Skip to main content

Molecular Testing in Prostate Cancer

  • Chapter
  • 1760 Accesses

Abstract

Prostate cancer (PCa) is the most common malignancy in men and the second cancer-related cause of death among men in North America. Recent literature has indicated that there are complex genomic “hot spots” producing heritable sequences that are linked to disease risk. Candidate genes and susceptibility loci (SNPs) were identified by linkage analyses and genome-wide association studies. In this chapter, we will discuss the molecular changes in PCa pathogenesis, including chromosomal aberrations, and epigenetic changes, like methylation and miRNA dysregulation. We will also explore the molecular pathways involved in PCa initiation and progression. The recent identification of cells with cancer stem cell properties can have significant therapeutic implications. We also outline the currently available molecular markers in PCa and their potential clinical utility for screening, diagnosis, assessment of prognosis, and surveillance for disease recurrence. Multiparametric approaches and the integration of molecular markers with clinical parameters can significantly improve assessment of outcome. Molecular analysis is also the basis to develop new, more effective, targeted therapies in PCa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger MF, Lawrence MS, Demichelis F, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruner DW, Moore D, Parlanti A, Dorgan J, Engstrom P. Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int J Cancer. 2003;107(5):797–803.

    Article  CAS  PubMed  Google Scholar 

  3. Hassel BA, Zhou A, Sotomayor C, Maran A, Silverman RH. A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 1993;12(8):3297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rokman A, Ikonen T, Seppala EH, et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet. 2002;70(5):1299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meitz JC, Edwards SM, Easton DF, et al. HPC2/ELAC2 polymorphisms and prostate cancer risk: analysis by age of onset of disease. Br J Cancer. 2002;87(8):905–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rennert H, Zeigler-Johnson CM, Addya K, et al. Association of susceptibility alleles in ELAC2/HPC2, RNASEL/HPC1, and MSR1 with prostate cancer severity in European American and African American men. Cancer Epidemiol Biomarkers Prev. 2005;14(4):949–57.

    Article  CAS  PubMed  Google Scholar 

  7. Ewing CM, Ray AM, Lange EM, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366(2):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong X, Wang L, Taniguchi K, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003;72(2):270–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freedman ML, Pearce CL, Penney KL, et al. Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am J Hum Genet. 2005;76(1):82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeegers MP, Kiemeney LA, Nieder AM, Ostrer H. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev. 2004;13(11 Pt 1):1765–71.

    CAS  PubMed  Google Scholar 

  11. Li Z, Habuchi T, Mitsumori K, et al. Association of V89L SRD5A2 polymorphism with prostate cancer development in a Japanese population. J Urol. 2003;169(6):2378–81.

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Davey Smith G, Evans DM, et al. Genetic variants in the vitamin d receptor are associated with advanced prostate cancer at diagnosis: findings from the prostate testing for cancer and treatment study and a systematic review. Cancer Epidemiol Biomarkers Prev. 2009;18(11):2874–81.

    Article  CAS  PubMed  Google Scholar 

  13. Chang B, Zheng SL, Isaacs SD, et al. Linkage and association of CYP17 gene in hereditary and sporadic prostate cancer. Int J Cancer. 2001;95(6):354–9.

    Article  CAS  PubMed  Google Scholar 

  14. Berthon P, Valeri A, Cohen-Akenine A, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet. 1998;62(6):1416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibbs M, Stanford JL, McIndoe RA, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet. 1999;64(3):776–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lange EM, Beebe-Dimmer JL, Ray AM, et al. Genome-wide linkage scan for prostate cancer susceptibility from the University of Michigan prostate cancer genetics project: suggestive evidence for linkage at 16q23. Prostate. 2009;69(4):385–91.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wiklund F, Gillanders EM, Albertus JA, et al. Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate. 2003;57(4):290–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bock CH, Cunningham JM, McDonnell SK, et al. Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am J Hum Genet. 2001;68(3):795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang J, Chen MH, Zhang Y, et al. Type of diabetes mellitus and the odds of gleason score 8 to 10 prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(3):e463–7.

    Article  PubMed  Google Scholar 

  20. Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sotelo J, Esposito D, Duhagon MA, et al. Long-range enhancers on 8q24 regulate c-myc. Proc Natl Acad Sci USA. 2010;107(7):3001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA. 2010;107(21):9742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Troutman SM, Sissung TM, Cropp CD, et al. Racial disparities in the association between variants on 8q24 and prostate cancer: a systematic review and meta-analysis. Oncologist. 2012;17(3):312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reeves JR, Dulude H, Panchal C, Daigneault L, Ramnani DM. Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy. Clin Cancer Res. 2006;12(20 Pt 1):6018–22.

    Article  CAS  PubMed  Google Scholar 

  25. Eeles RA. Genetic predisposition to prostate cancer. Prostate Cancer Prostatic Dis. 1999;2(1):9–15.

    Article  PubMed  Google Scholar 

  26. Visakorpi T, Hyytinen E, Kallioniemi A, Isola J, Kallioniemi OP. Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situ hybridization. Am J Pathol. 1994;145(3):624–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Visakorpi T, Kallioniemi AH, Syvanen AC, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 1995;55(2):342–7.

    CAS  PubMed  Google Scholar 

  28. Bergerheim US, Kunimi K, Collins VP, Ekman P. Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosomes Cancer. 1991;3(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  29. Macoska JA, Trybus TM, Wojno KJ. 8p22 loss concurrent with 8c gain is associated with poor outcome in prostate cancer. Urology. 2000;55(5):776–82.

    Article  CAS  PubMed  Google Scholar 

  30. Bowen C, Bubendorf L, Voeller HJ, et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 2000;60(21):6111–5.

    CAS  PubMed  Google Scholar 

  31. Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson Jr HF. Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res. 2000;60(14):3880–3.

    CAS  PubMed  Google Scholar 

  32. Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 1996;56(5):1142–5.

    CAS  PubMed  Google Scholar 

  33. Li C, Larsson C, Futreal A, et al. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene. 1998;16(4):481–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hyytinen ER, Frierson Jr HF, Boyd JC, Chung LW, Dong JT. Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer. Genes Chromosomes Cancer. 1999;25(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  35. Miyauchi T, Nagayama T, Maruyama K. Chromosomal abnormalities in carcinoma and hyperplasia of the prostate. Nihon Hinyokika Gakkai Zasshi. 1992;83(1):66–74.

    CAS  PubMed  Google Scholar 

  36. Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–5.

    CAS  PubMed  Google Scholar 

  37. Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV. Mutation of the MXI1 gene in prostate cancer. Nat Genet. 1995;9(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  38. Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst. 1992;84(11):883–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cher ML, Bova GS, Moore DH, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 1996;56(13):3091–102.

    CAS  PubMed  Google Scholar 

  40. Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 1997;57(3):524–31.

    CAS  PubMed  Google Scholar 

  41. Sato K, Qian J, Slezak JM, et al. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst. 1999;91(18):1574–80.

    Article  CAS  PubMed  Google Scholar 

  42. Porkka K, Saramaki O, Tanner M, Visakorpi T. Amplification and overexpression of elongin C gene discovered in prostate cancer by cDNA microarrays. Lab Invest. 2002;82(5):629–37.

    Article  CAS  PubMed  Google Scholar 

  43. Saramaki O, Willi N, Bratt O, et al. Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol. 2001;159(6):2089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nupponen N, Visakorpi T. Molecular biology of progression of prostate cancer. Eur Urol. 1999;35(5–6):351–4.

    Article  CAS  PubMed  Google Scholar 

  45. Porkka KP, Tammela TL, Vessella RL, Visakorpi T. RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes Cancer. 2004;39(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  46. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  47. Nakayama T, Watanabe M, Suzuki H, et al. Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Invest. 2000;80(12):1789–96.

    Article  CAS  PubMed  Google Scholar 

  48. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene. 1999;18(6):1313–24.

    Article  CAS  PubMed  Google Scholar 

  49. Richiardi L, Fiano V, Vizzini L, et al. Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol. 2009;27(19):3161–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol. 2005;20(2):645–63.

    CAS  PubMed  Google Scholar 

  51. Graff JR, Herman JG, Lapidus RG, et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995;55(22):5195–9.

    CAS  PubMed  Google Scholar 

  52. Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J. Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate. 2003;55(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  53. Padar A, Sathyanarayana UG, Suzuki M, et al. Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res. 2003;9(13):4730–4.

