
97

Chapter 5

Chrome book Firmware
Internals

“The world as we have created it is a process of our thinking. It cannot be
changed without changing our thinking.”

—Albert Einstein

About Chrome book and Chrome OS
When the first version of Chrome OS became available, many people were asking the
same questions: Why? What can it be used for? How is it different from Android? Out of
curiosity, many people downloaded it and played with an earlier version. People quickly
discovered that it is a neat idea to build an application environment for connected
devices that is bounded by a browser-like framework.

Chrome OS takes advantage of the numerous Google cloud-based applications.
Why would an OS be designed to depend on the idea that everything would be stored
and manipulated in the cloud? Yes, that is the idea. Today’s Chrome book and Chrome
OS have the offline capabilities to allow users to write e-mails, view appointments, take
notes, manipulate documents, edit photos, read offline web pages, and even play games
offline without connection, but it is a machine and operating system built to work with
Google’s cloud. Whatever you work on offline is synchronized with whatever is online,
once you are connected. While there is a wide range of Chrome OS devices, the look and
feel and experience is uniform across the whole product spectrum.

The reason why we include Chrome book and Chrome OS in this book is because
of Google’s choice of coreboot as the vehicle to boot its OS. Chrome book may not be
designed to be like a typical laptop that can boot multiple operating systems, and it does
not have the capability to add and remove internal devices like a PC can, but it is designed
to do one thing (if interfacing with cloud is considered as “one thing”) and do it well,
and that is all that matters. This idea is what IoT devices are about, with a few dedicated
functions, and to maximize its benefits and usability for those functions. Chrome book
looks like a PC and smells like a PC, but it is deviating itself from the typical PC paradigm.
And its choice of coreboot to simplify and secure the firmware stack not only makes
sense, but also matches with Google’s open source philosophy from top to bottom.

Chapter 5 ■ Chrome book Firmware Internals

98

As you read this chapter, you will also learn that Chrome devices are designed to
be experimented with. Google has held classes to do just that—showing people how to
change the internal firmware and software of a Chrome book. After reading this chapter
(and the previous chapter about coreboot), as long as you always preserve a way to
restore the original firmware and OS image, you should feel free to experiment with the
firmware and OS stack.

Chrome OS Firmware Overview
Chrome OS uses coreboot for all its supported CPU architectures (currently, several
different flavors of x86 and ARM devices). This allows for a consistent codebase and
designed behaviors across all architectures. Google is committed to open source
solutions, and coreboot contains the requisite features and capabilities for booting
Chrome OS. coreboot, the firmware layer, provides maximum customization for the
optimization of power, performance, and security, with a flexible and consistent firmware
OS interface, via ACPI.

The internal operations of coreboot was discussed in the previous chapter, so in
this chapter, we will highlight any differences and extensions that have been made to
coreboot for Chrome OS devices. You should revisit the previous chapter for specific
information about the internals of coreboot.

The Chrome OS firmware image is made up of several pieces: the coreboot hardware
initialization code, the Google Depth charge payload, and support binaries and libraries
required to boot Chrome OS. The image as a whole is called Chrome OS firmware and it
should not to be confused with the embedded controller (EC) firmware or other firmware
images within the flash device.

Chrome OS Security Philosophy
Google has designed Chrome OS from the ground up with users’ data security in mind.
Chrome OS devices use the Google verified boot security library for the chain of trust,
which starts in write-protected coreboot romstage.

Chrome OS Security Guiding Principles
The following are Chrome OS security guiding principles:

•	 The perfect is the enemy of the good. By realizing that there will
never be a perfect solution, the developers of Chrome systems
can always ship something good enough to protect the users.

•	 Deploy defenses in depth. There are a variety of defenses to
prevent attacks at different levels, so that even if the attacker can
penetrate one level, he can be stopped at other levels, making it
difficult for the attacker to persist.

Chapter 5 ■ Chrome book Firmware Internals

99

•	 Make devices secure by default. Security should not be optional,
and it should not be a trade-off item competing with performance
and ease-of-use. Since firmware, Chrome OS, and software
are well-integrated by the developers, there can be a seamless
security implementation from top to bottom by default, not as an
afterthought.

•	 Don’t scapegoat the user. The design helps the user make
decisions only about things they can comprehend, and ensures
a fail-safe to make the choice go away when the user does not
understand.

Further details are documented at http://www.chromium.org/chromium-os/
chromiumos-design-docs/security-overview.

Power wash
To further protect user data, a system may be power washed, which securely wipes
the user’s data on the device and returns the system to the default state. This may be
performed at any time via the settings screen.

Chrome OS Boot Modes
Chrome OS supports three separate boot modes. The normal Verified Mode boots a
Google-signed Chrome OS image. In case of image corruption or other device failure, Chrome
OS has Recovery Mode to reinstall the signed image. The third boot mode is Developer Mode,
which allows for advanced features and user-customized sources to be loaded.

Verified (Normal) Mode
Verified boot is the cornerstone for the Chrome OS security, which is implemented in
concert with coreboot and the Depth charge payload. Google signs all the binary images
that make up a Chrome OS device. This includes the coreboot firmware stages, the
embedded controller firmware, and the kernel image. As the system boots, each binary
image is cryptographically verified prior to running the image. To protect users, the
firmware image enters Recovery Mode if any binary verification fails.

Recovery Mode
If something goes wrong in Chrome OS, the system will boot into Recovery Mode.
Recovery Mode runs a protected version of coreboot and gives the user an opportunity
to recover the system and return to Normal boot mode. Recovery Mode will only boot a
Google-signed USB recovery image. Recovery Mode may be automatically initiated when
a software or hardware issue occurs. It may also be initiated directly by the user, typically
by pressing the Esc+Refresh+Power buttons.

http://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview
http://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview

Chapter 5 ■ Chrome book Firmware Internals

100

To protect the system during Recovery Mode, the firmware runs the read-only
protected version to defend against a problem with a system firmware update or in cases
where the system may have been subject to some sort of attack. The read-only version of
the firmware can’t be overwritten without physical access to the machine, and then only
by removing the write-protect screw (which voids the device warranty).

Developer Mode
Developer Mode allows the user to run the Chrome OS system in an unverified mode.
This allows more significant software modifications and system controls at the expense of
some security. The user may use the root shell, install unsigned and unverified software,
run customized images, or even boot a different operating system.

Developer Mode is, essentially, a built-in jailbreak mode that keeps Chrome OS
hardware open and enables fair use for all who want to get a Chrome OS device, but are
not quite sure whether they want to commit to Chrome OS over the lifetime of the device.

Note■■  E ntering Developer Modeclears the private user data saved while the system is in
Normal Mode. A warning screen is shown to the user on each boot, so they know that the
device is not secure. Developer Mode may be entered by first entering Recovery Mode and
then pressing Ctrl+D.

Once in Developer Mode, the user may wish to boot something other than Chrome
OS. This may be done by enabling the Legacy Mode flags. This loads the SeaBIOS payload
instead of the Depth charge payload. SeaBIOS supports USB and normal hard drive
INT19 (legacy) –style booting.

To enable legacy boot, the following flag must be set via the root shell.
 
crossystem dev_boot_legacy=1 

Note■■   For more information, please check out the information at the following URL:
http://www.chromium.org/chromium-os/chromiumos-design-docs/developer-mode.

Chrome OS Coreboot
Chrome OS is developed on several CPU architectures. Currently, x86, ARM (including
ARM64), and MIPS are supported; each architecture requires custom firmware.

http://www.chromium.org/chromium-os/chromiumos-design-docs/developer-mode

Chapter 5 ■ Chrome book Firmware Internals

101

x86
For the x86 architecture, the Chrome OS coreboot does not use the Intel FSP as described
in the coreboot chapter. It has a smaller Intel firmware binary image, similar to the FSP,
and the firmware binary image is specifically tailored to meet the performance and boot
time requirements for Chrome OS. The Intel firmware binary image contains subsections
of the Memory Reference Code (MRC) and System Agent code.

Note■■  A s this book is written, Google has come down the path of using MRC binary in
the firmware stack, and Intel FSP was made available later. There is an ongoing evaluation
effort between Intel and Google to decide on the best solution for future projects. In other
words, MRC and Intel FSP may converge in the near future.

ARM
x86 is well represented in the coreboot codebase. coreboot was originally designed
around PCI standards first introduced in x86. Google has combined x86 and ARM support
into a common codebase. ARM wasn’t discussed in the previous coreboot chapter, so we
will give a brief overview here.

The number of ARM SOCs supported in coreboot at this time is still significantly
behind the number of x86 processors and chipsets, but the number is steadily increasing.
The first ARM SOC that started off ARM architecture support in coreboot was the
Samsung Exynos 5250, which was added as an experimental proof of concept. Since
then, several SOCs have been supported, including newer Exynos, Nvidia Tegra, and
Qualcomm devices. Similar to x86, some of the systems require certain binary-only
components—like a signed first-stage bootloader or a microcode—to fully function.

Note■■  P lease check out coreboot differences at http://git.chromium.org/
gitweb/?p=chromiumos/third_party/coreboot.git;a=summary.

Depth charge Payload
The Google Depth charge payload has a single, focused goal: to securely boot Chrome OS.
It is designed to be simple, small, and easy to learn. Being simple and small, it has a
quick load time, fast execution, a small attack surface, and is generally very efficient.
Depth charge uses two libraries: vboot and libpayload.

Depth charge is loaded by coreboot just as any other coreboot payload. It resides in
CBFS and is loaded immediately after coreboot has initialized the hardware. The code
flow is fairly simple, as shown in Figure 5-1.

http://git.chromium.org/gitweb/?p=chromiumos/third_party/coreboot.git;a=summary
http://git.chromium.org/gitweb/?p=chromiumos/third_party/coreboot.git;a=summary

Chapter 5 ■ Chrome book Firmware Internals

102

Figure 5-1.  Verified boot flow with Depthcharge payload

Depth charge will only load Chrome OS and can’t boot any other operating system.
Depth charge can chain load other payloads in Developer Mode, which may be used to
load an additional payload, like SeaBIOS, which may load other operating systems.

libpayload
Depth charge is built upon lib payload. As mentioned in the “Payloads” section of
Chapter 4, lib payload is a library of common payload functions and hardware drivers
provided by coreboot. It is used by Depth charge and has the following lib payload
features:

A subset of libc and other utility functions•	

malloc/free, printf, “string” functions, rand, *delay, etc.•	

Tiny ncurses implementation for console and Developer •	
Mode display

Functions to read and parse the coreboot tables•	

LZMA compression•	

CBFS utility functions (see Chapter 4 for more information •	
on CBFS)

Device drivers•	

PCI/PCIe: USB ver. 1, 2, 3—HID, mass storage, hubs; SD and ··
eMMC; SATA (hard drive)

CBMEM: Serial console and frame buffer console; CMOS; ··
PC keyboard

Chapter 5 ■ Chrome book Firmware Internals

103

Verified Boot
Verified boot is used within coreboot and Depth charge to ensure that only signed
code is executed. It is based on security standards starting with a Root of Trust. The
Root of Trust on Chrome OS devices is in read-only (RO) firmware protected by
physical hardware write protection. The device reset vector (the first instructions
executed) is in the RO area of flash (see Figure 5-2). Then, the RO firmware verifies a
signed read-write (RW) firmware (VB_Firmware). (The RW firmware may be updated
to fix issues in the field). The RW firmware verifies the Chrome OS kernel signature
(VB_Kernel) prior to loading it.

Figure 5-2.  coreboot boot flow from reset to kernel

Chapter 5 ■ Chrome book Firmware Internals

104

Verified Boot and Kernel Security
After the firmware has verified and loaded the kernel, the Root hash is passed to the
kernel-on-kernel command line by Depthcharge. The kernel continues the Root of
Trust–based security model and mounts the root filesystem as read-only (see Figure 5-3).
The kernel security hashes each block in the image. The block hashes are bundled and
structured in a tree, and subsequent read blocks are hashed and checked against the tree.
The hash tree is stored in the page cache.

Figure 5-3.  Verified boot and kernel security

Note■■   Reference implementation is available in the Chrome OS source code:
http://git.chromium.org/gitweb/?p=chromiumos/platform/depthcharge.git;a=summary.

Chrome OS Firmware Boot Log
Traditionally, coreboot sends its boot console log messages to a serial port. The coreboot
and Depth charge firmware boot log is saved to CBMEM on Chrome OS systems. This log
is extremely helpful in debug and it contains useful information to the curious user.

In Chrome OS, the boot log is available in the system information at chrome://system
and by then clicking on the Expand button under bios_log.

In Developer Mode, the boot log is easy to access in /sys/firmware/log:

cat /sys/firmware/log

http://git.chromium.org/gitweb/?p=chromiumos/platform/depthcharge.git;a=summary

Chapter 5 ■ Chrome book Firmware Internals

105

Boot Times Log
In addition, the firmware boot times are available under bios_times:

There are 23 entries total:
 
 1:start of rom stage 50,048
 2:before ram initialization 52,139 (2,091)
 3:after ram initialization 73,927 (21,787)
 4:end of romstage 74,426 (499)
 5:start of verified boot 74,706 (280)
 6:end of verified boot 329,652 (254,946)
 8:start of copying ram stage 330,040 (387)
 9:end of copying ram stage 346,012 (15,972)
 10:start of ramstage 346,040 (28)
 30:device enumeration 346,115 (74)
 40:device configuration 400,461 (54,346)
 50:device enable 404,182 (3,721)
 60:device initialization 405,091 (908)
 70:device setup done 459,755 (54,663)
 75:cbmem post 459,770 (14)
 80:write tables 467,590 (7,820)
 90:load payload 468,743 (1,152)
 99:selfboot jump 494,047 (25,304)
1000:depthcharge start 496,598 (2,551)
1002:RO vboot init 496,605 (7)
1020:vboot select&load kernel 498,680 (2,074)
1100:crossystem data 1,031,758 (533,077)
1101:start kernel 1,032,895 (1,136)
 

In Developer Mode, the boot log is easy to access in var/log/bios_times.txt:
 
cat /var/log/bios_times.txt

Chrome OS Firmware Event Log
The coreboot boot log in CBMEM contains a lot of detailed information about the current
boot, but it is lost when the system reboots and cannot be accessed when the system is in
a nonbootable state. In order to debug issues across several reboots, all coreboot-based
Chrome OS systems have a persistent log of system events.

The event log is based on SMBIOS Type 15 Event Log format, but uses a number
of OEM events to provide additional information. The mosys application that is part of
Chrome OS can be used to read and decode the log by running the mosys event log list as
the root user in Chrome OS if the device is in Developer Mode, or by opening
chrome://system and looking for the event log entry in Normal/Verified mode.
 

