
191

Chapter 6

Customization and
Installation of Android

Due to the characteristics of any embedded systems, such as resource constraints,
tailoring and customization are important features for an embedded OS, and Android
is no exception. This chapter provides a general discussion of customization in an
embedded OS and then explains the customization of Android, specifically.

Tailoring and Customization of an Embedded OS
Not all functions and services provided by the embedded OS are included in a special
embedded application, for two reasons. First, the embedded system is always resource
constrained, especially with regard to storage space; thus it is impossible to include all
redundant functions in the system at release. Second, many commercial embedded
OSs collect a licensing fee based on the components chosen by the user. So, users
should tailor the embedded OS according to their individual needs. The principle of OS
customization is shown in Figure 6-1.

Figure 6-1. Principle of OS customization

Chapter 6 ■ Customization and installation of android

192

For example, Windows XP Embedded OS offers tens of thousands of components—more
than the functions of desktop Windows XP. But for a subway baffle-gate system based
on Windows XP Embedded, for example, components such as Windows Media Player,
the Internet Explorer browser, the DirectX settings panel, and Explorer task manager are
not required. Eliminating such components reduces the hardware resources required
by the system, thus reducing the cost; and this makes the system operate faster, thereby
improving efficiency.

A majority of embedded OSs provide means for customization and tailoring.
However, there are many different tailoring modes: some start with compiling source
code, which requires the user to configure the option of conditional compilation; some
start by linking the target files, linking to different library files according to the user’s
configuration; and the remaining modes extract precompiled files from the existing
binary file library according to the user’s choice. Table 6-1 lists the customization modes
provided by frequently used embedded OSs.

Table 6-1. Customization Modes of Different Embedded Operating Systems

Embedded OS Customization Modes

Windows CE Provide Platform Builder IDE and graphical component
options. Link different library files according to the
selected components.

Embedded Linux For the kernel, generate config files via make config
before; then compile according to the configuration files.

Windows XP Embedded Provide Target Designer IDE and graphical component
options. Extract required binary files according to the
selected components; no compilation is necessary for the
linking process.

mC/OS-II Selectively and conditionally compile some part of the
code according to the value defined by the C language
macro in the header file.

VxWorks Select which modules are necessary in the Tornado IDE.

After system customization, you get an embedded OS that runs on the target
hardware device and has been optimized for the special application field.

Overview of Android Customization
Theoretically, Android customization falls into two levels: customization of the Linux
kernel and customization of the entire image. Customization of the Linux kernel is similar
to customization of embedded Linux: both involve the same methods and steps. Android
customization mainly focuses on image customization. Let’s see why.

Chapter 6 ■ Customization and installation of android

193

ROM Package/Image
The Android image is commonly known as a read-only memory (ROM) package, which
is the system package of an Android phone. The reason for this naming convention is that
mobile phones prior to Android phones, including smartphones (such as Nokia and WM)
and non-smart phones (such as Sony Ericsson, Moto P2K platform, and MTK), all have a
separate ROM chip storage system file. So, the system file is referred to as ROM package
or ROM image.

The image is a cross-compiled binary Linux file that can be installed and run on
some embedded device, becoming the OS of the device. To better understand this
concept, let’s review the typical development process, shown in Figure 6-2.

Start

Write code

Cross compiling, linking

Packaging

Deployment

Running

Debugging &
optimization

End

Write source code

Use specialized compilers and
linkers to generate target code

Compress target code and
affiliated files into file packages

Install target files from host
machine to target device

Execute and check
the results of code

Debug programs and
optimize performance

Figure 6-2. Development process for Android software

Chapter 6 ■ Customization and installation of android

194

For embedded software, generally speaking, developing Android software requires
the same steps as general-purpose software: designing, encoding, compiling, linking,
packaging, deploying, debugging, and optimizing. For some Android systems, testing and
verification steps are also required. The OS deployed on the embedded logic device also
goes through such phases. For example, for a Linux system, you get its kernel source code,
cross-compile, and generate code that can be executed on the embedded target machine;
then you compress and package this code to form the image file (see Figure 6-3). The last
step is deployment. Unlike the deployment of an application file, the deployment of an
OS image file is referred to as installation due to the particularity of its operation.