    CAS  PubMed  Google Scholar 

  54. Henrique R, Costa VL, Cerveira N, et al. Hypermethylation of cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med (Berl). 2006;84(11):911–8.

    Article  CAS  Google Scholar 

  55. Yegnasubramanian S, Kowalski J, Gonzalgo ML, et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 2004;64(6):1975–86.

    Article  CAS  PubMed  Google Scholar 

  56. Schulz WA, Hoffmann MJ. Epigenetic mechanisms in the biology of prostate cancer. Semin Cancer Biol. 2009;19(3):172–80.

    Article  CAS  PubMed  Google Scholar 

  57. Min J, Zaslavsky A, Fedele G, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating ras and nuclear factor-kappaB. Nat Med. 2010;16(3):286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Asatiani E, Huang WX, Wang A, et al. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res. 2005;65(4):1164–73.

    Article  CAS  PubMed  Google Scholar 

  59. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999;59(17):4291–6.

    CAS  PubMed  Google Scholar 

  60. Kibel AS, Faith DA, Bova GS, Isaacs WB. Loss of heterozygosity at 12P12-13 in primary and metastatic prostate adenocarcinoma. J Urol. 2000;164(1):192–6.

    Article  CAS  PubMed  Google Scholar 

  61. Chen C, Hyytinen ER, Sun X, et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol. 2003;162(4):1349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gurel B, Iwata T, Koh CM, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 2008;21(9):1156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang L, Liu R, Li W, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 2009;16(4):336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu K, Shimelis H, Linn DE, et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell. 2009;15(4):270–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaarbo M, Klokk TI, Saatcioglu F. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays. 2007;29(12):1227–38.

    Article  PubMed  CAS  Google Scholar 

  66. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer. 2007;120(4):719–33.

    Article  CAS  PubMed  Google Scholar 

  67. Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009;9(9):615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dasgupta S, Srinidhi S, Vishwanatha JK. Oncogenic activation in prostate cancer progression and metastasis: molecular insights and future challenges. J Carcinog. 2012;11:4. Epub 2012 Feb 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mehra R, Tomlins SA, Yu J, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008;68(10):3584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mehra R, Han B, Tomlins SA, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 2007;67(17):7991–5.

    Article  CAS  PubMed  Google Scholar 

  71. Iljin K, Wolf M, Edgren H, et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res. 2006;66(21):10242–6.

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koeneman KS, Pan CX, Jin JK, et al. Telomerase activity, telomere length, and DNA ploidy in prostatic intraepithelial neoplasia (PIN). J Urol. 1998;160(4):1533–9.

    Article  CAS  PubMed  Google Scholar 

  74. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  CAS  PubMed  Google Scholar 

  75. Fujita N, Sato S, Katayama K, Tsuruo T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 2002;277(32):28706–13.

    Article  CAS  PubMed  Google Scholar 

  76. Kang GH, Lee S, Lee HJ, Hwang KS. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 2004;202(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  77. Nelson WG, De Marzo AM, DeWeese TL, Isaacs WB. The role of inflammation in the pathogenesis of prostate cancer. J Urol. 2004;172(5 Pt 2):S6–11; discussion S11–2.

    Google Scholar 

  78. Kaaks R, Lukanova A, Sommersberg B. Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review. Prostate Cancer Prostatic Dis. 2000;3(3):157–72.

    Article  CAS  PubMed  Google Scholar 

  79. Lindmark F, Zheng SL, Wiklund F, et al. Interleukin-1 receptor antagonist haplotype associated with prostate cancer risk. Br J Cancer. 2005;93(4):493–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun J, Hsu FC, Turner AR, et al. Meta-analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate. 2006;66(7):728–37.

    Article  CAS  PubMed  Google Scholar 

  81. Xu J, Lowey J, Wiklund F, et al. The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14(11 Pt 1):2563–8.

    Article  CAS  PubMed  Google Scholar 

  82. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5.

    CAS  PubMed  Google Scholar 

  83. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fradet V, Lessard L, Begin LR, Karakiewicz P, Masson AM, Saad F. Nuclear factor-kappaB nuclear localization is predictive of biochemical recurrence in patients with positive margin prostate cancer. Clin Cancer Res. 2004;10(24):8460–4.