Chapter 5 ■ Chrome book Firmware Internals

106

mosys eventlog list
12 | 2013-01-15 10:47:43 | ACPI Wake | S5
13 | 2013-01-15 10:47:43 | EC Event | Lid Open
14 | 2013-01-15 10:47:43 | System boot | 142
15 | 2013-01-15 11:51:42 | ACPI Enter | S3
16 | 2013-01-15 21:05:37 | ACPI Wake | S3
17 | 2013-01-15 21:05:37 | Wake Source | GPIO | 11
18 | 2013-01-15 21:05:38 | Kernel Event | Oops
19 | 2013-01-15 21:05:38 | Kernel Event | Panic
20 | 2013-01-15 21:05:39 | System boot | 143
 
10:47 - Power on because lid was opened
11:51 - System is suspended
21:05 - Wake from suspend due to GPIO 11 (Touchpad)
21:05 - Kernel oops+panic on resume

Google SMI Linux Kernel Driver
The Google SMI kernel driver implements a kernel interface to talk to the firmware’s
System Management Interrupt (SMI) handler. It allows kernel events to be stored in the
firmware event log. The driver hooks into kernel notifier chains and records the following
conditions to the log:

panic•	

thermal•	

reboot•	

die•	

Chrome OS Extensions to the Firmware Image
As discussed in previous sections, Google has added a number of features and
capabilities that are beyond a standard coreboot firmware image. These extensions
cohabitate within the firmware image along with coreboot, payloads, and vendor
binaries. The extensions in the following subsections were added to help facilitate the
many features in the flash image.

FMAP
FMAP is a simple specification for the layout of flash devices. It doesn’t make
assumptions about the underlying technology. For example, it may be used by coreboot,
Legacy BIOS, UEFI, and EC images. FMAP only defines regions in flash. Unlike the
coreboot file system CBFS, FMAP defines fixed-size regions.
 

Chapter 5 ■ Chrome book Firmware Internals

107

fmap structure:
struct fmap_header {
 char fmap_signature[8]; /* "__FMAP__" */
 uint8_t fmap_ver_major; /* Major version number of this structure */
 uint8_t fmap_ver_minor; /* Minor version number of this structure */
 uint64_t fmap_base; /* Physical address of the flash chip */
 uint32_t fmap_size; /* Size of the flash chip in bytes */
 char fmap_name[32]; /* Descriptive name of this flash device */
 uint16_t fmap_nareas; /* Number of areas described by fmap_areas[] */
 
 struct fmap_area_header {
 uint32_t area_offset; /* Offset of this area in flash device */
 uint32_t area_size; /* Size of this area in bytes */
 char area_name[32]; /* Descriptive name of this area */
 uint16_t area_flags; /* Flags for this area */
 } fmap_areas[0];
} __packed;
 
#define FMAP_AREA_STATIC 0x0001 /* Area contents will not change */
#define FMAP_AREA_COMPRESSED 0x0002 /* Area holds potentially
compressed data */
#define FMAP_AREA_RO 0x0004 /* Area is considered read-only */
 

A Chrome OS firmware FMAP example is shown in Table 5- 1.

Table 5-1.  FMAP Example

Base Size Section Description

0x000000 0x200000 SI_ALL Descriptor + ME

0x200000 0x0f0000 RW_SECTION_A Read-Write Firmware A

0x2f0000 0x0f0000 RW_SECTION_B Read-Write Firmware B

0x3e0000 0x010000 RW_MRC_CACHE Memory Training Cache

0x3f0000 0x004000 RW_ELOG Event Log

0x3f4000 0x004000 RW_SHARED Shared Data

0x3f8000 0x002000 RW_VPD Read-Write VPD

0x400000 0x200000 RW_LEGACY Legacy Firmware

0x600000 0x004000 RO_VPD Read-Only VPD

0x610000 0x000800 FMAP Flash Map

0x610800 0x000040 RO_FRID RO Firmware ID

0x611000 0xef0000 GBB Google Binary Block

0x700000 0x100000 BOOT_STUB Read-Only Firmware

Chapter 5 ■ Chrome book Firmware Internals

108

BOOT_STUB FMAP Section
The BOOT_STUB section contains the reset vector location at the end of the rom (for x86),
as well as all the read-only firmware. This includes the coreboot rom stage and verified
boot image used by the normal verified boot path. It also contains the complete RO
firmware for Recovery Mode, which includes read-only versions of coreboot ram stage
and Depth charge.

Chrome OS Firmware RW FMAP Sections
Chrome OS firmware contains two read-write sections. These are updated separately
in case there is a problem with the update process. When a firmware update happens,
only one of the sections is updated with a new image. Once the system has booted
successfully with the new firmware, the old firmware in the other section is overwritten
with the new firmware. If the firmware update fails, the system will automatically fall
back to the old, known good firmware. A Chrome OS firmware FMAP RW Section
example is shown in Table 5-2.

Table 5-2.  FMAP Read-Write Section Example

RW_SECTION_A Size Type Description

0x200000 0x010000 VBLOCK_A Key Block

0x210000 0x0c0000 FW_MAIN_A BIOS Image A

0x2d0000 0x01ffc0 EC_MAIN_A EC Image A

0x2effc0 0x000040 RW_FWID_A RW Firmware ID

RW_SECTION_B

0x2f0000 0x010000 VBLOCK_B Key Block

0x300000 0x0c0000 FW_MAIN_B BIOS Image B

0x3c0000 0x01ffc0 EC_MAIN_B EC Image B

0x3dffc0 0x000040 RW_FWID_B RW Firmware ID

The FMAPorganization is defined by the fmap.dts file located in the Depthcharge
payload (see the following example).

Chapter 5 ■ Chrome book Firmware Internals

109

An fmap.dts (RW_SECTION_A) Example

rw-a {
 label = "rw-section-a";
 reg = <0x00200000 0x000f0000>;
};
rw-a-vblock {
 label = "vblock-a";
 reg = <0x00200000 0x00010000>;
 type = "keyblock boot,ecrwhash,ramstage,refcode";
 keyblock = "firmware.keyblock";
 signprivate = "firmware_data_key.vbprivk";
 version = <1>;
 kernelkey = "kernel_subkey.vbpubk";
 preamble-flags = <0>;
};
rw-a-boot {
 label = "fw-main-a";
 reg = <0x00210000 0x000c0000>;
 type = "blob boot,ecrwhash,ramstage,refcode";
};
rw-a-ec-boot {
 label = "ec-main-a";
 reg = <0x002d0000 0x0001ffc0>;
 type = "blob ecbin";
};
rw-a-firmware-id {
 label = "rw-fwid-a";
 reg = <0x002effc0 0x00000040>;
 read-only;
 type = "blobstring fwid";
};
 

The FMAP reference implementation is available at http://flashmap.googlecode.com.

Google Binary Block (GBB)
The Google Binary Block (GBB) is a simple binary storage interface for Chrome OS
devices. It is stored in a region in read-only firmware and located via the FMAP. It
contains the following information:

Hardware Identification (HWID)•	

Firmware Root Key•	

Recovery Key•	

Bitmaps for firmware screens and translations of firmware messages•	

A Flags setting to enable/disable Chrome OS–related features and •	
boot configuration

http://flashmap.googlecode.com/

Chapter 5 ■ Chrome book Firmware Internals

110

GBB: HWID v3
The Hardware identifier is unique for each Chrome OS device model. It is generated by
an algorithm that catalogs all HW and FW components, as well as the platform name,
build phase, and the RO firmware version. It is generated for each board during the
factory process. HWID is used to uniquely identify each platform hardware variant to
ensure compatibility during recovery and updates.

GBB: Firmware Bitmaps
The firmware image screens for Recovery Mode help and Developer Mode warnings are
included in the GBB area. These images have localized text overlays for the transition
to and from Recovery and Developer modes. The user can switch between locales with
arrow keys. The images are LZMA-compressed bitmaps to minimize space and they must
be available for the RO firmware.

GBB: Firmware Keys
Public keys in GBB are used for verification of the binaries, which are signed by the
Google private keys during the build process. The binary data is not encrypted; it is only
hashed. The GBB contains the Root and Recovery Public Keys, which are RSA-8192 +
SHA-512. Subsequent keys are smaller. Each signing key is versioned and the Verified
boot will reject lower versions.

GBB: Boot Flags
The boot flags are flags that alter the Chrome OS boot path. They override the nonvolatile
flags set with the crossystem tool. The flags are used to enable alternate booting for the
factory process, but they can also be used by the end user to customize a boot after entering
Developer Mode and disabling write protect. A list of the boot flags is located in Table 5-3.

Chapter 5 ■ Chrome book Firmware Internals

111

Table 5-3.  GBB Boot Flag Types

Flag Name Flag Value Description

GBB_FLAG_DEV_SCREEN_SHORT_DELAY 0x00000001 Reduce Developer screen
delay to 2s

GBB_FLAG_LOAD_OPTION_ROMS 0x00000002 Load option ROMs from
arbitrary PCI devices (obsolete)

GBB_FLAG_ENABLE_ALTERNATE_OS 0x00000004 Allow booting of non-Chrome
OS kernel

(obsolete)

GBB_FLAG_FORCE_DEV_SWITCH_ON 0x00000008 Force enable Developer Mode

GBB_FLAG_FORCE_DEV_BOOT_USB 0x00000010 Allow booting from USB in dev
mode even if dev_boot_usb is 0

GBB_FLAG_DISABLE_FW_ROLLBACK_CHECK 0x00000020 Disable firmware rollback
protection

GBB_FLAG_ENTER_TRIGGERS_TONORM 0x00000040 Allow Enter key to trigger mode
transition to Normal Mode on
Developer Mode warning screen

GBB_FLAG_FORCE_DEV_BOOT_LEGACY 0x00000080 Allow Legacy Mode boot even if
dev_boot_legacy is 0

GBB_FLAG_FAFT_KEY_OVERRIDE 0x00000100 Allow use of alternate keys for
firmware testing

GBB_FLAG_DISABLE_EC_SOFTWARE_SYNC 0x00000200 Disable EC read-write firmware
update

GBB_FLAG_DEFAULT_DEV_BOOT_LEGACY 0x00000400 Boot legacy OS in Developer
Mode by default

GBB_FLAG_DISABLE_PD_SOFTWARE_SYNC 0x00000800 Disable PD MCU read-write
firmware update

Chapter 5 ■ Chrome book Firmware Internals

112

Vital Product Data (VPD)
There are two types of the Vital Product Data in the flash image. There is a region in read-only
and read-write areas of flash and the two VPDs hold separate information, as follows.