Figure 6-3. Image use process

Figure 6-4. Example of an embedded system image

The image file (package) of a complete executable software system in the embedded
system consists of the bootloader, OS kernel (kernel for short), file system, and user
applications. The actual image file usually adopts a partition (also known as independent
layer) structure to store all parts that are located in different areas (modules) of the image,
and all parts are loaded into the system from the bottom layer. An example of a typical
embedded system image is shown in Figure 6-4.

The Android image includes a bootloader, the core OS, a hardware adaptation
module, a file system, the user experience, and applications. The core OS layer of Android
includes the Linux kernel and various middleware modules. Below the core OS layer is
the hardware adaptation layer. To adapt to different hardware, diversified drivers need to
be installed for the OS. Without these drivers, the OS cannot use the hardware to operate
as usual. Therefore, the image consists of the drivers and any applications developed by
the user.

Chapter 6 ■ Customization and installation of android

195

The Android image usually exists in the form of a compressed file (.zip, tar.gz,
or a similar file format), which usually contains the file and folders shown in Table 6-2.
The file structure can be seen after the compressed file is decompressed.

Table 6-2. File Structure of an Android Image File

Name Property r Remarks

META-IN Directory Optional; may be unavailable in some images

system Directory

boot.img File

The function and structure of the files and folders are as follows:

boot.img file: The system image, including the Linux kernel,
bootloader, and ramdisk launched by the system. A ramdisk is
a small file system that holds the core files needed to initialize
the system. The boot.img file is created using an open source
tool called mkbootimg.

META-INF directory: The system-update script, with the path
META-INF\com\google\android\updater-script.

system\app directory: All system-provided applications such
as calendar, contacts, Gmail, and so on. You can put your
application’s .apk file in this directory so it can be directly
installed when the ROM is reflashed.

system\bin directory: System commands such as top, which
can be executed after logging in through the adb shell.

system\etc directory: Configuration files.

system\font directory: All kinds of fonts.

system\framework directory: Java core files, such as .jar files.
Under the Dalvik virtual machine (DVM), it supports the
framework developed by the user via Java.

system\lib directory: Android local shared libraries that
consist of .so files, which are shared objects in the form of ELF
binaries, compiled by assembler, C, or C++.

system\media directory: Media files such as bootanimation.zip,
which consists of .png pictures used for boot animation and for
changing the boot image. Under the audio directory are some
audio files that are used as ringtones and for notifications.

Chapter 6 ■ Customization and installation of android

196

Overview of Android Image Customization
Android image customization, commonly known as creating Android ROM (creating ROM
for short), is an academic term. The Android core OS layer has multiple components,
and the applications vary in different systems; image customization decides which
components and applications are written into the image file of the target system. The
process makes a personal customized system file into a flashable ROM image. This is also
known as a system firmware update.

The ready-made Android image can be installed onto an Intel Atom processor-based
system (that is, a mobile phone, tablet, or the like) via USB flash and SD card. Then the
system with the Android image will have the capability to enter the Android operating
environment at self-start.The MicroSD card, originally called the TransFlash Card, was
launched by SanDisk. It is 15 × 11 × 1 mm, about the size of a fingernail. It can be used in
an SD card slot via an SD adapter card and is widely used in mobile phones.

You can create Android ROM in the following ways:

Compile the Android source code, which is a little complex.•	

Create or customize your own ROM based on the existing ROM.•	

The process of Android image customization is shown in Figure 6-5.

Figure 6-5. Process of Android image customization

Example of Android Image Customization
The following example illustrates the second way to customize Android: by creating ROM
using the cloned ROM image released by device manufacturer for targeted hardware. In
this way, the Android customization includes structure parsing for Android system folder,

Chapter 6 ■ Customization and installation of android

197

application software updates, and the customization of the ROM signature package. The
steps are as follows:

1. Download the compiled ROM package from Android’s official
website, your mobile phone manufacturer’s official website
(for example, the website for the Lenovo K900 mobile phone),
or websites providing an Android image. For example, the
ROM provided by the Lenovo K900 mobile phone’s website
(www.lenovocare.com.cn/ProductDetail.aspx?id=719) is
shown in Table 6-3. Be noted that since the Lenovo K800 and
K900 phones are sold in China market, the software dates are
only provided by Lenovo’s official site in Chinese language.