    Article  CAS  PubMed  Google Scholar 

  85. Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer. 2005;93(9):1019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hager MH, Solomon KR, Freeman MR. The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care. 2006;9(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  87. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 2005;115(4):959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawrence MG, Veveris-Lowe TL, Whitbread AK, Nicol DL, Clements JA. Epithelial-mesenchymal transition in prostate cancer and the potential role of kallikrein serine proteases. Cells Tissues Organs. 2007;185(1–3):111–5.

    Article  CAS  PubMed  Google Scholar 

  89. Vernon AE, LaBonne C. Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr Biol. 2004;14(17):R719–21.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J. 2010;24(3):769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27(58):7274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Giannoni E, Bianchini F, Masieri L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010;70(17):6945–56.

    Article  CAS  PubMed  Google Scholar 

  93. Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31(8):978–91.

    Article  CAS  PubMed  Google Scholar 

  94. White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol. 2011;8(2):75–84.

    Article  CAS  PubMed  Google Scholar 

  95. Fendler A, Jung M, Stephan C, et al. miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. Int J Oncol. 2011;39(5):1183–92.

    CAS  PubMed  Google Scholar 

  96. Fendler A, Stephan C, Yousef GM, Jung K. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57(7):954–68.

    Article  CAS  PubMed  Google Scholar 

  97. Oka H, Chatani Y, Kohno M, Kawakita M, Ogawa O. Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state. Int J Urol. 2005;12(10):899–905.

    Article  CAS  PubMed  Google Scholar 

  98. Setlur SR, Royce TE, Sboner A, et al. Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res. 2007;67(21):10296–303.

    Article  CAS  PubMed  Google Scholar 

  99. Taylor BS, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pulukuri SM, Rao JS. Matrix metalloproteinase-1 promotes prostate tumor growth and metastasis. Int J Oncol. 2008;32(4):757–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007;7(4):256–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bostwick DG, Brawer MK. Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer. 1987;59(4):788–94.

    Article  CAS  PubMed  Google Scholar 

  103. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol. 1993;150(2 Pt 1):379–85.

    CAS  PubMed  Google Scholar 

  104. Qian J, Bostwick DG, Takahashi S, et al. Chromosomal anomalies in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Cancer Res. 1995;55(22):5408–14.

    CAS  PubMed  Google Scholar 

  105. Haggman MJ, Macoska JA, Wojno KJ, Oesterling JE. The relationship between prostatic intraepithelial neoplasia and prostate cancer: critical issues. J Urol. 1997;158(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  106. Xin L, Lawson DA, Witte ON. The sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA. 2005;102(19):6942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression. J Clin Invest. 2007;117(8):2044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM, Schalken JA. Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res. 1992;52(22):6182–7.

    CAS  PubMed  Google Scholar 

  109. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98(4):756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Andreoiu M, Cheng L. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol. 2010;41(6):781–93.

    Article  PubMed  Google Scholar 

  111. Mirchandani D, Zheng J, Miller GJ, et al. Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer. Am J Pathol. 1995;147(1):92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ruiz C, Lenkiewicz E, Evers L, et al. Advancing a clinically relevant perspective of the clonal nature of cancer. Proc Natl Acad Sci USA. 2011;108(29):12054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu W, Laitinen S, Khan S, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sboner A, Demichelis F, Calza S, et al. Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genomics. 2010;3:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Gurel B, Iwata T, Koh CM, Yegnasubramanian S, Nelson WG, De Marzo AM. Molecular alterations in prostate cancer as diagnostic, prognostic, and therapeutic targets. Adv Anat Pathol. 2008;15(6):319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vickers AJ, Roobol MJ, Lilja H. Screening for prostate cancer: early detection or overdetection? Annu Rev Med. 2012;63:161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stephan C, Jung K, Lein M, Diamandis EP. PSA and other tissue kallikreins for prostate cancer detection. Eur J Cancer. 2007;43(13):1918–26.

    Article  CAS  PubMed  Google Scholar 

  118. Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ, Bjartell A. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol. 2011;50 Suppl 1:61–75.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8(9):1175–87.

    Article  CAS  PubMed  Google Scholar 

  120. Pasic MD, Samaan S, Yousef GM. Genomic medicine: new frontiers and new challenges. Clin Chem. 2013;59(1):158–67.

    Article  CAS  PubMed  Google Scholar 

  121. Prensner JR, Chinnaiyan AM, Srivastava S. Systematic, evidence-based discovery of biomarkers at the NCI. Clin Exp Metastasis. 2012;29(7):645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zheng SL, Sun J, Wiklund F, et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med. 2008;358(9):910–9.

    Article  CAS  PubMed  Google Scholar 

  123. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8.

    Article  PubMed  Google Scholar 

  124. Gudmundsson J, Besenbacher S, Sulem P, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010;2(62):62ra92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cooperberg MR, Cowan JE, Hilton JF, et al. Outcomes of active surveillance for men with intermediate-risk prostate cancer. J Clin Oncol. 2011;29(2):228–34.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dhir R, Vietmeier B, Arlotti J, et al. Early identification of individuals with prostate cancer in negative biopsies. J Urol. 2004;171(4):1419–23.

    Article  PubMed  Google Scholar 

  127. Diamandis EP. Early prostate cancer antigen-2: a controversial prostate cancer biomarker? Clin Chem. 2010;56(4):542–4.

    Article  CAS  PubMed  Google Scholar 

  128. Danila DC, Pantel K, Fleisher M, Scher HI. Circulating tumors cells as biomarkers: progress toward biomarker qualification. Cancer J. 2011;17(6):438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.

    Article  PubMed  Google Scholar 

  130. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  CAS  PubMed  Google Scholar 

  131. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  132. Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free circulating miRNA biomarkers in cancer. J Cancer. 2012;3:432–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Woodson K, O’Reilly KJ, Hanson JC, Nelson D, Walk EL, Tangrea JA. The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer. J Urol. 2008;179(2):508–11; discussion 511–2.

    Google Scholar 

  134. Tomlins SA, Laxman B, Varambally S, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hoque MO, Topaloglu O, Begum S, et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol. 2005;23(27):6569–75.

    Article  CAS  PubMed  Google Scholar 

  136. Payne SR, Serth J, Schostak M, et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate. 2009;69(12):1257–69.

    Article  CAS  PubMed  Google Scholar 

  137. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  138. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007;69(3):532–5.

    Article  PubMed  Google Scholar 

  139. Rogers CG, Yan G, Zha S, et al. Prostate cancer detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J Urol. 2004;172(4 Pt 1):1501–3.

    Article  CAS  PubMed  Google Scholar 

  140. Luo J, Zha S, Gage WR, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62(8):2220–6.

    CAS  PubMed  Google Scholar 

  141. Jamaspishvili T, Kral M, Khomeriki I, Student V, Kolar Z, Bouchal J. Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis. 2010;13(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  142. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13(17):5103–8.

    Article  CAS  PubMed  Google Scholar 

  143. Kristiansen G. Immunohistochemical algorithms in prostate diagnostics: what’s new? Pathologe. 2009;30 Suppl 2:146–53.

    Article  PubMed  Google Scholar 

  144. Patel A, Dorey F, Franklin J, deKernion JB. Recurrence patterns after radical retropubic prostatectomy: clinical usefulness of prostate specific antigen doubling times and log slope prostate specific antigen. J Urol. 1997;158(4):1441–5.

    Article  CAS  PubMed  Google Scholar 

  145. Botchkina GI, Kim RH, Botchkina IL, Kirshenbaum A, Frischer Z, Adler HL. Noninvasive detection of prostate cancer by quantitative analysis of telomerase activity. Clin Cancer Res. 2005;11(9):3243–9.

    Article  CAS  PubMed  Google Scholar 

  146. Crocitto LE, Korns D, Kretzner L, et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology. 2004;64(4):821–5.

    Article  PubMed  Google Scholar 

  147. Schostak M, Schwall GP, Poznanovic S, et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J Urol. 2009;181(1):343–53.

    Article  CAS  PubMed  Google Scholar 

  148. Roy R, Louis G, Loughlin KR, et al. Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res. 2008;14(20):6610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dhanasekaran SM, Barrette TR, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001;412(6849):822–6.