RO_VPD•	

Serial Number··

Initial Locale··

Initial Time Zone··

Keyboard Layout··

Ethernet MAC address··

RW_VPD•	

Activation Date··

Registration Codes··

Firmware TPM Usage
TPM stands for Trusted Platform Module. It is a specialized chip on an endpoint device
that stores RSA encryption keys specific to the host system for hardware authentication.

Chrome OS’s verified boot library uses the TPM for the following tasks:

Preventing software and firmware version rollback•	

Maintaining information to detect transitions between Normal •	
and Developer Modes

Protecting user data encryption keys•	

Protecting certain user RSA keys (“hardware-backed” certificates)•	

Providing tamper evidence for installation attributes•	

Protecting state ful partition encryption keys•	

Attesting TPM-protected keys•	

Attesting device mode•	

The TPM is not directly available outside of Chrome OS for any purpose; that is, no
remote software or system may have access to the TPM.

Chrome OS does not use the TPM for the following:

•	 Trusted boot: The TPM is not used as part of the Chrome OS
verified boot solution.

•	 Hardware: Strength platform configuration reporting.

•	 Whole-disk encryption or similar: In particular, the TPM is not
used to unwrap an encryption key during the boot process.

Chapter 5 ■ Chrome book Firmware Internals

113

Chrome OS Firmware Update
The Chrome OS read-write area of the flash may be updated by the auto-update process.
When required, Chrome OS downloads the firmware update as a self-contained firmware
update package. All the binaries and scripts embedded into the shell archive, as well as
the firmware images for the system flash and the EC flash. The flashrom utility is part of
the package and is used to flash both the Chrome OS firmware image and the EC image.

As shown in the “FMAP” section of this chapter, the Chrome OS firmware has two
read-write images. The update process begins with flashing one region, rebooting,
verifying that the new image works, and then flashing the second region. This process
should prevent the system from becoming unusable if there is an update issue. Figure 5-4
shows the process of the RW image update process.

Figure 5-4.  RW image update process

Chrome OS Utilities
Chrome OS uses several customized utilities behind the scenes. Users are able to access
these utilities to make system modifications in Developer Mode:

flashrom•	

gbb_utility•	

mosys•	

crossystem•	

Chapter 5 ■ Chrome book Firmware Internals

114

flashrom
flashrom is an open source flash chip programmer utility (flashrom.org). It supports
many chipsets, flash devices, and programmers. The Chrome OS version has been
customized for Chrome OS needs, which includes updates to FMAP regions.
 
FTDI (-p ft2232_spi:servo-v2)
Dediprog (-p dediprog)
Embedded Controllers (-p ec)
FMAP integration (-i region)
 
Usage: flashrom [-h|-R|-L|-p <programmername>[:<parameters>] [-c <chipname>]
[-E|(-r|-w|-v) <file>] [-l <layoutfile> [-i <imagename>]...] [-n] [-f]]
[-V[V[V]]] [-o <logfile>]
 

Read Chrome OS firmware image:
 
flashrom -p host -r fw_backup.bin
flashrom v0.9.4 : 141a262 : Jan 08 2014 02:24:30 UTC on Linux 3.10.18
(x86_64), built with libpci 3.1.10, GCC 4.8.x-google 20130905 (prerelease),
little endian
Mapping BYT IBASE at 0xfed08000, unaligned size 0x200.
Mapping BYT SBASE at 0xfed01000, unaligned size 0x200.
Reading flash... SUCCESS
 

Write Chrome OS firmware image:
 
flashrom -p host -w image.bin
flashrom v0.9.4 : 141a262 : Jan 08 2014 02:24:30 UTC on Linux 3.10.18
(x86_64), built with libpci 3.1.10, GCC 4.8.x-google 20130905 (prerelease),
little endian
Mapping BYT IBASE at 0xfed08000, unaligned size 0x200.
Mapping BYT SBASE at 0xfed01000, unaligned size 0x200.
Erasing and writing flash chip... Verifying flash... VERIFIED.
SUCCESS

gbb_utility
gbb_utility is the utility to manage the Google Binary Block (GBB) region of the
firmware image.

Note■■  T he internal write protect screw on the mainboard must be removed to write the
GBB region.

 

Chapter 5 ■ Chrome book Firmware Internals

115

Usage: gbb_utility [-g|-s|-c] [OPTIONS] bios_file [output_file]
 

Read current BIOS from flash into bios.bin:
 
flashrom -r bios.bin
 

Extract and display HWID from bios.bin:
 
gbb_utility --get --hwid bios.bin
hardware_id: RAMBI TEST A-A 0120
 

Extract and display GBB flags from bios.bin:
 
gbb_utility --get --flags bios.bin
flags: 0x00000000
 

Set GBB flags in bios.bin to 0x39 (factory default):
 
gbb_utility --set --flags=0x39 bios.bin
- flags changed from 0x00000000 to 0x00000039: success
successfully saved new image to: bios.bin
 

Write updated bios.bin back to flash:
 
flashrom -i GBB -w bios.bin

GBB Flags Utility Script: set_gbb_flags.sh
set_gbb_flags.sh is a script to automate the gbb_utility to change the flags. It can be used
in place of the preceding GBB flags example.
 
Usage: set_gbb_flags.sh [option_flags] GBB_FLAGS_VALUE

crossystem
The crossystem tool is used to gather information about the Chrome OS device’s system
flags, boot modes, VPD, GBB, NVRAM information, and binary versions.

Get vital system data:
 
crossystem
arch = x86 # Platform architecture
clear_tpm_owner_request = 0 # Clear TPM owner on next boot
clear_tpm_owner_done = 0 # Clear TPM owner done
cros_debug = 1 # OS should allow debug features
dbg_reset = 0 # Debug reset mode request (writable)
ddr_type = unknown # Type of DDR RAM
debug_build = 1 # OS image built for debug features

Chapter 5 ■ Chrome book Firmware Internals

116

dev_boot_usb = 0 # �Enable developer mode
boot from USB/SD
(writable)

dev_boot_legacy = 0 # �Enable developer mode
boot Legacy OSes
(writable)

dev_boot_signed_only = 0 # �Enable developer mode
boot only from official
kernels (writable)

devsw_boot = 1 # �Developer switch
position at boot

devsw_cur = 1 # �Developer switch current
position

disable_dev_request = 0 # �Disable virtual dev-mode
on next boot

ecfw_act = RW # Active EC firmware
fmap_base = 0xffe10000 # �Main firmware flashmap

physical address
fwb_tries = 0 # �Try firmware B count

(writable)
fwid = Google_Rambi.5216.239.0 # Active firmware ID
fwupdate_tries = 0 # �Times to try OS firmware

update (writable, inside
kern_nv)

hwid = RAMBI TEST A-A 0128 # Hardware ID
kern_nv = 0x00000000 # �Non-volatile field for

kernel use
kernkey_vfy = sig # �Type of verification

done on kernel key block
loc_idx = 0 # �Localization index

for firmware screens
(writable)

mainfw_act = A # Active main firmware
mainfw_type = developer # �Active main firmware type
nvram_cleared = 1 # �Have NV settings been

lost? Write 0 to clear
oprom_needed = 0 # �Should we load the VGA

Option ROM at boot?
platform_family = BayTrail # Platform family type
recovery_reason = 0 # �Recovery mode reason

for current boot
recovery_request = 0 # �Recovery mode request

(writable)
recovery_subcode = 0 # �Recovery reason subcode

(writable)
recoverysw_boot = 0 # �Recovery switch position

at boot

Chapter 5 ■ Chrome book Firmware Internals

117

recoverysw_cur = (error) # �Recovery switch current
position

recoverysw_ec_boot = 0 # �Recovery switch position
at EC boot

ro_fwid = Google_Rambi.5216.239.0 # Read-only firmware ID
savedmem_base = 0x00f00000 # �RAM debug data area

physical address
savedmem_size = 1048576 # �RAM debug data area size

in bytes
sw_wpsw_boot = 0 # �Firmware write protect

software setting enabled
at boot

tpm_fwver = 0x00010001 # �Firmware version stored
in TPM

tpm_kernver = 0x00010001 # �Kernel version stored
in TPM

tried_fwb = 0 # �Tried firmware B before
A this boot

vdat_flags = 0x00000c56 # Flags from VbSharedData
vdat_timers = LFS=185474800,273111920
 LF=274161584,415809776
 LK=1,2856282 # �Timer values from

VbSharedData
wpsw_boot = 1 # �Firmware write protect

hardware switch position
at boot

wpsw_cur = 1 # �Firmware write protect
hardware switch current
position

mosys
mosys is the firmware and hardware inspection utility. It is customized for each chipset,
so the capabilities and information vary from system to system. Generally, the following
commands are available with mosys:
 
ec EC information
eeprom EEPROM Information
gpio GPIO Information
memory Memory Information
nvram NVRAM information
platform Platform Information
smbios SMBIOS Information
eventlog Event Log
 
usage: mosys [options] [commands]
 

Chapter 5 ■ Chrome book Firmware Internals

118

Get the SMBIOS BIOS information table:
 
mosys smbios info bios
coreboot | Google_Rambi.5216.239.0 | 07/11/2014 | 8192 KB

Google Embedded Controller
Besides the Application processor firmware, coreboot, Google has developed open source
embedded controller (EC) firmware.

The primary responsibilities of the EC are as follows:

Application processor power sequencing•	

Battery charging•	

Thermal management•	

Keyboard controller•	

Buttons and switches•	

Backlights, indicator LEDs•	

Additional board-specific peripherals•	

Note■■   For more information about the Google EC, visit http://git.chromium.org/
gitweb/?p=chromiumos/platform/ec.git;a=summary.

Like other areas of Chrome OS, the Chrome EC is designed for security. It has read-
only and read-write regions. The read-write binary update is called Software Sync. The
sync is handled by Depth charge and verified boot. The Chrome EC firmware has support
for several different ARM SOCs, including Texas Instruments Stellar is Cortex-M4 and the
ST Micro STM32 Cortex-M3.

Power Sequencing
Each application processor family has its own power sequencing requirements. The EC
must manage and respond to all those requirements across the different system states,
like boot, sleep, and idle. It also ensures that some peripherals are brought up and down
as directed by system drivers; for example, USB and Wi-Fi devices.

http://git.chromium.org/gitweb/?p=chromiumos/platform/ec.git;a=summary
http://git.chromium.org/gitweb/?p=chromiumos/platform/ec.git;a=summary

Chapter 5 ■ Chrome book Firmware Internals

119

Battery Charging
Most Chrome books use Smart Battery technology. This is a fairly simple system, where
the battery asks for specific voltage and current, and the charger circuitry responds
accordingly. The EC handles a few special cases:

Trickle charge a fully discharged battery•	

Custom charge requirements for high- or low-power conditions•	

Keeping temperatures within safe operating ranges•	

Note■■   Reference materials are located at http://sbs-forum.org/specs/sbdat110.pdf.

Thermal Management
The Chrome EC firmware supports several different thermal modes. It can act on
independent thresholds and deliver host events via ACPI and the system PROCHOT
signal. It also has configuration for fan speeds and can force the system power off, based
on any sensor readings.

Keyboard Controller
For x86-based systems, the EC provides a “standard” 8042 AT-style interface. ARM-based
systems use a binary format that merely sends the scan matrix up to the kernel. In either
case, the keyboard scan matrix is defined in the board-specific firmware configuration.

Other Peripheral Controls
The Chrome EC also controls the following devices:

LED behavior (battery charging, full, power on, etc.)•	

Backlight•	

Wi-Fi/USB power•	

Light bar, accelerometer, dedicated hardware buttons•	

Chrome EC Software Sync
It is important that the AP firmware (coreboot) and the EC firmware remain compatible
through upgrades. During every Normal Mode boot, the EC firmware is verified by the
AP firmware and updated, if required. In Recovery Mode, the EC and AP firmware stay in
read-only mode.

http://sbs-forum.org/specs/sbdat110.pdf

Chapter 5 ■ Chrome book Firmware Internals

120

Software Sync Steps
The following are the software sync steps:

1.	 The EC boots its RO firmware and powers on the AP.

2.	 The AP boots its RO firmware.

3.	 The AP verifies its RW firmware and jumps to it.

4.	 The EC computes a hash of its RW firmware.

5.	 The AP RW firmware contains a copy of the EC’s RW firmware.
The AP compares its hash with the EC’s hash.

If they differ, the AP gives the EC the correct RW firmware, which the EC writes to its flash.
The EC jumps to its RW firmware.
In Developer Mode, set the flag in the GBB to disable Software Sync:

 
set_gbb_flags.sh 0x239
0x00000001 GBB_FLAG_DEV_SCREEN_SHORT_DELAY
0x00000008 GBB_FLAG_FORCE_DEV_SWITCH_ON
0x00000010 GBB_FLAG_FORCE_DEV_BOOT_USB
0x00000020 GBB_FLAG_DISABLE_FW_ROLLBACK_CHECK
0x00000200 GBB_FLAG_DISABLE_EC_SOFTWARE_SYNC

Summary
We are hoping that after reading this chapter, you have realized that the Chrome book
and other Chrome devices are not only interesting and convenient to use, but are also
devices that you can play with to experiment your new firmware and software ideas. This
chapter has provided you enough information to start your journey, but do check out
Google web sites to learn up-to-date and more detailed technical information.

By the way, this chapter’s text and graphics were written on a Chrome OS device in
Google Docs.

Note■■  T his chapter contains some modified materials from the Chromium OS wiki
(http://www.chromium.org/chromium-os). This falls under the Creative Commons
Attribution 2.5 license (http://creativecommons.org/licenses/by/2.5/).

http://www.chromium.org/chromium-os
http://creativecommons.org/licenses/by/2.5/

	Chapter 5: Chrome book Firmware Internals
	About Chrome book and Chrome OS
	Chrome OS Firmware Overview
	Chrome OS Security Philosophy
	Chrome OS Security Guiding Principles
	Power wash
	Chrome OS Boot Modes
	Verified (Normal) Mode
	Recovery Mode
	Developer Mode

	Chrome OS Coreboot
	x86
	ARM

	Depth charge Payload
	libpayload
	Verified Boot
	Verified Boot and Kernel Security

	Chrome OS Firmware Boot Log
	Boot Times Log

	Chrome OS Firmware Event Log
	Google SMI Linux Kernel Driver

	Chrome OS Extensions to the Firmware Image
	FMAP
	BOOT_STUB FMAP Section
	Chrome OS Firmware RW FMAP Sections
	An fmap.dts (RW_SECTION_A) Example

	Google Binary Block (GBB)
	GBB: HWID v3
	GBB: Firmware Bitmaps
	GBB: Firmware Keys
	GBB: Boot Flags

	Vital Product Data (VPD)
	Firmware TPM Usage

	Chrome OS Firmware Update
	Chrome OS Utilities
	flashrom
	gbb_utility
	GBB Flags Utility Script: set_gbb_flags.sh

	crossystem
	mosys

	Google Embedded Controller
	Power Sequencing
	Battery Charging
	Thermal Management
	Keyboard Controller
	Other Peripheral Controls
	Chrome EC Software Sync
	Software Sync Steps

	Summary

