google Scholar 

  77. Youssef RF, Lotan Y. Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer. ScientificWorldJournal. 2011;11:369–81.

    Article  PubMed  Google Scholar 

  78. van Rhijn BW, Vis AN, van der Kwast TH, et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol. 2003;21(10):1912–21.

    Article  PubMed  Google Scholar 

  79. Shariat SF, Karakiewicz PI, Ashfaq R, et al. Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer. 2008;112(2):315–25.

    Article  PubMed  Google Scholar 

  80. Karam JA, Lotan Y, Karakiewicz PI, et al. Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol. 2007;8(2):128–36.

    Article  CAS  PubMed  Google Scholar 

  81. Chen JX, Deng N, Chen X, et al. A novel molecular grading model: combination of Ki67 and VEGF in predicting tumor recurrence and progression in non-invasive urothelial bladder cancer. Asian Pac J Cancer Prev. 2012;13(5):2229–34.

    Article  PubMed  Google Scholar 

  82. Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst. 1997;89(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  83. Guancial EA, Chowdhury D, Rosenberg JE. Personalized therapy for urothelial cancer: review of the clinical evidence. Clin Investig (Lond). 2011;1(4):546–55.

    Article  PubMed Central  Google Scholar 

  84. Petrylak DP, Tangen CM, Van Veldhuizen Jr PJ, et al. Results of the southwest oncology group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int. 2010;105(3):317–21.

    Article  CAS  PubMed  Google Scholar 

  85. Rochester MA, Patel N, Turney BW, et al. The type 1 insulin-like growth factor receptor is over-expressed in bladder cancer. BJU Int. 2007;100(6):1396–401.

    Article  PubMed  Google Scholar 

  86. Honma I, Kitamura H, Torigoe T, et al. Phase I clinical study of anti-apoptosis protein survivin-derived peptide vaccination for patients with advanced or recurrent urothelial cancer. Cancer Immunol Immunother. 2009;58(11):1801–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal Y. Gabril M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gabril, M.Y., Yousef, G.M. (2014). Molecular Testing in Urothelial Tumors. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics