Skip to main content

Complexity of Inductive Inference

  • Reference work entry
  • First Online:
  • 178 Accesses

Definition

In inductive inference, the complexity of learning can be measured in various ways: by the number of hypotheses issued in the worst case until the correct hypothesis is found, by the number of data items to be consumed or to be memorized in order to learn in the worst case, by the Turing degree of oracles needed to learn the class under a certain criterion, and by the intrinsic complexity which is – like the Turing degrees in recursion theory – a way to measure the complexity of classes by using reducibilities between them.

Detail

We refer the reader to the article Inductive Inference for basic definitions in inductive inference and the notations used below. Let \(\mathbb{N}\) denote the set of natural numbers. Let φ0, φ1, denote a fixed acceptable numbering of the partial-recursive functions (Rogers 1967). Let W i = domain(φ i ).

Mind Changes and Anomalies

The first measure of complexity of learning can be considered as the number of mind changes needed before the learner...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  • Adleman L, Blum M (1991) Inductive inference and unsolvability. J Symb Log 56:891–900

    Article  MathSciNet  MATH  Google Scholar 

  • Angluin D (1980) Finding patterns common to a set of strings. J Comput Syst Sci 21:46–62

    Article  MathSciNet  MATH  Google Scholar 

  • Case J, Smith CH (1983) Comparison of identification criteria for machine inductive inference. Theor Comput Sci 25:193–220

    Article  MathSciNet  MATH  Google Scholar 

  • Case J, Jain S, Lange S, Zeugmann T (1999) Incremental concept learning for bounded data mining. Inf Comput 152(1):74–110

    Article  MathSciNet  MATH  Google Scholar 

  • Chen K-J (1982) Tradeoffs in inductive inference of nearly minimal sized programs. Inf Control 52:68–86

    Article  MATH  Google Scholar 

  • Daley RP, Smith CH (1986) On the complexity of inductive inference. Inf Control 69:12–40

    Article  MathSciNet  MATH  Google Scholar 

  • Freivalds R (1975) Minimal Gödel numbers and their identification in the limit. Lect Not Comput Sci 32:219–225

    Article  Google Scholar 

  • Freivalds R, Smith CH (1993) On the role of procrastination in machine learning. Inf Comput 107(2):237–271

    Article  MathSciNet  MATH  Google Scholar 

  • Freivalds R, Kinber E, Smith CH (1995) On the intrinsic complexity of learning. Inf Comput 123:64–71

    Article  MathSciNet  MATH  Google Scholar 

  • Jain S, Sharma A (1993) On the non-existence of maximal inference degrees for language identification. Inf Process Lett 47:81–88

    Article  MATH  Google Scholar 

  • Jain S, Sharma A (1994) Program size restrictions in computational learning. Theor Comput Sci 127:351–386

    Article  MathSciNet  MATH  Google Scholar 

  • Jain S, Sharma A (1996) The intrinsic complexity of language identification. J Comput Syst Sci 52:393–402

    Article  MathSciNet  MATH  Google Scholar 

  • Jain S, Sharma A (1997a) The structure of intrinsic complexity of learning. J Symb Log 62:1187–1201

    Article  MathSciNet  MATH  Google Scholar 

  • Jain S, Sharma A (1997b) Elementary formal systems, intrinsic complexity and procrastination. Inf Comput 132:65–84

    Article  MathSciNet  MATH  Google Scholar 

  • Jain S, Kinber E, Wiehagen R (2001) Language learning from texts: degrees of intrinsic complexity and their characterizations. J Comput Syst Sci 63:305–354

    Article  MathSciNet  MATH  Google Scholar 

  • Lange S, Zeugmann T (1996) Incremental learning from positive data. J Comput Syst Sci 53:88–103

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt L (1989) Inductive inference, DFAs, and computational complexity. In: Analogical and inductive inference, second international workshop (AII 1989). LNAI, vol 397. Springer, Heidelberg, pp 18–44

    Google Scholar 

  • Rogers H (1967) Theory of recursive functions and effective computability. McGraw-Hill, New York (Reprinted, MIT Press 1987)

    Google Scholar 

  • Shinohara T (1994) Rich classes inferable from positive data: length–bounded elementary formal systems. Inf Comput 108:175–186

    Article  MathSciNet  MATH  Google Scholar 

  • Slaman TA, Solovay R (1991) When oracles do not help. In: Proceedings of the fourth annual workshop on computational learning theory, Santa Cruz. Morgan Kaufmann, pp 379–383

    Google Scholar 

  • Wiehagen R (1976) Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. J Inf Process Cybern EIK 12:93–99

    MathSciNet  MATH  Google Scholar 

  • Wiehagen R (1986) On the complexity of effective program synthesis. In: Jantke K (ed) Analogical and inductive inference. Proceedings of the international workshop. LNCS, vol 265. Springer, pp 209–219

    Google Scholar 

Download references

Acknowledgements

Sanjay Jain was supported in part by NUS grant numbers C252-000-087-001, R146-000-181-112, R252-000-534-112. Frank Stephen was supported in part by NUS grant numbers R146-000-181-112, R252-000-534-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Jain, S., Stephan, F. (2017). Complexity of Inductive Inference. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_46

Download citation

Publish with us

Policies and ethics