    Article  CAS  PubMed  Google Scholar 

  150. Holt SK, Kwon EM, Lin DW, Ostrander EA, Stanford JL. Association of hepsin gene variants with prostate cancer risk and prognosis. Prostate. 2010;70(9):1012–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Laxman B, Morris DS, Yu J, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68(3):645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bryant RJ, Pawlowski T, Catto JW, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Varma M, Jasani B. Diagnostic utility of immunohistochemistry in morphologically difficult prostate cancer: review of current literature. Histopathology. 2005;47(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  154. Nakayama M, Bennett CJ, Hicks JL, et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol. 2003;163(3):923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Trock BJ, Brotzman MJ, Mangold LA, et al. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int. 2012;110(1):56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Korkmaz CG, Korkmaz KS, Manola J, et al. Analysis of androgen regulated homeobox gene NKX3.1 during prostate carcinogenesis. J Urol. 2004;172(3):1134–9.

    Article  CAS  PubMed  Google Scholar 

  157. Gelmann EP, Bowen C, Bubendorf L. Expression of NKX3.1 in normal and malignant tissues. Prostate. 2003;55(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  158. Chuang AY, DeMarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI. Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma. Am J Surg Pathol. 2007;31(8):1246–55.

    Article  PubMed  Google Scholar 

  159. Roberts MJ, Schirra HJ, Lavin MF, Gardiner RA. Metabolomics: a novel approach to early and noninvasive prostate cancer detection. Korean J Urol. 2011;52(2):79–89.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 2009;15(2):431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tessem MB, Swanson MG, Keshari KR, et al. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med. 2008;60(3):510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jadvar H. FDG PET, in prostate cancer. PET Clin. 2009;4(2):155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nakajima T, Mitsunaga M, Bander NH, Heston WD, Choyke PL, Kobayashi H. Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate. Bioconjug Chem. 2011;22(8):1700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J Urol. 2004;172(1):133–6.

    Article  PubMed  Google Scholar 

  166. Clark JP, Munson KW, Gu JW, et al. Performance of a single assay for both type III and type VI TMPRSS2:ERG fusions in noninvasive prediction of prostate biopsy outcome. Clin Chem. 2008;54(12):2007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24(23):3847–52.

    Article  CAS  PubMed  Google Scholar 

  168. Chun FK, de la Taille A, van Poppel H, et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol. 2009;56(4):659–67.

    Article  PubMed  Google Scholar 

  169. Auprich M, Haese A, Walz J, et al. External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome. Eur Urol. 2010;58(5):727–32.

    Article  PubMed  Google Scholar 

  170. Rubin MA, Bismar TA, Andren O, et al. Decreased alpha-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol Biomarkers Prev. 2005;14(6):1424–32.

    Article  CAS  PubMed  Google Scholar 

  171. Tomlins SA, Rhodes DR, Yu J, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13(6):519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.

    Article  CAS  PubMed  Google Scholar 

  173. Tahir SA, Yang G, Ebara S, et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 2001;61(10):3882–5.

    CAS  PubMed  Google Scholar 

  174. Murphy AJ, Hughes CA, Barrett C, et al. Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival. Cancer Res. 2007;67(6):2893–8.

    Article  CAS  PubMed  Google Scholar 

  175. Markert EK, Mizuno H, Vazquez A, Levine AJ. Molecular classification of prostate cancer using curated expression signatures. Proc Natl Acad Sci USA. 2011;108(52):21276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Penney KL, Sinnott JA, Fall K, et al. mRNA expression signature of gleason grade predicts lethal prostate cancer. J Clin Oncol. 2011;29(17):2391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jia S, Liu Z, Zhang S, et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature. 2008;454(7205):776–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ilic N, Utermark T, Widlund HR, Roberts TM. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA. 2011;108(37):E699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu P, Cheng H, Santiago S, et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med. 2011;17(9):1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Clegg NJ, Couto SS, Wongvipat J, et al. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors. PLoS One. 2011;6(3):e17449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zafarana G, Ishkanian AS, Malloff CA, et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer. 2012;118(16):4053–62.

    Article  CAS  PubMed  Google Scholar 

  182. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, Sam L, Balbin OA, Quist MJ, Barrette T, Everett J, Siddiqui J, Kunju LP, Navone N, Araujo JC, Troncoso P, Logothetis CJ, Innis JW, Smith DC, Lao CD, Kim SY, Roberts JS, Gruber SB, Pienta KJ, Talpaz M, Chinnaiyan AM. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011 Nov 30;3(111).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Yousef M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gabril, M.Y., Yousef, G.M. (2014). Molecular Testing in Prostate Cancer. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics