
1© Zsolt Nagy 2018
Z. Nagy, Regex Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-3876-9_1

CHAPTER 1

An Introduction to
Regular Expressions
I still remember my doomed encounters with regular expressions back

when I tried to learn them. In fact, I took pride in not using regular

expressions. I always found a long workaround or a code snippet. I

projected and blamed my own lack of expertise on the hard readability of

regular expressions. This process continued until I was ready to face the

truth: regular expressions are powerful, and they can save you a lot of time

and headache.

Fast-forward a couple of years. People I worked with encountered the

same problems. Some knew regular expressions, and others hated them.

Among the haters of regular expressions, it was quite common that they

actually liked the syntax and grammar of their first programming language.

Some developers even took courses on formal languages. Therefore,

I made it my priority to show everyone a path toward their disowned

knowledge to master regular expressions.

 Why Are Regular Expressions Important?
In today’s world, we have to deal with processing a lot of data. Accessing

data is not the main problem. Filtering data is. Regular expressions provide

you with one type of filter that you can use to extract relevant data from

https://doi.org/10.1007/978-1-4842-3876-9_1

2

the big chunks of data available to you. For instance, suppose you have an

XML file containing 4GB of data on movies. Regular expressions make it

possible to query this XML text so that you can find all movies that were

filmed in Budapest in 2016, for instance.

Regular expressions are a must-have for software developers.

In front-end development, we often validate input using regular

expressions. Many small features are also easier with regular expressions,

such as splitting strings, parsing input, and matching patterns.

When writing backend code, especially in the world of data science,

we often search, replace, and process data using regular expressions. In IT

infrastructure, regular expressions have many use cases. VIM and EMACS also

come with regex support for finding commands, as well as editing text files.

Regular expressions are everywhere. These skills will come handy for

you in your IT engineering career.

 What Are Regular Expressions?
Regular expressions, or regexes, come from the theory of formal languages.

In theory, a regex is a finite character sequence defining a search pattern.

We often use these search patterns to

 – Test whether a string matches a search expression

 – Find some characters in a string

 – Replace substrings in a string matching a regex

 – Process and format user input

 – Extract information from server logs, configuration

files, and text files

 – Validate input in web applications and in the

terminal

Chapter 1 an IntroduCtIon to regular expressIons

3

A typical regular expression task is matching. I will now use JavaScript

to show you how to test-drive regular expressions because almost everyone

has access to a browser. In the browser, you have to open the Developer

Tools. In Google Chrome, you can do this by right-clicking a web site and

selecting Inspect. Inside the Developer Tools, select the Console tab to

enter and evaluate your JavaScript expressions.

Suppose there is a JavaScript regular expression /re/. This expression

looks for a pattern inside a string, where there is an r character, followed

by an e character. For the sake of simplicity, suppose our strings are case

sensitive.

const s1 = 'Regex';

const s2 = 'regular expression';

In JavaScript, strings have a match method. This method expects a

regular expression and returns some data on the first match.

> s1.match(/re/)

null

> s2.match(/re/)

["re", index: 0, input: "regular expression"]

A regular expression is an expression written inside two slash (/)

characters. The expression /re/ searches for an r character followed by

an e character.

As an analogy, imagine that you loaded a web site in the browser,

pressed Ctrl+F or Cmd+F to find a substring inside the web site on the

screen, and started typing re. The regular expression /re/ does the same

thing inside the specified string, except that the results are case sensitive.

Notice that 'Regex' does not contain the substring 're'. Therefore,

there are no matches.

Chapter 1 an IntroduCtIon to regular expressIons

4

The string 'regular expression' contains the substring 're' twice:

once at position 0 and once at position 11. For the sake of determining

the match, the JavaScript regular expression engine returns only the first

match at index 0 and terminates.

JavaScript allows you to turn the syntax around by testing the regular

expression.

> /re/.test(s1)

false

> /re/.test(s2)

true

The return value is a simple Boolean. Most of the time, you do not

need anything more, so testing the regular expression is sufficient.

Each programming language has different syntax for built-in regex

support. You can either learn them or generate the corresponding regex

code using an online generator such as https://regex101.com/.1

 Frustrations with Regular Expressions Arise
from Lack of Taking Action
According to many software developers, regular expressions are

 – Hard to understand

 – Hard to write

 – Hard to modify

 – Hard to test

 – Hard to debug

1 https://regex101.com/

Chapter 1 an IntroduCtIon to regular expressIons

https://regex101.com/
https://regex101.com/

5

As I mentioned in the introduction of this chapter, lack of

understanding often comes with blame. We tend to blame regular

expressions for these five problems.

To figure out why this blaming exists, let’s discover the journey of a regular

developer, no pun intended, with regexes. Many of us default to this journey

of discovery when it comes to playing around with something we don’t know

well. With regular expressions, the task seems too easy: we just have to create

a short expression, right? Well, oftentimes, this point of view is very wrong.

Trial and error oftentimes takes more time than getting the pain

handled and getting the lack of knowledge cured. Yet, most developers

work with trial and error over and over again. After all, why bother learning

the complex mechanics of regular expressions if you could simply copy

and paste a small snippet? Learning the ins and outs of regular expressions

seems to be too hard at first glance anyway.

Therefore, my mission is to show you that

 – Learning regular expressions is a lot easier than you

thought

 – Knowing regular expressions is fun

 – Knowing regular expressions is beneficial in many

areas of your software developer career

You can still easily master regular expressions to the extent that they

will do exactly what you intended them to do. This mastery comes from

understanding the right theory and getting a lot of practice.

 Regular Expressions Are Imperative
Regular expressions are widely misunderstood. Whenever you hear that

regular expressions are declarative, run from that tutorial or blog as far as

you can. Regexes are an imperative language. If you want to understand

regexes as declarative, chances are you will fail.

Chapter 1 an IntroduCtIon to regular expressIons

6

By definition, regexes specify a search pattern. Although this is a true

statement, it is easy to misinterpret it because you are not specifying

a declarative structure. In the real world, you specify a sequence of

instructions acting like a function in an imperative programming language.

You use commands and loops, you pass arguments to your regex, you may

pass arguments around inside your regex, you return a result, and you may

even cause side effects.

Learning regular expressions as an imperative language comes with a

big advantage. If you have dealt with at least one programming language in

your life, chances are, you know almost everything to understand regular

expressions. You are just not yet proficient in the regex syntax. As soon as you

familiarize yourself with this weird language, everything will fall into place.

 The Language Family of Regular
Expressions
When I talk about regular expressions, in practice I mean a family of

different dialects. Similarly to genetics, regular expressions keep evolving,

and new mutations surface on a regular basis. Although the principles stay

the same in most languages, every single dialect brings something different.

Standardization of regular expressions began with BRE (Basic Regular

Expressions) inside the POSIX standard 1003.2. This standard is used in

the editors ed and sed, as well as in the grep command.

The first major evolution of regular expressions came with the ERE

(Extended Regular Expressions) syntax. This syntax is used in, for example,

egrep and notepad++.

For completeness, I will also mention the SRE (Simple Regular

Expressions) dialect, which has been deprecated in favor of BRE.

Some editors such as EMACS and VIM have their own dialects. In the

case of VIM, the dialect can be customized with flags, and this technique

provides even more variations. These dialects are built on top of ERE.

Chapter 1 an IntroduCtIon to regular expressIons

7

The regular expressions used in most programming languages are

based on the PCRE (Perl Compatible Regular Expressions) dialect. Each

programming language has its own abbreviations and differences. These

programming languages include PHP, JavaScript, Java, C#, C++, Python, R,

Perl up to version 5, and more.

To make matters more complex, Perl 6 comes with a completely

different set of rules for regular expressions. The Perl 6 syntax is often

easier to read, but in exchange, you have to learn a different language.

As an example, let’s write a regex for matching strings that contain at

least one non-numeric character.

Dialect Expression

Bre, ere, eMaCs, VIM, pCre /[^0123456789]/

perl 6 /<-[0123456789]>/

As you can see, in this specific example, all dialects but Perl 6 look

identical. Without getting lost in the details too much, let’s understand

what this expression means in BRE, ERE, EMACS, VIM, and PCRE.

 – [0123456789] matches one single character from

the character set of digits.

 – ^ inside an enumeration negates the character list.

This means [^0123456789] matches any character

that’s not a digit.

 – As the regular expression may match any character

of the test string, a match is determined as soon as

you find at least one character in the test string that’s

not a digit. Therefore, 123.45 matches the regular

expression, while 000 does not.

The Perl 6 syntax works in the same way; the syntax is just different.

Chapter 1 an IntroduCtIon to regular expressIons

8

Let’s now write a regular expression that matches the 0, 1, or 2

character, using the or operator of regular expressions.

BRE: or operator is not supported

ERE,PCRE,Perl 6: /0|1|2/

EMACS,VIM: /0\|1\|2/

An equivalent BRE expression would be /[012]/, using a character set.

You will study character sets in detail in Chapter 6.

As studying six groups and many different variations would take a long

time, I highly recommend you stick to one specific dialect and practice

your skills focusing on the one and only dialect you use in practice. You

can come back to study other dialects later. When it comes to the PCRE

dialect, different languages give you different variations. I have personally

found it beneficial to build and execute regular expressions in multiple

programming languages. This way, I had an easier time solidifying my

regex knowledge from different angles.

 Summary
In this chapter, I defined a regular expression as a finite character

sequence defining a search pattern. As an example, you saw a test

execution of a simple JavaScript regular expression in the console.

Although the tested regular expression was simple, oftentimes people have

a hard time constructing and understanding regular expressions. This is

because regular expressions represent a compact imperative language,

and therefore, they are often not intuitive to understand. To make matters

more complicated, regular expressions consist of multiple languages,

which means that the JavaScript syntax is completely different than the

syntax used in Perl 6.

Chapter 1 an IntroduCtIon to regular expressIons

https://doi.org/10.1007/978-1-4842-3876-9_6

	Chapter 1: An Introduction to Regular Expressions
	Why Are Regular Expressions Important?
	What Are Regular Expressions?
	Frustrations with Regular Expressions Arise from Lack of Taking Action
	Regular Expressions Are Imperative
	The Language Family of Regular Expressions
	Summary