Table 6-3. Information in the ROM Package on the Lenovo K900 Website

ROM Name Description Android Version Date of Release

K900_1_S_2_162_0074 Official update 4.0.4 Aug. 8, 2012

K900_1_S_2_162_0086 Official update 4.0.4 Aug. 15, 2012

K900_1_S_2_019_0113_130903 Official update 4.2.0 Sep. 3, 2013

K900_source Official update 4.4 May 23, 2014

 2. Compress all the ROM files into one folder (named
NewsROM” in this example).

3. Delete and add files in the ROM folder (NewsROM in this
example) to tailor and customize Android.

Some customization examples are as follows:

Go to the •	 data\app directory to check whether the preinstalled
applications are what you need. At this point you can remove
unnecessary apps. You can also add the default installed
applications you need.

Go to the •	 system\app directory and customize the system
applications for your device. You can delete unwanted system
applications or add your special-built or customized applications
(as customized .apk files). Be careful: some system applications
are dependent on others, so best practice is to test before the
customization to fix dependencies and other issues prior to
implementing the changes to the Android system image.

Go to the •	 system\media directory to make modifications such as
changing the boot image or adding a customized ringtone.

Go to the •	 system\bin directory to add commands and so forth.

http://www.lenovocare.com.cn/ProductDetail.aspx?id=719

Chapter 6 ■ Customization and installation of android

198

If you’re worried about deleting some files accidently and thus
causing failure at startup, you should adopt a conservative
approach: execute delete or add operations only for files in
the data/app and system/app folders.

4. Compress the modified ROM folder as a .zip file. Ensure
that the contents, including META-INF, system, boot.img, and
data (optional), are displayed when you double-click the
compressed file.

5. Install and configure the Java environment. The Java
environment is required in the following steps to support the
operation of the auto-sign tool, so you need to install and set
up Java operation. Download the latest JDK (jdk1.7.0 in this
example), and install it; then follow these steps:

a. Set the Java environment variable as follows: right-click
My Computer and select [Properties] ➤ [Advanced] ➤
[Environment Variables] ➤ [System Variables] ➤ [New]
in the pop-up shortcut menu.

b. In the dialog box, set [Variable Name] to “JAVA_HOME
variable value: JAVA installation directory”. Find
[path] in the same place, double-click it, and add
“C:\JDK1.7.0;.;C:\JDK1.7.0\bin” after the variable value.

c. Reboot the system.

d. Test. Enter Java commands in the command-line
window. The configuration is successful if no error
message appears.

6. Use the sign tool to sign the .zip packages. The steps are
as follows:

a. Download the auto-sign tool and unpack it under a
directory (myautosign in this example). The tool can be
downloaded at http://androidforums.com/developer-
101/8665-how-signing-roms.html.

b. Rename the .zip file package to update.zip, and
copy it to the directory where you unpacked auto-sign
(the myautosign directory).

c. Run the sign.bat file under the directory where you
unpacked auto-sign.

d. After the customization build, the directory contains
an update_signed.zip file, which is the signed ROM
package and the customized ROM package you need.

http://androidforums.com/developer-101/8665-how-signing-roms.html
http://androidforums.com/developer-101/8665-how-signing-roms.html

Chapter 6 ■ Customization and installation of android

199

Installation/Reflash of the Android Image
Image installation is required to use the customized image on the target machine. In other
words, the process of image customization and use must go through two stages: image
generation (production) and image installation, as shown in Figure 6-6.

Figure 6-6. Image generation and installation

Image installation means installing the Android image on the target device or emulator.
This process is commonly known as reflashing. Reflashing an Android phone is equivalent
to reinstalling the system for the phone, which is similar to computer system reinstallation.
Generally speaking, when a computer needs system reinstallation, you use a system disk or an
image file. When an Android phone needs to be reflashed, you burn an official or third-party
ROM image file into the ROM via a tool and install a new system for the phone.

The official Android website often releases the latest Android image systems for users,
so you can download image files directly to skip image-generation stage. For users, the
customization and installation process can be very simple: download the image, and reflash.

Android installation also involves recovery and wiping:

Recovery is a mode of the mobile device. Through recovery,
users can install the system (that is, reflash ROM), empty
various data from the phone, partition a memory card, back
up and restore data, and so on. Recovery is similar to the Ghost
one-key recovery function on a computer.

Wipe means to erase and remove. Wiping is an option in
recovery mode; it removes various data from the phone,
similar to restoring factory defaults. Wipe is most commonly
used before the reflash. Users may see the Wipe prompt, which
suggests the need to clear data before the reflash.

As mentioned, Android installation is essentially an issue of deployment in the
process of software cross-development, but generally you adopt offline programming
instead of online programming. In the installation process, the media you use are SD
cards and other portable external storage devices. This process is shown in Figure 6-7.
The installation is divided into two steps: first, place the image from the host on the
portable SD card external storage device; second, start the machine from the portable
external storage device and install Android on the target machine.

Chapter 6 ■ Customization and installation of android

200

Image Installation Example
Following is an example of image installation. The path/directory may be different
from different OEMs or from different Android versions (this example is based on a
Lenovo phone):

1. Empty the phone’s SD card. This step is optional and can be
done either on the host or on the phone. It is very simple to
complete the step on the host: unplug the SD card from the
phone, insert it in the SD card reader of the host, and delete
all files from the removable disk at the host (for example,
in Windows).

Empty the SD card on the phone by following these steps:

a. Connect the phone to the host.

b. Execute the following commands successively in the
command-line window at the host:

adb devices
adb remount
adb shell
su
rm -r /system/sd/*

(Note: sdcard is usually mounted under /storage/sdcard0
or /sdcard, However, the location may be different if
you’re using a device from a different OEM or on another
Android version.)

2. Copy the customized ROM file (update_signed.zip in the
example) to the SD card, and rename it update.zip.

Figure 6-7. Android image installation

Chapter 6 ■ Customization and installation of android

201

3. Make sure the SD card has been inserted in the phone. Restart
the phone, and enter Recovery mode. Follow these steps:

a. Shut down the phone normally.

b. Press the power button and the <volume+> button of the
device at the same time: the phone starts while vibrating
and enters BKB Provisioning OS mode. Double-click the
<volume+> button quickly to make the system enter
Test mode.

c. Press <volume+> and <volume-> to move to the sixth
option (SD Update), and click Enter in the lower-left
corner. Automatic reflash begins.

4. Reboot.

The entire reflash process takes a few minutes. The phone restarts automatically
after vibrating twice; the first reboot takes longer, and then the familiar four-leaf clover
interface appears.

After reboot, choose Settings ➤ System Information to check the phone, network,
battery, and version information; IMEI code; and internal version number to confirm
whether the upgrade has been successful.

Automating the Procedure with flash_device.sh
There is a script that will perform all the previously described procedures for you.
This script is located here:

<Path-to-your-project>/vendor/intel/support/flash_device.sh

You can add this script to your bin folder and run it from a terminal window.
You should be able to find the section on this topic in the user manual from the OEM.

Intel Build Tools Suite
Intel has developed an Android Build Tools Suite (see Figure 6-8) to help developers
easily and quickly do the Android system build and customization. The suite provides the
following features:

Device customization•	

Ability to generate a customized firmware module and Android •	
OS image

Final customization and localization•	

Ability to compile a single image and load the image into a •	
supported device

Ability to verify configuration readiness•	

Troubleshooting and calibration•	

Chapter 6 ■ Customization and installation of android

202

Summary
This chapter completed the discussion of system-level topics for Android. Starting in the
next chapter, you begin to learn application development for Android on x86, and you
see how to develop user interfaces suitable for the UX and interaction characteristics of
mobile devices on Android. You start by learning about Android graphic user interface
(GUI) design, because it’s an indispensable part of human-computer interaction (HCI).
Because resources are limited for a mobile phone or tablet, GUI design of Android
systems is more challenging than for desktops. In addition, users have more rigorous
demands and expectations for a user-friendly experience. Interface design has become
one of the important factors determining the success of applications for Android on
the market.

Figure 6-8. Intel Build Tools Suite

	Chapter 6: Customization and Installation of Android
	Tailoring and Customization of an Embedded OS
	Overview of Android Customization
	ROM Package/Image
	Overview of Android Image Customization
	Example of Android Image Customization
	Installation/Reflash of the Android Image
	Image Installation Example
	Automating the Procedure with flash_device.sh

	Intel Build Tools Suite

	Summary

