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Preface 

This book aims to be a course in Lie groups that can be covered in one 
year with a group of good graduate students. I have attempted to address 
a problem that anyone teaching this subject must have, which is that the 
amount of essential material is too much to cover. 

One approach to this problem is to emphasize the beautiful representation 
theory of compact groups, and indeed this book can be used for a course of 
this type if after Chapter 25 one skips ahead to Part III. But I did not want 
to omit important topics such as the Bruhat decomposition and the theory of 
symmetric spaces. For these subjects, compact groups are not sufficient. 

Part I covers standard general properties of representations of compact 
groups (including Lie groups and other compact groups, such as finite or p
adic ones). These include Schur orthogonality, properties of matrix coefficients 
and the Peter-Weyl Theorem. 

Part II covers the fundamentals of Lie groups, by which I mean those sub
jects that I think are most urgent for the student to learn. These include the 
following topics for compact groups: the fundamental group, the conjugacy 
of maximal tori (two proofs), and the Weyl character formula. For noncom
pact groups, we start with complex analytic groups that are obtained by 
complexification of compact Lie groups, obtaining the Iwasawa and Bruhat 
decompositions. These are the reductive complex groups. They are of course a 
special case, but a good place to start in the noncompact world. More general 
noncompact Lie groups with a Cartan decomposition are studied in the last 
few chapters of Part II. Chapter 31, on symmetric spaces, alternates examples 
with theory, discussing the embedding of a noncompact symmetric space in 
its compact dual, the boundary components and Bergman-Shilov boundary 
of a symmetric tube domain, and Cartan's classification. Chapter 32 con
structs the relative root system, explains Satake diagrams and gives examples 
illustrating the various phenomena that can occur, and reproves the Iwasawa 
decomposition, formerly obtained for complex analytic groups, in this more 
general context. Finally, Chapter 33 surveys the different ways Lie groups can 
be embedded in one another. 
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Part III returns to representation theory. The major unifying theme of 
Part III is Frobenius-Schur duality. This is the correspondence, originating in 
Schur's 1901 dissertation and emphasized by Weyl, between the irreducible 
representations of the symmetric group and the general linear groups. The 
correspondence comes from decomposing tensor spaces over both groups si
multaneously. It gives a dictionary by which problems can be transferred from 
one group to the other. For example, Diaconis and Shahshahani studied the 
distribution of traces of random unitary matrices by transferring the problem 
of their distribution to the symmetric group. The plan of Part III is to first 
use the correspondence to simultaneously construct the irreducible represen
tations of both groups and then give a series of applications to illustrate the 
power of this technique. These applications include random matrix theory, 
minors of Toeplitz matrices, branching formulae for the symmetric and uni
tary groups, the Cauchy identity, and decompositions of some symmetric and 
exterior algebras. Other thematically related topics topics discussed in Part 
III are the cohomology of Grassmannians, and the representation theory of 
the finite general linear groups. 

This plan of giving thematic unity to the "topics" portion of the book with 
Frobenius-Schur the unifying theme has the effect of somewhat overemphasiz
ing the unitary groups at the expense of other Lie groups, but for this book 
the advantages outweigh this disadvantage, in my opinion. The importance of 
Frobenius-Schur duality cannot be overstated. 

In Chapters 48 and 49, we turn to the analogies between the representation 
theories of symmetric groups and the finite general linear groups, and between 
the representation theory of the finite general linear groups and the theory of 
automorphic forms. The representation theory of GL( n, IF q) is developed to 
the extent that we can construct the cuspidal characters and explain Harish
Chandra's "Philosophy of Cusp Forms" as an analogy between this theory 
and the theory of automorphic forms. It is a habit of workers in automorphic 
forms (which many of us learned from Piatetski-Shapiro) to use analogies with 
the finite field case systematically. 

The three parts have been written to be somewhat independent. One may 
thus start with Part II or Part III and it will be quite a while before earlier 
material is needed. In particular, either Part II or Part III could be used as 
the basis of a shorter course. Regarding the independence of Part III, the 
Weyl character formula for the unitary groups is obtained independently of 
the derivation in Part II. Eventually, we need the Bruhat decomposition but 
not before Chapter 47. At this point, the reader may want to go back to Part 
II to fill this gap. 

Prerequisites include the Inverse Function Theorem, the standard theorem 
on the existence of solutions to first order systems of differential equations 
and a belief in the existence of Haar measures, whose properties are reviewed 
in Chapter 1. Chapters 17 and 50 assume some algebraic topology, but these 
chapters can be skipped. Occasionally algebraic varieties and algebraic groups 
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are mentioned, but algebraic geometry is not a prerequisite. For affine alge
braic varieties, only the definition is really needed. 

The notation is mostly standard. In GL(n), I or In denotes the n x n 
identity matrix and if 9 is any matrix, t 9 denotes its transpose. Omitted entries 
in a matrix are zero. The identity element of a group is usually denoted 1 but 
also as I, if the group is GL(n) (or a subgroup), and occasionally as e when 
it seemed the other notations could be confusing. The notations c and ~ are 
synonymous, but we mostly use X C Y if X and Y are known to be unequal, 
although we make no guarantee that we are completely consistent in this. If 
X is a finite set, IXI denotes its cardinality. 

One point where we differ with some of the literature is that the root 
system lives in R ® X* (T) rather than in the dual space of the Lie algebra of 
the maximal torus T as in much of the literature. This is of course the right 
convention if one takes the point of view of algebraic groups, and it is also 
arguably the right point of view in general since the real significance of the 
roots has to do with the fact that they are characters of the torus, not that 
they can be interpreted as linear functionals on its Lie algebra. 

To keep the book to a reasonable length, many standard topics have been 
omitted, and the reader may want to study some other books at the same 
time. Cited works are usually recommended ones. 

Acknowledgments. The proofs in Chapter 36 on the Jacobi-Trudi iden
tity were worked out years ago with Karl Rumelhart when he was still an 
undergraduate at Stanford. Very obviously, Chapters 40 and 41 owe a great 
deal to Persi Diaconis, and Chapter 43 on Cauchy's identity was suggested by 
a conversation with Steve Rallis. I would like to thank my students in Math 
263 for staying with me while I lectured on much of this material. 

This book was written using 'lEXmacs, with further editing of the exported 
Jb.'JEjX file. The utilities patch and diff were used to maintain the differences 
between the automatically generated and the hand-edited 'lEX files. The fig
ures were made with MetaPost. The weight diagrams in Chapter 24 were 
created using programs I wrote many years ago in Mathematica based on the 
Freudenthal multiplicity formula. 

This work was supported in part by NSF grant DMS-9970841. 

Daniel Bump 
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Haar Measure 

If G is a locally compact group, there is, up to a constant multiple, a unique 
regular Borel measure J.1.L that is invariant under left translation. Here left 
translation invariance means that J.1.(X) = J.1.(gX) for all measurable sets X. 
Regularity means that 

J.1.(X) = inf {J.1.(U) I U 2 X,U open} = sup {J.1.(K) I K ~ X,K compact}. 

Such a measure is called a left Haar measure. It has the properties that any 
compact set has finite measure and any nonempty open set has measure> O. 

We will not prove the existence and uniqueness of the Haar measure. See 
for example Halmos [51], Hewitt and Ross [57], Chapter IV, or Loomis [94] 
for a proof of this. Left-invariance of the measure amounts to left-invariance 
of the corresponding integral, 

(1.1) 

for any Haar integrable function f on G. 
There is also a right-invariant measure, J.1.R, unique up to constant multiple, 

called a right Haar measure. Left and right Haar measures mayor may not 
coincide. For example, if 

then it is easy to see that the left- and right-invariant measures are, respec
tively, 

dJ.1.L = y-2 dx dy, 

They are not the same. However, there are many cases where they do coincide, 
and if the left Haar measure is also right-invariant, we call G unimodular. 
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Conjugation is an automorphism of G, and so it takes a left Haar measure 
to another left Haar measure, which must be a constant multiple of the first. 
Thus, if 9 E G, there exists a constant 8(g) > 0 such that 

If G is a topological group, a quasichamcter is a continuous homomorphism 
X: G ------t ex. If Ix(g)1 = 1 for all 9 E G, then X is a unitary quasichamcter. 

Proposition 1.1. The function 8 : G ------t 1R~ is a quasichamcter. The mea
sure 8(h)J.LL(h) is right-invariant. 

The measure 8 (h) J.LL (h) is a right Haar measure, and we may write J.LR (h) = 
8(h)J.LL(h). The quasicharacter 8 is called the modular quasichamcter. 

Proof. Conjugation by first gl and then g2 is the same as conjugation by g1g2 
in one step. Thus 8(glg2) = 8(gl) 8(g2), so 8 is a quasicharacter. Using (1.1), 

Replace f by f8 in this identity and then divide both sides by 8(g) to find 
that fa f(h) 8(h) dJ.LL(h) = fa f(hg) 8(h) dJ.Ldh). 

Thus, the measure 8(h) dJ.Ldh) is right-invariant. o 

Proposition 1.2. If G is compact, then G is unimodular and J.Ld G) < 00. 

Proof. Since 8 is a homomorphism, the image of 8 is a subgroup of 1R~. Since 
G is compact, 8(G) is also compact, and the only compact subgroup of 1R~ is 
just {1}. Thus 8 is trivial, so a left Haar measure is right-invariant. We have 
mentioned as an assumed fact that the Haar volume of any compact subset of 
a locally compact group is finite, so if G is finite, its Haar volume is finite. 0 

If G is compact, then it is natural to normalize the Haar measure so that 
G has volume 1. 

To simplify our notation, we will denote JG f(g) dJ.LL(g) by JG f(g) dg. 

Proposition 1.3. IfG is unimodular, then the map 9 ------t g-1 is an isometry. 

Proof. It is easy to see that 9 ------t g-1 turns a left Haar measure into a right 
Haar measure. If left and right Haar measures agree, then 9 ------t g-1 multiplies 
the left Haar measure by a positive constant, which must be 1 since the map 
has order 2. 0 
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EXERCISES 

Exercise 1.1. Let daX denote the Lebesgue measure on Matn(l~). It is of course a 
Haar measure for the additive group Matn(IR). Show that! det(X)!-ndaX is both 
a left and a right Haar measure on GL(n, 1R). 

Exercise 1.2. Let P be the subgroup of GL(r + s, 1R) consisting of matrices of the 
form 

_ (91 X) p- , 
92 

91 E GL(r, 1R), 92 E GL(s, 1R), X E Matrxs(IR). 

Let d91 and d92 denote Haar measures on GL(r, 1R) and GL(s, 1R), and let daX 
denote an additive Haar measure on Matrxs(IR). Show that 

are (respectively) left and right Haar measures on P, and conclude that the modular 
quasicharacter of P is 



2 

Schur Orthogonality 

In this chapter and the next two, we will consider the representation theory 
of compact groups. Let us begin with a few observations about this theory 
and its relationship to some related theories. 

If V is a finite-dimensional complex vector space, or more generally a Ba
nach space, and 7r : G --+ GL(V) a continuous homomorphism, then (7r, V) is 
called a representation. Assuming dim(V) < 00, the function Xrr(g) = tr 7r(g) 
is called the character of 7r. Also assuming dim(V) < 00, the representation 
(7r, V) is called irreducible if V has no proper nonzero invariant subspaces, 
and a character is called irreducible if it is a character of an irreducible rep
resentation. 

(If V is an infinite-dimensional topological vector space, then (7r, V) is 
called irreducible if it has no proper nonzero invariant closed subspaces.) 

A quasi character X is a character in this sense since we can take V = e 
and 7r(g)v = X(g)v to obtain a representation whose character is X. 

The archetypal compact Abelian group is the circle 11' = {z E ex Ilzl = I}. 
We normalize the Haar measure on 11' so that it has volume 1. Its characters 
are the functions Xn : 11' --+ ex, Xn (z) = zn. The important properties of the 
Xn are that they form an orthonormal system and (deeper) an orthonormal 
basis of L 2 (11') . 

More generally, if G is a compact Abelian group, the characters of G form 
an orthonormal basis of L2(G). If f E L2(G), we have a Fourier expansion, 

(2.1) 

and the Plancherel formula is the identity: 

(2.2) 



2 Schur Orthogonality 7 

These facts can be directly generalized in two ways. First, Fourier analysis 
on locally compact Abelian groups, including Pontriagin duality, Fourier in
version, the Plancherel formula, etc. is an important and complete theory due 
to Wei! [124] and discussed, for example, in Rudin [104] or Loomis [94]. The 
most important difference from the compact case is that the characters can 
vary continuously. The characters themselves form a group, the dual group G, 
whose topology is that of uniform convergence on compact sets. The Fourier 
expansion (2.1) is replaced by the Fourier inversion formula 

f(g) = fa j(X) X(g) dX, j(x) = fa f(g) X(g) dg. 

The symmetry between G and G is now evident. Similarly in the Plancherel 
formula (2.2) the sum on the right is replaced by an integral. 

The second generalization, to arbitrary compact groups, is the subject 
of this chapter and the next two. In summary, group representation theory 
gives a orthonormal basis of £2(G) in the matrix coefficients of irreducible 
representations of G and a (more important and very canonical) orthonormal 
basis of the subspace of £2 (G) consisting of class functions in terms of the 
characters of the irreducible representations. Most importantly, the irreducible 
representations are all finite-dimensional. The orthonormality of these sets is 
Schur orthogonality; the completeness is the Peter-Weyl Theorem. 

These two directions of generalization can be unified. Harmonic analy
sis on locally compact groups agrees with representation theory. The Fourier 
inversion formula and the Plancherel formula now involve the matrix coeffi
cients of the irreducible unitary representations, which may occur in contin
uous families and are usually infinite-dimensional. This field of mathematics, 
largely created by Harish-Chandra, is fundamental but beyond the scope of 
this book. See Knapp [81] for an extended introduction, and Gelfand, Graev 
and Piatetski-Shapiro [46] and Varadarajan [120] for the Plancherel formula 
for SL(2, JR.). 

Although infinite-dimensional representations are thus essential in har
monic analysis on a noncompact group such as SL(n, JR.), noncompact Lie 
groups also have irreducible finite-dimensional representations, which are im
portant in their own right. They are seldom unitary and hence not relevant 
to the Plancherel formula. The scope of this book includes finite-dimensional 
representations of Lie groups but not infinite-dimensional ones. 

In this chapter and the next two, we will be mainly concerned with com
pact groups. In this chapter, all representations will be complex and finite
dimensional except when explicitly noted otherwise. 

By an inner product on a complex vector space, we mean a positive definite 
Hermitian form, denoted ( , ). Thus (v, w) is linear in v, conjugate linear in 
w, satisfies (w, v) = (v, w), and (v, v) > 0 if v -I- O. We will also use the term 
inner product for real vector spaces - an inner product on a real vector space 
is a positive definite symmetric bilinear form. Given a group G and a real or 
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complex representation tr : G ---t GL(V), we say the inner product ( , ) on 
V is G-equivariant or invariant if it satisfies the identity 

(tr(g)v, tr(g)w) = (v, w). 

Proposition 2.1. If G is compact and (tr, V) is any finite-dimensional com
plex representation, then V admits a G-equivariant inner product. 

Proof. Start with an arbitrary inner product ((, )). Averaging it gives another 
inner product, 

(v, w) = i ((tr(g)v, tr(g)w)) dg, 

for it is easy to see that this inner product is Hermitian and positive definite. 
It is G-equivariant by construction. 0 

Proposition 2.2. If G is compact, every finite-dimensional representation is 
the direct sum of irreducible representations. 

Proof. Let (tr, V) be given. Let VI be a nonzero invariant subspace of minimal 
dimension. It is clearly irreducible. Let Vi.l be the orthogonal complement of 
Vi with respect to a G-invariant inner product. It is easily checked to be 
invariant, of lower dimension than V, and so by induction VI.l = V2 E9 ... E9 Vn 
is a direct sum of invariant subspaces and so V = VI E9 ... E9 Vn is also. 0 

A function of the form ¢(g) = L ( tr(g) v), where (tr, V) is a finite
dimensional representation of G, v E V and L : V ---t e is a linear functional, 
is called a matrix coefficient on G. This terminology is natural, because if we 
choose a basis el,··· ,en, of V, we can identify V with en and represent 9 by 
matrices: 

Then each of the n2 functions trij is a matrix coefficient. Indeed 

where Li(Lj vjej) = Vi. 

Proposition 2.3. The matrix coefficients of G are continuous functions. The 
pointwise sum or product of two matrix coefficients is a matrix coefficient, so 
they form a ring. 

Proof. If v E V, then 9 ---t tr(g)v is continuous since by definition a represen
tation tr : G ---t GL(V) is continuous and so a matrix coefficient L(tr(g) v') 
is continuous. 
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If (1Tt, VI) and (1T2' V2) are representations, Vi E Vi are vectors and 
Li : Vi -----+ C are linear functionals, then we have representations 1Tl EB 1T2 
and 1Tl ® 1T2 on VI EB V2 and VI ® V2, respectively. Given vectors Vi E Vi 
and functionals Li E Vi*, then Ll(1T(g)Vl) ±L2(1T(g)V2) can be expressed as 
L((1TIEB1T2)(g)(Vt,V2)) where L: V1 EBV2 -----+ Cis L(Xt,X2) = L1(Xl)±L2(X2), 
so the matrix coefficients are closed under addition and subtraction. 

Similarly, we have a linear functional Ll ® £2 on VI ® V2 satisfying 

and 

proving that the product of two matrix coefficients is a matrix coefficient. 0 

If (1T, V) is a representation, let V* be the dual space of V. To emphasize 
the symmetry between V and V*, let us write the dual pairing V x V* -----+ C 
in the symmetrical form L(v) = [v, L]. We have a representation (rr, V*), 
called the contragredient of 1T, defined by 

[v,rr(g)L] = [1T(g-l)v,L]. (2.3) 

Note that the inverse is needed here so that rr(glg2) = rr(gl)rr(g2)' 
If (1T, V) is a representation, then by Proposition 2.3 any linear combination 

of functions of the form L ( 1T(g) v) with v E V, L E V* is a matrix coefficient, 
though it may be a function L' ( 1T' (g) v') where (1T', V') is not (1T, V), but a 
larger representation. Nevertheless, we call any linear combination of functions 
of the form L (1T(g) v) a matrix coefficient of the representation (1T, V). Thus 
the matrix coefficients of 1T form a vector space, which we will denote by M.,... 
Clearly, dim(M.,..) ~ dim(V)2. 

Proposition 2.4. If f is a matrix coefficient of (1T, V), then 1(g) = f(g-l) 
is a matrix coefficient of (rr, V*). 

Proof. This is clear from (2.3), regarding vasa linear functional on V*. 0 

We have actions of G on the space of functions on G by left and right 
translation. Thus if f is a function and 9 E G, the left and right translates 
are 

(-X(g)f) (x) = f(g-lx), (p(g)f) (x) = f(xg). 

Theorem 2.1. Let f be a function on G. The following are equivalent. 
(i) The functions -X(g)f span a finite-dimensional vector space. 
(ii) The functions p(g)f span a finite-dimensional vector space. 
(iii) The function f is a matrix coefficient of a finite-dimensional repre

sentation. 
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Proof It is easy to check that if f is a matrix coefficient of a particular 
representation V, then so are >.(g)f and p(g)f for any 9 E G. Since V is finite
dimensional, its matrix coefficients span a finite-dimensional vector space; in 
fact, a space of dimension at most dim (V) 2 . Thus (iii) implies (i) and (ii). 

Suppose that the functions p(g)f span a finite-dimensional vector space V. 
Then (p, V) is a finite-dimensional representation of G, and we claim that f is 
a matrix coefficient. Indeed, define a functional L : V ---+ C by L(<p) = <p(l). 
Clearly, L(p(g)f) = f(g), so f is a matrix coefficient, as required. Thus (ii) 
implies (iii). 

Finally, if the functions >.(g)f span a finite-dimensional space, composing 
these functions with 9 ---+ g-1 gives another finite-dimensional space which is 
closed under right translation, and j defined as in Proposition 2.4 is an element 
of this space; hence j is a matrix coefficient by the case just considered. By 
Proposition 2.4, f is also a matrix coefficient, so (i) implies (iii). 0 

If (11"1, V1) and (11"2, V:!) are representations, an intertwining operator, also 
known as a G-equivariant map T: V1 ---+ V:! or (since V1 and V2 are sometimes 
called G-modules) a G-module homomorphism, is a linear transformation T : 
V1 ---+ V:! such that 

To 11"1 (g) = 1I"2(g) 0 T 

for 9 E G. We will denote by HOmc(V1, V:!) the space of all linear trans
formations V1 ---+ V:! and by Homa(Vl. V:!) the subspace of those that are 
intertwining maps. If T is a bijective intertwining map, then T- 1 : V:! ---+ V1 

is also an intertwining map, so T is an isomorphism. 
For the remainder of this chapter, unless otherwise stated, G will denote 

a compact group. 

Theorem 2.2. (Schur'S Lemma) (i) Let (11"1, V1 ) and (11"2, V2) be irreducible 
representations, and let T : V1 ---+ V:! be an intertwining operator. Then either 
T is zero or it is an isomorphism. 
(ii) Suppose that (11", V) is an irreducible representation of G and T : V ---+ V 
is an intertwining operator. Then there exists a scalar>' E C such that T( v) = 
>.v for all v E V. 

Proof. For (i), the kernel of T is an invariant subspace of Vi, which is assumed 
irreducible, so if T is not zero, ker(T) = O. Thus T is injective. Also, the image 
of T is an invariant subspace of V2. Since V:! is irreducible, if T is not zero, 
then im(T) = V:!. Therefore T is bijective~ 

For (ii), let>. be any eigenvalue of T. Let I : V ---+ V denote the identity 
map. The linear transformation T - >.I is an intertwining operator that is not 
an isomorphism, so it is the zero map by (i). 0 

We are assuming that G is compact. The Haar volume of G is therefore 
finite, and we normalize the Haar measure so that the volume of G is 1. 

We will consider the space L2(G) of functions on G that are square
integrable with respect to the Haar measure. This is a Hilbert space with 
the inner product 
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(11, h) £2 = fa 11 (g) 12 (g) dg. 

Schur orthogonality will give us an orthonormal basis for this space. 
If (7r, V) is a representation and ( , ) is an invariant inner product on V, 

then every linear functional is of the form x ---t (x, v) for some v E V. Thus 
a matrix coefficient may be written in the form 9 ---t (7r(g)w, v), and such a 
representation will be useful to us in our discussion of Schur orthogonality. 

Lemma 2.1. Suppose that (7rI' VI) and (7r2' V2) are complex representations 
of the compact group G. Let ( ,) be any inner product on Vi. If Vi, Wi E Vi, 
then the map T : VI ---t V2 given by 

(2.4) 

is G-equivariant. 

Proof. We have 

The variable change 9 ---t gh- I shows that this equals 7r2(h)T(w), as required. 
o 

Theorem 2.3. (Schur orthogonality) Suppose that (7rI' VI) and (7r2' V2) 
are irreducible representations of the compact group G. Either every matrix 
coefficient of 7rI is orthogonal in L2(G) to every matrix coefficient of 7r2, or 
the representations are isomorphic. 

Proof. We must show that if there exist matrix coefficients Ii : G ---t C of 7ri 

that are not orthogonal, then there is an isomorphism T : VI ---t V2. We may 
assume that the Ii have the form Ii(g) = (7ri(g)Wi, Vi) since functions of that 
form span the spaces of matrix coefficients of the representations 7ri. Here we 
use the notation ( , ) to denote invariant bilinear forms on both VI and V2, 
and Vi, Wi E Vi. Then our assumption is that 

Define T : VI ---t V2 by (2.4). The map is nonzero since the last inequality 
can be written (W2' T(WI)) f O. It is an isomorphism by Schur's Lemma. 0 

This gives orthogonality for matrix coefficients coming from non isomorphic 
irreducible representations. But what about matrix coefficients from the same 
representation? (If the representations are isomorphic, we may as well assume 
they are equal.) The following result gives us an answer to this question. 
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Theorem 2.4. (Schur orthogonality) Let (7f, V) be an irreducible repre
sentation of the compact group G, with invariant inner product ( , ). Then 
there exists a constant d > 0 such that 

Later, in Proposition 2.11, we will show that d = dim(V). 

Proof. Fixing VI and V2, T given by (2.4) is G-equivariant, so by Schur's 
Lemma it is a scalar. Thus, there is a constant c = c(Vl, V2) depending only 
on VI and V2 such that T(w) = cwo In particular, T(wd = CWl, and so 

C(Vl,V2) (Wl,W2) = (T(Wl),W2) = 

L (7f(g)Wl' VI) < 7f(g-1 )V2' W2) dg = L (7f(g)Wl' VI) (7f(g)W2' V2) dg. 

On the other hand, the variable change 9 --+ g-1 and the properties of the 
inner product give us 

so the same argument shows that there exists another constant d ( WI, W2) such 
that for all VI and V2 we have 

Putting these two facts together, we get (2.5). We will compute d later in 
Proposition 2.11, but for now we simply note that it is positive since, taking 
WI = W2 and VI = V2, both the left-hand side of (2.5) and the two inner 
products on the right-hand side are positive. 0 

Before we turn to the evaluation of the constant d, we will prove a different 
orthogonality for the characters of irreducible representations (Theorem 2.5). 
This will require some preparations. 

Proposition 2.5. The character X of a representation (7f, V) is a matrix co
efficient of V. 

Proof. If VI, ... ,Vn is a matrix of V, and L1, ... ,Ln is the dual basis of V* , 
then X(g) = L~=1 Li(7f(g)Vi)' 0 

Proposition 2.6. Suppose that (7f, V) is a representation of G and (7f*, V*) 
is its contragredient. Then the character of 7f* is the complex conjugate X of 
the character X of G. 
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Proof. Referring to (2.3), 7I"*(g) is the adjoint of 7I"(g)-1 with respect to the 
dual pairing [ , ], so its trace equals the trace of 7I"(g)-I. Since 7I"(g) is unitary 
with respect to an invariant inner product ( , ), its eigenvalues tl, ... ,tn all 
have absolute value 1, and so 

tr 7I"(g)-1 = Ltil = L4 = X(g). 
i i 

o 

The trivial representation of any group G is the representation on a one
dimensional vector space V with 7I"(g)v = v being the trivial action. 

Proposition 2.7. If (71", V) is an irreducible representation and X its charac
ter, then r () d = { 1 if 71" is the trivial representation; 

J G X 9 9 0 otherwise. 

Proof. The character of the trivial representation is just the constant function 
1, and since we normalized the Haar measure so that G has volume 1, this 
integral is 1 if 71" is trivial. In general, we may regard IG X(g) dg as the inner 
product of X with the character 1 of the trivial representation, and if 71" is 
nontrivial, these are matrix coefficients of different irreducible representations 
and hence orthogonal by Theorem 2.3. 0 

If (71", V) is a representation, let V G be the subspace of G-invariants, that 
is, 

V G = {v E V 1 71" (g) V = v for all 9 E G} . 

Proposition 2.8. If (71", V) is a representation of G and X its character, then 

faX(g) dg = dim(VG). 

Proof. Decompose V = E9i Vi into a direct sum of irreducible invariant sub
spaces, and let Xi be the character of the restriction 7I"i of 71" to Vi. By Propo
sition 2.7, IG Xi(g) dg = 1 if and only if 7I"i is trivial. Hence IG X(g) dg is the 
number of trivial 7I"i. The direct sum of the Vi with 7I"i trivial is VG, and the 
statement follows. 0 

Suppose that (7I"b Vd and (71"2, V2 ) are representations of G. We define a 
representation II of G x G on the space Homc(Vl, V2 ) of all linear transfor
mations T : VI --+ V2 by 

(2.6) 

We recall that Vt is a module for the contragredient representation 7rl' We 
will compare this to the representation 71"2 181 7rl : G x G --+ GL(V2 181 Vt) 
defined by (71"2 1817rl)(g, h) = 71"2 (g) 181 7rl (g). We denote by [ , ] the dual pairing 
VI x Vt --+ C. 
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Proposition 2.9. Let (1TI' VI) and (1T2' V2) be representations ofG. Then the 
representation (2.6) of G x G on HomdVi, V2) is equivalent to the represen
tation 1T2 0 7r1 of G x G on V2 0 Vt· 

Proof. Define a bilinear map V2 x Vt --+ HomdVI' V2) by mapping (V2' L) E 
V2 x Vt to the linear transformation VI f---7 [VI, L] V2. By the universal prop
erty of the tensor product, there is induced a linear map () : V2 0 vt --+ 
HomdVi, V2) such that ()(V2 0 L)VI = [Vb L] V2. It is easy to see that () is an 
isomorphism. We must show that it is G x G-equivariant, that is, 

We have, for Vi E Vi and L E Vt, 

() 0 (1T2(g) 0 7r1 (h))( V2 0 L)(VI) = ()( 1T2(g)V2 0 7r1 (h)L) (vd = 
[VI,7rI(h)L]1T2(g)V2 = [1TI(h-I)VbL] 1T2(g)V2 = 

1T2(g) ( [1TI (h- l )VI' L] V2) = 1T2(g)()( V2 0 L )1TI (h- l )VI 
= (II(g, h) 0 ()) (V2 0 L)VI. 

This proves (2.7). 

(2.7) 

o 

If (1T, V) is an irreducible representation, we also have an action of G x G 
on the space M7r of matrix coefficients of 1T. If (g, h) E G x G and f E M 7r , 
define /-L(g, h)f : G --+ C by (/-Lf)(x) = f(h-Ixg). 

Proposition 2.10. If (1T, V) is an irreducible complex representation of the 
compact group G, and f E M 7r , then /-L(g, h)f E M 7r . Thus /-L : G x G --+ 
GL(M 7r ) is a representation. It is equivalent to the representation of G x G 
on V 0 V* 9'! End(V) obtained by taking (1TI' Vd = (1T2' V2) = (1T, V) to be the 
same representation in Proposition 2.9. 

Proof. If V E V, L E V*, let fv,dg) = [1T(g)f,L]. The bilinear map 
(v, L) --+ fv,L induces an isomorphism V 0 V* --+ M 7r , which we claim 
is an isomorphism. This map is surjective by the definition of M 7r , and Schur 
orthogonality (Theorem 2.4) guarantees that M7r contains dim(V)2 orthogo
nal and hence linearly independent vectors, so the map must also be injective. 
We check easily that /-L(g, h)fv,L = f7r(g)v,it(h)L, so this map is G-equivariant, 
and we conclude that M7r 9'! V 0 V* as G-modules. The result now follows 
from Proposition 2.9. 0 

If (1Tb VI) and (1T2' V2) are irreducible representations, and Xl and X2 are 
their characters, we have already noted in proving Proposition 2.3 that we may 
form representations 1TI EEl 1T2 and 1TI 01T2 on Vi EEl V2 and VI 0 V2. It is easy to 
see that X7rlEJ)7r2 = X7rl + X7r2 and X7r107r2 = X7r1 X7r2' It is not quite true that 
the characters form a ring. Certainly the negative of a matrix coefficient is a 
matrix coefficient, yet the negative of a character is not a character. The set 
of characters is closed under addition and multiplication but not subtraction. 
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We define a generalized (or virtual) character to be a function of the form 
Xl - X2, where Xl and X2 are characters. It is now clear that the generalized 
characters form a ring. 

The character of a representation satisfies 

since X(ghg- l ) is the trace of 7I"(g) 7I"(h) 7I"(g) -1, and the trace of a linear trans
formation is unchanged by conjugation. 

Theorem 2.5. (Schur orthogonality) Let (7I"1,Vd and (71"2, V2) be repre
sentations of G with characters Xl and X2. Then 

(2.8) 

If 71"1 and 71"2 are irreducible, then 

Proof. We embed G ~ G x G along the diagonal. Then Horne (VI, V2 ), which 
is a G x G-module by virtue of the representation (2.6), becomes a G-module, 
and it is clear that Homa(Vl , V2) is just the space of G-invariants. By Proposi
tion 2.9, this means that dim HomaCVt , V2) is the same as the dimension of the 
space of G-invariants in V2 x Vt, and using Proposition 2.6, the character of 
7I"2®1Tl is X2Xl. The dimension of the space of G-invariants is fa x2(g) Xl(g) dg 
by Proposition 2.8. It is an integer, so we may take its complex conjugate to 
obtain (2.8). 

The second statement follows from (2.8) by Schur's Lemma, Theorem 2.2. 
D 

Proposition 2.11. The constant d in Theorem 2.4 equals dim(V). 

Proof. Let VI,' .• ,Vn be an orthonormal basis of V, n = dim(V). We have 

X(g) = L (7I"i (g)Vi , Vi) 
i 

since (7I"(g)Vj,Vi) is the i,j component of the matrix of 7I"(g) with respect to 
this basis. Now 

There are n 2 terms on the right, but by (2.5) only the terms with i = j are 
nonzero, and those equal d- l . Thus d = n. D 
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A function f on G is called a class function if it is constant on conjugacy 
classes, that is, if it satisfies the equation f(hgh- 1 ) = f(g). 

Proposition 2.12. If f is the matrix coefficient of an irreducible representa
tion (7T, V), and if f is a class function, then f is a constant multiple of X"'. 

Proof. By Schur's Lemma, there is a unique G-invariant vector in Homc(V, V)j 
hence. by Proposition 2.10, the same is true of M", in the action of G by con
jugation. This matrix coefficient is of course X",. D 

Theorem 2.6. If f is a matrix coefficient and also a class function, then f 
is a finite linear combination of characters of irreducible representations. 

Proof. Write f = L~=l Ii, where each fi is a class function of a distinct irre
ducible representation (7Ti, Vi). Since f is conjugation-invariant, and since the 
fi live in spaces M"'i' which are conjugation-invariant and mutually orthog
onal, each Ii is itself a class function and hence a constant multiple of X"'i by 
Proposition 2.12. D 

EXERCISES 

Exercise 2.1. Suppose that G is a compact Abelian group and 11": G ---+ GL(n,C) 
an irreducible representation. Prove that n = 1. 

Exercise 2.2. Suppose that G is compact group and 1 : G ---+ C is the matrix 
coefficient of an irreducible representation 11". Show that 9 f----t l(g-l) is a matrix 
coefficient of the same representation 11". 

Exercise 2.3. Suppose that G is compact group. Let C(g) be the space of contin
uous functions on G. If hand h E C(G), define the convolution h * h of hand 
h by 

(b * h)(g) = fa b(gh- l ) h(h) dh = fa b(h) h(h- l g) dh. 

(i) Use the variable change h ---+ h- l g to prove the identity of the last two 
terms. Prove that this operation is associative, and so C(G) is a ring (without unit) 
with respect to covolution. 

(ii) Let 11" be an irreducible representation. Show that the space M1\" of ma
trix coefficients of 11" is a 2-sided ideal in C(G), and explain how this fact implies 
Theorem 2.3. 
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Compact Operators 

If S) is a normed linear space, a linear operator T : S) -+ S) is called bounded 
if there exists a constant C such that ITxl ~ Clxl for all xES). In this case, 
the smallest such C is called the operator norm of T, and is denoted ITI. The 
boundedness of the operator T is equivalent to its continuity. If S) is a Hilbert 
space, then a bounded operator T is self-adjoint if 

(T f, g) = (I, Tg) 

for all f, g E S). As usual, we call f an eigenvector with eigenvalue A if f =I- 0 
and Tf = Af. Given A, the set of eigenvectors with eigenvalue A is called the 
A-eigenspace. It follows from elementary and usual arguments that ifT is a self
adjoint bounded operator, then its eigenvalues are real, and the eigenspaces 
corresponding to distinct eigenvalues are orthogonal. Moreover, if V C S) is a 
subspace such that T(V) C V, it is easy to see that also T(V.L) C V.L. 

A bounded operator T : jj -+ jj is compact if whenever {Xl,X2' X3,'" } is 
any sequence in S), the sequence {Txt, TX2, ... } has a convergent subsequence. 

Theorem 3.1. (Spectral Theorem for compact operators) Let T be a 
compact self-adjoint operator on a Hilbert space S). Let l)1 be the nullspace of 
T. Then the Hilbert space dimension of l)1.L is at most countable. l)1.L has an 
orthonormal basis ¢i (i = 1,2,3" .. ) of eigenvectors ofT so that T¢i = Ai¢i. 
Ifl)1.L is not finite-dimensional, the eigenvalues Ai -+ 0 as i -+ 00. 

Since the eigenvalues Ai -+ 0, if A is any nonzero eigenvalue, it follows from 
this statement that the A-eigenspace is finite-dimensional. 

Proof. This depends upon the equality 

ITI = sup 
O#xE.l) 

I (Tx,x) I 
(x, x) . 

To prove this, let B denote the right-hand side. If 0 =I- XES), 

(3.1) 
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I (Tx, x) I ~ ITxl ·Ixl ~ ITI . Ixl2 = ITI . (x, x) , 

so B ~ ITI. We must prove the converse. Let A > 0 be a constant, to be 
determined later. Using (T2x, x) = (Tx, Tx), we have 

(Tx, Tx) = ~I (T(AX + A-I Tx), AX + A-I Tx)

(T(AX - A-I Tx), AX - A-I Tx)1 ~ 

~ I (T(AX + A-I Tx), AX + A-I Tx)1 + I(T(AX - A-I Tx), AX - A-I Tx)1 ~ 

~ [B (AX + A-I Tx, AX + A-I Tx) + B (AX - A-I Tx, AX - A-I Tx)] = 

i [A2 (x, X) + A-2 (Tx, Tx)] . 

Now taking A = JITxl/lxl, we obtain 

ITxl2 = (Tx, Tx) ~ BlxllTxl, 

so ITxl ~ Blxl, which implies that ITI ~ B, whence (3.1). 
We now prove that sn.1 has an orthonormal basis consisting of eigenvectors 

of T. It is an easy consequence of self-adjointness that sn.1 is T-stable. Let E 
be the set of all orthonormal subsets of sn.1 whose elements are eigenvectors 
of T. Ordering E by inclusion, Zorn's Lemma implies that it has a maximal 
element S. Let V be the closure of the linear span of S. We must prove that 
V = sn.1. Let SJo = V.i. We wish to show SJo = sn. It is obvious that sn ~ SJo. 
To prove the opposite inclusion, note that SJo is stable under T, and T induces 
a compact self-adjoint operator on SJo. What we must show is that TISJo = o. 
If T has a nonzero eigenvector in SJo, this will contradict the maximality of 
E. It is therefore sufficient to show that a compact self-adjoint operator on a 
nonzero Hilbert space has an eigenvector. 

Replacing SJ by SJo, we are therefore reduced to the easier problem of 
showing that if T ¥- 0, then T has a nonzero eigenvector. By (3.1), there is 
a sequence Xl,X2,X3,··· of unit vectors such that I (TXi,Xi) 1--+ ITI. Observe 
that if X E SJ, we have 

(Tx, x) = (x, Tx) = (Tx, x) 

so the (TXi, Xi) are real; we may therefore replace the sequence by a subse
quence such that (TXi, Xi) --+ A, where A = ±ITI. Since T ¥- 0, A ¥- O. Since T 
is compact, there exists a further subsequence {Xi} such that TXi converges 
to a vector v. We will show that Xi --+ A -Iv. 

Observe first that 

and since (TXi, Xi) --+ A, it follows that ITxi I --+ IAI. Now 

IA Xi - TXil2 = (A Xi - TXi, A Xi - TXi) = A21xil2 + ITxil2 - 2A (TXi, Xi), 
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and since IXil = 1, ITxil -+ IAI, and (TXi' Xi) -+ A, this converges to O. Since 
TXi -+ v, the sequence AXi therefore also converges to v, and Xi -+ A-Iv. 
Now, by continuity, TXi -+ A-I Tv, so v = A-I Tv. This proves that v is 
an eigenvector with eigenvalue A. This completes the proof that 91..l has an 
orthonormal basis consisting of eigenvectors. 

Now let {<Pi} be this orthonormal basis and let Ai be the corresponding 
eigenvalues. If € > 0 is given, only finitely many IAil > € since otherwise we 
can find an infinite sequence of (Pi with IT<pil > e. Such a sequence will have 
no convergent subsequence, contradicting the compactness of T. Thus 91..l is 
countable-dimensional, and we may arrange the {<Pi} in a sequence. If it is 
infinite, we see the Ai --+ O. 0 

Proposition 3.1. Let X and Y be compact topological spaces with Y a metric 
space with distance function d. Let U be a set of continuous maps X --+ Y 
such that for every X E I and every € > 0 there exists a neighborhood N of 
X such that d(J(x), f(x')) < € for all x' E N and for all fEU. Then every 
sequence in U has a uniformly convergent subsequence. 

We refer to the hypothesis on U as equicontinuity. 

Proof. Let So = {h, 12, 13,'" } be a sequence in U. We will show that it has 
a convergent subsequence. We will construct a subsequence that is uniformly 
Cauchy and hence has a limit. For every n > 1, we will construct a subsequence 
Sn = {fn!, fn2' fn3,"'} of Sn-l such that SUPxEX d(Jni(x), fnj(x)) ~ lin. 

Assume that Sn-l is constructed. For each X EX, equicontinuity guaran
tees the existence of an open neighborhood N x of x such that d(J(y), f(x)) ~ 
3~ for all y E Nx and all f EX. Since X is compact, we can cover X by 
a finite number of these sets, say N X1 ' ••• ,Nxm . Since the fn-l,i take values 
in the compact space Y, the m-tuples (In-l,i(Xl),''' ,fn-l,i(Xm )) have an 
accumulation point, and we may therefore select the subsequence {fni} such 
that d(Jni(xk), fnj(Xk)) ~ 3~ for all i,j and 1 ~ k ~ m. Then for any y, 
there exists Xk such that y E NXk and 

d(Jni(y), fnj (y)) 

~ d(Jni(Y), fni(Xk)) + d(Jni(xk), fnj(Xk)) + d(Jnj(Y), fnj(Xk)) 
~...!....+...!....+...!....-.!. ""3n 3n 3n-n' 

This completes the construction of the sequences {fni}. 
The diagonal sequence {fn, 122, 133,'" } is uniformly Cauchy. Since Y is 

a compact metric space, it is complete, and so this sequence is uniformly 
convergent. 0 

We topologize C(X) by giving it the Loo norm 1100 (sup norm). 

Proposition 3.2. (Aseoli and Arzela) Suppose that X is a compact space 
and that U C C(X) is a bounded subset such that for every x E X and € > 0 
there is a neighborhood N of x such that If(x) - f(y)loo ~ € for all yEN and 
all fEU. Then every sequence in U has a uniformly convergent subsequence. 
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Again, the hypothesis on U is called equicontinuity. 

Proof. Since U is bounded, there is a compact interval Y c lR. such that all 
functions in U take values in Y. The result follows from Proposition 3.1. 0 

EXERCISES 

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space Sj, and 
suppose that for every f > 0 there exists a compact operator T. such that IT-T.I < f. 
Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.) 

Exercise 3.2. (Hilbert-Schmidt operators) Let X be a locally compact Haus
dorff space with a positive Borel measure /-t. Assume that L2(X) has a countable 
basis. Let K E L2(X X X). Consider the operator on L2(X) with kernel K defined 
by 

Tf(x) = L K(x, y) f(y) dy. 

Let cp; be an orthonormal basis of L2(X). Expand K in a Fourier expansion: 

00 

K(x, y) = L '1f;;(x) cp;(y), 
;=1 

Show that L: 1'1f;;12 = f f IK(x, y)1 2dx dy < 00. Consider the operator TN with kernel 

N 

KN(X,y) = L'1f;;(x)cp;(y). 
;=1 

Show that TN is compact, and deduce that T is compact. 
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The Peter-Weyl Theorem 

In this chapter, we assume that G is a compact group. Let C( G) be the 
convolution ring of continuous functions on G. It is a ring (without unit unless 
G is finite) under the multiplication of convolution: 

(Use the variable change h ----t h-lg to prove the identity of the last two 
terms. See Exercise 2.3.) We will sometimes define II * 12 by this formula 
even if II and 12 are not assumed continuous. For example, we will make use 
of the convolution defined this way if II E LOO(G) and 12 E Ll(G), or vice 
versa. 

Since G has total volume 1, we have inequalities (where I Ip denotes the 
LP norm, 1 ~ p ~ 00) 

The second inequality is trivial, and the first is Cauchy-Schwarz: 

If 11 = (If I, 1) ~ Ifl2 ·1112 = If12. 

(Here If I means the function Ifl(x) = If(x)I·) 

(4.1) 

Proposition 4.1. If¢ E C(G), then convolution with ¢ is a bounded operator 
T¢ on Ll(G). If f E Ll(G), then T¢f E LOO(G) and 

(4.2) 

Proof. If f E Ll(G), then 

IT¢floo = sup 11 ¢(gh- l ) f(h) dhl ~ 1¢100 1If(h)1 dh, 
gEG G G 

proving (4.2). Using (4.1), it follows that the operator T¢ is bounded. In fact, 
(4.1) shows that it is bounded in each of the three metrics Ill, 112, 1100. 0 
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Proposition 4.2. If ¢ E C(G), then convolution with ¢ is a bounded operator 
Tcf> on L2(G) and ITcf>1 ~ 1¢loo. The operator Tcf> is compact, and if ¢(g-l) = 

¢(g), it is self-adjoint. 

Proof. Using (4.1), LOO(G) c L2(G) c Ll(G), and by (4.2), ITcf>fI2 ~ 
ITcf>floo ~ 1¢loolfll ~ 1¢loolfI2, so the operator norm ITcf>1 ~ 1¢12. 

By (4.1), the unit ball in L2(G) is contained in the unit ball in Ll(G), so 
it is sufficient to show that !B = {Tcf>flf E Ll(G), If 11 ~ 1} is sequentially 
compact in L2(G). Also, by (4.1), it is sufficient to show that it is sequentially 
compact in LOO(G), that is, in C(G), whose topology is induced by the LOO(G) 
norm. It follows from (4.2) that !B is bounded. We show that it is equicon
tinuous. Since ¢ is continuous and G is compact, ¢ is uniformly continuous. 
This means that given E > 0 there is a neighborhood N of the identity such 
that I¢(kg) - ¢(g)1 < E for all 9 when kEN. Now, if f E Ll(G) and If 11 ~ 1, 
we have, for all g, 

I(¢ * f)(kg) - (¢ * f)(g)1 = 

lfa [¢(kgh- l ) - ¢(gh-l )] f(h) dhl ~ fa I¢(kgh- l ) - ¢(gh-l)llf(h)1 dh ~ 
Elfll ~ E. 

This proves equicontinuity, and sequential compactness of !B now follows by 
the Ascoli-Arzela Lemma (Proposition 3.2). 

If ¢(g-l) = ¢(g), then 

(Tcf>h, h) = Iala ¢(gh-l ) h(h) h(g)dgdh 

while 

(h,Tcf>h) = fa fa ¢(hg-l) h(h) h(g)dgdh. 

These are equal, so T is self-adjoint. o 

Recall that if 9 E G, then (p(g)f)(x) = f(xg) is the right translate of f 
by g. 

Proposition 4.3. If ¢ E C(G), and>' E C, the >.-eigenspace 

V(>.) = {f E L2(G) I Tcf>f = >'1} 

is invariant under p(g) for all 9 E G. 

Proof· Suppose Tcf>f = >.f. Then 

(Tcf>p(g) f) (x) = fa ¢(xh-1)f(hg)dh. 

After the change of variables h --+ hg-1 , this equals 
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fa ¢(xgh-1 ) f(h) dh = p(g)(T",J)(x) = >..p(g)f(x). 

o 

Theorem 4.1. (Peter and Weyl) The matrix coefficients of G are dense 
in C(G). 

Proof. Let f E C(G). We will prove that there exists a matrix coefficient f' 
such that If - 1'100 < 10 for any given 10 > O. 

Since G is compact, f is uniformly continuous. This means that there exists 
an open neighborhood U ofthe identity such that if 9 E U, then Ip(g)f - floo < 
10/2. Let ¢ be a nonnegative function supported in U such that Ja ¢(g) dg = l. 
We may arrange that ¢(g) = ¢(g-l) so that the operator T", is self adjoint as 
well as compact. We claim that IT",f - floo < 10/2. Indeed, if h E G, 

I(¢ * J)(h) - f(h)1 = I fa [¢(g) f(g-lh) - ¢(g)f(h)] dgl :::; 

L ¢(g) If(g-lh) - f(h)1 dg :::; L ¢(g) Ip(g)f - floo dg 

:::; L ¢(g) (10/2) dg = ~. 

By Proposition 4.1, T", is a compact operator on L2(G). If >.. is an eigenvalue 
of T"" let V(>") be the >..-eigenspace. By the spectral theorem, the spaces V(>") 
are finite-dimensional (except perhaps V(O», mutually orthogonal, and they 
span L2(G) as a Hilbert space. By Proposition 4.3 they are T",-invariant. Let 
J>.. be the projection of f on V(>"). Orthogonality of the J>.. implies that 

L 1f>,I~ = Ifl~ < 00. (4.3) 
>. 

Let 
f' = T",(J"), 1" = L f>., 

1>'I>q 

where q > 0 remains to be chosen. We note that f' and 1" are both contained 
in E91>'I>q V(>"), which is a finite-dimensional vector space, and closed under 
right translation by Proposition 4.3, and by Theorem 2.1, it follows that they 
are matrix coefficients. 

By (4.3), we may choose q so that Lo<q<I>'llf>.l~ is as small as we like. 
Using (4.1) may thus arrange that 

L IJ>.I~ < 21;1 . 
O<I>'I<q 00 

(4.4) 
O<I>'I<q 1 O<I>'I<q 2 
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We have 

Tef>(f -!") = Tef> (fO + L 1>.) = Tef> ( L 1>.). 
O<I>'I<q O<I>'I<q 

Using (4.2) and (4.4) we have ITef>(f - !")Ioo ~ f/2. Now 

If - 1'100 = If - Tef>f + Tef>(f - !")I ~ If - Tef>fl + ITef>f - Tef>!"1 

~ ~ + ~ = f. 

Corollary 4.1. The matrix coefficients of G are dense in L2(G). 

o 

Proof. Since C(G) is dense in L2(G), this follows from the Peter-Weyl Theo
rem and (4.1). 0 

We say that a topological group G has no small subgroups if it has a 
neighborhood U of the identity such that the only subgroup of G contained 
in U is just {I}. For example, we will see that Lie groups have no small 
subgroups. On the other hand, some groups, such as GL( n, Zp) where Zp is 
the ring of p-adic integers, have a neighborhood basis at the identity consisting 
of open subgroups. Such a group is called totally disconnected, and for such a 
group the no small subgroups property fails very strongly. 

A representation is called faithful if its kernel is trivial. 

Theorem 4.2. Let G be a compact group that has no small subgroups. Then 
G has a faithful finite-dimensional representation. 

Proof. Let U be a neighborhood of the identity that contains no subgroup but 
{I}. By the Peter-Weyl Theorem, we can find a finite-dimensional representa
tion 7f and a matrix coefficient f such that f(l) = 0 but f(g) > 1 when 9 tJ. U. 
The function f is constant on the kernel of 7f, so that kernel is contained in 
U. It follows that the kernel is trivial. 0 

We will now prove a fact about infinite-dimensional representations of a 
compact group G. The Peter-Weyl Theorem amounts to a "completeness" 
of the finite-dimensional representations from the point of view of harmonic 
analysis. One aspect of this is the L2 completeness asserted in Corollary 4.l. 
Another aspect, which we now prove, is that there are no irreducible uni
tary infinite-dimensional representations. From the point of view of harmonic 
analysis, these two statements are closely related and in fact equivalent. Rep
resentation theory and Fourier analysis on groups are essentially the same 
thing. 

If H is a Hilbert space, a representation 7f : G ~ End(H) is called unitary 
if (7f(g)v,7f(g)w) = (v,w) for all V,W E H, 9 E G. It is also assumed that the 
map (g, v) r---+ 7f(g)v from G x H ~ H is continuous. 
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Theorem 4.3. (Peter and Weyl) Let H be a Hilbert space and G a compact 
group. Let 7f : G ---+ End(H) be a unitary representation. Then H is a direct 
sum of finite-dimensional irreducible representations. 

Proof. We first show that if H is nonzero then it has an irreducible finite
dimensional invariant subspace. We choose a nonzero vector v E H. Let N be 
a neighborhood ofthe identity of G such that if 9 E N then 17f(g)v-vl :;:;; Iv1/2. 
We can find a nonnegative continuous function ¢ on G supported in N such 
that Ie ¢(g) dg = 1. 

We claim that Ie ¢(g) 7f(g)v dg =I- O. This can be proved by taking the 
inner product with v. Indeed 

(i ¢(g) 7f(g)vdg, v ) = (v,v) - (i ¢(g) (v -7f(g)v) d9,V) (4.5) 

and 

I (i ¢(g) (v - 7f(g)v) dg, v) I :;:;; i Iv - 7f(g)vldg 'Ivl :;:;; IvI2 /2. 

Thus, the two terms in (4.5) differ in absolute value and cannot cancel. 
Next, using the Peter-Weyl Theorem, we may find a matrix coefficient f 

such that If - ¢Ioo < E, where E can be chosen arbitrarily. We have 

Ii (f - ¢)(g) 7f(g)v dgl :;:;; Elvl , 

so if E is sufficiently small we have Ie f(g) 7f(g)v dg =I- O. 
Since f is a matrix coefficient, so is the function 9 I-----t f(g-l) by Proposi

tion 2.4. Thus, let (p, W) be a finite-dimensional representation with w E W 
and L: W ---+ C a linear functional such that f(g-l) = L(p(g)w). Define a 
map T : W ---+ H by 

T(x) = i L(p(g-l)X) 7f(g)vdg. 

This is an intertwining map by the same argument used to prove (2.4). It is 
nonzero since T(w) = I f(g)7f(g)vdg =I- o. 

We have proven that every nonzero unitary representation of G has a 
nonzero finite-dimensional invariant subspace, which we may obviously assume 
to be irreducible. From this we deduce the stated result. Let (7f, H) be a 
unitary representation of G. Let E be the set of all sets of orthogonal finite
dimensional irreducible invariant subspaces of H, ordered by inclusion. Thus if 
SEE and U, V E S, then U and V are finite-dimensional irreducible invariant 
subspaces, If U =I- V. then U 1. V. By Zorn's Lemma, E has a maximal 
element S and we are done if S spans H as a Hilbert space. Otherwise, let H' 
be the orthogonal complement of the span of S. By what we have shown, H' 
contains an invariant irreducible subspace. We may append this subspace to 
S, contradicting its maximality. 0 
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EXERCISES 

Exercise 4.1. Let G be totally disconnected, and let 7r : G --+ GL(n, C) be a finite
dimensional representation. Show that the kernel of 7r is open. (Hint: use the fact 
that GL(n, C) has no small subgroups.) Conclude (in contrast with Theorem 4.2) 
that the compact group GL( n, Zp} has no faithful finite-dimensional representation. 

Exercise 4.2. Suppose that G is a compact Abelian group and H eGa closed sub
group. Let x: H --+ ex be a character. Show that X can be extended to a character 
of G. (Hint: Apply Theorem 4.3 to the space V = {f E L2(G) I f(hg) = X(h) f(g)}. 
To show that V is nonzero, note that if </> E C(G) then f(g) = J </>(hg) X(h)-l dh 
defines an element of V. Use Urysohn's Lemma to construct </> such that f =I- 0.) 
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Lie Subgroups of GL(n, C) 

If U is an open subset of jRn, we say that a map ¢ : U ----+ jRm is smooth if 
it has continuous partial derivatives of all orders. More generally, if X c jRn 
is not necessarily open, we say that a map ¢ : X ----+ jRn is smooth if for 
every x E X there exists an open set U of jRn containing x such that ¢ can be 
extended to a smooth map on U. A diffeomorphism of X ~ jRn with Y ~ jRm 
is a homeomorphism F : X ----+ Y such that both F and F-1 are smooth. We 
will assume as known the following useful criterion. 

Inverse Function Theorem. If U c jRd is open and u E U, if F : U ----+ 
jRn is a smooth map, with d < n, and if the matrix of partial derivatives 
(8Fi /8xj) has rank d at u, then u has a neighborhood N such that F induces 
a diffeomorphism of N onto its image. 

A subset X of a topological space Y is locally closed (in Y) if for all x E X 
there exists an open neighborhood U of x in Y such that X n U is closed 
in U. This is equivalent to saying that X is the intersection of an open set 
and a closed set. We say that X is a submanifold of jRn of dimension d if it 
is a locally closed subset and every point of X has a neighborhood that is 
diffeomorphic to an open set in jRd. 

Let us identify Matn(q with the Euclidean space Cn2 ~ jR2n2. The subset 
GL(n, q is open, and if a closed subgroup G of GL(n, q is a submanifold of 
jR2n2 in this identification, we say that G is a closed Lie subgroup of GL(n, q. 
It may be shown that any closed subgroup of GL(n, q is a closed Lie sub
group. See Remark 7.1 and Remark 7.2 for some subtleties behind the innocent 
term "closed Lie subgroup." 

More generally, a Lie group is a topological group G that is a differentiable 
manifold such that the multiplication and inverse maps G x G ----+ G and 
G ----+ G are smooth. We will give a proper definition of a differentiable 
manifold in the next chapter. In this chapter, we will restrict ourselves to 
closed Lie subgroups of GL(n, q. 
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Example 5.1. If F is a field, then the general linear group GL(n, F) is the 
group of invertible n x n matrices with coefficients in F. It is a Lie group. 
Assuming that F = JR. or C, the group GL(n, F) is an open set in Matn(F) 
and hence a manifold of dimension n2 if F = JR. or 2n2 if F = C. The special 
linear group is the subgroup SL( n, F) of matrices with determinant 1. It is a 
closed Lie subgroup of GL(n, F) of dimension n2 - 1 or 2(n2 - 1). 

Example 5.2. If F = JR. or C, let O(n, F) = {g E GL(n, F) I 9 . tg = I}. This 
is the n x n orthogonal group. More geometrically, O(n, F) is the group of 
linear transformations preserving the quadratic form Q(Xl, ... ,xn ) = xi + 
x§ + ... + x;. To see this, if (x) = t(Xl, ... ,xn ) is represented as a column 
vector, we have Q(x) = Q(Xl,··· ,xn ) = tx . x, and it is clear that Q(gx) = 
Q(x) if 9 . tg = f. The group O(n,JR.) is compact and is usually denoted 
simply O(n). The group O(n) contains elements of determinants ±1. The 
subgroup of elements of determinant 1 is the special orthogonal group SO(n). 
The dimension of O(n) and its subgroup SO(n) of index 2 is hn2 - n). This 
will be seen in Proposition 5.6 when we compute their Lie algebra (which is 
the same for both groups). 

Example 5.3. More generally, over any field, a vector space V on which there 
is given a quadratic form q is called a quadratic space, and the set O(V, q) 
of linear transformations of V preserving q is an orthogonal group. Over the 
complex numbers, it is not hard to prove that all orthogonal groups are iso
morphic (Exercise 5.4), but over the real numbers, some orthogonal groups are 
not isomorphic to O(n). If k + r = n, let O(k, r) be the subgroup of GL(n, JR.) 
preserving the indefinite quadratic form xi + ... + x~ - X~+l - ... - x;. If 
r = 0, this is O(n), but otherwise this group is noncompact. The dimensions 
of these Lie groups are, like SO(n), equal to ~(n2 - n). 

Example 5.4. The unitary group U(n) = {g E GL(n, q I 9 . tg = I}. If 9 E 
U(n) then I det(g) I = 1, and every complex number of absolute value 1 is a 
possible determinant of 9 E U(n). The special unitary group SU(n) = U(n) n 
SL(n, q. The dimensions of U(n) and SU(n) are n2 and n2 - 1, just like 
GL(n,JR.) and SL(n, JR.). 

Example 5.5. If F = JR. or C, let Sp(2n, F) = {g E GL(2n, F) I g. J. tg = J}, 
where 

J = (1-6n ). 

This is the symplectic group. The compact group Sp(2n, q n U(2n) will be 
denoted as simply Sp(2n). 

A Lie algebra over a field F is a vector space 9 over F endowed with a 
bilinear map, the Lie bracket, denoted (X, Y) ----t [X, Y] for X, Y E g, that 
satisfies [X, Y] = -[Y, X] and the Jacobi identity 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = o. (5.1) 
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The identity [X, Yl = -[Y, Xl implies that [X, Xl = o. 
We will show that it is possible to associate a Lie algebra with any Lie 

group. We will show this for closed Lie subgroups of GL( n, C) in this chapter 
and for arbitrary lie groups in Chapter 7. 

First we give two purely algebraic examples of Lie algebras. 

Example 5.6. Let A be an associative algebra. Define a bilinear operation on 
A by [X, Yl = XY - YX. With this definition, A becomes a Lie algebra. 

If A = Matn(F), where F is a field, we will denote the Lie algebra asso
ciated with A by the previous example as gl( n, F). After Proposition 5.5 it 
will become clear that this is the Lie algebra of GL(n, F) when F = lR. or C. 
Similarly, if V is a vector space over F, then the space End(V) of F-linear 
transformations V --+ V is an associative algebra and hence a Lie algebra, 
denoted gl(V). 

Example 5.7. Let F be a field and let A be an F-algebra. By a derivation 
of A we mean a map D : A --+ A that is F-linear, and satisfies D(fg) = 
f D(g) + D(f)g. We have D(I· 1) = 2D(I), which implies that D(I) = 0, and 
therefore D(c) = 0 for any c E F c A. It is easy to check that if Dl and 
D2 are derivations, then so is [Db D2l = DlD2 - D2Dl . However, DlD2 and 
D2Dl are themselves not derivations. It is easy to check that the derivations 
of A form a Lie algebra. 

The exponential map exp : Matn(C) --+ GL(n, C) is defined by 

exp(X) = I + X + !X2 + iX3 + .... (5.2) 

This series is convergent for all matrices X. 

Remark 5.1. If X and Y commute, then exp(X +Y) = exp(X) exp(Y). If they 
do not commute, this is not true. 

A one-parameter subgroup of a Lie group G is a continuous homomorphism 
lR. --+ G. We denote this by t f-t gt. Since tX and uX commute, for X E 
Matn(C), the map t --+ exp(tX) is a one-parameter subgroup. We will also 
denote exp(X) = eX. 

Proposition 5.1. Let U be an open subset of lR.n , and let x E U. Then we 
may find a smooth function f with compact support contained in U that does 
not vanish at x. 

Proof. We may assume x = (Xl,··· ,xn ) is the origin. Define 

{ 
_(1_lxI2/r2)-1 ·f I 1./ 

f( ) e 1 x "'" r, Xl ... Xn = , , 0 otherwise. 

This function is smooth and has support in the ball {ixi ~ r}. Taking r 
sufficiently small, we can make this vanish outside U. 0 
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Proposition 5.2. Let G be a closed Lie subgroup of GL( n, C), and let X E 
Matn(C). Then the path t ---+ exp(tX) is tangent to the submanifold G of 
GL(n, C) at t = 0 if and only if it is contained in G for all t. 

Proof. If exp(tX) is contained in G for all t, then clearly it is tangent to G at 
t = O. We must prove the converse. Suppose that exp( toX) ¢ G for some to > 
O. Using Proposition 5.1, Let ¢o be a smooth compactly supported function 
on GL(n, C) such that ¢o(g) = 0 for all 9 E G, ¢o ~ 0, and ¢o( exp(toX)) 1= O. 
Let 

f(t) = ¢( exp(tX)), ¢(h) = fa ¢o(hg) dg, t E 1R, 

in terms of a left Haar measure on G. Clearly, ¢ is constant on the cosets hG 
of G, vanishes on G, but is nonzero at exp(toX). For any t, 

d 
f'(t) = du ¢( exp(tX) exp(uX)) lu=o = 0 

since the path u ---+ exp(tX) exp(uX) is tangent to the coset exp(tX)G and 
¢ is constant on such cosets. Moreover, f(O) = O. Therefore, f(t) = 0 for all 
t, which is a contradiction since f(to) 1= O. 0 

Proposition 5.3. Let G be a closed Lie subgroup of GL( n, C). The set Lie( G) 
of all X E Matn(C) such that exp(tX) eGis a vector space whose dimension 
is equal to the dimension of G as a manifold. 

Proof. This is clear from the characterization of Proposition 5.2. 0 

Proposition 5.4. Let G be a closed Lie subgroup of GL(n, C). The map 

X ---+ exp(X) 

gives a diffeomorphism of a neighborhood of the identity in Lie( G) onto a 
neighborhood of the identity in G. 

Proof. First we note that since exp(X) = I + X + !X2 + ... , the Jacobian 
of exp at the identity is 1, so exp induces a diffeomorphism of an open neigh
borhood U of the identity in Matn(C) onto a neighborhood of the identity in 
GLn(C) c Matn(C). Now, since by Proposition 5.3 Lie(H) is a vector sub
space of dimension equal to the dimension of H as a manifold, the Inverse 
Function Theorem implies that the image of Lie(H) n U must be mapped 
onto an open neighborhood of the identity in H. 0 

Proposition 5.5. If G is a closed Lie subgroup of GL(n, C), and if X, Y E 
Lie(G), then [X, Yj E Lie(G). 

Proof. It is evident that Lie( G) is mapped to itself under conjugation by 
elements of G. Thus, Lie(G) contains 

t (etxYe- tX - Y) = XY - YX + ~(X2y - 2XYX + YX2) + .... 
Because this is true for all t, passing to the limit t ---+ 0 shows that [X, Yj E 

lli~. 0 



5 Lie Subgroups of GL( n, q 33 

We see that Lie( G) is a Lie subalgebra of g[( n, q. Thus, we are able to 
associate a Lie algebra with a Lie group. 

Example 5.8. The Lie algebra of GL(n, F) with F = JR. or I(: is g[(n, F). 

Example 5.9. Let s[(n, F) be the subspace of X E g[(n, F) such that tr(X) = 
O. This is a Lie subalgebra, and it is the Lie algebra of SL(n, F) when F = JR. 
or IC. This follows immediately from the fact that det(eX) = etr(X) for any 
matrix X because if Xl, ... , Xn are the eigenvalues of X, then eX1 ,' •• ,ex.,. 

are the eigenvalues of eX. 

Example 5.10. Let o(n, F) be the set of X E g[(n, F) that are skew-symmetric, 
in other words, that satisfy X + t X = O. It is easy to check that o(n, F) is 
closed under the Lie bracket and hence is a Lie subalgebra. 

Proposition 5.6. If F = JR. or 1(:, the Lie algebra of O(n, F) is o(n, F). The 
dimension of O(n) is Hn2 - n), and the dimension of O(n, q is n2 - n. 

Proof. Let G = O(n,F), 9 = Lie(G). Suppose X E o(n,F). Exponentiate the 
identity -tX = tt X to get 

exp(tX)-l = t exp(tX), 

whence exp(tX) E O(n, F) for all t E JR.. Thus o(n, F) ~ g. To prove the 
converse, suppose that X E g. Then, for all t, 

I = exp( tX) . t exp( tX) 

= (I +tX + ~t2 X2 + .. . )(1 +ttx + ~t2. tX2 + ... ) 
= 1+ t(X + tX) + ~ t2(X2 + 2X· tx + tX2) + .. .. 

Since this is true for all t, each coefficient in this Taylor series must vanish 
(except of course the constant one). In particular, X + t X = O. This proves 
that 9 = o(n, F). 

The dimensions of O(n) and O(n, q are most easily calculated by comput
ing the dimension of the Lie algebras. A skew-symmetric matrix is determined 
by its upper triangular entries, and there are ~(n2 - n) of these. 0 

Example 5.11. Let u(n) be the set of X E GL(n,q such that X + tx = O. 
One checks easily that this is closed under the g[(n, q Lie bracket [X, Y] = 
XY - Y X. Despite the fact that these matrices have complex entries, this is 
a real Lie algebra, for it is only a real vector space, not a complex one. (It is 
not closed under multiplication by complex scalars.) It may be checked along 
the lines of Proposition 5.6 that u(n) is the Lie algebra of U(n), and similarly 
su(n) = {X E u(n) I tr(X) = O} is the Lie algebra of SU(n). 

Example 5.12. Let sp(2n, F) be the set of matrices X E Mat2n(F) that satisfy 
XJ + JtX = 0, where 

J= (~ -tn ). 

This is the Lie algebra of Sp(2n, F). 
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EXERCISES 

Exercise 5.1. Show that O(n,m) is the group of 9 E GL(n + m,~) such that 
gh tg = h, where 

Exercise 5.2. If F = ~ or e, let OJ (F) be the group of all 9 E GL( N, F) such that 
gJtg = J, where J is the N x N matrix 

(5.3) 

Show that OJ(~) is conjugate in GL(N,~) to O(n, n) if N = 2n and to O(n + 1, n) 
if N = 2n + 1. (Hint: Find a matrix 17 E GL(N,~) such that 17 ru = Jl, where J 

is as in the previous exercise.) 

Exercise 5.3. Let J be as in the previous exercise, and let 

1 
v'2i 

17= 

i 
v'2i 

1 
v'2i 

i 
v'2i 

i 
-v'2i 

1 
-v'2i 

with all entries not on one of the two diagonals equal to zero. If N is odd, the middle 
element of this matrix is 1. 

(i) Show that 17 tu = J, with J as in (5.3). With OJ(F) as in Example 5.2, 
deduce that U- 10J(C)u = O(n, C). Why does the same argument not prove that 
U-l0J(~)U = O(n, ~)? 

(ii) Show that if 9 E OJ(C) and h = 17- 1 gu, then h is real if and only if 9 is 
unitary. 

(iii) Show that the group OJ(C) n U(N) is conjugate in GL(N, C) to O(N). 

Exercise 5.4. Let VI and V2 be vector spaces over a field F, and let qi be a quadratic 
form on Vi for i = 1,2. The quadratic spaces are called equivalent if there exists an 
isomorphism l : VI --+ V2 such that ql = q2 0 l. 

(i) Show that over a field of characteristic not equal to 2, any quadratic form is 
equivalent to 2:: aix~ for some constants ai. 

(ii) Show that, if F = e, then any quadratic space of dimension n is equivalent 
to en with the quadratic form x~ + ... + x~. 

(iii) Show that, if F =~, then any quadratic space of dimension n is equivalent 
to ~n with the quadratic form x~ + .. , + x~ - X~+1 - ••. x~ for some T. 

Exercise 5.5. Compute the Lie algebra of Sp(2n,~) and the dimension of the 
group. 
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Let JHl = IIi EEl lIii EEl IIij EEl IIik be the ring of quaternions, where i2 = j2 = k2 = -1 
and ij = -ji = k, jk = -kj = i, ki = -ik = j. Then JHl = C EEl Cj. If x = 
a + bi + cj + dk E JHl with a,b,c,d real, let x = a - bi - cj - dk. If u E C, then 
juj-I = U. The group GL( n, JHl) consists of all n x n invertible quaternion matrices. 

Exercise 5.6. Show that there is a ring isomorphism Matn(JHl) ----t Mat2n(C) with 
the following description. Any A E Matn(JHl) may be written uniquely as Al + A2j; 
the isomorphism in question maps 

Exercise 5.7. Show that if A E Matn (JHl), then A· t A. = I if and only if the complex 
2n x 2n matrix 

C~12 t) 
is in both Sp(2n, C) and U(2n). Recall that the intersection of these two groups was 
the group denoted Sp(2n). 

Exercise 5.S. Show that the groups SO(2), SU(2), and Sp(4) may be identified 
with the groups of matrices 

{ ( ~b !) I a, b E F, lal 2 + Ibl 2 = 1} , 
where F = IIi, C, or JHl, respectively. 
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Vector Fields 

A smooth premanilold of dimension n is a Hausdorff topological space M 
together with a set U of pairs (U, ¢), where the set of U such that (U, ¢) E U 
for some ¢ is an open cover of M and such that, for each (U, ¢) E U, the 
image ¢(U) of ¢ is an open subset of Rn and ¢ is a homeomorphism of U onto 
¢(U). We assume that if U, V E U, then ¢v 0 ¢"[/ is a diffeomorphism from 
¢u(U n V) onto ¢v(U n V). The set U is called a preatlas. 

If M and N are premanifolds, a continuous map I : M --t N is smooth 
if whenever (U,¢) and (V,'¢I) are charts of M and N, respectively, the map 
'¢I 0 I 0 ¢-l is a smooth map from ¢(U n I-I(V)) --t '¢I(V). Smooth maps 
are the morphisms in the category of smooth premanifolds. The smooth map 
f is a diffeomorphism if it is a bijection and has a smooth inverse. Open 
subsets of Rn are naturally premanifolds, and the definitions of smooth maps 
and diffeomorphisms are consistent with the definitions already given in that 
special case. 

If M is a premanifold with atlas U, and if we replace U by the larger set U' 
of all pairs (U, ¢), where U is an open subset of M and ¢ is a diffeomorphism 
of U onto an open subset of Rn, then the set of smooth maps M --t N or 
N --t M, where N is another premanifold, is unchanged. If U = U', then we 
call U' an atlas and M a smooth manilold. 

Suppose that M is a smooth manifold and mE M. If U is a neighborhood 
of x and (¢, U) is a chart such that ¢( x) is the origin in Rn, then we may write 
¢(u) = big(XI(U),··· ,xn(u)), where Xl,··· ,Xm: U --t R are smooth func
tions. Composing ¢ with a translation in Rn, we may arrange that Xi (m) = 0, 
and it is often advantageous to do so. We call Xl, ... ,Xm a set of local coor
dinates at m or coordinate functions on U. The set U itself may be called a 
coordinate neighborhood. 

Let m E M, and let F = R or C. A germ of an F-valued function is 
an equivalence class of pairs (U, lu), where U is an open neighborhood of X 

and I : U --t F is a function. The equivalence relation is that (U, lu) and 
(V, Iv) are equivalent if lu and Iv are equal on some open neighborhood 
W of X contained in un V. Let Om be the set of germs of smooth real-
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valued functions. It is a ring in an obvious way, and evaluation at m induces a 
surjective homomorphism Om --+ ~, the evaluation map. We will denote the 
evaluation map f 1-7 f(m), a slight abuse of notation since f is a germ, not a 
function. Let Mm be the kernel of this homomorphism; that is, the ideal of 
germs of smooth functions vanishing at m. Then Om is a local ring and Mm 
is its maximal ideal. 

Lemma 6.1. Suppose that f is a smooth function on a neighborhood U of the 
origin in ~n, and f(O, X2, ... ,xn) = ° for (0, X2, ... ,xn) E U. Then 

defines a smooth function on U. 

Proof. We show first that g is continuous. Indeed, with X2,· .. ,Xn fixed, 

by the definition of the derivative. Convergence is uniform on compact sets in 
X2, ... ,Xn since by the remainder form of Taylor's Theorem 

IXII f(Xl,··· ,xn) - (af/fJx l ) (0, X2,··· ,xn)1 :::; i Xl, 

where B is an upper bound for la2 f laxil. Since af laXl(O, X2,··· ,xn ) is con
tinuous by the smoothness of f, it follows that g is continuous. 

A similar argument based on Taylor's Theorem shows that the higher 
partial derivatives an g I ax~ are also continuous. 

Finally, the two functions 

and 

bear the same relationship to each other as f and g, so we obtain similarly 
continuity of the mixed partials a k1 +k2+ ... +kn g I ax~l ax~2 ... ax~n . 0 

Proposition 6.1. Let mE M, where M is a smooth manifold of dimension 
n. Let 0 = Om and M = Mm. Let Xl, ... ,Xn be the germs of a set of local 
coordinates at m. Then X!,··· ,Xn generate the ideal M. Moreover, MIM2 
is a vector space of dimension n generated by the images of Xl, ... ,Xn · 

Proof. Although this is really a statement about germs of functions, we will 
work with representative functions defined in some neighborhood of m. 

If f E M, we write f = ft + 12, where fl (Xl, ... ,X2) = f(O, X2, ... ,xn) 
and 12 = f - ft. Then 12 E xlO by Lemma 6.1, while 12 is the germ of a 
function in X2,· .. ,Xn vanishing at m and lies in X20+ . .. +xnO by induction 
on n. 
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As for the last assertion, if f EM, let ai = (of /aXi)(m). Then f - 2:i aixi 
vanishes to order 2 at m. We need to show that it lies in M2. Thus, what we 
must prove is that if f and of / aXi vanish at m, then f is in M2. To prove 
this, write f = it + 12 + h, where 

of 
it (XI, X2, ... ,xn) = f(XI, ... ,xn ) - f(O, X2, ... ,xn ) - Xl aXI (0, X2, ... ,xn ), 

12(xI, ... ,Xn ) = f(O, X2, ... ,xn ), 

of 
h(XI,X2,'" ,xn) =XI~(0,X2"" ,xn ). 

UXI 

Two applications of Lemma 6.1 show that it = x12h where h is smooth, so 
it E M2. The function 12 also vanishes, with its first-order partial derivatives 
at m, but is a function in one fewer variables, so by induction it is in M2. 
Lastly, of / aXI vanishes at m and hence is in M by the part of this proposition 
that is already proved, so multiplying by Xl gives an element of M2. 0 

A local derivation of Om is a map X : Om ---t lR that is lR-linear and such 
that 

X(fg) = f(m)X(g) + g(m)X(f). (6.1) 

Taking f = 9 = 1 gives X(l·l) = 2X(1) so X annihilates constant functions. 
For example, if Xl, ... , Xn are a set of local coordinates and aI, ... ,an E lR, 

then 

(6.2) 

is a local derivation. 

Proposition 6.2. Let m be a point on an n-dimensional smooth manifold M. 
Every local derivation of Om is of the form {6.2}. The set Tm(M) of such local 
derivations is an n-dimensional real vector space. 

Proof. If f and 9 both vanish at m, then (6.1) implies that a local derivation 
X vanishes on M2, and by Proposition 6.1 it is therefore determined by its 
values on XI, .. , ,Xn . If these are al, ... ,an, then X agrees with the right
hand side of (6.2). 0 

We now define tangent space Tm(M) to be the space of local derivations of 
Om. We will call elements of Tm(M) tangent vectors. Thus, a tangent vector 
at m is the same thing as a local derivation of the ring Om. 

This definition of tangent vector and tangent space has the advantage 
that it is intrinsic. Proposition 6.2 allows us to relate this definition to the 
intuitive notion of a tangent vector. Intuitively, a tangent vector should be 
an equivalence class of paths through m: two paths are equivalent if they are 
tangent. By a path we mean a smooth map u : (-f, f) --+ M such that 
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u(O) = m for some € > O. Given a function, or the germ of a function at m, 
we can use the path to define a local derivation 

Xf = dd f(u(t)) I . 
t t=o 

(6.3) 

Using the chain rule, this equals (6.2) with ai = (d/dt)(Xi(U(t)))lt=o . 
We will denote the element (6.2) of Tm(M) by the notation 

By a vector field X on M we mean a rule that assigns to each point m E M 
an element Xm E Tm(M). The assignment m ---t Xm must be smooth. This 
means that if Xl, ... ,Xn are local coordinates on an open set U ~ M, then 
there exist smooth functions aI, ... ,an on U such that 

n 8 
Xm = Lai(m) -8 .. 

i=l X~ 
(6.4) 

It follows from the chain rule that this definition is independent of the choice 
of local coordinates Xi. 

Now let A = COO(M, JR) be the ring of smooth real-valued functions on 
M. Given a vector field X on M, we may obtain a derivation of A as follows. 
If f E A, let X (J) be the smooth function that assigns to m E M the value 
Xm (J) , where we are of course applying Xm to the germ of f at m. For 
example, if M = U is an open set on JRn with coordinate functions Xl, ... ,Xn 

on U, given smooth functions ai : U ---t JR, we may associate a derivation of 
A with the vector field (6.4) by 

n 8f 
(Xf)(m) = ~ai(m) 8Xi (m). (6.5) 

The content of the next theorem is that every derivation of A is associated 
with a vector field in this way. 

Proposition 6.3. There is a one-to-one correspondence between vector fields 
on a smooth manifold M and derivations of COO(M,JR). Specifically, if D is 
any derivation ofCOO(M,JR), there is a unique vector field X on M such that 
Df = Xf for all f· 

Proof. We show first that if mE M, and if f E A = COO(M,JR) has germ zero 
at m, then the function D f vanishes at m. This implies that D induces a well
defined map Xm : Om ---t JR that is a local derivation. Our assumption means 
that f vanishes in a neighborhood of m, so there is another smooth function 
9 such that gf = f, yet g(m) = O. Now D(J)(m) = g(m) D(J) + f(m) D(g). 
Since both f and 9 vanish at m, we see that D(J)(m) = O. 
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Now let Xi be local coordinates on an open set U of M. For each m E U 
there are real numbers ai(m) such that (6.4) is true. We need to know that the 
ai(m) are smooth functions. Indeed, we have ai(m) = D(Xi), so it is smooth. 

D 

Now let X and Y be vector fields on M. By Proposition 6.3, we may 
regard these as derivations of COO(M,JR). As we have noted in Example 5.7, 
derivations of an arbitrary ring form a Lie algebra. Thus [X, YJ = XY - Y X 
defines a derivation: 

[X, YJf = X(Yf) - Y(Xf). (6.6) 

By Proposition 2.8 this derivation [X, YJ corresponds to a vector field. Let us 
see this again concretely by computing its effect in local coordinates. If X = 

L:aiaa, and Y = L:biaa" we have X(Yf) = L:. J. [aJ'-"""'-aab" .!!.1...aa , +aibJ'aa,2af .]. x, Xt. Co, X3 x, x, X3 

This is not a derivation, but if we subtract Y(Xf) to cancel the unwanted 
mixed partials, we see that 

EXERCISES 

The following exercise requires some knowledge of topology. 

Exercise 6.1. Let X be a vector field on the sphere Sk. If Xm =1= 0 for all m E Sk, 
show that the antipodal map a : Sk --+ Sk and the identity map Sk --+ Sk are 
homotopic. Show that this implies that k is odd. (Hint: Normalize the vector field 
so that Xm is a unit tangent vector for all m. If m E Sk consider the great circle 
Om: [0,211']--+ Sk tangent to X m. Then Om(O) = Om(27r) = m, but m r--+ Om(7r) is 
the antipodal map.) 
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Left-Invariant Vector Fields 

To recapitulate, a Lie group is a differentiable manifold with a group structure 
in which the multiplication and inversion maps G x G --+ G and G --+ G 
are smooth. A homomorphism of Lie groups is a group homomorphism that 
is also a smooth map. 

Remark 7.1. There is a subtlety in the definition of a Lie subgroup. A Lie 
subgroup is best defined as a Lie group H with an injective homomorphism 
i : H --+ G. With this definition, the image of i in G is not closed, however, 
as the following example shows. Let G be '][' x '][', where'][' is the circle JRjZ. 
Let H be JR, and let i : H --+ G be the map i(t) = (at, f3t) modulo 1, where 
the ratio aj f3 is irrational. This is a Lie subgroup, but the image of H is not 
closed. To require a closed image in the definition of a Lie subgroup would 
invalidate a theorem of Chevalley that subalgebras of the Lie algebra of a Lie 
group correspond to Lie subgroups. If we wish to exclude this type of example, 
we will explicitly describe a Lie subgroup of G as a closed Lie subgroup. 

Remark 7.2. On the other hand, in the expression "closed Lie subgroup," the 
term "Lie" is redundant. It may be shown that a closed subgroup of a Lie 
group is a submanifold and hence a Lie group. See Brocker and Tom Dieck 
[16], Theorem 3.11 on p. 28; Knapp [83] Chapter I Section 4; or Knapp [82], 
Theorem 1.5 on p. 20. We will only prove this for the special case of an Abelian 
subgroup in Theorem 15.2 below. 

Let G be a Lie group. If g E G, then Lg : G --+ G defined by Lg(h) = gh is 
a diffeomorphism and hence induces maps Lg,* : Th(G) --+ Tgh(G). A vector 
field X on G is left-invariant if Lg,*(Xh) = Xgh. 

Proposition 7.1. The vector space of left-invariant vector fields is closed un
der [,land is a Lie algebra of dimension dim(G). If Xe E Te(G), there is a 
unique left-invariant vector field X on G with the prescribed tangent vector at 
the identity. 
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Proof. Given a tangent vector Xe at the identity element e of G, we may 
define a left-invariant vector field by Xg = Lg,*(Xe ), and conversely any left
invariant vector field must satisfy this identity, so the space of left-invariant 
vector fields is isomorphic to the tangent space of G at the identity. Therefore, 
its vector space dimension equals the dimension of G. 0 

Let Lie( G) be the vector space of left-invariant vector fields, which we may 
identify with the Te(G). It is clearly closed under [ , ]. 

Suppose now that G = GL(n, C). We have defined two different Lie alge
bras for G: first, Matn(C) with the commutation relation [X, Y] = XY - YX 
(matrix multiplication); and second, left-invariant vector fields. The first Lie 
algebra is an n2-dimensional complex Lie algebra, which we may regard as a 
2n2-dimensional real Lie algebra that happens to have a complex structure. 
The second Lie algebra is a 2n2-dimensional vector space by Proposition 7.1 
because G is an open set in Matn((C) = Cn2 ~ lR2n2 and hence has dimension 
2n2 as a manifold. We want to see that they are the same. 

If X E Matn(C), we begin by associating with X a left-invariant vector 
field. Since G is an open subset of the real vector space V = Matn(C), we may 
identify the tangent space to G at the identity with V. With this identification, 
an element X E V is the local derivation at 1 (see (6.3)) defined by 

f f--t dd f(1 + tX) I ' 
t t=O 

where f is the germ of a smooth function at 1. The two paths t --+ 1 + tX 
and t --+ exp(tX) = 1 + tX + ... are tangent when t = 0, so this is the same 
as 

f --+ dd f( exp(tX)) I ' 
t t=O 

which is a better definition. Indeed, if H is a Lie subgroup of GL(n, C) and X 
is in the Lie algebra of H, then by Proposition 5.2, the second path exp(tX) 
stays within H, so this definition still makes sense. 

It is clear how to extrapolate this local derivation to a left-invariant global 
derivation of COO(G,lR). We must define 

(dX)f(g) = !f(gexp(tX)) It=o . (7.1) 

By Proposition 2.8, the left-invariant derivation dX of COO(G,lR) corresponds 
to a left-invariant vector field. To distinguish this derivation from the element 
X of Matn(C), we will resist the temptation to denote this derivation also as 
X and denote it by dX. 

Lemma 7.1. Let f be a smooth map from a neighborhood of the origin in lRn 

into a finite-dimensional vector space. We may write 

f(x) = Co + Cl(X) + B(x, x) + r(x), (7.2) 

where Cl : lRn --+ V is linear, B : lRn x lRn --+ V is symmetric and bilinear, 
and r vanishes to order 3. 
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Proof. This is just the familiar Taylor expansion. Denoting u = (ut,··· ,un), 
let Co = 1(0), 

and 

Both 1 (x) and Co + Cl (x) + B (x, x) have the same partial derivatives of order 
~ 2, so the difference r(x) vanishes to order 3. The fact that B is symmetric 
follows from the equality of mixed partials: 

o 

Proposition 7.2. If X, Y E Matn (C), and if f is a smooth function on 
G = GL(n,C), then d[X, Ylf = dX(dYf) - dY(dXf). 

Here [X,Yl means XY - YXj that is, the bracket computed as in Chapter 
5. The content of this proposition is that this definition is consistent with the 
bracket in Chapter 5. 

Proof. We fix a function 1 E COO(G) and an element 9 E G. By Lemma 7.1, 
we may write, for X near 0, 

f(g(I + X)) = Co + Cl(X) + B(X, X) + r(X), 

where Cl is linear in X, B is symmetric and bilinear, and r vanishes to order 
3 at X = o. We will show that 

(dX f)(g) = Cl(X) (7.3) 

and 
(dX 0 dY f)(g) = Cl(XY) + 2B(X, Y). (7.4) 

Indeed, 

d 
(dX f)(g) = dt l(g(I + tX))lt=o = 

1t (eo + Cl(tX) + B(tX, tX) + r(tX)) It=o· 

We may ignore the B and r terms because they vanish to order ~ 2, and since 
Cl is linear, this is just Cl(X) proving (7.3). Also 
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(dX 0 dYf)(g) = ! ((dY f)(g(I + tX)) lu=o 
a a I = at au f(g(I +tX)(I +uY)) t=u=O 

a a [ = at au Co + Cl(tX + uY + tuXY) 

+B(tX +uY +tuXY,tX +uY +tuXY) +r(tX +uY +tuXY)] It=u=o. 

We may omit r from this computation since it vanishes to third order. Ex
panding the linear and bilinear maps Cl and B, we obtain (7.4). 

Similarly, 
(dY 0 dXf)(g) = Cl(YX) + 2B(X, Y). 

Subtracting this from (7.4) to kill the unwanted B term, we obtain 

((dX 0 dY - dYo dX) f) (g) = Cl(XY - YX) = (d[X, Y] f) (g) 

by (7.3). o 

This proposition shows that if X E Matn (C), and if we associate with X 
a derivation of COO(G,lR.), where G = GL(n, C), using the formula (7.1), then 
the two brackets give the same result. 

Suppose that M and N are smooth manifolds and ¢ : M ---t N is a smooth 
map. If mE M and n = ¢(m), we get a map ¢* : Tm(M) ---t Tn(N). Indeed, 
if Om and On are the local rings, composition with ¢ gives a homomorphism 
On ---t Om, so if D is a local derivation of Om, then On :;) f I-----t D(J 0 ¢) is 
a local derivation of Tn(N). 

If ¢ is a diffeomorphism of M onto N, then we can push a vector field X 
on M forward this way to obtain a vector field on N. However, if ¢ is not a 
diffeomorphism, this doesn't work because some points in N may not even be 
in the image of ¢, while others may be in the image of two different points 
ml and m2 with no guarantee that ¢*Xm1 = ¢*Xm2 • 

Nevertheless, if ¢ : G ---t H is a homomorphism of Lie groups, there is an 
induced map of Lie algebras, as we will now explain. Let X be a left-invariant 
vector field on G. We have induced a map ¢* : Te(G) ---t Te(H), and by 
Proposition 7.1 applied to H there is a unique left-invariant vector field Y on 
H such that ¢*Xe = Ye. We regard Y as an element of Lie(H), and X I-----t Y 
is a map Lie(G) ---t Lie(H), which we denote Lie(¢). 

A map f : 9 ---t ~ of Lie algebras is naturally called a homomorphism if 
f([X, Y]) = [J(X), f(Y)]. 

Proposition 7.3. If ¢ : G ---t H is a Lie group homomorphism, then Lie( ¢) : 
Lie( G) ---t Lie( H) is a Lie algebra homomorphism. 

Proof· If X, Y E G, then Xe and Ye are local derivations of Oe(G), and it is 
clear from the definitions that ¢*([Xe, Ye]) = [¢*(Xe), ¢*(Ye)]. Consequently, 
[Lie(¢)X, Lie(¢)Y] and Lie(¢) ([X, Y]) are left-invariant vector fields on H that 
agree at the identity, so they are the same by Proposition 7.1. 0 
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The Lie algebra homomorphism Lie( ¢) is called the differential of ¢. 
We may ask to what extent the Lie algebra homomorphism Lie( ¢) con

tains complete information about ¢. For example, given Lie groups G and 
H with Lie algebras g and ~, and a homomorphism f : g ---+ ~, is there a 
homomorphism G ---+ H with Lie( ¢) = f? 

In general, the answer is no, as the following example will show. 

Example 7.1. Let H = SU(2) and let G = SO(3). H acts on the three

dimensional space V of Hermitian matrices ~ = ( x. y + iZ) of trace 
y - zz -x 

zero by h : ~ I-t h~h-l = h~th, and 

~ I-t - det(~) = x2 + y2 + z2 

is an invariant positive definite quadratic form on V invariant under this 
action. Thus, the transformation ~ I-t h~h-l of V is orthogonal, and we have 
a homomorphism 1/J : SU(2) ---+ SO(3). Both groups are three-dimensional, 
and 1/J is a local homeomorphism at the identity. The differential Lie( 1/J) : 
5u(2) ---+ 50(3) is therefore an isomorphism and has an inverse, which is 
a Lie algebra homomorphism 50(3) ---+ 5u(2). However, 1/J itself does not 
have an inverse since it has a nontrivial element in its kernel, -I. Therefore, 
Lie(1/J)-l : 50(3) ---+ 5u(2) is an example of a Lie algebra homomorphism that 
does not correspond to a Lie group homomorphism SO(3) ---+ SU(2). 

Nevertheless, we will see later (Proposition 14.2) that if G is simply
connected, then any Lie algebra homomorphism g ---+ ~ corresponds to a 
Lie group homomorphism G ---+ H. Thus, the obstruction to lifting the Lie 
algebra homomorphism 50(3) ---+ 5u(2) to a Lie group homomorphism is 
topological and corresponds to the fact that SO(3) is not simply-connected. 

EXERCISES 

Exercise 7.1. Compute the Lie algebra homomorphism Lie(1P) : 5u(2) ---+ 50(3) of 
Example 7.1 explicitly. 

Exercise 7.2. Show that no Lie group can be homeomorphic to the sphere 8 k if k 
is even. On the other hand, show that SU(2) ~ 8 3 . 
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The Exponential Map 

The exponential map, introduced for closed Lie subgroups of GL(n, q in 
Chapter 5, can be defined for a general Lie group G as a map Lie(G) ---+ G. 

We may consider a vector field (6.5) that is allowed to vary smoothly. By 
this we mean that we introduce a real parameter A E (-10, E) for some 10 > 0 
and smooth functions ai : M x (-10, E) ---+ C and consider a vector field, which 
in local coordinates is given by 

(8.1) 

Proposition 8.1. Suppose that M is a smooth manifold, m E M, and X is 
a vector field on M. Then, for sufficiently small 10 > 0, there exists a path 
p: (-10, E) ---+ M such that p(O) = m and p* (d/dt) (t) = Xp(t) for t E (-10, E). 
Such a curve, on whatever interval it is defined, is uniquely determined. If 
the vector field X is allowed to depend on a parameter A as in (8.1), then for 
small values oft, p(t) depends smoothly on A. 

Here we are regarding the interval (-10,10) as a manifold, and p*(d/dt) is the 
image of the tangent vector d/dt. We call such a curve an integral curve for 
the vector field. 

Proof. In terms of local coordinates Xl, ... ,Xn on M, the vector field X is 

where the ai are smooth functions in the coordinate neighborhood. If a path 
p(t) is specified, let us write Xi(t) for the Xi component of p(t), with the 
coordinates of m being Xl = ... = Xn = O. Applying the tangent vector 
p*(t)(d/dt)(t) to a function f E COO(G) gives 

!f(xI (t), . .. ,Xn(t)) = L x~(t) :~ (XI(t), . .. ,Xn(t)). 
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On the other hand, applying Xp(t) to the same f gives 

so we need a solution to the first-order system 

(i = 1,··· ,n). 

The existence of such a solution for sufficiently small Itl, and its uniqueness 
on whatever interval it does exist, is guaranteed by a standard result in the 
theory of ordinary differential equations, which may be found in most texts. 
See, for example, Ince [66], Chapter 3, particularly Section 3.3, for a rigorous 
treatment. The required Lipschitz condition follows from smoothness of the 
ai. For the statement about continuously varying vector fields, one needs to 
know the corresponding fact about first-order systems, which is discussed 
in Section 3.31 of [66]. Here Ince imposes an assumption of analyticity on 
the dependence of the differential equation on A, which he allows to be a 
complex parameter, because he wants to conclude analyticity of the solutions; 
if one weakens this assumption of analyticity to smoothness, one still gets 
smoothness of the solution. 0 

In general, the existence of the integral curve of a vector field is only 
guaranteed in a small segment (-€, E), as in Proposition 8.1. However, we will 
now see that, for left-invariant vector fields on a Lie group, the integral curve 
extends to alllR. This fact underlies the construction of the exponential map. 

Theorem 8.1. Let G be a Lie group and 9 its Lie algebra. There exists a map 
exp : 9 --+ G that is a local homeomorphism in a neighborhood of the origin 
in g such that, for any X E g, t --+ exp(tX) is an integral curve for the 
left-invariant vector field X. Moreover, exp (( t + u )X) = exp( tX) exp( uX). 

Proof. Let X E g. We know that for sufficiently small € > 0 there exists 
an integral curve p : (-€, €) --+ G for the left-invariant vector field X with 
p(O) = 1. We show first that if p : (a, b) --+ G is any integral curve for an 
open interval (a, b) containing 0, then 

p(s) p(t) = p(s + t) when s, t, s + t E (a, b). (8.2) 

Indeed, since X is invariant under left-translation, left-translation by p( s ) 
takes an integral curve for the vector field into another integral curve. Thus 
t --+ p( s) p( t) and t --+ p( S + t) are both integral curves, with the same 
initial condition 0 --+ p( s). They are thus the same. 

With this in mind, we show next that if p : (-a, a) --+ G is an integral 
curve for the left-invariant vector field X, then we may extend it to all of lR. 
Of course, it is sufficient to show that we may extend it to (-~a, ~a). We 
extend it by the rule p(t) = p(a/2)p(t - a/2) when -a/2 ~ t ~ 3a/2 and 
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p(t) = p( -a/2) p(t + a/2) when -3a/2 :::; t :::; a/2, and it follows from (8.2) 
that this definition is consistent on regions of overlap. 

Now define exp : g -+ G as follows. Let X E g, and let p : JR. -+ G be an 
integral curve for the left-invariant vector field X with p(O) = O. We define 
exp(X) = p(l). We note that if u E JR., then t H p(tu) is an integral curve for 
uX, so exp(uX) = p(u). 

The exponential map is a smooth map, at least for X near the origin in g, 
by the last statement in Proposition 8.1. Identifying the tangent space at the 
origin in the vector space g with g itself, exp induces a map To(g) -+ Te(G) 
(that is g -+ g), and this map is the identity map by construction. Thus the 
Jacobian of exp is nonzero and, by the Inverse FUnction Theorem, exp is a 
local homeomorphism near O. 0 

We also denote exp(X) as eX for X E g. 

Remark 8.l.1f G = GL(n, C), then as we explained in Chapter 7, Proposition 
7.2 allows us to identify the Lie algebra of G with Matn(C). We observe that 
the definition of exp : Matn(C) -+ GL(n, C) by a series in (5.2) agrees with 
the definition in Theorem 8.1. This is because t f---+ exp(tX) with either 
definition is an integral curve for the same left-invariant vector field, and the 
uniqueness of such an integral curve follows from Proposition 8.1. 

A representation of a Lie algebra g over a field F is a Lie algebra homo
morphism p: g -+ End(V), where V is an F-vector space, or more generally 
a vector space over a field E containing F, and End(V) is given the Lie al
gebra structure that it inherits from its structure as an associative algebra. 
Thus 

p([x,yJ) = p(x)p(y) - p(y)p(x). 

We may sometimes find it convenient to denote p(x)v as just xv for x E g 
and v E V. We may think of (x, v) H xv = 7r(x)v as a multiplication. If V 
is a vector space, given a map g x V -+ V denoted (x, v) H xv such that 
x H 7r(x) is a representation, where 7r(x) : V -+ V is the endomorphism 
v -+ xv, then we call Vag-module. A homomorphism ¢ : U -+ V of 
g-modules is an F-linear map satisfying ¢(xv) = x¢(v). 

Example 8.1. If ¢ : G -+ GL(V) is a representation, where V is a real or 
complex vector space, then the Lie algebra of GL(V) is End(V), so the differ
ential Lie(¢) : Lie(G) -+ End(V), defined by Proposition 7.3, is a Lie algebra 
representation. 

By the universal property of U(g) in Theorem 10.1, A Lie algebra represen
tation p: g -+ End(V) extends to a ring homomorphism U(g) -+ End(V), 
which we continue to denote as p. 

If g is a Lie algebra over a field F, we get a homomorphism ad : g -+ 
End(g), called the adjoint map, defined by ad(x)y = [x, yj. We give End(g) 
the Lie algebra structure it inherits as an associative ring. We have 
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ad(x)([y,z]) = [ad(x)(y),z] + [y,ad(x)(z)] (8.3) 

since, by the Jacobi identity, both sides equal [x, [y, zll = [[x, y], z] + [y, [x, zll. 
This means that ad(x) is a derivation of g. 

Also 
ad(x) ad(y) - ad(y) ad(x) = ad ([x, y]) (8.4) 

since applying either side to z E g gives [x, [y, zll- [y, [x, zll = [[x, y), z] by the 
Jacobi identity. So ad : g ---t End(g) is a Lie algebra representation. 

We digress to explain the geometric origin of ad. To begin with, repre
sentations of Lie algebras arise naturally from representations of Lie groups. 
Suppose that G is a Lie group and g is its Lie algebra. If V is a vector space 
over lR or C, any Lie group homomorphism 7r : G ---t GL(V) induces a Lie 
algebra homomorphism g ---t End(V) by Proposition 7.3; that is, a real or 
complex representation. 

In particular, G acts on itself by conjugation, and so it acts on g = Te(G). 
This representation is called the adjoint representation and is denoted Ad : 
G ---t GL(g). We show next that the differential of Ad is ad. That is: 

Proposition 8.2. Let G be a Lie group, g its Lie algebm, and Ad : G ---t 

GL(g) the adjoint representation. Then the Lie group representation g ---t 

End(g) corresponding to Ad by Proposition 7.3 is ad. 

Proof. It will be most convenient for us to think of elements of the Lie algebra 
as tangent vectors at the identity or as local derivations of the local ring there. 
Let X, Y E g. If f E COO(G), define c(g)f(h) = f(g-lhg). Then our definitions 
of the adjoint representation amount to 

(Ad(g)Y)f = Y(c(g-l)f). 

To compute the differential of Ad, note that the path t ---t exp( tX) in G is 
tangent to the identity at t = 0 with tangent vector X. Therefore, under the 
representation of g in Proposition 7.3, X maps Y to the local derivation at 
the identity 

f ~ ~ (Ad(etX)Y)f I = ~~ f(etXeuY e-tX ) I . 
dt t=o dt du t=u=O 

By the chain rule, if F(tl' t 2 ) is a function of two real variables, 

d I 8F 8F -d F(t,t) = ~(O,O) + -8 (0,0). 
t t=o Vbl t2 

(8.5) 

Applying this, with u fixed to F(tlJ t2) = f(et1X eUY e-t2X ), our last expression 
equals 

~~ f(etX eUY ) I - ~~ f(euY etX ) I = XYf(l) - YXf(l). 
du dt t=u=O du dt t=u=O 

This is of course the same as the effect of [X, Y] = ad(X)Y. o 
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Tensors and Universal Properties 

We will review the basic properties of the tensor product and use them to 
illustrate the basic notion of a universal property, which we will see repeatedly. 

If R is a commutative ring and M, N, and P are R-modules, then a bilinear 
map f : M x N ~ P is a map satisfying 

ri E R, mi E M, n E N, 

f(m, rini + r2n2) = rd(m, nl) + r2!(m, n2), ri E R, ni EN, mE M. 

More generally, if Ml,'" ,Mk are R-modules, the notion of a k-linear map 
MI x ... X Mk ~ P is defined similarly: the map must be linear in each 
variable. 

The tensor product M Q9R N is an R-module together with a bilinear map 
Q9 : M x N ~ M Q9 R N satisfying the following property. 

Universal Property of the Tensor Product. If P is any R-module and p : 
MxN ~ P is a bilinear map, there exists a unique R-module homomorphism 
F : M Q9 N ~ P such that p = F 0 Q9. 

Why do we call this a universal property? It says that Q9 : M x N ~ 
M Q9 N is a "universal" bilinear map in the sense that any bilinear map of 
M x N factors through it. The module M Q9RN is uniquely determined by the 
universal property. This important fact is obvious if one thinks of it correctly. 
Before we explain this point, let us make a categorical observation. 

If C is a category, an initial object in C is an object Xo such that, for 
every object Y, the Hom set Homc(Xo, Y) consists of a single element. A 
terminal object is an object Xoo such that, for every object Y, the Hom set 
Homc(Y, Xoo) consists of a single element. For example, in the category of 
sets, the empty set is an initial object and a set consisting of one element is 
a terminal object. 

Lemma 9.1. In any category, any two initial objects are isomorphic. Any two 
terminal objects are isomorphic. 
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Proof. If Xo and Xl are initial objects, there exist unique morphisms f : 
Xo --t Xl (since Xo is initial) and 9 : Xl --t Xo (since Xl is initial). Then 
9 0 f : Xo --t Xo and lxo : Xo --t Xo must coincide since Xo is initial, 
and similarly fog = lx l . Thus f and 9 are inverse isomorphisms. Similarly, 
terminal objects are isomorphic. 0 

Theorem 9.1. The tensor product M ®R N, if it exists, is determined up to 
isomorphism by the universal property. 

Proof. Let C be the following category. An object in C is an ordered pair 
(P,p), where P is an R-module and p : M x N --t P is a bilinear map. If 
X = (P,p) and Y = (Q, q) are objects, then a morphism X --t Y consists of 
an R-module homomorphism f : P --t Q such that q = fop. The universal 
property of the tensor product means that ® : M x N --t N ® N is an initial 
object in this category and therefore determined up to isomorphism. 0 

Of course, we usually denote ®(m, n) as m ® n in M ®R N. We have not 
proved that M ® R N exists. We refer to any text on algebra for this fact, such 
as Lang [90], Chapter XVI. 

In general by a universal property we mean any characterization of a math
ematical object that can be expressed by saying that some associated object is 
an initial or terminal object in some category. The basic paradigm is that a 
universal property characterizes an object up to isomorphism. 

A typical application of the universal property of the tensor product is 
to make M ®R N into a functor. Specifically, if J.t : M --t M' and 1/ : 

N --t N' are R-module homomorphisms, then there is a unique R-module 
homomorphism J.t ® 1/: M ®R N --t M' ®R N' such that (J.t ® 1/)(m ® n) = 
J.t(m) ® 1/(n). We get this by applying the universal property to the R-bilinear 
map M x N --t M' ® N' defined by (m, n) I-----t J.t(m) ® 1/(n). 

As another example of an object that can be defined by a universal prop
erty, let V be a vector space over a field F. Let us ask for an F -algebra 
® V together with an F-linear map i : V --t ® V satisfying the following 
condition. 

Universal Property of the Tensor Algebra. If A is any F-algebra and 
if> : V --t A is an F -linear map then there exists a unique F -algebra homo
morphism cP: ® V --t A such that r = poi. 

It should be clear from the previous discussion that this universal property 
characterizes the tensor algebra up to isomorphism. To prove existence, we can 
construct a ring with this exact property as follows. Let unadorned ® mean 
®F in what follows. By ®kV we mean the k-fold tensor product V ® ... ® V 
(k times); if k = 0, then it is natural to take ®oV = F while ®IV = V. If V 
has finite dimension d, then ®kV has dimension dk. Let 

00 
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Then ® V has the natural structure of a graded F-algebra in which the 
multiplication ®kV x ®IV --+ ®k+IV sends 

(VI ® ... ® Vk, UI ® ... ® Ul) --+ VI ® ... ® Vk ® UI ® ... ® Ul· 

We regard Vasa subset of ® V embedded onto ®l V = V. 

Proposition 9.1. The universal property of the tensor algebm is satisfied. 

Proof. If ¢ : V --+ A is any linear map of V into an F -algebra, define a map 
if! : ® V --+ A by if!(VI ® ... ® Vk) = ¢(VI)'" ¢(Vk) on ®kV. It is easy to 
see that if! is a ring homomorphism. It is unique since V generates ® V as an 
F-algebra. D 

We will also encounter the symmetric and exterior powers of a vector 
space V over the field F. Let Vk denote V x ... x V (k times). A k-linear 
map f : Vk --+ U into another vector space is called symmetric if for 
any a E Sk it satisfies f(Vq(I),'" ,Vq(k)) = f(vl,'" ,Vk) and alternating 
if f(Vq(I),'" ,Vq(k)) = c(a)f(vl,'" ,Vk), where c: Sk --+ {±1} is the al
ternating (sign) character. The k-th symmetric and exterior powers of V, 
denoted VkV and I\kV, are F-vector spaces, together with k-linear maps 
V : V k --+ VkV and 1\ : Vk --+ I\kV. The map V is symmetric, and the 
map 1\ is alternating. We normally denote V (VI, ... ,Vk) = VI V ... V Vk and 
similarly for 1\. The following universal properties are required. 

Universal Properties of the Symmetric and Exterior Powers: Let 
f : V k --+ U be any symmetric (resp. alternating) k-linear map. Then there 
exists a unique F-linear map ¢ : VkV --+ U (resp. I\kV --+ U) such that 
f = ¢ 0 V (resp. f = ¢ 0 1\). 

As usual, the symmetric and exterior algebras are characterized up to 
isomorphism by the universal property. We may construct VkV as a quo
tient of ®kV, dividing by the subspace W generated by elements of the form 
VI ® ... ® Vk - Vq(l) ® ... ® Vq(k), with a similar construction for I\k. The 
universal property of VkV then follows from the universal property of the 
tensor product. Indeed, if f : V k --+ U is any symmetric k-linear map, then 
there is induced a linear map 'IjJ : ®kV --+ U such that f = 'IjJ 0 ®. Since f is 
symmetric, 'IjJ vanishes on W, so 'IjJ induces a map VkV = ®kV/W --+ U and 
the universal property follows. 

If V has dimension d, then VkV has dimension (d+Z-I), for if Xl,'" ,Xd 
is a basis of V, then {Xi! V··· V Xik 11 ~ i l ~ i2 ~ ... ~ ik ~ d} is a basis for 
VkV. On the other hand, the exterior power vanishes unless k ~ d, in which 
case it has dimension m. A basis consists of {Xi! 1\ ... 1\ Xik 11 ~ i l < i2 < 
... < ik ~ d}. The vector spaces VkV may be collected together to make a 
commutative graded algebra: 

00 
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This is the symmetric algebra. The exterior algebra A V = EBk I\kV is con
structed similarly. The spaces VoV and 1\ °v are one-dimensional and it is 
natural to take vov = l\oV = F. 

EXERCISES 

Exercise 9.1. Prove that the tensor algebra ® V is associative. 

Exercise 9.2. Let V be a finite-dimensional vector space over a field P that may 
be assumed to be infinite. Let P(V) be the ring of polynomial functions on V. Note 
that an element of the dual space V* is a function on V, so regarding this function 
as a polynomial gives an injection V* --4 P(V). Show that this linear map extends 
to a ring isomorphism VV* --4 P(V). 

Exercise 9.3. Prove that if V is a vector space, then V ® V ~ (V 1\ V) EB (V V V). 

Exercise 9.4. Use the universal properties of the symmetric and exterior power to 
show that if V and Ware vector spaces, then there are maps Vk f : VkV --4 VkW 
and 1\ k f : 1\ kV --4 1\ kW such that 

Exercise 9.5. Suppose that V = p4. Let f : V --4 V be the linear transformation 
with matrix 

Compute the trace of the linear transformations V2 f and 1\2 f on V2V and 1\2V. 
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The Universal Enveloping Algebra 

We have seen that elements of the Lie algebra of a Lie group G are derivations 
of GOO(G)j that is, differential operators that are left-invariant. The univer
sal enveloping algebra is the ring of all left-invariant differential operators, 
including higher-order ones; There is a purely algebraic construction of this 
ring. 

We recall from Example 5.6 that if A is an associative algebra, then A 
may be regarded as a Lie algebra by the rule [a, b] = ab - ba for a, b E A. We 
will denote this Lie algebra by Lie(A). 

Theorem 10.1. Let g be a Lie algebra over a field F. There exists an asso
ciative F -algebra U(g) with a Lie algebra homomorphism i : g ~ Lie(U(g)) 
such that if A is any F -algebra, and ¢ : g ~ Lie(A) is a Lie algebra homo
morphism, then there exists a unique F -algebra homomorphism tP : U(g) ~ 
A such that ¢ = tP 0 i. 

As always, an object (in this case U(g)) defined by a universal property is 
characterized up to isomorphism by that property. 

Proof. Let IC be the ideal in ® g generated by elements of the form [x, y] -
x ® Y - y ® x for x, y E g, and let U(g) be the quotient ® V/IC. Let ¢ : 
g ~ Lie(A) be a Lie algebra homomorphism. This means that ¢ is an F
linear map such that ¢([x,yJ) = ¢(x)¢(y) - ¢(y)¢(x). Then ¢ extends to a 
ring homomorphism ®g ~ A by Proposition 9.1. Our assumption implies 
that IC is in the kernel of this homomorphism, and so there is induced a ring 
homomorphism U(g) ~ A. Clearly, U(g) is generated by the image of g, so 
this homomorphism is uniquely determined. D 

Proposition 10.1. If g is the Lie algebra of a Lie group G, then the natural 
map i : g ~ U(g) is injective. 

It is a consequence of the Poincare-Birkhoff-Witt Theorem, a standard and 
purely algebraic theorem, that i : g ~ U(g) is injective for any Lie algebra. 
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Instead of proving the Poincare-Birkhoff-Witt Theorem, we give a short proof 
of this weaker statement. 

Proof. Let A be the ring of endomorphisms of Coo (G). Regarding X E 9 as 
a derivation of COO (G), we have a Lie algebra homomorphism 9 --+ Lie(A), 
which by Theorem 10.1 induces a map U(g) --+ A. If X E 9 had zero image 
in U(g), it would have zero image in A. It would therefore be zero. 0 

If V is a vector space over F and 7r : 9 --+ End(V) is a representation, 
then we call a bilinear form B on V invariant if 

B(7r(X)v,w) +B(v,7r(X)w) =0 

for X E g, v, w E V. The following proposition shows that this notion of 
invariance is the Lie algebra analog of the more intuitive corresponding notion 
for Lie groups. 

Proposition 10.2. Suppose that G is a Lie group, 9 its Lie algebra, and 
7r : G --+ GL(V) a representation admitting an invariant bilinear form B. 
Then B is invariant for the differential of 7r. 

Proof. Invariance under 7r means that 

Thus, the derivative of this with respect to t is zero. By (8.5), this derivative 
is 

B(7r(X)v,w) + B(v,7r(X)w). 

o 

On 9 itself, define B(x,y) = tr(ad(x)ad(y»), the Killing form. 

Proposition 10.3. The Killing form on a Lie algebra is symmetric and in
variant with respect to ad. 

Proof. Invariance under ad means 

B([x, yj, z) + B(y, [x, z]) = O. (10.1) 

Using (8.4), B([x, y], z) is the trace of 

ad(x)ad(y)ad(z) -ad(y),ad(x)ad(z) 

while B(y, [x, z]) is the trace of 

ad(y)ad(x)ad(z) - ad(y)ad(z)ad(x). 

Using the property of endomorphisms A and B of a vector space that tr(AB) = 
tr(BA), these sum to zero. This same fact implies that B(x,y) = B(y,x). 0 
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Theorem 10.2. Suppose that the Lie algebra g admits a nondegenerate sym
metric invariant bilinear form B. Let Xl,'" ,Xd be a basis of g, and let 
Yb ... Yd be the dual basis, so that B(Xi' Yj) = 6ij (Kronecker 6). Then the 
element L1 = L:i XiYi of U(g) is in the center of U(g). The element L1 is 
independent of the choice of basis Xl,' .. ,Xd. 

The element L1 is called the Casimir element of U(g) (with respect to B). 

Proof. Let z E g. There exist constants aij and (3ij such that [z, Xi] = 
L:j aijXi and [z, Yi] = L:j (3ijYj. Since B is invariant, we have 

0= B([z, Xi], Yj) + B(Xi' [z, Yj]) = aij + (3ji. 

Now 

while 

and since (3ij = -aji, these are equal. Thus L1 commutes with g, and since g 
generates U(g) as a ring, it is in the center. 

It remains to be shown that L1 is independent of the choice of basis 
Xl, •.. ,Xd· Suppose that xi, ... ,x~ is another basis. Write x~ = L:j aijXj, and 
if y~, ... 'Yd is the corresponding dual basis, let y~ = L:j (3ijYj. The condition 
that B(x~, yj) = 6ij (Kronecker 6) implies that L:k aik(3jk = 6ij . Therefore, 
the matrices (aij) and «(3ij) are transpose inverses of each other and so we have 
also L:k aki(3kj = 6ij . Now L:k xA,Yk = L:i,j,k aki(3kjXiYj = L:k XkYk = ..1. 0 

A representation (p, V) of a Lie algebra g is irreducible if there is no proper 
nonzero subspace U c V such that p(x)U ~ U for all X E g. 

Proposition 10.4. Let p : g --t End(V) be an irreducible representation of 
the Lie algebra g. If c is in the center of U(g), then there exists a scalar A 
such that p(c) = Mv. 

Proof. Let A be any eigenvalue of p(c). Let U be the A-eigenspace of p(c). 
Since p(c) commutes with p(x) for all X E g, we see that p(x)U ~ U for all 
X E g. By the definition of irreducibility, U = V, so p(c) acts by the scalar A. 

o 
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EXERCISES 

Exercise 10.1. Let Xi; E g!(n,lR) (1 ~ i,j ~ n) be the n x n matrix with a 1 in 
the i, j position and O's elsewhere. Show that [Xii> Xkt] = OjkXi/ - Oi/Xkj, where 
Ojk is the Kronecker O. From this, show that 

n n 

E ... E Xili2Xi2i3'" X ini1 

il=1 i r =1 

is in the center of U(g!(n, lR)). 

Exercise 10.2. Let G be a connected Lie group and g its Lie algebra. Define an 
action of g on the space Coo (G) of smooth functions on G by 

d tX 
Xf(g) = d/(ge )It=o. 

(i) Show that this is a representation of G. Explain why Theorem 10.1 implies that 
this action of g on Coo (G) can be extended to a representation of the associative 
algebra U(g) on Coo(G). 

(ii) If h E G, let p(h) and )"(h) be the endomorphisms of G given by left and 
right translation. Thus 

p(h)f(g) = f(gh), )"(h)f(g) = f(h- 1g). 

Show that if h E G and D E U(g), then )"(h) 0 D = Do )"(h). If D is in the center 
of U(g) then prove that p(h) 0 D = Do p(h). (Hint: Prove this first if h is of the 
form eX for some X E G, and recall that G was assumed to be connected, so it is 
generated by a neighborhood of the identity.) 

Exercise 10.3. Let G = GL(n, lR). Let B be the "Borel subgroup" of upper trian
gular matrices with positive diagonal entries, and let K = SO(n). 

(i) Show that every element of 9 E G has a unique decomposition as 9 = bk with 
bE B and k E K. 

(ii) Let 81,'" , 8 n be complex numbers. By (i), we may define an element ¢ of 
Coo(G) by 

((
Yl * ... *) ) o Y2 ... * 

¢ ". . k . . . . .. '. 
o 0 ... Yn 

n 

II s" = Yi', Yi > 0, k E K. 
i=1 

Show that ¢ is an eigenfunction of the center of U(g). That is, if D is in the center 
of U(g), then D¢ = ),,¢ for some complex number )". (Hint: Characterize ¢ by 
properties of left and right translation and use Exercise 10.2 (ii).) 
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Extension of Scalars 

We will be interested in complex representations of both real and complex 
Lie algebras. There is an important distinction to be made. If 9 is a real Lie 
algebra, then a complex representation is an JR.-linear homomorphism 9 --+ 
End(V), where V is a complex vector space. On the other hand, if 9 is a 
complex Lie algebra, we require that the homomorphism be C-linear. The 
reader should note that we ask more of a complex representation of a complex 
Lie algebra than we do of a complex representation of a real Lie algebra. 

The interplay between real and complex Lie groups and Lie algebras will 
prove important to us. We begin this theme right here with some generalities 
about extension of scalars. 

If R is a commutative ring and 8 is a larger commutative ring containing 
R, we may think of 8 as an R-algebra. In this case, there are functors between 
the categories of R-modules and 8-modules. Namely, if N is an 8-module, we 
may regard it as an R-module. On the other hand, if M is an R-module, then 
thinking of 8 as an R-module, we may form the R-module Ms = 8 ®R M. 
This has an 8-module structure such that t(s ® m) = ts ® m for t, s E 8, 
and m E M. We call this the 8-module obtained by extension of scalars. If 
¢ : M --+ N is an R-module homomorphism, 1 ® ¢ : Ms --+ Ns is an 
8-module homomorphism, so extension of scalars is a functor. 

Of the properties of extension of scalars, we note the following: 

Proposition 11.1. Let 8 ;;2 R be commutative rings. 
(i) If Ml and M2 are R-modules, we have the following natural isomorphisms 
of 8 -modules: 

8®RR ~ 8, 

8 ®R (Ml EB M 2 ) ~ (8 ®R M1) EB (8 ®R M 2 ), 

(8 ®R Ml ) ®s (8 ®R M 2 ) ~ 8 ®R (Ml ®R M 2 ). 

(11.1) 

(11.2) 

(11.3) 

(ii) If M is an R-module and N is an 8 -module, we have a natural isomor
phism 

(11.4) 
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Proof. To prove (11.1), note that the multiplication S x R -+ S is an R
bilinear map hence by the universal property of the tensor product induces 
an R-module homomorphism S ®R R -+ S. On the other hand, 8 -+ 8 ® 1 
is an R-module homomorphism S -+ S ®R R, and these maps are inverses 
of each other. With our definition of the S-module structure on S ®R R, they 
are S-module isomorphisms. 

To prove (11.2), one may characterize the direct sum M1 EB M2 as follows: 
given an R-module M with maps ji : Mi -+ M, Pi : M -+ Mi (i = 1,2) 
such that Pi 0 ji = 1M; and j1 0 P1 + i2 0 P2 = 1M , then there are maps 

M1 EB M2 -+ M, (m1' m2) f---t i1m1 + i2m2. 

These are easily checked to be inverses of each other, and so M ~ M1 EBM2 . For 
example, if M = M1 EBM2 , such maps exist - take the inclusion and projection 
maps in and out of the direct sum. Now applying the functor M t-+ S ®R M 
gives maps for S ® R (M1 ® R M2) showing that it is isomorphic to the left-hand 
side of (11.2). 

To prove (11.3), one has an S-bilinear map 

(11.5) 

such that ((81 ®m1), (82 ®m2)) t-+ 8182 ® (m1 ®m2). To see this, we note that 
with 82 and m2 fixed, 81 x m1 t-+ 8182 ® (m1 ® m2) is R-bilinear, so by the 
universal property there is (for fixed 82 and m2) an R-module homomorphism 
that we denote j S 2,m2 : S ®R M1 -+ S ®R (M1 ®R M2) such that jS2,m2(81 ® 
m1) = 8182 ® (m1 ® m2). Now, with a E S ® M1 fixed, the map (82, m2) t-+ 

j S 2,m2(a) is R-bilinear, so there exists a map Ja. : S ®R M2 -+ S ®R (M1 ®R 
M2) such that Ja.(82 0 m2) = j S 2,m2 (a). The map (11.5) is JS10ml (820m2). 
This map is S-bilinear, so it induces a homomorphism 

(11.6) 

Similarly, there is an R-bilinear map 

S X (M1 ®R M2) -+ (S ®R M1) ®s (S ®R M2) 

such that (8, m1 ® m2) t-+ (8 ® m1) ® (1 ® m2) = (1 ® m1) ® (8 ® m2). This 
induces an S-module homomorphism that is the inverse to (11.6). 

To prove (11.4), we describe the correspondence explicitly. If 

¢ E HomR(M, N) and P E Homs(S ® M, N), 

then ¢ and P correspond if ¢(m) = P(l ® m) and P(8 ® m) = 8¢(m). It is 
easily checked that ¢ t-+ P and P t-+ ¢ are well-defined inverse isomorphisms. 

o 
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If V is a d-dimensional real vector space, then the complex vector space 
Ve = <C ®IR V is a d-dimensional complex vector space. This follows from 
Proposition 11.1 because if V ~ IR® ... ®IR (d copies), then (11.1) and (11.2) 
imply that Ve ~ <C ® ... ® <C (d copies). We call Ve the complexijication of V. 
The natural map V --+ Ve given by v N 1 ® v is injective, so we may think 
of Vasa real vector subspace of Ve. 

Proposition 11.2. (i) If V is a real vector space and W is a complex vector 
space, any IR-linear transformation V --+ W extends uniquely to a <C-linear 
transformation Ve --+ W. 
(ii) If V and U are real vector spaces, any IR-linear transformation V --+ U 
extends uniquely to a <C-linear map Ve --+ Ue. 
(iii) If V and U are real vector spaces, any IR-bilinear map V x V --+ U 
extends uniquely to a <C-bilinear map Ve x Ve --+ Ue. 

Proof. Part (i) is a special case of (ii) of Proposition 11.1. Part (ii) follows 
by taking W = Ue in part (i) after composing the given linear map V --+ U 
with the inclusion Ue --+ W. As for (iii), an IR-bilinear map V x V --+ U 
induces an IR-linear map V ®IR V --+ U and hence by (ii) a <C-linear map 
(V ®IR V)c --+ Ue· But by (11.3), (V ®IR V)c is Ve ®e Ve, and a <C-linear map 
Ve ®e Ve --+ Ue is the same thing as a <C-bilinear map Ve x Ve --+ Ue. 0 

Proposition 11.3. (i) The complexijication ge of a real Lie algebra g with 
the bracket extended as in Proposition 11.2 (iii) is a Lie algebra. 
(ii) If g is a real Lie algebra, ~ is a complex Lie algebra, and p : g --+ ~ is a real 
Lie algebra homomorphism, then p extends uniquely to a homomorphism Pc : 
ge --+ ~ of complex Lie algebras. In particular, any complex representation 
of g extends uniquely to a complex representation of ge. 
(iii) If g is a real Lie subalgebra of the complex Lie algebra ~, and if ~ = g EB ig 
(that is, if g and ig span ~ but g n ig = {O}), then ~ ~ ge as complex Lie 
algebras. 

Proof. For (i), the extended bracket satisfies the Jacobi identity since both 
sides of (5.1) are trilinear maps on ge x ge x ge --+ ge, which by assumption 
vanish on g x g x g. Since g generates ge over the complex numbers, (5.1) is 
therefore true on ge. 

For (ii), the extension is given by Proposition 11.2 (i), taking W = ~. To 
see that the extension is a Lie algebra homomorphism, note that both p([x, y]) 
and p(x)p(y) - p(y)p(x) are bilinear maps ge x ge --+ ~ that agree on g x g. 
Since g generates ge over C, they are equal for all x, y E ge. 

For (iii), by Proposition 11.2 (i), it will be least confusing to distinguish 
between g and its image in ~, so we prove instead the following equivalent 
statement: if g is a real Lie algebra, ~ is a complex Lie algebra, f : g --+ ~ 
is an injective homomorphism, and if ~ = f(g) EB i f(g), then f extends to an 
isomorphism ge --+ ~ of complex Lie algebras. Now f extends to a Lie algebra 
homomorphism fc : ge --+ ~ by part (ii). To see that this is an isomorphism, 
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note that it is surjective since f({J) spans ~. To prove that it is injective, if 
fc(X +iY) = 0 with X, Y E {J, then f(X)+if(Y) = O. Now f(X) = f(Y) = 0 
because f({J) n if({J) = O. Since f is injective, X = Y = O. 0 

Of course, given any complex representation of {Jc, we may also restrict 
it to {J, so Proposition 11.3 implies that complex representations of {J and 
complex representations of {Jc are really the same thing. (They are equivalent 
categories. ) 

As an example, let us consider the complexification of u( n). 

Proposition 11.4. (i) Every n x n complex matrix X can be written uniquely 
as Xl + iX2 , where Xl and X 2 are n x n complex matrices satisfying Xl = 
-tXI and X2 = tx2 • 

(ii) The complexification of the real Lie algebra u( n) is isomorphic to {Jl( n, C). 
(iii) The complexification of the real Lie algebra su( n) is isomorphic to sl( n, C). 

Proof. For (i), we note that we must have 

Xl = ~(X _t X), -li(X + tX). 

For (ii), we will use the criterion of Proposition 11.3 (iii). We recall that 
u( n) is the real Lie algebra consisting of complex n x n matrices satisfying 
X = _t X. We want to get the complex conjugation out of the picture before 
we try to complexify it, so we write X = Xl +iX2 , where Xl and X2 are real 
n x n matrices. We must have Xl = -tXI and X 2 = tX2. Thus, as a vector 
space, we may identify u(2) with the real vector space of pairs (XI ,X2) E 

Matn(lR) E9 Matn(lR), where Xl is skew-symmetric and X2 symmetric. The 
Lie bracket operation, required by the condition that 

[X,Y] = XY - YX when X = Xl +iX2 and Y = YI +iY2 , 

amounts to the rule 
[(Xl, X 2 ), (YI , Y2 )] = 

(XIYI - X 2Y2 - YIXI + Y2X2 ,XIY2 + X2YI - Y2X I - YIX2). 

(11. 7) 

(11.8) 

Now (i) shows that the complexification of this vector space (allowing Xl 
and X2 to be complex) can be identified with Matn(C). Of course, (11.7) and 
(11.8) are still equivalent if Xl, X 2 , Yl, and Y2 are allowed to be complex, 
so with the Lie bracket in (11.8), this Lie algebra is Matn(C) with the usual 
bracket. We recall from Example 5.6 that this is the Lie algebra {Jl(n, C). 

(iii) is similar to (ii), and we leave it to the reader. 0 

Theorem 11.1. Every complex representation of the Lie algebra u(n) or the 
Lie algebra {Jl(n,lR) extends uniquely to a complex representation of {Jl(n, C). 
Every complex representation of the Lie algebra su(n) or the Lie algebra 
sl(n, lR) extends uniquely to a complex representation of sl(n, C). 

Proof. This follows from Proposition 11.3 since the complexification of u( n) or 
{Jl(n,lR) is {Jl(n,C), while the complexification of su(n) or sl(n,lR) is sl(n,C). 
For {Jl(2, lR) or sl(2, lR), this is obvious. For u(n) and su(n), this is Proposi
tion 11.4. 0 
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Representations of 5l(2, C) 

Unless otherwise indicated, in this chapter a representation of a Lie group or 
Lie algebra is a complex representation. 

Let us exhibit some representations of the group SL(2, C). We start with 
the standard representation on ([:2, with SL(2, C) acting by matrix multipli
cation on column vectors. Due to the functoriality of Vk , there is induced a 
representation of SL(2, C) on V k ([:2. The dimension of this vector space is k+ l. 
In short, V k gives us a representation SL(2, C) ----+ GL(k + 1, C). There is an 
induced map of Lie algebras s[(2, C) ----+ g[(k+ 1, C) by Proposition 7.3, and it 
is not hard to see that this is a complex Lie algebra homomorphism. We have 
corresponding representations of s[(2, 1R) and sU(2), and we will eventually see 
that these are all the irreducible representations of these groups. 

Let us make these symmetric power representations more explicit for the 
algebra g = s[(2, 1R). A basis of g consists of the three matrices 

They satisfy the commutation relations 

[H,Rj = 2R, [H,Lj = -2L, [R,Lj=H. (12.1 ) 

Let 

be the standard basis of ([:2. We have a corresponding basis of k + 1 elements 
in Vk C2 , which we will label by integers k, k - 2, k - 4, ... ,-2k for reasons 
that will become clear presently. Thus we let 

Vk-21 = X V ... V x V y V ... V Y (k -I copies of x, I copies of y). 

Since Vk is a functor, if f : ([:2 ----+ C2 is a linear transformation, there is 
induced a linear transformation Vk f of Vk ([:2. (See Exercise 9.4.) In particular, 
let us compute the effect of Vk R on Vi. In C2 , 
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{
X f-----t x 

exp(tR) : 't 
y f-----t Y + x. 

Therefore, in VkV, remembering that the V operation is symmetric (commu
tative), we see that exp(tR) maps Vk-21 to 

Vk-21 + tlvk-21+2 + t 2 (; ) Vk-21H + ... 

Therefore, in the Lie algebra, 

( k) _ d () I _ { lVk-2/+2 if l > 0, 
V R Vk-21 - dt exp tR Vk-21 t=o - 0 if l = O. 

Similarly, it may be checked that 

and 

(Vk L) = { (k - l)Vk-21-2 if l < k, 
Vk-21 0 if l = k , 

(Vk H)Vk-21 = (k - 2l)Vk-21. 

(12.2) 

(12.3) 

(12.4) 

The last identity is the reason for the labeling of the vectors Vk-21: the sub
script is the eigenvalue of H. 

For example, if k = 3, then with respect to the basis V3, Vb V-I, V-3, we 
find that 

V3R = 0 0 2 0 (
0 100) 

0003' 
o 0 0 0 

(
0000) 

v3L = 3 0 0 0 
o 2 0 0 ' 
o 0 1 0 

It may be checked directly that these matrices satisfy the commutation rela
tions (12.1). 

Proposition 12.1. The representation Vk C2 of 5[(2, JR.) is irreducible. 

Proof. Suppose that U is a nonzero invariant subspace. Choose a nonzero 
element 2: ak-2IVk-21 of U. Let k-2l be the smallest integer such that ak-21 i
O. Applying R to this vector l times shifts each Vr --t v r +2 times a nonzero 
constant, except for Vk, which it kills. Consequently, this operation Rl will 
kill every vector Vr with r ~ k - 2l, leaving only a nonzero constant times Vk. 

Thus Vk E U. Now applying L repeatedly shows that Vk-2, Vk-4, ... E U, so 
U contains a basis of Vk C2 . We see that any nonzero invariant subspace of 
V k C2 is the whole space, so the representation is irreducible. D 
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If k = 0, we reiterate that VOC2 = C. It is a trivial .5£(2, lR)-module, 
meaning that 7f(X) acts as zero on it for all X E .5£(2, lR). 

Now we need an element of the center of U (.5 £( 2, lR) ). An invariant bilinear 
form on 9 is given by B(x, y) = ! tr(xy), where the trace is the usual trace 
of a matrix, and xy is the product of two matrices, not multiplication in 
U (.5 £( 2, lR) ). The invariance of this bilinear form follows from the property of 
the trace that tr(xy) = tr(yx) since 

B([x, y], z) + B(y, [x, z]) = ! (tr(xyz) - tr(yxz) + tr(yxz) - tr(yzx)) = 0, 

proving (10.1). Dual to the basis H, R, L of .5£(2,lR) is the basis H, 2L, 2R, 
and it follows from Theorem 10.2 that the Casimir element 

L1 = H2 + 2RL + 2LR 

is an element of the center of U(.5£(2,lR)). 

Proposition 12.2. The element L1 acts by the scalar>' = k2 + 2k on VkC2 . 

Proof. To calculate the effect of L1 on the space, we apply it to a basis vector 
Vk-21' We see that 

H2Vk_21 = (k - 21)2vk_21, 

2RLvk-21 = 2R(k -1)Vk-21-2 = 2(1 + l)(k -l)Vk-21, 

2LRvk-21 = 2Llvk-2/+2 = 2l(k -l + 1)Vk-21. 

Adding these, 

This completes the proof. 

(12.5) 

(12.6) 

(12.7) 

(12.8) 

o 

Proposition 12.3. Let (7f, V) be a finite-dimensional complex representation 
of .5£(2, lR). Assume that L1 acts by a scalar>' on V. Let Vk be an eigenvector 
of 7f(H) on V, so that 7f(H)Vk = kVk for some k E C chosen so that the real 
part of k is as large as possible. Then k is a nonnegative integer, >. = k2 + 2k, 
and Vk genemtes an irreducible subspace of V isomorphic to V kC2 • 

Proof. Suppose that v is an eigenvector of H with eigenvalue r. Then we show 
that Rv (if nonzero) is also an eigenvector, with eigenvalue r + 2. Indeed, 
in the enveloping algebra, we have H R - RH = [H, R] = 2R, so H Rv = 
RHv + 2Rv = (r + 2)Rv. 

Next we show that if v is an eigenvector of H with eigenvalue k, and if 
Rv = 0, then>. = k2+2k. Indeed, since RL-LR = [R,L] = H, we may write 
L1 = H2 + 2H + 4LR, so applying L1 to v gives (k2 + 2k)v. 

Similarly, if v is an eigenvector of H with eigenvalue r, and Lv #- 0, then 
Lv is an eigenvector with eigenvalue r - 2. Moreover, if v is an eigenvector of 
H with eigenvalue h, and if Lv = 0, then>. = h2 - 2h. 
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Since Jr(H) is an endomorphism of a complex vector space, it has at least 
one eigenvalue. If Vk is an eigenvector with eigenvalue k, chosen so that k 
has maximum real part, then RVk = 0, since k + 2 is not an eigenvalue. Thus 
A = k2+k. Now, applying L successively, we obtain eigenvectors LVk, L2vk,'" 
with eigenvalues k-2, k-4,··· . Eventually these must vanish. Let h = k-2l 
be such that L1vk :f. 0, while L 1+1Vk = O. Then A = h2 - 2h. 

Since h2 - 2h = k 2 + 2k, we have 2(h + k) = h2 - k 2 = (h - k)(h + k). 
Either h - k = 2 or h + k = O. However, h ~ k so h - k = 2 is impossible and 
h = -k. Since h = k - 2l, we see that l = k. In particular, k is a nonnegative 
integer. 

Now define Vk-2, Vk-4, ... by 

We claim that (12.2), (12.3), and (12.4) are all satisfied. Already (12.3) and 
(12.4) are evident. As for (12.2), we may argue by induction. Suppose that 
this statement is true for l. Then, of the equations (12.5), (12.6), (12.7), and 
(12.8), all but (12.6) are known; (12.7) uses the induction hypothesis. Now 
(12.6) follows by subtracting (12.5) and (12.7) from (12.8), and (12.2) follows 
for l + 1. 

It follows that Vk, Vk-2, ... ,V-k span a submodule of V that is isomorphic 
to Vk C2 . D 

Proposition 12.4. Let (Jr, V) be an irreducible complex representation of the 
Lie algebra s[(2, JR.). Then ..1 acts by a scalar A on V, and A = k2 + 2k for 
some nonnegative integer k. The representation Jr is isomorphic to Vk C2 • 

Proof. By Proposition 10.4, there exists a scalar A such that ..1 acts by A on 
V. By Proposition 12.3, if we choose k to be an eigenvector of Jr(H) on V with 
maximum real part, an eigenvector Vk for k generates an irreducible subspace 
isomorphic to Vk C2 . Since V is irreducible, the result follows. D 

Theorem 12.1. Let (Jr, V) be any irreducible complex representation of 
s[(2, JR.), su(2) or s[(2, <C). Then Jr is isomorphic to V k C2 for some k. 

Proof. By Theorem 11.1, it is sufficient to show this for s[(2, JR.), in which case 
the statement follows from Proposition 12.4. D 

We can't quite say yet that the finite-dimensional representations of 
s[(2, JR.), su(2), and s[(2, <C) are now classified. We know the irreducible repre
sentations of these three Lie algebras. What is missing is a theorem that says 
that every irreducible representation is completely reducible, that is, a direct 
sum of irreducible representations. 

We will make use of the Casimir element ..1. If £1 = su(2), we haven't proven 
that this is an element of U(g). This can be checked by direct computation, 
but we don't really need it - it is an element of U(gc) ~ U(gk and as such 
acts as a scalar on any complex representation of g. 
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Proposition 12.5. Let 9 = 5((2, lR), 5u(2) or 5((2, C). Let (Jr, V) be a finite
dimensional complex representation of g. If there exists k ;;:: 1 such that 
Jr(L1k)v = 0 for all v E V, then Jr(X)v = 0 for all X E g, v E V. 

Proof. There is nothing to do if V = {O}. Assume therefore that U is a 
maximal proper invariant subspace of U. By induction on dim(V), 9 acts 
trivially on U. Now V/U is irreducible by the maximality of U, and L1 an
nihilates V /U, so by the classification of the irreducible representations of 
9 in Theorem 12.1, 9 acts trivially on V/U. This means that if Y E 9 and 
v E V, then Jr(Y)v E U. Since 9 acts trivially on U, if X is another el
ement of g, we have Jr(X)Jr(Y)v = 0 and similarly Jr(Y)Jr(X) = O. Thus 
Jr([X, Y])v = Jr(X)Jr(Y)v - Jr(Y)Jr(X)v = 0, and since by (12.1) elements of 
the form [X, YJ span g, it follows that 9 acts trivially on V. 0 

Proposition 12.6. Let 9 = 5((2, lR), 5u(2), or 5((2, C). Let (Jr, V) be a finite
dimensional complex representation of g. 
(i) If v E V and L12v = 0, then L1v = O. 
(ii) We have V = Vo E9 VI, where Va is the kernel of L1 and VI is the image of 
L1. Both are invariant subspaces. If X E 9 and v E Va, then Jr(X)v = O. 
(iii) The subspace Vo = {v E V I Jr(X) = 0 for all X E g}. 
(iv) If 0 --+ V --+ W --+ Q --+ 0 is an exact sequence of g-modules, then 
there is an exact sequence 0 --+ Vo --+ Wo --+ Qo --+ o. 

Proof. Since L1 commutes with the action of g, the kernel W of L1k is an 
invariant subspace. Now (i) follows from Proposition 12.5. 

It follows from (i) that Vo n VI = {O}. Now for any linear endomorphism 
of a vector space, the dimension of the image equals the codimension of the 
kernel, so dim(Va) + dim(VI) = dim(V). It follows that Vo + VI = V and this 
sum is direct. Since L1 commutes with the action of g, both Vo and VI are 
invariant subspaces. 

It follows from Proposition 12.5 that 9 acts trivially on Va. This proves (ii) 
and also (iii) since it is obvious that {v E VIJr(X)v = O} ~ Va, and we have 
proved the other inclusion. 

For (iv) , any homomorphism V --+ W of g-modules maps Va into Wo, 
so V --+ Va is a functor. Given a short exact sequence 0 --+ V --+ W --+ 
Q --+ 0, consider 

0 • Vo • Wo • Qo 

1 1 1 
0 ~ V ~W ~ Q ~ 0 

l~ l~ l~ 
0 ~ V ~w .. Q .. 0 

1 1 
V/VI .. W/WI 
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Exactness of the two middle rows implies exactness of the top row. We must 
show that Wo -----t Qo is surjective. We will deduce this from the Snake Lemma. 
The cokernel of Ll : V -----t V is V IVl S:! Vo, and similarly the cokernel of 
Ll : W -----t W is W IWl S:! Wo, so the Snake Lemma gives us a long exact 
sequence: 

o -----t Vo -----t Wo -----t Q 0 -----t Vo -----t Wo. 

Since the last map is injective, the map Qo -----t Vo is zero, and hence Wo -----t 
Qo is surjective. 0 

If V is a g-module, we call Vo = {v E V I X v = 0 for all X E g} the module 
of invariants. The proposition shows that it is an exact functor. 

If g is a Lie algebra and V, Ware g-modules, we can make the space 
Hom(V, W) of all C-linear transformations V -----t W into a g-module by: 

(X¢)v = X¢(v) - ¢(Xv). 

It is straightforward to check that II is a Lie algebra representation. The 
module of invariants is the space 

Homg(V, W) = {¢: V -----t WI ¢(Xv) = X¢(v) for all X E g} 

of all g-module homomorphisms. 

Proposition 12.7. Let U, V, W, Q be g-modules, where 9 is one of g[(2, lR), 
gu(2), or g[(2, q, and let 

o -----t V -----t W -----t Q -----t 0 

be an exact sequence of g-modules. Composition with these maps gives an exact 
sequence: 

o -----t Homg(U, V) -----t Homg(U, W) -----t Homg(U, Q) -----t O. 

Proof. Composition with these maps gives a short exact sequence: 

o -----t Hom(U, V) -----t Hom(U, W) -----t Hom(U, Q) -----t O. 

Here, of course, Hom(U, V) is just the space of all linear transformations of 
complex vector spaces. Taking the spaces of invariants gives the exact sequence 
of Homg spaces, and by Proposition 12.6 it is exact. 0 

Theorem 12.2. Let g = g[(2, lR), gu(2), or g[(2, q. Any finite-dimensional 
complex representation of 9 is a direct sum of irreducible representations. 

Proof. Let W be a g-module. If W is zero or irreducible, there is nothing to 
check. Otherwise, let V be a proper nonzero submodule and let Q = W IV. 
We have an exact sequence 
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o ---+ V ---+ W ---+ Q ---+ 0 

and by induction on dim(W) both V and Q decompose as direct sums of 
irreducible submodules. By Proposition 12.7, composition with these maps 
produces an exact sequence 

0---+ Hom(Q, V)g ---+ Hom(Q, W)g ---+ Hom(Q, Q)g ---+ O. 

The surjectivity of the map Hom(Q, W)g ---+ Hom(Q, Q)g means that there 
is a map i : Q ---+ W whose composition poi with the projection p : W ---+ Q 
is the identity map on Q. 

Now V and i(Q) are submodules of W such that V n i(Q) = {O} and 
W = V + i(Q). Indeed, if x E V n i(Q), then p(x) = 0 since p(V) = {O}, and 
writing x = i(q) with q E Q, we have q = (p 0 i)(q) = p(x) = OJ so x = 0 and 
if wE W we can write w = v + q, where v = w - ip(w) and q = ip(w) and, 
since p(v) = p(w) - p(w) = 0, v E ker(p) = V and q E i(Q). 

We see that W = V EBi( Q), and since V and Q are direct sums of irreducible 
submodules, so is W. 0 

EXERCISES 

Exercise 12.1. If (71", V) is a representation of SL(2, ~), SU(2) or SL(2, C), then we 
may restrict the character of 71" to the diagonal subgroup. This gives 

which is a polynomial in t and t- 1. 

(i) Compute e,..(t) for the symmetric power representations. Show that the poly
nomials e,..(t) are linearly independent and determine the representation 71". 

(ii) Show that if II = 71" ® 71"', then ell = e,..e,..,. Use this observation to compute 
the decomposition of 71" ® 71"' into irreducibles when 71" = Vn C2 and 71"' = Vm C2 . 
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The Universal Cover 

If U is a Hausdorff topological space, a path is a continuous map p : [0,1] ---+ 
U. The path is closed if the endpoints coincide: p(o) = p(1). A closed path is 
also called a loop. 

An object in the category of pointed topological spaces consists of a pair 
(X,xo), where X is a topological space and Xo EX. The chosen point Xo EX 
is called the base point. A morphism in this category is a continuous map 
taking base point to base point. 

If U and V are topological spaces and ¢, 'IjJ : U ---+ V are continuous maps, 
a homotopy h : ¢ -v-+ 'IjJ is a continuous map h : U x [0,1] ---+ V such that 
h(u,O) = ¢(u) and h(u, 1) = 'IjJ(1). To simplify the notation, we will denote 
h(u, t) as ht(u) in a homotopy. Two maps ¢ and 'IjJ are called homotopic if 
there exists a homotopy ¢ -v-+ 'IjJ. Homotopy is an equivalence relation. 

If p : [0,1] ---+ U and p' : [0,1] ---+ U are two paths, we say that p and 
p' are path-homotopic if there is a homotopy h : p -v-+ p' that does not move 
the endpoints. This means that ht(O) = p(O) = p'(O) and ht(l) = p(l) = p'(l) 
for all t. We call h a path-homotopy, and we write p ~ p' if a path-homotopy 
exists. 

Suppose there exists a continuous function 1 : [0,1] ---+ [0,1] such that 
1(0) = ° and 1(1) = 1 and that p' = pol. Then we say that p' is a 
reparametrization of p. The paths are path-homotopic since we can con
sider Pt(u) = p((1 - t)u + tl(u)). Because the interval [0,1] is convex, 
(1 - t)u + tl(u) E [0,1] and Pt : P -v-+ p'. 

Let us say that a map of topological spaces is trivial if it is constant, map
ping the entire domain to a single point. A topological space U is contractible 
if the identity map U ---+ U is homotopic to a trivial map. A space U is 
path-connected if for all x, y E U there exists a path p : [0,1] ---+ U such that 
p(O) = x and p(1) = y. 

Suppose that p : [0,1] ---+ U and q : [0,1] ---+ U are two paths in the 
space U such that the right endpoint of p coincides with the left endpoint of 
qj that is, p(1) = q(O). Then we can concatenate the paths to form the path 
p*q: 
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(p*q)(t) = { p(2t) ~f~:::; t:::;~, 
q(2t - 1) If 2" :::; t :::; l. 

We may also reverse a path: -p is the path (-p)(t) = p(l - t). These opera
tions are compatible with path-homotopy, and the path p * ( -p) is homotopic 
to the trivial path po(t) = p(O). To see this, define 

{ p(2tu) if 0 :::; U :::; 1/2, 
Pt(u) = p(2t(1- u)) if 1/2:::; u :::; l. 

This is a path-homotopy Po ~ p*( -p). Also (p*q)*r ~ p*(q*r) ifp(l) = q(O) 
and q(l) = r(O), since these paths differ by a reparametrization. 

The space U is simply-connected if it is path-connected and given any 
closed path (that is, any p : [0,1] ---+ U such that p(O) = p(l)), there exists 
a path-homotopy f : p ~ Po, where Po is a trivial loop mapping [0,1] onto a 
single point. Visually, the space is simply-connected if every closed path can 
be shrunk to a point. It may be convenient to fix a base point Xo E U. In this 
case, to check whether U is simply-connected or not, it is sufficient to consider 
loops p : [0,1] ---+ U such that p(O) = p(l) = Xo. Indeed, we have: 

Proposition 13.1. Suppose the space U is path-connected. The following are 
equivalent. 
(i) Every loop in U is path-homotopic to a trivial loop. 
(ii) Every loop p in U with p(O) = p(l) = Xo is path-homotopic to a trivial 
loop. 
(iii) Every continuous map of the circle S1 ---+ U is homotopic to a trivial 
map. 

Thus, anyone of these conditions is a criterion for simple connectedness. 

Proof. Clearly, (i) implies (ii). Assuming (ii), if p is a loop in U, let x be the 
endpoint p(O) = p(l) and (using path-connectedness) let q be a path from Xo 
to x. Then q * p * (-q) is a loop beginning and ending at xo, so using (ii) 
it is path-homotopic to the trivial path Po(t) = Xo for all t E [0,1]. Since 
Po ~ q*p*(-q), p ~ (-q)*Po*q, which is path homotopic to the trivial loop 
t ~ x. Thus (ii) implies (i). 

As for (iii), a continuous map of the circle S1 ---+ U is equivalent to a 
path p : [0,1] ---+ U with p(O) = p(l). To say that this path is homotopic to 
a trivial path is not quite the same as saying it is path-homotopic to a trivial 
path because in deforming p we need Pt(O) = Pt(1) (so that it extends to a 
continuous map of the circle), but we do not require that Pt(O) = p(O) for all 
t. Thus, it may not be a path-homotopy. However, we may modify it to obtain 
a path-homotopy as follows: let 

{ 
P3tu(0) if 0:::; u :::; 1/3, 

qt(u) = pt(3u - 1) if 1/3 :::; u :::; 2/3, 
P(3-3u)t(1) if 2/3 :::; u :::; 1. 
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Then qt is a path-homotopy. When t = 0, it is a reparametrization of the 
original path, and when t = 1, since PI is trivial, qi is path-homotopic to a 
trivial path. Thus, (iii) implies (i), and the converse is obvious. D 

A map 7r : N --+ M is called a covering map if the fibers 7r- I (x) are 
discrete for x EM, and every point m E M has a neighborhood U such that 
7r-I(U) is homeomorphic to U x 7r- I (x) in such a way that the composition 

where the second map is the projection, coincides with the given map 7r. We 
say that the cover is trivial if N is homeomorphic to M x F, where the space F 
is discrete, in such a way that 7r is the composition N ~ M x F --+ M (where 
the second map is the projection). Thus, every mE M has a neighborhood U 
such that the restricted covering map 7r-I(U) --+ U is trivial, a property we 
will cite as local triviality of the cover. 

Proposition 13.2. Let 7r : N --+ M be a covering map. 
(i) Ifp: [0,1] --+ M is a path, and ify E 7r- I (p(O)), then there exists a 
unique path P : [0,1] --+ N such that 7r 0 P = p and p(O) = y. 
(ii) If p,p' : [0,1] --+ N are paths with p(O) = p'(O), and if the paths 7r 0 P 
and 7r 0 p' are path-homotopic, then the paths p and p' are path-homotopic. 

We refer to this property as the path-lifting property of the covering space. 

Proof. If the cover is trivial, then we may assume that N = M x F where 
F is discrete, and if y = (x, I), where x = p(O) and f E F, then the unique 
solution to this problem is p(t) = (p(t), f). 

Since p([O,l]) is compact, and since the cover is locally trivial, there are 
a finite number of open sets UI , U2,··· ,Un and points Xo = 0 < Xl < ... < 
xn = 1 such that P([Xi-I, Xi]) C Ui and such that the restriction of the cover 
to Ui is trivial. On each interval [Xi-I, X], there is a unique solution, and 
patching these together gives the unique general solution. This proves (i). 

For (ii), since p = 7r 0 P and p' = 7r 0 p' are path-homotopic, there exists a 
continuous map (u, t) t-+ Pt(u) from [0,1] x [0, 1] --+ M such that Po(u) = p(0 
and PI(U) = p'(u); For each t, using (i) there is a unique path fit: [0,1] --+ M 
such that Pt = 7r 0 Pt and Pt(O) = p(O). One may check that (u, t) t-+ Pt(u) is 
continuous, and Po = P and iii = p', so p and p' are path-homotopic. D 

Covering spaces of a fixed space M form a category: if 7r : N --+ M and 
7r' : N' --+ M are covering maps, a morphism is a covering map f : N --+ N' 
such that 7r = 7r' 0 f. If M is a pointed space, we are actually interested in the 
subcategory of pointed covering maps: if Xo is the base point of M, the base 
point of N must lie in the fiber 7r-1 (xo), and in this category the morphism 
f must preserve base points. We call this category the category of pointed 
covering maps or pointed covers of M. 
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Let M be a path-connected space with a fixed base point Xo. We assume 
that every point has a contractible neighborhood. The fundamental group 
7I"1(M) consists of the set of homotopy classes of loops in M with left and 
right endpoints equal to Xo. The multiplication in 71"1 (M) is concatenation, 
and the inverse operation is path-reversal. Clearly, 7I"1(M) = 1 if and only 
if M is simply-connected. Changing the base point replaces 7I"1(M) by an 
isomorphic group, but not canonically so. Thus, 71"1 (M) is a functor from the 
category of pointed spaces to the category of groups - not a functor on the 
category of topological spaces. If M happens to be a topological group, we 
will always take the base point to be the identity element. 

Proposition 13.3. If M is simply-connected, is N path-connected, and 71" : 

N ~ M is a covering map, then 71" is a homeomorphism. 

Proof. Since a covering map is always a local homeomorphism, what we need 
to show is that 71" is bijective. It is of course surjective. Suppose that n, n' E N 
have the same image in M. Since N is path-connected, let jj : [0, 1] ~ N 
be a path with jj(O) = n and jj(l) = n'. Because M is simply-connected and 
ir 0 p(O) = ir 0 p(l), the path ir 0 p is path-homotopic to a trivial path. By 
Proposition 13.2 (ii), so is p. Therefore n = n'. D 

Theorem 13.1. Let M be a path-connected space with base point Xo in which 
every point has a contractible neighborhood. Then there exists a simply
connected space !VI with a covering map ir : !VI ~ M. If 71" : N ~ M 
is any pointed covering map, there is a unique morphism !VI ~ N of pointed 
covers of M. If N is simply-connected, this map is an isomorphism. Thus M 
has a unique simply-connected cover. 

Note that this is a universal property. Therefore it characterizes !VI up to 
isomorphism. The space !VI is called the universal covering space of M. 

Proof. To construct !VI, let !VI as a set be the set of all paths p: [0, 1] ~ M 
such that p(O) = Xo modulo the equivalence relation of path-homotopy. We 
define the covering map ir : !VI ~ M by ir(p) = p(l). To topologize !VI, let 
x E M and let U be a contractible neighborhood of x. Let F = ir-1(x). It is a 
set of path-homotopy classes of paths from Xo to x. Using the contractibility, 
of U, it is straightforward to show that, given p E 7I"-l(U) with y = 7I"(p) E U, 
there is a unique element F represented by a path p' such that p ~ p' *q, where 
q is a path from x to y lying entirely within U. We topologize ir-1(U) in the 
unique way such that the map p f-+ (p', y) is a homeomorphism ir-l(U) ~ 
FxU. 

We must show that, given a pointed covering map 71" : N ~ M, there 
exists a unique morphism !VI ~ N of pointed covers of M. Let Yo be the 
base point of N. An element of ir-1(x), for x E M, is an equivalence class 
under the relation of path-homotopy of paths p : [0, 1] ~ M with Xo = p(O). 
By Proposition 13.2 (i), there is a unique path q : [0, 1] ~ N lifting this with 
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q(O) = Yo, and Proposition 13.2 (ii) shows that the path-homotopy class of q 
depends only on the path-homotopy class of p. Then mapping pH q(l) is the 
unique morphism M --+ N of pointed covers of M. 

If N is simply-connected, any covering map M --+ N is an isomorphism 
by Proposition 13.3. D 

If M is a pointed space and Xo is its base point, then the fiber 7r-1 (xo) 
coincides with its fundamental group 7r1 (M). We are interested in the case 
where M = G is a Lie group. We take the base point to be the origin. 

Theorem 13.2. Suppose that G is a path-connected group in which every 
point has a contractible neighborhood. Then the universal covering space G 
admits a group structure in which both the natural inclusion map 7r1 (G)'--tG 
and the projection 7r : G --+ G are homomorphisms. The kernel of 7r is 7r1 (G). 

Proof. If p : [0,1] --+ G and q : [0,1] --+ G are paths, so is t H p. q(t) = 
p(t)q(t). If p(O) = q(O) = Ie, the identity element in G, then p·q(O) = Ie also. 
If p and p' are path-homotopic and q, q' are another pair of path-homotopic 
paths, then p. q and p'. q' are path-homotopic, for if t H Pt is a path-homotopy 
p 'V'7 p' and t H qt is a path-homotopy q 'V'7 q', then t H Pt . qt is a path
homotopy p . q 'V'7 p' . q'. 

It is straightforward to see that the projection 7r is a group homomorphism. 
To see that the inclusion of the fundamental group as the fiber over the identity 
in G is a group homomorphism, let p and q be loops with p(O) = p(l) = 
q(O) = q(l) = Ie. There is a continuous map f : [0,1] x [0,1] --+ G given 
by (t,u) --+ p(t)q(u). Taking different routes from (0,0) to (1,1) will give 
path-homotopic paths. Going directly via t H f(t, t) = p(t)q(t) gives p. q, 
while going indirectly via 

t { f(2t,0) = p(2t) if 0 !'( t !'( ~, 
H f(1,2t -1) = q(2t -1) if ~ !'( t!,( 1, 

gives the concatenated path p*q. Thus, p*q and p. q are path-homotopic, so 
the multiplication in 7r1 (G) is compatible with the multiplication in G. 

The last statement, that the kernel of 7r is 7r1(G), is true by definition. D 

Proposition 13.4. Let sr denote the r-sphere. Then 7r1 (Sl) ~ Z, while sr 
is simply-connected if r ;?: 2. 

Proof. We may identify the circle Sl with the unit circle in <C. Then x H e27rix 

is a covering map lR --+ Sl. The space lR is contractible and hence simply
connected, so it is the universal covering space. If we give Sl C <C x the 
group structure it inherits from <C x, then this map lR --+ Sl is a group 
homomorphism, so by Theorem 13.2 we may identify the kernel Z with 7r1 (Sl). 

To see that sr is simply-connected for r ;?: 2, let p : [0,1] --+ sr be a path. 
Since it is a mapping from a lower-dimensional manifold, perturbing the path 
slightly if necessary, we may assume that p is not surjective. If it omits one 
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point PEST, its image is contained in ST - {P}, which is homeomorphic to 
]RT and hence contractible. Therefore p, is path-homotopic to a trivial path. 

D 

Proposition 13.5. The group 8U(2) is simply-connected. The group 80(3) 
is not. In fact 7f1 (80(3)) ~ 7./27.. 

Proof. Note that 8U(2) = {( ~b !) IIal2 + Ibl2 = I} is homeomorphic to 

the 3 sphere in ([:2. As such, it is simply-connected. We have a homomor
phism 8U(2) --+ 80(3), which we constructed in Example 7.1. 8ince this 
mapping induced an isomorphism of Lie algebras, its image is an open sub
group of 80(3), and since 80(3) is connected, this homomorphism is surjec
tive. The kernel {±I} of this homomorphism is finite, so this is a covering 
map. Because 8U(2) is simply-connected, it follows from the uniqueness of 
the simply-connected covering group that it is the universal covering group 
of 80(3). The kernel of this homomorphism 8U(2) --+ 80(3) is therefore the 
fundamental group, and it has order 2. D 

Let G and H be topological groups. By a local homomorphism G --+ H we 
mean the following data: a neighborhood U of the identity and a continuous 
map ¢ : U --+ H such that ¢(uv) = ¢(u)¢(v) whenever u,v, and uv E U. 
This implies that ¢(lc) = IH, so if U, u-1 E U we have ¢(u-1) = ¢(u). We 
may as well replace U by un u-1 so this is true for all u E U. 

Theorem 13.3. Let G and H be topological groups, and assume that G is 
simply-connected. Let U be a neighborhood of the identity in G. Then any 
local homomorphism U --+ H can be extended to a homomorphism G --+ H. 

Proof. Let g E G. Let p : [O,IJ --+ G be a path with p(O) = Ie, p(l) = g. 
(8uch a path exists because G is path-connected.) We first show that there 
exists a unique path q: [O,IJ --+ H such that q(O) = IH, and 

q(V)q(U)-l =¢(p(v)p(U)-l) (13.1) 

when u, v E [O,IJ and lu - vi is sufficiently small. We note that when u and 
v are sufficiently close, p( v )p( u) -1 E U, so this makes sense. To construct a 
path q with this property, find 0 = Xo < Xl < ... < Xn = 1 such that when 
u and v lie in an interval [Xi-1,Xi+1], we have p(v)p(U)-l E U (1 :::; i < n). 
Define q(xo) = IH, and if v E [Xi, Xi+1J define 

(13.2) 

This definition is recursive because here q(Xi) is defined by (13.2) with i 
replaced by i-I if i > O. With this definition, (13.2) is actually true for 
v E [Xi-I, Xi+1J if i ~ 1. Indeed, if v E [Xi-I, XiJ (the subinterval for which 
this is not a definition), we have 
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so what we need to show is that 

q(Xi)q(Xi_d- l = ¢(p(V)p(Xi)-lr\p(p(V)P(Xi_d-l ). 

It follows from the fact that ¢ is a local homomorphism that the right-hand 
side is 

¢(p(Xi) p(Xi_l)-l). 

Replacing i by i-I in (13.2) and taking v = Xi, this equals q(Xi)q(Xi_l)-l. 
Now (13.1) follows for this path by noting that if E = ~ min IXi+l - xii, then 
when lu - vi < E, U, v E [0,1]' there exists an i such that u, v E [Xi-l, Xi+l], 
and (13.1) follows from (13.2) and the fact that ¢ is a local homomorphism. 
This proves that the path q exists. To show that it is unique, assume that 
(13.1) is valid for Iu - vi < E, and choose the Xi so that IXi - xi+11 < E; then 
for v E [Xi, Xi+l], (13.2) is true, and the values of q are determined by this 
property. 

Next we indicate how one can show that if P and P' are path-homotopic, 
and if q and q' are the corresponding paths in H, then q(l) = q'(l). It is 
sufficient to prove this in the special case of a path-homotopy t M Pt, where 
Po = P and Pl = p', such that there exists a sequence ° = Xl =::;;: ... =::;;: Xn = 1 
with Pt(u)pdV)-l E U when U,V E [Xi-l,Xi+1] and t and t' E [0,1]. For 
although a general path-homotopy may not satisfy this assumption, it can be 
broken into steps, each of which does. In this case, we define 

qt(V) = ¢(Pt(V)p(Xi)-l)q(Xi) 

when v E [Xi, Xi+l] and verify that this qt satisfies 

qt(v)qt(U)-l = ¢(Pt(v)pt(u)-l) 

when I u - v I is small. In particular, this is satisfied when t = 1 and Pl = p', 
so ql = q' by definition. Now q'(l) = ¢(p'(l)p(I)-l) q(l) = q(l) since p(l) = 
p'(1), as required. 

We now define ¢(g) = q(l). Since G is simply-connected, any two paths 
from the identity to 9 are path-homotopic, so this is well-defined. It is straight
forward to see that it agrees with ¢ on U. We must show that it is a homo
morphism. Given 9 and g' in G, let P be a path from the identity to g, and 
let P' be a path from the identity to g', and let q and q' be the corresponding 
paths in H defined by (13.1). We construct a path P" from the identity to gg' 
by 

"(t) _ { p'(2t) if ° =::;;: t =::;;: 1/2, 
P - p(2t-1)g'if1/2=::;;:t=::;;:l. 

Let 
"() { q'(2t) ifO=::;;:t=::;;:1/2, 

q t = q(2t -l)q'(l) if 1/2 =::;;: t =::;;: l. 

Then it is easy to check that q" is related to P" by (13.1), and taking t = 1, 
we see that ¢(gg') = q"(l) = q(l)q'(l) = ¢(g)¢(g'). 0 
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We turn next to the computation of the fundamental groups of some non
compact Lie groups. 

As usual, we call a square complex matrix g Hermitian if g = t g. The 
eigenvalues of a Hermitian matrix are real, and it is called positive definite if 
these eigenvalues are positive. If g is Hermitian, so are g2 and eg = I + g + 
~ g2 + .... According to the spectral theorem, the Hermitian matrix g can be 
written kak- l , where a is diagonal and k unitary. We have g2 = ka2k- l and 
keak- l , so g2 and eg are positive definite. 

Proposition 13.6. (i) If gl and g2 are positive definite Hermitian matrices, 
and if gr = g~, then gl = g2· 
(ii) If gl and g2 are Hermitian matrices and eg1 = eg2 , then gl = g2· 

Proof. Suppose that gr = g~. We may write gi = kiaik:;l, where ai is diagonal 
with positive entries, and we may arrange it so the entries in ai are in descend
ing order. Since ar and a~ are similar diagonal matrices with their entries in 
descending order, they are equal, and since the squaring map on the positive 
reals is injective, al = a2. Denote a = al = a2. It is not necessarily true that 
kl = k2' but denoting k = kllk2' k commutes with a2. Let Al > A2 > ... be 
the distinct eigenvalues of a with multiplicities dl , d2 ,··· . Since k commutes 
with 

it has the form 

where Ki is a di x di block. This implies that k commutes with a, and so 
g2 = kak- l = gl· 

The proof assuming eg1 = eg2 is identical. It is no longer necessary to 
assume that gl and g2 are positive definite because (unlike the squaring map) 
the exponential map is injective on all of R 0 

Theorem 13.4. Let P be the space of positive definite Hermitian matrices. 
If g E GL(n, C), then g may be written uniquely as pk, where k E U(n) 
and pEP. Moreover, the multiplication map P x U(n) ---+ GL(n, C) is a 
diffeomorphism. 

This is one of several related decompositions referred to as the Cartan decom
position. See Chapter 31 for related material. 

Proof. The matrix g . tg is positive definite and Hermitian, so by the spectral 
theorem it can be diagonalized by a unitary matrix. This means we can write 
g. tg = IW",,-l, where"" is unitary and a is a diagonal matrix with positive real 
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entries. We may take the square root of a, writing a = d2 , where d is another 
diagonal matrix with positive real entries. Let p = ",d",-l. Since tli = k- 1 , we 
have g. tg = ",d",-l . t(",dk- 1) = p. tp, which implies that k = p-1g is unitary. 

The existence of the decomposition is now proved. To see that it is unique, 
suppose that pk = p' k', where p and p' are positive definite Hermitian ma
trices, and k and k' are unitary. To show that p = p' and k = k', we may 
move the k' to the other side, so it is sufficient to show that if pk = p', then 
p = p'. Taking transpose inverses, k- 1p = p', so (pl)2 = pkk-1p = p2. The 
uniqueness now follows from Proposition 13.6. 

We now know that the multiplication map P x U(n) ~ GL(n, q is a 
bijection. To see that it is a diffeomorphism, we can use the inverse function 
theorem. One must check that the Jacobian of the map is nonzero near any 
given point (Po, ko) E P x U(n). Let Xo be a fixed Hermitian matrix such that 
exp(Xo) = Po. Parametrize P by elements of the vector space p of Hermitian 
matrices, which we map to P by the map p '3 X f----t exp(Xo + X), and 
parametrize U(n) by elements of u(n) by means of the map u(n) '3 Y f----t 

exp(Y)po. Noting that p and u(n) are complementary subspaces of g((n, q, 
it is clear using this parametrization of a neighborhood of (Po, ko) that the 
Jacobian is nonzero there, and so the multiplication map is a diffeomorphism. 

o 

Theorem 13.5. We have 

and 

We have omitted GL(n,~) from this list because it is not connected. There is 
a general principle here: the fundamental group of a connected Lie group is 
the same as the fundamental group of a maximal compact subgroup. 

Proof. First, let G = GL(n, q, K = U(n), and P be the space of posi
tive definite Hermitian matrices. By the Cartan decomposition, multiplication 
K x P ~ G is a bijection, and in fact, a homeomorphism, so it will follow 
that 71"1 (K) ~ 71"1 (G) if we can show that P is contractible. However, the ex
ponential map from the space p of Hermitian matrices to P is bijective (in 
fact a homeomorphism) by Proposition 13.6, and the space p is a real vector 
space and hence contractible. 

For G = SL(n, q, one argues similarly, with K = SU(n) and P the space of 
positive definite Hermitian matrices of determinant one. The exponential map 
from the space p of Hermitian matrices of trace zero is again a homeomorphism 
of a real vector space onto P. 

Finally, for G = SL(n,~), one takes K = SO(n), P to be the space of 
positive definite real matrices of determinant one, and p to be the space of 
real symmetric matrices of trace zero. 0 
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The remainder of this chapter will be less self-contained. For completeness, 
we calculate the fundamental groups of SO(n) and SU(n), making use of some 
facts from algebraic topology that we do not prove. 

If G is a Hausdorff topological group and H is a closed subgroup, then 
the coset space G j H is a Hausdorff space with the quotient topology. Such a 
quotient is called a homogeneous space. 

Proposition 13.7. Let G be a Lie group and H a closed subgroup. If the 
homogeneous space G j H is homeomorphic to a sphere sr where r ~ 3, then 
1I'1(G) ~ 11'1 (H). 

Proof. The map G -+ G j H is a fibration (Spanier [112], Example 4 on p. 91 
and Corollary 14 on p. 96). It follows that there is an exact sequence 

(Spanier [112], Theorem 10 on p. 377). Since G j H is a sphere of dimension 
~ 3, its first and second homotopy groups are trivial and the result follows. 

o 

Theorem 13.6. The groups SU(n) are simply-connected for all n. On the 
other hand, 

(SO( ») '" { Z if n = 2, 
11'1 n = Zj2Z if n > 2. 

Proof. Since SO(2) is a circle, its fundamental group is Z. ay Proposition 13.5 
11'1 (SO(3») ~ Zj2Z and 11'1 (SU(2») is trivial. The group SO(n) acts transitively 
on the unit sphere sn-l in ~n, and the isotropy subgroup is SO(n - 1), so 
SO(n)jSO(n-1) is homeomorphic to sn-l. By Proposition 13.7, we see that 
11'1 (SO(n») ~ 11'1 (SO(n -1») if n ~ 4. Similarly, SU(n) acts on the unit sphere 
s2n-l in en, and so SU(n)jSU(n -1) ~ S2n-l, whence SU(n) ~ SU(n -1) 
for n ~ 2. 0 

If n ~, the universal covering group of SO(n) is called the spin group and 
is denoted Spin(n). 

EXERCISES 

Exercise 13.1. Let SL(2, R) be the universal covering group of SL(2, R). Let 11' : 

SL(2, R) ~ GL(V) be any finite-dimensional irreducible representation. Show that 
11' factors through SL(2, R) and is hence not a faithful representation. (Hint: Use 
the results of Chapter 12.) 
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The Local Frobenius Theorem 

Let M be an n-dimensional smooth manifold. The tangent bundle T M of 
M is the disjoint union of all tangent spaces of points of M. It can be 
given the structure of a manifold of dimension 2 dim(M) as follows. If U 
is a coordinate neighborhood and Xl, ... ,Xn are local coordinates on U, then 
T(U) = {TxM I X E U} can be taken to be a coordinate neighborhood of T M. 
Every element of TxM with X E U can be written uniquely as 

and mapping this tangent vector to (x!,'" ,Xn, a!, ... ,an) E ~2n gives a 
chart on T(U), making TM into a manifold. 

By a d-dimensional family D in the tangent bundle of M we mean a rule 
that associates with each x E Mad-dimensional subspace Dx C Tx(M). We 
ask that the family be smooth. By this we mean that in a neighborhood U 
of any given point x there are smooth vector fields X!,, .. ,Xd such that for 
u E U the vectors Xi,u E Tu(M) span Du. 

We say that a vector field X is subordinate to the family D if Xx E Dx 
for all x E U. The family is called involutory if whenever X and Yare vector 
fields subordinate to D then so is [X, Y]. This definition is motivated by the 
following considerations. 

An integral manifold of the family D is ad-dimensional submanifold N 
such that, for every point x E N, the tangent space Tx(N), identified with its 
image in Tx(M), is Dx. We may ask whether it is possible, at least locally in 
a neighborhood of every point, to pass an integral manifold. This is surely a 
natural question. 

Let us observe that if it is true, then the family D is involutory. To see 
this (at least plausibly), let U be an open set in M that is small enough that 
through each point in U there is an integral submanifold that is closed in U. 
Let J be the subspace of Coo (U) consisting of functions that are constant on 
these integral submanifolds. Then the restriction of a vector field X to U is 
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subordinate to D if and only if it annihilates J. It is clear from (6.6) that if 
X and Y have this property, then so does [X, Y]. 

The F'robenius Theorem is a converse to this observation. A global version 
may be found in Chevalley [26]. We will content ourselves with the local 
theorem. 

Lemma 14.1. If Xl,' .. , Xd are vector fields on M such that [Xi, Xj]lies in 
the COO(M) span of Xl," . , Xd, and if for each x E M we define Dx to be 
the span of XIx,'" , Xdx, then D is an involutory family. 

Proof. Any vector field subordinate to D has the form (locally near x) 
Ei fiXi, where Ii are smooth functions. To check that the commutator of 
two such vector fields is also of the same form amounts to using the formula 

[fX,gY] = fg[X, Y] + fX(g)Y - gY(f)X, 

which follows easily on applying both sides to a function h and using the fact 
that X and Yare derivations of COO(M). 0 

Theorem 14.1. (Frobenius) Let D be a smooth involutory d-dimensional 
family in the tangent bundle of M. Then for each point x E M there exists a 
neighborhood U of x and an integral manifold N of D through x in U. If N' 
is another integral manifold through x, then Nand N' coincide near x. That 
is, there exists a neighborhood V of x such that V n N = V n N'. 

Proof. Since this is a strictly local statement, it is sufficient to prove this 
when M is an open set in Rn and x is the origin. We show first that if X is a 
vector field that does not vanish at x, then we may find a system yl, ... , Yn 
of coordinates in which X = a I aYn' Let Xl, .•. , Xn be the standard Cartesian 
functions. Since X does not vanish at the origin, the function X(Xi) does not 
vanish at the origin for some i, say X n . We write 

a a 
X=al- +"'+an--

aXI aXn 

in terms of smooth functions ai = ai(Xl,'" , xn) and an(O,··· ,0) =I- O. 
Fix small numbers Ul,'" , Un-I' We consider an integral curve for the vec
tor field through the point (Ul,'" , Un-l, 0). Thus, we have a path t --+ 
(Xl (t), ... ,Xn(t)) such that 

x~(t) =ai(xI(t), ... ,Xn(t)), (Xi(O),· .. ,xn(O)) = (Ul,'" ,Un-l,O). 

For Ul, ... , Un-l sufficiently small, we have an (Ul, ... , Un-l, 0) =I- 0 and so 
this integral curve is transverse to the plane Xn = O. We choose our coordinate 
system Yl, ... , Yn so that 

Yi (Xl (t), ... ,Xn(t)) = Ui, (i=1,2,3,··· ,n-l), 

Yn(XI(t), ... ,Xn(t)) =t. 
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Now any path with YI,··· ,Yn-l held constant, say Yi = Ui (i = 1,··· ,n - 1) 
and Yn = t, is an integral curve for the vector field X, so 

This proves that there exists a coordinate system in which X = 8j8Yn. 
If d = 1, the result is proved by this. We will assume that d> 1 and that 

the existence of integral manifolds is known for lower-dimensional involutory 
families. Let XI,··· ,Xd be smooth vector fields such that Xi,u span Du for 
U near the origin. We have just shown that we may assume that X = Xd = 
8j8Yn. Since D is involutory, [Xd, Xi] = L:j gijXj for smooth functions 9ij. 

We will show that we can arrange things so that gid = ° when i < d; that is, 

Indeed, writing 

d-l 

[Xd,Xi] = LgijXj , 
j=l 

(i < d). 

(i = 1,··· ,d-1), 

(14.1) 

(14.2) 

we will still have a spanning set if we subtract hinXd from Xi. We may 
therefore assume that hin = ° for i < d. Thus 

n-l 8 
Xi = Lhij~, 

j=l YJ 
(i = 1,··· ,d-1). (14.3) 

In other words, we may assume that Xi does not involve 8/ 8Yn for i < d. 
Now 

(14.4) 

On the other hand, we have 

d-l d-l n-l 8 8 
[Xd,Xi] = L9ijXj + gidXd = LLgijhjka + gida · 

j=l j=l k=l Yk Yn 

Comparing the coefficients of 8j8Yn in this expression with that in (14.4) 
shows that gid = 0, proving (14.1). 

Next we show that if (al,··· ,ad-I) are real constants, then there exist 
smooth functions II,··· ,fd-l such that for small YI,··· ,Yn-l we have 

(i = 1 ... d - 1) " , (14.5) 

and 
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Indeed, 

[ 
d-l 1 8fi 

X d, L fiXi = L a Xi + L figijXj . 
~l i Yn iJ 

For this to be zero, we need the fi to be solutions to the first-order system 

8fj d-l 

a + Lgijfi = 0, 
Yn i=l 

i = 1"" ,d - 1. 

This first-order system has a solution locally with the prescribed initial con
dition. 

Since the ai can be arbitrary, we may choose 

{ I if i = 1, 
ai = ° otherwise. 

Then the vector field ~ fiXi agrees with Xl on the hyperplane Yn = 0. Re
placing Xl by ~ fiXi, we may therefore assume that [Xd, Xl] = 0. Repeating 
this process, we may similarly assume that [Xd, Xi] = ° for all i < d. Now with 
the hij as in (14.2), this means that 8hij /8Yn = 0, so the hij are independent 
of Yn. 

Since the hij are independent of Yn, we may interpret (14.3) as defining 
d - 1 vector fields on IRn - l . They span a d - I-dimensional involutory family 
of tangent vectors in lRn - 1 and by induction there exists an integral manifold 
for this vector field. If this manifold is No c jRn-l, then it is clear that 

is an integral manifold for D. 
We have established the existence of an integral submanifold. The local 

uniqueness of the integral sub manifold can also be proved now. In fact, if we 
repeat the process by which we selected the coordinate system YI, ... ,Yn so 
that the vector field 8/ 8Yn was subordinate to the involutory family D, we 
eventually arrive at a system in which D is spanned by 8/8Yn-dH,'" ,8/8Yn' 
Then the integral manifold is given by the equations YI = ... = Yn-d = 0. 0 

If G is a Lie group, a local subgroup of G consists of an open neighborhood 
U of the identity and a closed subset K of U such that Ia E K, and if 
x, Y E K such that xy E U, then xy E K, and if x E K such that x-I E U, 
then x-I E K. For example, if H is a closed subgroup of G and U is any open 
set, then Un H is a local subgroup. 

Proposition 14.1. Let G be a Lie group with Lie algebra g, and let £ be a 
Lie subalgebra of g. Then there exists a local subgroup K of G whose tangent 
space at the identity is £. The exponential map sends a neighborhood of the 
identity in £ onto a neighborhood of the identity in K. 
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Proof. The Lie algebra 9 of G has two incarnations: as the tangent space to 
the identity of G and as the set of left-invariant vector fields. For definiteness, 
we identify 9 = Te(G) and recall how the left-invariant vector field arises. 

If g E G, let >..g : G ----t G be left translation by g, so that >"g(x) = gx. 
Let >"g* : Te(G) ----t Tx(G) be the induced map of tangent spaces. Then the 
left-invariant vector field associated with Xe E 9 has Xg = >"g*(Xe ). 

Let d = dim(£) and let D be the d-dimensional family of tangent vectors 
such that Dg = >"g*(£)' Since £ is closed under the bracket, it follows from 
Lemma 14.1 that D is involutory, so there exists an integral submanifold K 
in a neighborhood U of the identity. We will show that if U is sufficiently 
small, then K is a local group. 

Indeed, let x and y be elements of K such that xy E U. Since the vector 
fields associated with elements of £ are left-invariant, the involutory family D 
is invariant under left translation. The image of K under right translation by 
x is also an integral submanifold of D through x, so this submanifold is K 
itself. These submanifolds therefore coincide near x and, since y is in K, its 
left translate xy by x is also in K. 

Since the one-parameter subgroups exp(tX) with X E £ are tangent to 
the left-invariant vector field at every point, they are contained in the integral 
submanifold K near the identity, and the image of a neighborhood of the 
identity under exp is a manifold of the same dimension as K, so the last 
statement is clear. 0 

Proposition 14.2. Let G and H be Lie groups with Lie algebras 9 and l), 
respectively, and let 7r : 9 ----t l) be a Lie algebra homomorphism. Then there 
exists a neighborhood U of G and a local homomorphism 7r : U ----t H whose 
differential is 7r. 

Proof. The tangent space to G x H at the identity is 9 EB l). Let 

£ = {(X, 7r(X)) I X E g} C 9 EB l). 

It is a Lie subalgebra, corresponding by Proposition 14.1 to a local subgroup 
K of G x H. The tangent space to the identity of K is £, which intersects l) 
in 9 EB l) transversally in a single point; indeed 9 is the direct sum of £ and 
l). Concretely, this reflects the fact that £ is the graph of a map 7r : 9 ----t l). 
Using the inverse function theorem, the same is true locally of K: since its 
tangent space at the identity is a direct sum complement of the tangent space 
of H in the tangent space of G x H, it is, locally, the graph of a mapping. 
Thus, there exists a map 7r : U ----t H of a sufficiently small neighborhood 
of the identity in G such that if (g, h) E G x H, g E U, and h E 7r(U), then 
(g, h) E K if and only if h = 7r(g). Because K is a local subgroup, this implies 
that 7r is a local homomorphism. 0 

Theorem 14.2. Let G and H be Lie groups with Lie algebras 9 and l), respec
tively, and let 7r : 9 ----t l) be a Lie algebra homomorphism. Assume that G is 
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simply-connected. Then there exists a Lie group homomorphism 7r : G ---+ H 
with differential 7r. 

Proof. This follows from Proposition 14.2 and Theorem 13.3. o 

We can now give another proof of Theorem 12.2. We will extend the va
lidity of the result a bit, though the algebraic method would work as well for 
this. 

Theorem 14.3. Let G and K be Lie groups with Lie algebms 9 and t. As
sume K is compact and simply-connected. Suppose that 9 and t have iso
morphic complexifications. Then every finite-dimensional irreducible complex 
representation of 9 is completely reducible. If G is connected, then every irre
ducible complex representation of G is completely reducible. 

Proof. Let (7r, V) be a finite-dimensional representation of G, and let W be 
a proper nonzero invariant subspace. We will show that there is another in
variant subspace W' such that V = WEB W'. By induction on dim(V), it will 
follow that both Wand W' are direct sums of irreducible representations. 

The differential of 7r is a complex representation of g. As in Proposition 
11.3, we may extend it to a representation of ge ~ te and then restrict it to e. 
Since K is simply-connected, the resulting Lie algebra homomorphism t ---+ 
gl(V) is the differential of a Lie group homomorphism 7rK : K ---+ GL(V). 

Now, because K is compact, this representation of K is completely re
ducible (Proposition 2.2). Thus there exists a K-invariant subspace W' such 
that V = WEB W'. Of course, W' is also invariant with respect to t and hence 
te ~ ge, and hence g. It is therefore invariant under exp(g). If G is connected, 
it is generated by a neighborhood of the identity, and so W' is G-invariant. 0 

Theorem 14.4. Let (7r, V) be a finite-dimensional irreducible complex repre
sentation ofg =.sl(n,~), .su(n), or.sl(n,q. Ifg is.sl(n,q then assume that 
7r : 9 ---+ End(V) is complex linear. Then 7r is completely reducible. 

Proof. We will prove this for .sl(n,~) and .su(n). By Theorem 13.6, K is 
simply-connected and the hypotheses of Theorem 14.3 are satisfied. For 
.sl(n,~), we can take G = SL(n,~), K = SU(n). For .su(n), we can take 
G = K = SU(n). 

The case of .sl(n, q requires a minor modification to Theorem 14.3 (Ex
ercises 14.1 and 14.2) and is left to the reader. 0 

Theorem 14.5. Let (7r, V) be a finite-dimensional irreducible complex repre
sentation of SL(n,~). Then 7r is completely reducible. 

Proof. We take G = SL(n,~), K = SU(n). o 
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EXERCISES 

Exercise 14.1. Let G be a connected complex analytic Lie group, and let K C 
G be a compact Lie subgroup. Let g and e c g be the Lie algebras of G and 
K, respectively. Assume that g is the complexification of e and that K is simply
connected. Then every finite-dimensional irreducible complex representation of g 
is completely reducible. If G is connected, then every irreducible complex analytic 
representation of G is completely reducible. 

Exercise 14.2. Prove that any complex analytic representation of sI(n, C) is com
pletely reducible. 
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Tori 

A complex manifold M is constructed analogously to a smooth manifold. We 
specify an atlas U = {(U, ¢)}, where each chart U c M is an open set and 
¢ : U ---+ em is a homeomorphism of U onto its image that is assumed to be 
open in em. It is assumed that the transition functions 'ljJo¢-l : ¢(UnV) ---+ 
'IjJ(Un V) are holomorphic for any two charts (U, ¢) and (V, 'IjJ). A complex Lie 
group (or complex analytic group) is a Hausdorff topological group that is a 
complex manifold in which the multiplication and inversion maps G x G ---+ G 
and G ---+ G are holomorphic. The Lie algebra of a complex Lie group is a 
complex Lie algebra. For example, GL(n, q is a complex Lie group. 

If 9 is a Lie algebra and X, Y E g, we say that X and Y commute if 
[X, Y] = O. We call the Lie algebra g Abelian if [X, Y] = 0 for all X, Y E g. 

Proposition 15.1. The Lie algebra of an Abelian Lie group is Abelian. 

Proof. The action of G on itself by conjugation is trivial, so the induced 
action Ad of G on its Lie algebra is trivial. By Proposition 8.2, it follows that 
ad: Lie(G) ---+ End(Lie(G)) is the zero map, so [X, Yj = ad(X)Y = O. D 

Proposition 15.2. If G is a Lie group, and X and Yare commuting elements 
ofLie(G), then eX+Y = eXeY . In particular, eXeY = eYex . 

Proof. First note that, since the differential of Ad is ad (Proposition 8.2), 
Ad(etX)y = Y for all t. Recalling that Ad(etX ) is the endomorphism of 
Lie( G) induced by conjugation, this means that conjugation by etX takes the 
one-parameter subgroup u ---+ eUY to itself, so etX eUY e-tX = eUY . Thus etX 

and eUY commute for all real t and u. 
We recall from Chapter 8 that the path p(t) = etY is characterized by the 

fact that p(O) = Ie, while p*(djdt) = Yp(t). The latter condition means that 
if f E COO(G) we have 

d 
d/ (p( t)) = (Y 1) (p( t) ) . 
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Let q( t, u) = etX eUY . The vector field Y is invariant under left translation, in 
particular left translation by etX , so 

Now, by the chain rule, 

d a I a I dv f(q(v, v)) = at f(q(t,u)) t=u=v + au f(q(t,u)) t=u=v 

= (Yf + xf)(q(v,v)). 

This means that the path v --t r(v) = q(v, v) satisfies r*(djdv) = (X +Y)r(v) 
whence eV(x+Y) = eVx eVY . Taking v = 1, the result is proved. 0 

A compact torus is a compact connected Lie group that is Abelian. In the 
context of Lie group theory a compact torus is usually just called a torus, 
though in the context of algebraic groups the term "torus" is used slightly 
differently. 

For example, '][' = {z E ex Ilzl = I} is a torus. This group is isomorphic to 
ffi.jZ. Even though ffi. and Z are additive groups, we may, during the following 
discussion, sometimes write the group law in ffi.jZ multiplicatively. 

Proposition 15.3. Let T be a torus, and let t be its Lie algebra. Then exp : 
t --t T is a homomorphism, and its kernel is a lattice. We have T ~ (ffi.jZY ~ 
']['r, where r is the dimension of T. 

Proof. Let t be the Lie algebra of T. Since T is Abelian, so is t, and by 
Proposition 15.2, exp is a homomorphism from the additive group t to T. 
The kernel Act is discrete since exp is a local homeomorphism, and A is 
cocompact since T is compact. Thus, A is a lattice and T ~ tj A ~ (ffi.jZY ~ 
']['r. 0 

A character of ffi.r of the form 

r ( ) IT 2ni ( L k . x ) 
Xl, ... ,Xr M e J J , (15.1) 

k=l 

where (k l ,··· ,kr) E zr, induces a character on (ffi.jzy. 

Proposition 15.4. Every irreducible complex representation of (ffi.jZY coin
cides with {15.1} for suitable k i E Z. 
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Proof. By classical Fourier analysis, these characters span L2 ((~/zt). Thus, 
the character X of any complex representation 7f is not orthogonal to (15.1) for 
some (k1,··· ,kr) E zr. By Schur orthogonality, X agrees with this character. 

o 

We also want to know the irreducible real representations of (Z/~t. Let 
kl' ... ,kr E Z be given. Assume that they are not all zero. The complex 
character (15.1) is not a real representation. However, regarding it as a ho
momorphism (Z/~t --+ "][', we may compose it with the real representation 

21ri8 (COS(27fO) sin(27fO)) f "][' HT b· 1 . 
"][' 3 t = e t--+ _ sin(27fO) cos(27fO) 0 . vve 0 tam a rea representatlOn 

(15.2) 

Proposition 15.5. Let T = (Z/~t and let (7f, V) be an irreducible real rep
resentation. Then either 7f is trivial or 7f is two-dimensional and is one of the 
irreducible representations (15.2) with ki E Z not all zero. 

Proof. It is straightforward to see that the real representation (15.2) is irre
ducible. The completeness of this set of irreducible real representations follows 
from the corresponding classification of the irreducible complex characters 
(Proposition 15.4). 0 

If T is a compact torus, we will associate with T a complex analytic group 
Te, which we call the complexijication of T. Let tc = C ® t be the com
plexification of the Lie algebra, and let Te = tel A, where Act is the 
kernel of exp : t --+ T. It is easy to see that this construction is functo
rial: given a homomorphism ¢ : T --+ U of compact tori, the differential 
¢* : Lie(T) --+ Lie(U) commutes with the exponential map, so ¢* kills the 
kernel A of exp : t --+ T. Therefore, there is an induced map Te --+ Ue. 

If we identify T = (~/zt, the complexification Te ~ (C/zt. Since 
x --+ e21rix induces an isomorphism of the additive group C/Z with the 
multiplicative group C x, we see that Te ~ (C x t. We call any complex Lie 
group isomorphic to (cxt for some r a complex torus. 

By a linear character X of a compact torus T, we mean a continuous 
homomorphism T --+ Cx. These are just the characters of irreducible repre
sentations, known explicitly by (15.1). They take values in "][', as we may see 
from (15.1), or by noting that the image is a compact subgroup of Cx. 

By a rational character X of a complex torus T, we mean an analytic 
homomorphism T --+ C x • 

Proposition 15.6. Let T be a compact torus. Then any linear character X of 
T extends uniquely to a rational character of Te. 

Proof. Without loss of generality, we may assume that T = (~/zt and that 
Te = (cxt, where the embedding T --+ Te is the map (Xl,··· ,xr ) --+ 
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(e27l"iXl , ••• ,e27l"ixr). Every linear character of T is given by (15.1) for suitable 
k i E Z, and this extends to the rational character (tt, ... ,tT ) ---+ I1 t: i of 
Te. Since a rational character is holomorphic, it is determined by its values 
on the image 'JI'T of T. D 

We will denote the group of characters of a compact torus T as X*(T). 
We will denote its group law additively: if Xl and X2 are characters, then 
(Xl + X2)(t) = XI(t)X2(t). We may identify X*(T) with the group of rational 
characters of Te. 

A (topological) generator of a compact torus T is an element t such that 
the smallest closed subgroup of T containing t is T itself. 

Theorem 15.1. (Kronecker) Let (tt,··· ,tT ) E lRT , and let t be the image of 
this point in T = (lR/ZY. Then t is a generator ofT if and only ifl, tl,··· ,tT 

are linearly independent over Q. 

Proof. Let H be the closure of the group (t) generated by t in T = (lR/ZY. 
Then T / H is a compact Abelian group, and if it is not reduced to the identity 
it has a character X. We may regard this as a character of T that is trivial 
on H, and as such it has the form (15.1) for suitable ki E Z. Since t itself 
is in H, this means that E kjtj E Z, so 1, tl,··· ,tT are linearly dependent. 
The existence of nontrivial characters of T / H is thus equivalent to the linear 
dependence of 1, tt, ... ,tT and the result follows. D 

Corollary 15.1. Every compact torus T has a generator. Indeed, generators 
are dense in T. 

Proof. We may assume that T = (lR/ZY. By Kronecker's Theorem 15.1, what 
we must show is that r-tuples (t l ,··· ,tT ) such that 1, it,··· ,tT are linearly 
independent over Q are dense in lRT • If 1, tl, ... ,ti-l are linearly independent, 
then linear independence of 1, tl,··· ,ti excludes only countably many ti, and 
the result follows from the uncountability of lR. D 

Proposition 15.7. Let T = (lR/ZY. 
(i) Every automorphism of T is of the form t ---+ Mt (mod ZT), where M E 
GL(r,Z). Thus Aut(T) ~ GL(r,Z). 
(ii) If H is a connected topological space and f : H ---+ Aut(T) is a map such 
that (h, t) ---+ f(h)t is a continuous map H x T ---+ T, then f is constant. 

We can express (ii) by saying that Aut(T) is discrete since if it is given the 
discrete topology, then (h, t) ---+ f(h)t is continuous if and only if f is locally 
constant. 

Proof. If ¢ : T ---+ T is an automorphism, then ¢ induces an invertible 
linear transformation M of the Lie algebra t of T that commutes with the 
exponential map. It must preserve the kernel A of exp : t ---+ T. We may 
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identify t = lRT in such a way that A is identified with 7/.,T, in which case the 
matrix of M must lie in GL(r, 7/.,). Part (i) is now clear. 

For part (ii), since T is compact and f is continuous, as h -----+ hI, f(h)t -----+ 
f(hdt uniformly for t E T. It is easy to see from (i) that this is impossible 
unless f is locally constant. 0 

In the remainder of this chapter, we will consider tori embedded in Lie 
groups. First, we prove a general statement that implies the existence of tori. 

Theorem 15.2. Let G be a Lie group and H a closed Abelian subgroup. Then 
H is a Lie subgroup of G. If G is compact, then the connected component of 
the identity in H is a torus. 

The assumption that H is Abelian is unnecessary (Exercise 15.1). See Remark 
7.2 for references to a result without this assumption. 

Proof. Let 9 = Lie( G). The exponential map 9 -----+ G is a local homeomor
phism near the origin. Let U be a neighborhood of 0 E 9 such that exp has a 
smooth inverse log: exp(U) -----+ U. Let 

I) = {X E 9 I exp(oXX) E H for all oX E lR}. 

Lemma 15.1. If X E I) and Y E U, and if eY E H then [X, Y] = o. 
To prove the lemma, note that for any t > 0 both etX and eY E H commute, 
so eY = etXeYe-tX = exp(Ad(tX)Y). If t is small enough, both Y and 
Ad(tX)Y are in U, so applying log we have Ad(tX)Y = Y. By Proposition 
8.2, it follows that ad(X)Y = 0, proving the lemma. 

Let us now show that I) is an Abelian Lie algebra. It is clearly closed under 
scalar multiplication. If X and Yare in I), then etY E Hand tY E U for small 
enough t, so by the lemma [X, tY] = O. Thus [X, Y] = O. By Proposition 15.2 
we have et(x+Y) = etXetY for all t, so X + Y E I). 

Now we will show that there exists a neighborhood V of the identity in G 
such that V ~ exp(U) and V nH = {exp(X) I X E I) nlog(V)}. This will show 
that V n H is a smooth locally closed submanifold of G. Since every point of 
H has a neighborhood diffeomorphic to this neighborhood of the identity, it 
will follow that H is a submanifold of G and hence a Lie subgroup. 

It is clear that, for every open neighborhood of V contained in exp(U), we 
have V n H ~ {exp( X) I X E I) n log (V)} . If this inclusion is proper for every 
V, then there exists a sequence {hn } C H n exp(U) such that hn -----+ 1 but 
log(hn ) rJ. I). We write log(hn) = X n· 

Let us write 9 = I) EB p, where p is a vector subspace. We will show that 
we may choose Xn E p. Write Xn = Yn + Zn, where Yn E I:J and Zn E p. By 
the lemma, [Xn, Yn] = 0, so eZn = eXne-Yn E H. We may replace Xn by Zn 
and hn by eZn , and we still have hn -----+ 1 but log(hn ) rJ. I), and after this 
substitution we have Xn E p. 
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Let us put an inner product on g. We choose it so that the unit ball 
is contained in U. The vectors Xn/IXnl lie on the unit ball in p, which is 
compact, so they have an accumulation point. Passing to a subsequence, we 
may assume that Xn/IXnl -+ X=, where X= lies in the unit ball in p. We 
will show that X= E b, which is a contradiction since b n p = {o}. 

To show that X= E b, we must show that etXoo E H. It is sufficient to 
show this for t < 1. With t fixed, let rn be the smallest integer greater than 
t/IXnl. Evidently, rnXn -+ tX= and eTnXn = (e Xn tn E H since eXn E H. 
Since H is closed, etXoo E H and the proof that H is a Lie group is complete. 

If G is compact, then so is H. The connected component of the identity 
in H is a connected compact Abelian Lie group and hence a torus. 0 

If G is a group and H a subgroup, we will denote by Nc(H) and Gc(H) 
the normalizer and centralizers of H. If no confusion is possible, we will denote 
them as simply N(H) and G(H). 

Let G be a compact, connected Lie group. It contains tori, for example 
{I}, and an ascending chain TI ~ T2 ~ T3 ~ '" has length bounded by 
the dimension of G. Therefore G contains maximal tori. Let T be a maximal 
torus. 

The normalizer N(T) = {g E G I gTg- I = T}. It is a closed subgroup since 
if t E T is a generator, N(T) is the inverse image of T under the continuous 
map g -+ gtg-I. 

Proposition 15.8. Let G be a compact Lie group and T a maximal torus. 
Then N(T) is a closed subgroup of G. The connected component N(T)O of the 
identity in N(T) is T itself. The quotient N(T)/T is a finite group. 

Proof. We have a homomorphism N(T) -+ Aut(T) in which the action is 
by conjugation. By Proposition 15.7, Aut(T) ~ GL(r,Z) is discrete, so any 
connected group of automorphisms must act trivially. Thus, if n E N(T)O, n 
commutes with T. If N(T)O =I=- T, then it contains a one-parameter subgroup 
lR 3 t -+ n(t), and the closure of the group generated by T and n(t) is a 
closed commutative subgroup strictly larger than T. By Theorem 15.2, it is a 
torus, contradicting the maximality of T. It follows that T = N(T)o. 

The quotient group N(T)O /T is both discrete and compact and hence 
finite. 0 

The quotient N(T)/T is called the Weyl group of G with respect to T. 

Example 15.1. Suppose that G = U(n). A maximal torus is 

Its normalizer N(T) consists of all monomial matrices (matrices with a single 
nonzero entry in each row and column) so the quotient N(T)/T ~ Sn. 
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Proposition 15.9. Let T be a maximal torus in the compact connected Lie 
group G, and let t, 9 be the Lie algebras of T and G, respectively. 
(i) Any vector in 9 fixed by Ad(T) is in t. 
(ii) We have 9 = tEBP, where p is invariant under Ad(T). Under the restriction 
of Ad to T, p decomposes into a direct sum of two-dimensional irreducible 
representations of T of the form (15.2). 

Proof. For (i), if X Egis fixed by Ad(T), then by Proposition 15.2, exp(tX) 
is a one-parameter subgroup that is not contained in T but that commutes 
with T, and unless X E t, the closure of the group it generates with T will be 
a torus strictly larger than T, which is a contradiction. 

Since G is compact, there exists a positive definite symmetric bilinear form 
on the real vector space that is g-invariant under the real representation Ad : 
G -+ GL(g). The orthogonal complement p of t is invariant under Ad(T). It 
contains no Ad(T)-fixed vectors by (i). Since every nontrivial irreducible real 
representation of T is of the form (15.2), (ii) follows. 0 

Corollary 15.2. If G is a compact connected Lie group and T a maximal 
torus, then dim( G) - dim(T) is even. 

Proof. This follows since dim(G/T) = dim(p), and p decomposes as a direct 
sum of two-dimensional irreducible representations. 0 

We review the notion of an orientation. Let M be a manifold of dimension 
n. The orientation bundle of M is a certain two-fold cover that we now de
scribe. One way of constructing M begins with the n-fold exterior power of the 
tangent bundle: the fiber over x E M is /\nTx(M). This is a one-dimensional 
real vector space. Omitting the origin and dividing by the equivalence rela
tion v '" w if v = AW for 0 < A E JR., when v, ware elements of /\nTx(M), 
produces a set F(x) with two points. The disjoint union M = UxEM F(x) is 

topologized as follows. Let 7r : M -+ M be the map sending F(x) to x. If 
Xl,'" ,Xn are vector fields that are linearly independent on an open set U, 
then Xl /\ ... /\ Xn determines, for each x E U, an element s(x) of 7r- l (x). 
We topologize M by requiring that s : U -+ M be a local homeomorphism. 

Now an orientation of the manifold M is a global section of the orientation 
bundle, that is, a continuous map s : M -+ M such that po s(x) = x for 
all x E M. If an orientation exists, then M is a trivial cover, and M ~ 
M x (2/22). In this case, the bundle M is called orientable. Any complex 
manifold is orientable. On the other hand, a Mobius strip is not orientable. 

If M and N are manifolds of dimension nand f : M -+ N is a diffeo
morphism, there is induced for each x E M an isomorphism /\nTx(M) -+ 
/\nTf(x)(N) and so there is induced a canonical map 1: M -+ N covering f. 
Proposition 15.10. Let G be a connected Lie group and H a connected closed 
Lie subgroup. Then the quotient space G / H is a connected orientable manifold. 

The manifold G / H is called a flag manifold. We see that the flag manifold is 
orient able as well as even-dimensional. See Remark 17.1. 
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Proof. To make G / H a manifold, choose a subspace p of 9 = Lie( G) comple
mentary to ~ = Lie(H). Then X --+ exp(X)gH is a local homeomorphism of 
a neighborhood of the identity in p with a neighborhood of the coset gH in 
G/H. 

To see that M = G / H is orient able, let 1[' : M --+ M be the orientation 
bundle, and let w be an element of 1['-I(H). If 9 E G then 9 acts by left 
translation on M and hence induces an automorphism g of M. We can define 
a global section s of M by s(gH) = g(w) if we can check that this is well
defined. Thus, if gH = g'H, we must show that g(w) = g'(w) in the fiber of 
M above gH. We will show that the map g: M --+ M can be deformed into 
g' through a sequence of maps iit, each of them mapping H --+ gH, so that 
go = g and gi = g'. This is sufficient because the fiber of M above gH is a 
discrete set consisting of two elements, and t --+ iit (w) is then a continuous 
map from [0,1] into this discrete set. 

The existence of iit will follow from the connectedness of H. Note that if 
"I E G we have 

(15.3) 

In particular, g'g-1 E gHg-l. Since H is connected, so is gHg-1, and there is 
a path t f-----+ "It from the identity to g' g-1 within gH g-l. Then xH f-----+ "ItgxH 
is a diffeomorphism of M that agrees with left translation by 9 when t = 0 
and left translation by g' when t = 1, and by (15.3), each canonical lifting iit 
takes H --+ gH, as required. D 

EXERCISES 

Exercise 15.1. Prove Theorem 15.2 without the assumption that G is Abelian. 
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Geodesics and Maximal Tori 

An important theorem of Cartan asserts that any two maximal tori in a 
compact Lie group are conjugate. We will give two proofs of this, one using 
some properties of geodesics in a Riemannian manifold and one using some 
algebraic topology. The reader will experience no loss of continuity if he reads 
one of these proofs and skips the other. The proof in this chapter is simpler 
and more self-contained. 

We begin by establishing the properties of geodesics that we will need. 
These properties are rather well-known, though they do require proof. Some 
readers may want to start reading with Theorem 16.1. 

A Riemannian manifold consists of a smooth manifold M and for every 
x E M an inner product on the tangent space Tx. Since Tx is a real vector space 
and not a complex one, an inner product in this context is a positive definite 
symmetric bilinear form. We also describe this family of inner products on the 
tangent spaces as a Riemannian structure on the manifold M. We will denote 
the inner product of X, Y E Tx by (X, Y) and the length V(X,X) = IXI. As 
part of the definition, the inner product must vary smoothly with x. To make 
this condition precise, we choose a system of coordinates Xl, ••. ,Xn on some 
open set U of M, where n = dim(M). Then, at each point x E U, a basis of 
Tx (M) consists of a / aXI, ... ,a / axn. Let 

gij = \ a~i ' a~j ) . (16.1) 

Thus, the matrix (gij) representing the inner product is positive definite sym
metric. Smoothness of the inner product means that the gij are smooth func
tions of x E U. 

We also define (gij) to be the inverse matrix to (gij). Thus, the functions 
gij satisfy 

j 

k {1ifi=k, 
where 8i = 0 th . o erWlse, 

(16.2) 

and of course 
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gij = gji, gij = gji. 

Suppose that p : [0,1] ----+ M is a path in the Riemannian manifold M. We 
say p is admissible if it is smooth, and moreover the movement along the path 
never "stops," that is, the tangent vector p*(d/dt), where t is the coordinate 
function on [0,1]' is never zero. The length or arclength of pis 

(16.3) 

In terms oflocal coordinates, if we write Xi(t) = Xi (p(t)) the integrand is 

We call the path well-paced if 

for all ° ~ a ~ 1. Intuitively, this means that the point p(t) moves along the 
path at a constant "velocity." 

It is an easy application of the chain rule that the arclength of p is 
unchanged under reparametrization. Moreover, every path has a unique 
reparametrization that is well-paced. 

A Riemannian manifold becomes a complete metric space by defining the 
distance between two points a and b as the infimum of the lengths of the paths 
connecting them. It is not immediately obvious that there will be a shortest 
path, and indeed there may not be for some Riemannian manifolds, but it is 
easy to check that this definition satisfies the triangle inequality and induces 
the standard topology. 

We will encounter various quantities indexed by 1 ~ i, j, k, ... ~ n, where 
n is the dimension of the manifold M under consideration. We will make use 
of Einstein's summation convention (in this chapter only). According to this 
convention, if any index is repeated in a term, it is summed. For example, 
suppose that p : [0,1] ----+ M is a path lying entirely in a single chart U c 
M with coordinate functions Xl, .•• ,Xn . Then we may regard Xl, ... ,Xn as 
functions of t E [0, 1], namely Xi (t) = Xi (p( t)). If f : U ----+ C is a smooth 
function, then according to the chain rule 

According to the summation convention, we can write this as simply 

df dXi 8f 
dt dt 8Xi' 

and the summation over i is understood because it is a repeated index. 
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If for every smooth curve q : [0,1] --+ M with the same endpoints as p we 
have Ipi ~ Iql, then we say that p is a path of shortest length. We will presently 
define geodesics by means of a differential equation, but for the moment we 
may provisionally describe a geodesic as a well-paced path along a manifold 
M that on short intervals is a path of shortest length. 

An example will explain the qualification "on short intervals" in this defi
nition. On a sphere, a geodesic is a great circle. The path in Figure 16.1 is a 
geodesic. It is obviously not the path of shortest length between a and b. 

Fig. 16.1. A geodesic on a sphere. 

Although the indicated geodesic is not a path of shortest length, if we 
break it into smaller segments, we may still hope that these shorter paths 
may be paths of shortest length. Indeed they will be paths of shortest length 
if they are not too long, and this is the content of Proposition 16.4 below. For 
example, the segment from a to c is a path of shortest length. 

Let p : [0,1] --+ M be an admissible path. We can consider deformations 
of p, namely we can consider a smooth family of paths u --+ Pu, where, for 
each u E (-f, f), Pu is a path from a to b and Po = p. Note that, as with 
the definition of path-homotopy, we require that the endpoints be fixed as the 
path is deformed. We consider the function feu) = IPul. We say the path is 
of stationary length if 1'(0) = 0 for every such deformation. 

If p is a path of shortest length, then 0 will be a minimum of f so f' (0) = O. 
As for the example in Figure 16.1, the path from a to b may be deformed by 
raising it up above the equator and simultaneously shrinking it, but even 
under such a deformation we will have 1'(0) = O. So although this path is not 
a path of shortest length, it is still a path of stationary length. 

Let Xl, ... ,Xn be coordinate functions on some open set U on M. Relative 
to this coordinate system, let gij and gij be as in (16.1) and (16.2). We define 
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the Christoffel symbols 

{ij, k} = ll[ij, l]. 

In the last expression, l is summed by the summation convention. 

Proposition 16.1. Suppose that p : [0,1] -----+ M is a well-paced admissible 
path. If the path lies within an open set U on which Xl, ... ,Xn is a system of 
coordinates, then writing Xi(t) = Xi (p(t)), the path is of stationary length if 
and only if it satisfies the differential equation 

d2xk = {i' k} dXi dXj. 
dt2 ], dt dt (16.4) 

Proof. Let us consider the effect of deforming the path. We consider a family 
Pu of paths parametrized by u E (-f, f), where f > 0 is a small real number. 
It is assumed that the family of paths varies smoothly, so (t, u) t----+ Pu(t) is a 
smooth map (-f, f) X [0,1] -----+ M. 

We regard the coordinate functions Xi of the point X = Pu(t) to be func
tions of u and t. 

It is assumed that po(t) = p(t) and that the endpoints are fixed, so that 
Pu(O) = p(u) and Pu(l) = p(1) for all u E (-f, f). Therefore, 

ax' 
au' = 0 when t = 0 or 1. (16.5) 

In local coordinates, the arclength (16.3) becomes 

(16.6) 

Because the path p(t) = po(t) is well-paced, the integrand is constant (inde
pendent of t) when u = 0, so 

a .. aXi aXj _ 0 when u = o. 
at g'J at at - (16.7) 

We do not need to assume that the deformed path p(t, u) is well-paced for 
any u =f. O. 

Let f(u) = IPul. We have 

This equals 
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101 (9ij ~i a;:) -! [~a;: ~i a;: + ~9ij ;:~~ a;: + ~9ij ~i ~:~] dt = 

r1 ( .. aXi aXj) -! [~a9ij aXI aXi aXj .. a2Xi aXj] dt 
10 g,) at at 2 aXI au at at + g,) auat at ' 

where we have used the chain rule, and combined two terms that are equal. 
(The variables i and j are summed by the summation convention, so we may 
interchange them, and using gij = gji, the last two terms on the left-hand side 
are equal.) We integrate the second term by parts with respect to t, making 
use of (16.5) and (16.7) to obtain 

f '( ) = r1 
( .. aXi aXj) -! [~a9ij aXI aXi aXj _ aXi ~ ( .. aXj)] dt = 

o 10 g,) at at 2 aXI au at at au at g,) at 

r1 ( . .oXi aXj) -! [~a9ij aXi aXj _ ~ ( . aXj)] aXI dt. 
10 g,) at at 2 aXI at at at gl) at au 

Now all the partial derivatives are evaluated when u = O. The last step is just 
a relabeling of a summed index. 

We observe that the displacements ax!/ au are arbitrary except that they 
must vanish when t = 0 and t = 1. (We did not assume the deformed path to 
be well-paced except when u = 0.) Thus, the path is of stationary length if 
and only if 

so the condition is 

Now 
aglj ax j = aglj aXi ax j = ~ [a91j + a9li ] aXi ax j 
at at aXi dt at 2 aXi ax j dt at' 

The two terms on the right-hand side are of course equal since both i and j 
are summed indices. We obtain in terms of the Christoffel symbols 

a2x· aX' ax· ) [ .. I] , ) glj at2 = Z), at at . 

Multiplying by gkl, summing the repeated index I, and using (16.2), we obtain 
(16.4). 0 

We define a geodesic to be a solution to the differential equation (16.4). 
This definition does not depend upon the choice of coordinate systems because 
the differential equation (16.4) arose from a variational problem that was 
formulated without reference to coordinates. Naturally, one may alternatively 
confirm by direct computation that the differential equation (16.4) is stable 
under coordinate changes. 
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Proposition 16.2. Let x be a point on the Riemannian manifold M, and 
let X E Tx(M). Then, for sufficiently small €, there is a unique geodesic 
p: (-€, €) ---+ M such that p(O) = x and p*(d/dt) = X. 

Proof. Let Xl, ... ,Xn be coordinate functions. Let YI, ... ,Yn be a set of new 
variables, and rewrite (16.4) as a first-order system 

dXi 
dt = Yi, 

dYi {" k} dt = Z), YiYj' 

The conditions p(O) = X and p*(d/dt) = X amount to initial conditions for 
this first-order system, and the existence and uniqueness of the solution follow 
from the general theory of first-order systems. 0 

We now come to a property of geodesics that may be less intuitive. Let U 
be a smooth submanifold of M, homeomorphic to a disk, of codimension 1. 
If x E U, we consider the geodesic t 1----7 Px ( t) such that Px (0) = x and such 
that Px,*(d/dt) is the unit normal vector to M at x in a fixed direction. For 
small € > 0, let U' = {Px(€) Ix E U}. In other words, U' is a translation of the 
disk U along the family of geodesics normal to U. 

It is obvious that U is normal to each of the geodesic curves Px' What 
is less obvious, and will be proved in the next proposition, is that U' is also 
normal to the geodesics Px' 

In order to prove this, we will work with a particular set of coordinates. Let 
X2,'" ,Xn be local coordinates on U. At each point x = (X2,'" ,xn ) E U, we 
choose the unit normal vector in a fixed direction and construct the geodesic 
path through the point with that tangent vector. We prescribe a coordinate 
system on M near U by asking that (0, X2,' .. ,xn ) agree with the point x E U 
and that the path t 1----7 (t, X2, ... ,xn ) agree with Px' We describe such a 
coordinate system as geodesic coordinates. 

Proposition 16.3. In geodesic coordinates, gli = 0 for 2 ~ i ~ n. Also 
g11 = 1. 

In view of (16.1), this amounts to saying that the geodesic curves (having 
tangent vector 8/ 8XI) are orthogonal to the level hypersurfaces Xl = constant 
(having tangent spaces spanned by 8/ 8X2, ... ,8/ 8xn ), such as U and U' in 
Figure 16.2. 

Proof. Having chosen coordinates so that the path t 1----7 (t, X2, . " ,xn ) is a 
geodesic, we see that if all dxifdt = 0 in (16.4), for i =f. 1, then d2Xk/dt2 = 0 
for all k. This means that {11, k} = O. Since the matrix (gkl) is invertible, it 
follows that [11, k] = 0, so 

8gl k 18g11 

8XI "2 8Xk . 
(16.8) 
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First, take k = 1 in (16.8). We see that Ogl1/fJxl = 0, so if X2, ... ,Xn 

are held constant, gl1 is constant. When Xl = 0, the initial condition of the 
geodesic curve Px through (0, X2, ... ,xn ) is that it is tangent to the unit 
normal to the surface, that is, its tangent vector 0/ OXl has length one, and 
by (16.1) it follows that gl1 = 1 when Xl = 0, so gl1 = 1 throughout the 
geodesic coordinate neighborhood. 

Now let 2 :s; k :s; n in (16.8). Since gl1 is constant, oglk/OXl = 0, and 
so glk is also constant when X2, ... ,Xn are held constant. When Xl = 0, our 
assumption that the geodesic curve Px is normal to the surface means that 
O/OXl and O/OXk are orthogonal, so by (16.1), glk vanishes when Xl = ° and 
so it vanishes for all Xl. 0 

Fig. 16.2. Hypersurface remains perpendicular to geodesics on parallel translation. 

With these preparations, we may now prove that short geodesics are paths 
of shortest length. 

Proposition 16.4. (i) Let p : [0,1] --+ M be a geodesic. Then there exists 
an f > ° such that the restriction of p to [0, f] is the unique path of shortest 
length from p(o) to p(f). 
(ii) Let X EM. There exists a neighborhood N of X such that for all yEN 
there exists a unique path of shortest distance from X to y, and that path is a 
geodesic. 

Proof. We choose a hypersurface U orthogonal to p at t = ° and construct 
geodesic coordinates as explained before Proposition 16.3. We choose f and 
B so small that the set N of points with coordinates {Xl E [0, fJ, ° :s; 
IX21, ... , IXn I :s; B} is contained within the interior of this geodesic coordinate 
neighborhood. We can assume that the coordinates of p(o) are (0,··· ,0), so 
by construction p(t) = (t, 0,··· ,0). Then Ipi = f, where now Ipi denotes the 
length of the restriction of the path to the interval from ° to f. 

We will show that if q : [0, f] --+ M is any path with q(O) = p(O) and 
q(f) = p(f), then Iql ~ Ipl· 
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First, we consider paths q : [0,10] ----+ M that lie entirely within the 
set N and such that the xl-coordinate of q(t) is monotonically increasing. 
Reparametrizing q, we may arrange that q(t) and p(t) have the same XI
coordinate, which equals t. Let us write q(t) = (t,X2(t), ... ,xn(t)). We also 
denote Xl(t) = t. Since glk = gkl = 0 when k ~ 2 and gll = 1, we have 

Now since the matrix (%h:;;;'i,j:;;;'n is positive definite, its principal minor 
(gij h:;;;'i,j:;;;'n is also positive definite, so 

" dXi dXj 
L..J gWai dt ~ 0 

2:;;;'i,j:;;;'n 

and 

Iql ~ fof Vldt = 10 = Ipl. 

This argument is easily extended to include all paths such that the values 
of Xl for those t such that q(t) E N cover the entire interval [0,10]. Paths for 
which this is not true must be long enough to reach the edges of the box 
Xi > B, and after reducing 10 if necessary, they must be longer than E. This 
completes our discussion of (i). 

For (ii), given each unit tangent vector X E Tx(M), there is a unique 
geodesic Px : [0, EX] ----+ M through x tangent to X, and EX > 0 may 
be chosen so that this geodesic is a path of shortest length. We assert that 
EX may be chosen so that the same value EX is valid for nearby unit tangent 
vectors Y. We leave this point to the reader except to remark that it is perhaps 
easiest to see this by applying a diffeomorphism of M that moves X to Y and 
regarding X as fixed while the metric gij varies; if Y is sufficiently near X, the 
variation of gij will be small and the 10 in part (i) can be chosen to work for 
small variations of the gij' So for each unit tangent vector X E Tx(M) there 
exists an EX > 0 and a neighborhood Nx of X in the unit ball of Tx(M) such 
that py : [0, EX] ----+ M is a path of shortest length for all YEN x. Since the 
unit tangent ball in Tx (M) is compact, a finite number of N X suffice to cover 
it, and if 10 is the minimum of the corresponding EX, then we can take N to 
be the set of all points connected to X by a geodesic of length < E. 0 

If M is a connected Riemannian manifold, we make M into a metric space 
by defining d(x, y) to be the infimum of Ipl, where p is a smooth path from X 
to y. 
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Theorem 16.1. Let M be a compact connected Riemannian manifold, and 
let x and y be points of M. Then there is a geodesic p : [0,1] ----7 M with 
p(o) = x and p(l) = y. 

A more precise statement may be found in Kobayashi and Nomizu [86], The
orem 4.2 on p. 172. It is proved there that if M is connected and geodesically 
complete, meaning that any well-paced geodesic can be extended to (-00,00), 
then the conclusion of the theorem is true. (It is not hard to see that a compact 
manifold is geodesically complete.) 

Proof. Let {Pi} be a sequence of well-paced paths from x to y such that 
IPil ----7 d(x, y). Because they are well-paced, if ° ~ a < b ~ 1 we have 
d(Pi(a),Pi(b)) = (b - a)lpil, and it follows that {Pi} are equicontinuous. Thus 
by Proposition 3.1 there is a subsequence that converges uniformly to a path p. 
It is not immediately evident that p is smooth, but it is clearly continuous. So 
we can partition [0, 1] into short intervals. On each sufficiently short interval ° ~ a < b ~ 1, p(b) is near enough to p(a) that the unique path of shortest 
distance between them is a geodesic by Proposition 16.4. It follows that p is 
a geodesic. 0 

Theorem 16.2. Let G be a compact Lie group. There exists on G a Rieman
nian metric that is invariant under both left and right translation. In this 
metric, a geodesic is a translate (either left or right) of a map t ----7 exp(tX) 
for some X E Lie( G). 

Proof. Let 9 = Lie(G). Since G is a compact group acting by Ad on the real 
vector space g, there exists an Ad( G)-invariant inner product on 9 . Regarding 
G as the tangent space to G at the identity, if g E G, left translation induces 
an isomorphism 9 = Te (G) ----7 Tg (G) and we may transfer this inner product 
to Tg(G). This gives us an inner product on Tg(G) and hence a Riemannian 
structure on G, which is invariant under left translation. Right translation 
by g induces a different isomorphism 9 = Te (G) ----7 Tg (G), but these two 
isomorphisms differ by Ad(g) : 9 ----7 g, and since the original inner product is 
invariant under Ad(g), we see that the Riemannian structure we have obtained 
is invariant under both left and right translation. 

It remains to be shown that a geodesic is a translate of the exponential 
map. This is essentially a local statement. Indeed, it is sufficient to show that 
any short segment of a geodesic is of the form t r-t g. exp( tX) since any path 
that is of such a form on every short interval is globally of the same form. 
Moreover, since the Riemannian metric is translation-invariant, it is sufficient 
to show that a geodesic near the origin is of the form t ----7 exp(tX). 

First, we consider the case where G is a torus. In this case, G ~ ]Rn / A, 
where A is a lattice. We identify the tangent space to ]Rn at any point with ]Rn 

itself. By a linear change of variables, we may assume that the inner product 
on ]Rn = Te (G) corresponding to the Riemannian structure is the standard 
Euclidean inner product. Since the Riemannian structure is invariant under 
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translation it follows that G ~ ~n / A is a Riemannian manifold as well as a 
group. Geodesics are straight lines and so are translates of the exponential 
map. 

We turn now to the general case. If X E g, let Ex : (-1'0, E) -----+ G denote 
the geodesic through the origin tangent to X E g. It is defined for sufficiently 
small 1'0 (depending on X). If A E~, then t f-----t Ex (At) is the geodesic through 
the origin tangent to AX, so Ex (At) = EAX(t). Thus, there is a neighborhood 
U of the origin in g and a map E : U -----+ G such that Ex(t) = E(tX) for 
X, tX E U. We must show that E coincides with the exponential map. 

If 9 E G, then translating E(tX) on the left by 9 and on the right by g-l 
gives another geodesic, which is tangent to Ad(g)X. Thus, if tX E U, 

gE(tX)g-l = E(tAd(g)X). (16.9) 

We now fix X E g. Let T be a maximal torus containing the one-parameter 
subgroup {etX I X E ~}. It follows from (16.9) that E(tX) commutes with 
9 E H when tX E U. Thus the path t f-----t E(tX) runs through the central
izer G(T) and a fortiori through N(T). By Proposition 15.8, it follows that 
E(tX) E T. 

Now the translation-invariant Riemannian structure on G induces a trans
lation-invariant Riemannian structure on T, and since the geodesic path t f-----t 

E(tX) of G is contained in T, it is a geodesic path in T also. The result 
therefore follows from the special case of the torus, which we have already 
handled. D 

Theorem 16.3. Let G be a compact Lie group and g its Lie algebra. Then 
the exponential map g -----+ G is surjective. 

Proof. Put a Riemannian structure on G as in Theorem 16.2. By Theorem 
16.1, given 9 E G, there exists a geodesic path from the identity to g. By 
Theorem 16.2, this path is of the form t f-----t etX for some X E g, so 9 = eX. 

D 

Theorem 16.4. Let G be a compact connected Lie group, and let T be a 
maximal torus. Let 9 E G. Then there exists kEG such that 9 E kTk- 1 • 

Proof. Let g and t be the Lie algebras of G and T, respectively. Let to be a 
generator of T. Using Theorem 16.3, find X E g and Ho E t such that eX = 9 
and eHo = to. 

Since G is a compact group acting by Ad on the real vector space g, there 
exists on g an Ad(G)-invariant inner product for which we will denote the 
corresponding symmetric bilinear form as (, ). Choose kEG so that the 
real value (X, Ad(k)Ho) is maximal, and let H = Ad(k)Ho. Thus, exp(H) = 
ktok- 1 generates kTk-1• 

If Y Egis arbitrary, then (X, Ad(etY)H) has a maximum when t = 0, so 
using Proposition 8.2 we have 



104 Lie Groups 

o = ~ (X, Ad(etY)H) I = (X, ad(Y)H) = - (X, [H, Y]) . 
dt t=o 

By Proposition 10.2, this means that 

([H,X], Y) = 0 

for all Y. Since an inner product is by definition positive definite, the bilinear 
form ( , ) is nondegenerate, which implies that [H, Xl = O. Now, by Proposi
tion 15.2, eH commutes with etX for all t E JR. Since eH generates the maximal 
torus kTk-l, it follows that the one-parameter subgroup {etX } is contained 
in the centralizer of kTk-1 , and since kTk-1 is a maximal torus, it follows 
that {etX } C kTk-1. In particular, 9 = eX E kTk- 1. 0 

Theorem 16.5. (E. Cartan) Let G be a compact connected Lie group, and 
let T be a maximal torus. Then every maximal torus is conjugate to T, and 
every element of G is contained in a conjugate of T. 

Proof. The second statement is contained in Theorem 16.4. As for the first 
statement, let T' be another maximal torus, and let t be a generator. Then 
t' is contained in kTk-1 for some k, so T' ~ kTk-1• Since both are maximal 
tori, they are equal. 0 

Proposition 16.5. Let G be a compact connected Lie group, S eGa torus 
(not necessarily maximal), and 9 E Ga(S) an element of its centralizer. Let 
H be the closure of the group generated by Sand g. Then H has a topological 
generator. That is, there exists h E H such that the subgroup generated by h 
is dense in H. 

Proof. Since H is closed and Abelian, its connected component HO of the 
identity is a torus by Proposition 15.2. Let ho be a topological generator. 

The group H / HO is compact and discrete and hence finite. Since S ~ HO, 
and since S and 9 generate a dense subgroup of H, the finite group H / HO 
is cyclic and generated by gHo. Let r be the order of H / HO. Then gr E HO. 
Since the r-th power map HO ---+ HO is surjective, we can find u E HO 
such that (gut = ho. Then the group generated by h = ug contains both a 
generator ho of HO and a generator gHO = (gu)HO of H/Ho. Clearly, it is a 
topological generator of H. 0 

Proposition 16.6. IfG is a Lie group and u E G, then the centralizer Ga(u) 
is a closed Lie subgroup, and its Lie algebra is {X E Lie( G) I Ad( u)X = X}. 

Proof. To show that H = Ga (u) is a closed submanifold of G, it is sufficient to 
show that its intersection with a small neighborhood of the identity is a closed 
submanifold since translation by an element h of H will give a diffeomorphism 
of that neighborhood onto a neighborhood of h. In a neighborhood N of the 
origin in Lie(G), the exponential map is a diffeomorphism onto exp(N), and 
we see that the preimage of Ga(u) in N is a vector subspace by recalling 
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that conjugation by u corresponds to the linear transformation Ad(u) of N. 
Particularly, uetX u- 1 = etad(u)X, so etX E Gc(u) for all t if and only if 
Ad(u)X = X. D 

Theorem 16.6. Let G be a compact connected Lie group and S eGa torus 
(not necessarily maximal). Then the centralizer Gc(S) is a closed connected 
Lie subgroup of G. 

Proof. We first prove that Gc(S) is connected. Let g E Gc(S). By Proposition 
16.5, there exists an element h of Gc(S) that generates the closure H of the 
group generated by Sand g. Let T be a maximal torus in G containing h. 
Then T centralizes S, so the closure of TS is a connected compact Abelian 
group and hence a torus, and by the maximality of T it follows that S ~ T. 
Now clearly T ~ Gc(S), and since T is connected, T ~ Gc(S)o. Now 9 E H ~ 
T c Gc(S)o. We have shown that Gc(S)O = Gc(S), so Gc(S) is connected. 

To show that Gc (S) is a closed Lie subgroup, let u E S be a generator. 
Then Gc(S) = Gc(u), and the statement follows by Proposition 16.6. D 

EXERCISES 

Exercise 16.1. Give an example of a connected Riemannian manifold with two 
points P and Q such that no geodesic connects P and Q. 

Exercise 16.2. Let G be a compact connected Lie group and let 9 E G. Show that 
the centralizer Cc (g) of 9 is connected. 

Exercise 16.3. Show that the conclusion of Exercise 16.2 fails for the connected 
noncompact Lie group 8L(2, JR) by exhibiting an element whose centralizer is not 
connected. 

If M and N are Riemannian manifolds of the same dimension, and if f : M ---+ 
N is a diffeomorphism, then f is called a conformal map if there exists a positive 
function 1> on M such that if x E M and y = f (x), and if we use the notation ( , ) 
to denote the inner products in both Tx(M) and Ty(N), then 

x, Y E Tx(M), 

where f. : Tx(M) ---+ Ty(N) is the induced map. Intuitively, a conformal map is 
one that preserves angles. If the function 1> = 1, then f is called isometric. 

Exercise 16.4. Show that if M and N are open subsets in C and f : M ---+ N 
is a holomorphic map such that the inverse map f- 1 : N ---+ M exists and is 
holomorphic (so f' is never zero), then f is a conformal map. 

The next exercises describe the geodesics for some familiar homogeneous spaces. 
Let::D = {z E C Ilzl < 1} be the complex disk in C, and let v:t = C U {oo} be the 
Riemann sphere. The group 8L(2, C) acts on v:t by linear fractional transformations: 
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( ab) az+b 
cd : z f----t cz+d· 

In this action, it is understood that 00 is mapped to alc and z is mapped to 00 if 
cz + d = O. The map z f----t -liz is a chart near zero, and !>t is a complex analytic 
manifold. Let 

and 

A = { ( ~ !) I a, bEe, lal 2 = 1} , 

SU(2) = { ( ~b !) I a, bEe, lal 2 + Ibl 2 = 1} , 

SU(l, 1) = { ( ~ !) I a, bEe, lal 2 - Ibl 2 = 1} , 

K = { ( ~ ~) IIal2 = 1 } ~ U(l). 

It will be shown in Chapter 31 that the group SU(l, 1) is conjugate in SL(2, q to 
SL(2,lR). Let G be one of the groups SU(2), A, or SU(l, 1). The stabilizer of 0 E!>t 
is the group K, so we may identify the orbit of 0 E !>t with the homogeneous space 
G I H by the bijection g(O) t--+ gH. The orbit of 0 is given in the following table. 

G K orbit of 0 E !>t 
SU(1,l) U(l) :D 

A U(l) C 
SU(2) U(l) ,fj 

Exercise 16.5. Show that if G is one of the groups SU(l, 1), A, or SU(2), then the 
quotient GIK, which we may identify with :D, C, or ,fj, has a unique G-invariant 
lliemannian structure. 

Exercise 16.6. Show that the inclusions :D --+ C --+ !>t are conformal maps but 
are not isometric. 

A subset C of!>t is called a circle if either C C C and C is a circle in the Euclidean 
sense. In other words, C is the set of all solutions z to the equation Iz - al = r for 
a E C, or else C = L U {oo}, where L is a straight line. Let {)'1) = {z Ilzl = 1} be 
the unit circle. 

Exercise 16.7. (i) Show that the group SL(n, q preserves the set of circles. Show, 
however, that a linear fractional transformation 9 E SL(n, q may take a circle with 
center a to a circle with center different from g(a). 

(ii) Show that if M = :D, Cor !>t, then every geodesic is a circle, but not every 
circle is a geodesic. 

(iii) Show that the geodesics in C are the straight lines and that the geodesics 
in :D are the curves C n :D, where C is a circle in !>t perpendicular to a:D. 

(iv) Show that a:D is a geodesic in !>t. 
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Topological Proof of Cartan's Theorem 

We will give another proof of Cartan's Theorem 16.5. Since this was already 
proved in the last chapter, the reader can skip this chapter with no loss of 
continuity. As a by-product of this second proof, we will obtain some topo
logical insight into the "flag manifold" CIT, where T is a maximal torus in 
the compact Lie group T, a topic that we will take up in the final chapter. 

Suppose that M is a manifold of dimension nand f : M --+ M a map. 
We define the Lefschetz number of f to be 

n 

AU) = ~)-l)dtr(JIHd(M,Q)). 
d=O 

A fixed point of f is a solution to the equation f(x) = x. The fixed point x 
is isolated if it is the only fixed point in some neighborhood of x. According 
to the "Lefschetz fixed-point formula," if M is a compact manifold and f has 
only isolated fixed points, the Lefschetz number is the number of fixed points 
counted with multiplicity; see Dold [34]. 

Adams [1] followed Weil's 1935 topological proof of Cartan's theorem on 
the conjugacy of maximal tori, based on the Lefschetz fixed-point formula. 
We will give a modification of this argument based on a simplified version of 
the Lefschetz fixed-point formula for maps of finite order with no fixed points. 
By this approach, we will reduce the topological prerequisites. 

We recall that a space is triangulable if it is homeomorphic to a simpli
cial complex, in which case its singular homology is equal to the simplicial 
homology of the complex. This well-known fact follows from Corollary 8.5 in 
Chapter V of Dold [35] or Chapter III of Eilenberg and Steenrod [40]. 

Proposition 17.1. Let M be a Hausdorff topological space, and let f : M --+ 
M be an automorphism of finite order without fixed points such that the quo
tient of M by the action of f is triangulable. Then the Lefschetz number of f 
is zero. 
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Proof. Let Ml be the quotient of M by the cyclic group generated by f. The 
projection M ---+ Ml is a covering map. We triangulate Ml, choosing the 
triangulation so fine that each simplex in the triangulation is contained in a 
neighborhood over which the cover is trivial. Pulling this triangulation back to 
M, we obtain a triangulation 7 of M that is invariant under f. We may now 
compute the rational homology of M using simplicial homology. The rational 
simplicial homology is the homology of a finite complex 

where the Ci are finite-dimensional vector spaces over ((11, and Cq = 0 if 
q > dim(M). Each Cq is the free vector space on the q-simplices in the tri
angulation. Moreover, f acts on the complex in each dimension by permuting 
these simplices, and no simplex is fixed by f, so the trace of f on Cq is zero 
in every dimension. 

Now let Zq = ker(dq) and Bq = im(dq+1) , so the homology Hq(M) ~ 
Zq/ Bq. We have a commutative diagram with exact rows: 

o ---+ Bq ---+ Zq ---+ Hq ---+ 0 
+f +f +f 

o ---+ Bq ---+ Zq ---+ Hq ---+ 0 

Thus 
(17.1) 

Similarly, we have 

Thus 
0= trUICq) = trUIZq) + trUIBq-d . (17.2) 

Now 

q q 

= L [(-1)qtrUIZq) + (-1)q- 1trUIBq_1)] = 0 
q 

by (17.1) and (17.2). 
o 

Proposition 17.2. Let G be a compact Lie group. Then points of finite order 
are dense in G. 
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Proof. Let 9 E G. The closure H of the cyclic subgroup generated by 9 is a 
compact Lie group by Theorem 15.2. Let Ho be the connected component of 
the identity in H. Then Ho is a compact Lie group and hence a torus. The 
quotient HI Ho is compact and discrete and hence finite. 

Let r be the order of the image of 9 in the finite group HIHo. Let U be a 
neighborhood of gin H. Then {xT I x E U} contains an open neighborhood of 
gT in the torus Ho. Since points of finite order are dense in a compact torus, 
xT has finite order for some x E U. This implies that x has finite order. We 
see that every neighborhood of 9 contains points of finite order. 0 

Proposition 17.3. Let G be a compact connected Lie group, and let T be a 
maximal torus in G. Let X = G IT. Then X is even-dimensional and ori
entable. If 9 E G, let fg : X -+ X be left translation by g, so fg(xT) = gxT. 
The Lefschetz number of fg is equal to the order IWI of the Weyl group 
W =N(T)IT. 

Proof. The Lefschetz number clearly depends only on the homotopy class of 
f, and since G is connected, this means that the Lefschetz number of fg is 
the same for all g. First, suppose that 9 = to is a generator to of T. In this 
case, we claim that there are exactly IWI fixed points of g. Indeed, xT is a 
fixed point of fto if and only if toxT = xT, that is, x-Itox E T. This is true if 
and only if x E N(T), so the number of fixed points equals IN(T)ITI = IWI. 

Let PI,··· ,PIWI be the fixed points of to on X = GIT. We know that in 
a neighborhood of a fixed point Pi there exists a chart in which coordinates 
T acts by a direct sum of linear actions of the form (15.2). This means that 
the action of T is linear near Pi in these coordinates and t E T maps ~2m :1 

x I---t R;,(t)x, where R;,(t) is the matrix 

cos(27r(h(t)) sin (27r(h (t)) 
- sin(27r(h(t)) cos(27rlh(t)) 

cos(27rOm(t)) sin(27rOm(t)) 
- sin(27rOm(t)) cos(27rOm(t)) 

. (17.3) 

Here 01,··· ,Om are nonzero homomorphisms T -+ ~/Z and 2m = dim(X). 
In this coordinate system, J x~ + x~ ::::; to, J x~ + x~ ::::; to,· •• defines an open 
polydisk Ui around Pi that is stable under T. 

As we have noted, the Lefschetz number of fg is independent of the choice 
of g. Instead of a generator of T, we will take 9 = tl E T to be an element of 
finite order such that the Oi(t) ~ Z. Since we may approximate to by a point 
of finite order, and since the Pi are the only fixed points of a generator and 
X is compact, we may arrange that fh has only the Pi as fixed points. 

We will apply Proposition 17.1 to M = X -Ui Ui . Both M and its quotient 
by the cyclic group generated by f = fh are manifolds with boundary and 
hence triangulizable. By construction, fh has no fixed points on M, and so 
the Lefschetz number of ftl on M is zero. 
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Now we consider the exact sequence of the pair (X, M): 

... -+ HI(X,M) -+ Ho(M) -+ Ho(X) -+ Ho(X,M) -+ O. 

The alternating sum of the traces of Itl on these homology groups is zero, 
and since the Lefschetz number of M is zero, this means 

We may compute this by excision. Vet Vi be a slightly larger polydisk around 
the Pi, and let il be the interior of X - U Vi. Thus il is an open subset of M 
and 

A(ftl) = :~:)-l)qtr(JtlIHq(X - il,M - il)). 

Now the pair (X - il, M - il) consists of IWI disconnected pieces, namely 
the pairs (Vi, Vi - Ui ). Topologically Vi is homeomorphic to the ball Jm2m and 
Vi - Ui is a hollow shell. The inclusion (Jm2m , 8 2m- I ) -+ (Vi, Vi - Ui ) is a 
homotopy equivalence, so this piece has homology 

H (lr. V· - U.) ~ H (Jm2m 8 2m- I ) ~ {Q if q = ~m, 
q "t t q, 0 otherwIse. 

Moreover, the action of ftl on this piece is homotopy-equivalent to the identity, 
so 

A(ftl) = L~)-l)qtr(fttIHq(Vi, Vi - Ui )) = 2) = IWI· 
i q i 

o 

We can now reprove Theorem 16.5. 

Proof. Let 9 E G. We will prove that 9 is conjugate to an element of T. This 
will prove that all maximal tori are conjugate to T, for if T' is another torus, 
we can choose 9 to be a generator of T'. 

Let X = G IT and consider the map fg : X -+ X, which is left translation 
by g. It is sufficient to show that f has a fixed point, since if gxT = xT then 
x-Igx E T. 

If fg has no fixed points in X, then since X is compact there exists a 
neighborhood N of 9 such that fgl has no fixed points for g' E N. By Propo
sition 17.2, there are points of finite order in N, so we may assume that 9 has 
finite order. But the Lefschetz number of fg is IWI by Proposition 17.3, so fg 
has fixed points. This is a contradiction. 0 

Proposition 17.4. The Euler characteristic Ei( _l)i dim Hi (G/T) equals 

IWI· 

Proof. Take 9 = 1 in Proposition 17.3. o 
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Remark 17.1. We have seen in Corollary 15.2 that the flag manifold X is 
even-dimensional, and by Proposition 15.10 it is orientable. These facts will 
be explained by Theorem 29.4, where we will see that X is actually a complex 
analytic manifold. Quite a bit more can be proven: X = G IT has nonzero 
cohomology only in even dimensions, so H*(X) is actually a commutative 
ring of dimension equal to IWI. We will explain the reason for this in the final 
chapter. 
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The Weyl Integration Formula 

Let G be a compact, connected Lie group, and let T be a maximal torus. 
Theorem 16.5 implies that every conjugacy class meets T. Thus, we should 
be able to compute the Haar integral of a class function (for example, the 
inner product of two characters) as an integral over the torus. The formula 
that allows this, the Weyl Integration Formula, is therefore fundamental in 
representation theory and in other areas, such as random matrix theory. 

If G is a locally compact group and H a closed subgroup, then the quotient 
space G/ H consisting of all cosets gH with g E G, given the quotient topology, 
is a locally compact Hausdorff space. (See Hewitt and Ross [57], Theorems 
5.21 and 5.22 on p. 38.) Such a coset space is called a homogeneous space. 

If X is a locally compact Haudorff space let Cc(X) be the space of continu
ous, compactly supported functions on X. If X is a locally compact Hausdorff 
space, a linear functional I on Cc(X) is called positive if 1(1) ~ 0 if f is 
nonnegative. According to the Riesz representation theorem, every such I is 
of the form 

1(1) = i fdJL 

for some regular Borel measure dJL. See Halmos [51], Section 56, or Hewitt and 
Ross [57], Corollary 11.37 on p. 129. (Regularity of the measure is discussed 
after Definition 11.34 on p. 127.) 

Proposition 18.1. Let G be a locally compact group, and let H be a compact 
subgroup. Let dJLG and dJLH be left Haar measures on G and H, respectively. 
Then there exists a regular Borel measure dJLG/H on G/H which is invari
ant under the action of G by left translation. The measure dJLG/H may be 
normalized so that, for f E Cc(G), we have 

r r f(gh) dJLH(h) dJLG/H(gH). 
iG/HiH 

Here the function g f-----+ fH f(gh) dJLH is constant on the cosets gH, and we 
are therefore identifying it with a function on G / H. 
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Proof. We may choose the normalization of dJLH so that H has total volume 1. 
We define a map A: Cc(G) ----+ Cc(GjH) by 

(Af)(g) = L f(gh) dJLH(h) 

Note that Af is a function on G which is right invariant under translation 
by elements of H, so it may be regarded as a function on G j H. Since H 
is compact, Af is compactly supported. If ¢ E Cc(GjH), regarding ¢ as a 
function on G, we have A¢ = ¢ because 

(A¢)(g) = L ¢(gh) dJLH(h) = L ¢(g) dJLH(h) = ¢(g). 

This shows that A is surjective. We may therefore define a linear functional 1 
on Cc(GjH) by 

I(Af) = fa f(g) dJLG(g) , 

provided we check that this is well defined. We must show that if Af = 0 then 

fa f(g) dJLG(g) = 0 (18.1) 

We note that the function (g, h) t--+ f(gh) is compactly supported and con
tinuous on G x H, so if Af = 0 we may use Fubini's theorem to write 

0= fa (Af)(g) dJLG(g) = L fa f(gh) dJLG(g) dJLH(h). 

In the inner integral on the right-hand side we make the variable change 
g t--+ gh-1 . Recalling that dJLG(g) is left Haar measure, this produces a 
factor of bG(h), where bG is the modular quasicharacter on G. Thus 

Now the group H is compact, so its image under bG is a compact subgroup 
of ~~, which must be just {1}. Thus bG(h) = 1 for all h E H and we obtain 
(18.1), justifying the definition of the functional 1. The existence of the mea
sure on G j H now follows from the Riesz representation theorem. 0 

We have seen in Proposition 15.9 that in the adjoint action on 9 = Lie(G), 
restricted to T, the Lie algebra t is an invariant subspace, complemented by 
a space p, which decomposes as the direct sum of nontrivial two-dimensional 
irreducible real representations as described in Proposition 15.5. 

Let W = N(T)jT be the Weyl group of G. The Weyl group acts on T by 
conjugation. Indeed, the elements of the Weyl group are cosets w = nT for 
n E N(T). If t E T, the element ntn-1 depends only on w so by abuse of 
notation we denote it wtw- 1 • 
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Theorem 18.1. (i) Two elements of T are conjugate in G if and only if they 
are conjugate in N(T). 
(ii) The inclusion T ---+ G induces a bijection between the orbits of W on T 
and the conjugacy classes of G. 

Proof. Suppose that t, u E T are conjugate in G, say gtg- I = u. Let H = 
Ga(u)O be the connected component of the identity in the centralizer of u. 
It is a closed Lie subgroup of G by Proposition 16.6. Both T and gTg- I are 
contained in H since they are connected commutative groups containing u. 
As they are maximal tori in G, they are maximal tori in H, and so they are 
conjugate in the compact connected group H. If h E H such that hTh-1 = 
gTg- I , then w = h-Ig E N(T). Since wtw-I = h-Iuh = u, we see that t and 
u are conjugate in N(T). 

Since G is the union of the conjugates of T, (ii) is a restatement of (i). D 

Proposition 18.2. The centralizer G(T) = T. 

Proof. Since G(T) c N(T), T is of finite index in G(T) by Proposition 15.8. 
Thus, if x E G(T), we have xn E T for some n. Let to be a generator of T. 
Since the n-th power map T ---+ T is surjective, there exists t E T such that 
(xt)n = to. Now xt is contained in a maximal torus T', which contains to and 
hence T C T'. Since T is maximal, T' = T and x E T. D 

Proposition 18.3. There exists a dense open set D of T such that the IWI 
elements wtw-I (w E W) are all distinct for tED. 

Proof. If w E W, let Dw = {t E T I wtw-I f: t}. It is an open subset of T since 
its complement is evidently closed. If w f: 1 and t is a generator of T, then 
t E Dw because otherwise if n E N(T) represents w, then n E G(t) = G(T), so 
nET by Proposition 18.2. This is a contradiction since w f: 1. By Kronecker's 
Theorem 15.1, it follows that Dw is a dense open set. The finite intersection 
D = nW#1 Dw thus fits our requirements. D 

Theorem 18.2. (Weyl) If f is a class junction, and if dg and dt are Haar 
measures on G and T (normalized so that G and T have volume 1), then 

fa f(g) dg = 1~ll f(t) det ([Ad(C I ) - Ipll p) dt. 

Proof. Let X = G/T. We give X the measure dx invariant under left trans
lation by G such that X has volume 1. Consider the map 

¢ : X x T ---+ G, ¢(xT, t) = xtx-I. 

Both X x T and G are orient able manifolds of the same dimension. Of course, 
G and T both are given the Haar measures such that G and T have volume 1. 

We choose volume elements on the Lie algebras g and t of G and T, 
respectively, so that the Jacobians of the exponential maps g ---+ G and 
t ---+ T at the identity are 1. 
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We compute the Jacobian J¢ of ¢. Parametrize a neighborhood of xT in 
X by a chart based on a neighborhood of the origin in p. This chart is the 
map 

p:3 U H- xeuT. 

We also make use of the exponential map to parametrize a neighborhood of 
t E T. This is the chart t:3 V H- tev . We therefore have the chart near the 
point (xT, t) in X X T mapping 

p x t:3 (U, V) -+ (xeUT,teV ) E X x T 

and, in these coordinates, ¢ is the map 

(U, V) H- xeUteVe-Ux-l . 

To compute the Jacobian of this map, we translate on the left by r1x-1 and 
on the right by x. There is no harm in this because these maps are Haar 
isometries. We are reduced to computing the Jacobian of the map 

(U, V) H- rleUteVe-u = eAd(t-1)U eV e-u . 

Identifying the tangent space of the real vector space p x t with itself (that is, 
with 9 = P EB t), the differential of this map is 

U + V H- (Ad(rl) - II') U + V. 

The Jacobian is the determinant of the differential, so 

(J¢) (xT, t) = det ([Ad(rl) - 11']1 p) . (18.2) 

By Proposition 18.3, the map ¢ : X x T -+ G is a IWI-fold cover over a 
dense open set and so, for any function f on G, we have 

fa f(g) dg = I~I LXT f(¢(xT, t)) J(¢(xT, t)) dx x dt. 

The integrand f(¢(xT,t)) J(¢(xT,t)) = f(t) det ([Ad(rl) - II']lp) is inde
pendent of x since f is a class function, and the result follows. D 

An example may help make this result more concrete. 

Proposition 18.4. Let G = U(n), and let T be the diagonal torus. Writing 

and letting IT dt be the Haar measure on T normalized so that its volume is 
1, we have 

(18.3) 



116 Lie Groups 

Proof. This will follow from Theorem 18.2) once we check that 

det ([Ad(C1) - Ipll p) = II Iti - tjl2. 
i<j 

To compute this determinant, we may as well consider the linear transfor
mation induced by Ad(C1 ) - Ip on the complexified vector space C I8i p. As 
in Proposition 11.4, we may identify C I8i u(n) with g£(n, C) = Matn(C). We 
recall that C I8i P is spanned by the T-eigenspaces in C I8i u(n) corresponding 
to nontrivial characters of T. These are spanned by the elementary matrices 
Eij with a 1 in the i, j-th position and zeros elsewhere, where 1 ~ i, j ~ n 
and i ¥- j. The eigenvalue of t on Eij is tit;l. Hence 

det ([Ad(C1) - Ipll p) = II (titt - 1) = II (tit; 1 - 1)(tjii-l - 1). 
i<j 

Since Itil = Itjl = 1, we have (tit;l - 1)(tjt:;1 - 1) = (ti - tj)(t:;l - t;l) = 
Iti - tj 12 , proving (18.3). 0 

EXERCISES 
Exercise 18.1. Let G = SO(2n + 1). Choose the realization of Exercise 5.3. Show 
that 

1 11 f(g)dg = - f 
SO(2n+l) 2nn! Tn 

1 x 

i<j 

Exercise 18.2. Let G = SO(2n). Choose the realization of Exercise 5.3. Show that 

h 

1 11 f(g)dg= ~ f 
SO(2n) 2 n! Tn 

x 

i<j 

Exercise 18.3. Describe the Haar measure on Sp(2n) as an integral over the diag
onal maximal torus. 
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The Root System 

A Euclidean space is a real vector space V endowed with an inner product, that 
is, a positive definite symmetric bilinear form. We denote this inner product 
by ( , ). If 0 "# a E V, consider the transformation Sa : V ---t V given by 

2 (x,a) 
sa(x)=x- ( }a. a,a 

(19.1) 

This is the reflection attached to a. Geometrically, it is the reflection in the 
plane perpendicular to a. We have sa(a) = -a, while any element of that 
plane (with (x, a) = 0) is unchanged by Sa. 

Definition 19.1. Let V be a finite-dimensional real Euclidean space, iP C V 
a finite subset of nonzero vectors. Then iP is called a root system if for all 
a E iP, sa(iP) = iP, and if a, f3 E iP then 2 (a, f3) / (a, a) E Z. The root system 
is called reduced if a, Aa E iP, A E lR implies that A = ±l. 

The goal of this chapter is to associate a reduced root system with an 
arbitrary compact connected Lie group G. 

Let G be a compact connected Lie group and T a maximal torus. The 
dimension r of T is called the rank of G. Let 9 = Lie(G) and t = Lie(T). 
Recall that ']I' is the Lie group of complex numbers of absolute value 1. We 
can regard its Lie group as ilR. Thus, if A : T ---t ']I' is a character, let 
dA : t ---t ilR be the differential of A, defined as usual by 

dA(H) = dd A(etH ) I ' 
t t=O 

HE t. (19.2) 

Note that it takes purely imaginary values. 

Remark 19.1. Since T ~ (lR/ZY, its character group X*(T) ~ zr. We want 
to embed X* (T) into a real Euclidean space V ~ lRr. There are two natural 
ways of doing this. First, we may note that X*(T) ~ zr, so we can take 
V = lR ®z X*(T). Alternatively, A t----+ dA gives an embedding X*(T) in 
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the space V' = HomlR(t, iJR) of linear functionals on t taking purely imaginary 
values. We do not want to identify the spaces V and V'. However, we note that 
they are canonically isomorphic, and we will occasionally need the extension 
of the map A ----+ dA of X* (T) into V'to a map V ----+ V'. If A E V, we will 
denote its image dA in Hom(t, JR) - or in Hom(tc, q - as dA even if A is not 
in X*(T). 

Now W acts on T by conjugation and hence on V, and it will be convenient 
to give V an inner product (that is, a positive definite symmetric bilinear form) 
that is W-invariant. We may of course do this for any finite group acting on 
a real vector space. 

A root of G with respect to T is an element of X*(T) occurring in the 
representation ofT on Pc induced by Ad, where p is as in the previous chapter. 
If a is a root, let Xc> C Pc be the a-eigenspace. We will denote by ijj c V the 
set of roots of G with respect to T. We will show in Theorem 19.2 that ijj is 
a root system. 

Because the proofs are somewhat long, it may be useful to have an exam
ple in mind. We consider the group G = Sp(4). This is a maximal compact 
subgroup of Sp(4, q, which we will take to be the group of g E GL(4, q that 
satisfy gJtg = J, where 

This is not the same as the group introduced in Example 5.5, but it is conju
gate to that group in GL( 4, q. The group Sp( 4) is the intersection of Sp( 4, q 
with U(4). A maximal torus T can be taken to be the group of diagonal ele
ments, and the roots are the eight characters 

T 3 t = (" " ,,' ) t----+ 
t- l 

1 

al(t) = tlt2 l , 
a2(t) = t~, 

(al + (2)(t) = tlt2, 
(2al + (2)(t) = t~, 

-al (t) = tllt2' 
-a2(t) = t22, 

-(al + (2)(t) = tllt21, 
-(2al + (2)(t) = t12. 

They form a configuration in V that can be seen in Figure 20.4 of the next 
chapter. The reader can check that this forms a root system. 

The complexified Lie algebra {Ie consists of matrices of the form 

(
tl Xl2 Xl3 Xl4) 

X2l t2 X23 Xl3 

x3l X32 -t2 -Xl2 . 

X4l X3l -X2l -tl 
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To be in 9, this matrix must be skew-Hermitian, which means that the ti are 
purely imaginary, and Xij = -Xji. The spaces Xal and X-al are spanned by 
the vectors 

(
0100) o 0 0 0 

Xal = 0 0 0 -1 ' 
o 0 0 0 

(
0000) 1 0 0 0 
o 0 0 0 ' 
o 0 -1 0 

and the spaces Xa2 and X- a2 are spanned by 

(
0 0 0 0) 001 0 

X a2 = 0 0 0 0 ' 
o 0 0 0 

(
0000) o 0 0 0 
o 1 00' 
o 0 0 0 

As you can see, Ad(t)Xa = Q(t)Xa when Q = Q1 or Q2. This proves that Q1 
and Q2 are roots, and the four others are handled similarly. Note that these 
Xa are elements not of 9 but of its complexification 91C. 

The proof that the set of roots of a compact Lie group form a root system 
involves constructing certain elements Ha of te, called coroots. In this example 

Note that Ha tJ. t, but -iHa E t, since the elements of t are diagonal and 
purely imaginary. The coroots satisfy 

and they are elements of the intersection of it with the complex Lie algebra 
generated by Xa and X-a. We note that Xa and X-a are only determined 
up to constant multiples by the description we have given, but Ha is fully 
characterized. The Ha will be constructed in Proposition 19.6 below. They 
form a root system that is dual to the one we want to construct - if Q is a 
long root, then Ha is short, and conversely, in root systems where not all the 
roots have the same length. (See Exercise 19.2.) 

A key step will be to construct an element of the Weyl group W = N (T) IT 
corresponding to the reflection Sa in (19.1). In order to produce this, we will 
construct a homomorphism ia : SU(2) ~ G. The Weyl group Sa will then 

be the image of (~ ~ 1 ) under i a . 

Let us offer a word about how one can get a grip on ia. The centralizer 
C(Ta) of the kernel Ta of the homomorphism Q : T ~ ex is a close rel
ative of this group ia(SU(2)). In fact, C(Ta) = ia(SU(2)) . T. We will use 
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this circumstance to show that Xo is one-dimensional, after which it will be 
straightforward to construct the homomorphism i o . Let us consider the groups 
C(To) and the homomorphisms io in the case at hand. The subgroup TOl of 
T is characterized by tl = t2, so its centralizer consists of elements of the form 

where the elements marked * are determined by the requirement that the 
matrix be in Sp(4). The homomorphism io is given by 

~ ) = (:! a -b) , 
-c d 

Similarly, T02 is characterized by t2 = {±1}, and 

We turn now to the general case and to the proofs. 

Proposition 19.1. A maximal Abelian subalgebra ~ of g is the Lie algebra of 
a conjugate of T. Its dimension is the rank r of G. 

Proof. By Proposition 15.2, exp(~) is a commutative group that is connected 
since it is the continuous image of a connected space. By Theorem 15.2 its 
closure H is a Lie subgroup of G, closed, connected and Abelian and therefore 
a torus. It is therefore contained in a maximal torus H'. By maximality of ~ ~ 
Lie(H') we must have ~ = Lie(H') and H' = H. By Cartan's Theorem 16.5, 
H is a conjugate of T. 0 

Lemma 19.1. Suppose that G is a compact Lie group with Lie algebra g, 
7r : G -t GL(V) a representation, and d7r : g -t End(V) the differential. If 
v E V and X E g such that d7r(x)nv = 0 for any n > 1, then d7r(X)v = o. 

Proof. We may put a G-invariant positive definite inner product (, ) on 
V. The inner product is then g-invariant, which means that (d7r(X)v, w) = 
- (v, d7r(X)w). Thus d7r(X) is skew-Hermitian, which by the spectral theorem 
implies that V has a basis with respect to which its matrix is diagonal. It is 
clear that, for a diagonal matrix M, Mnv = 0 implies that M v = O. 0 
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We may write gc = g + ig. Let c : gc --t gc be the conjugation with 
respect to g, that is, the real linear transformation X + iY --t X - iY (X, 
Y E g). Although c is not complex linear, it is an automorphism of gc as a 
real Lie algebra. We have c(aZ) = a· c(Z), so c is complex antilinear. 

Let (71", V) be any finite-dimensional complex representation of G. If >. E 
X*(T), let V(>.) = {v E VI7I"(t)v = >.(t)v}. Then V is the direct sum ofthe 
V(>'). If (71", V) = (ad, gc) and >. = a is a root, then V(>.) = Xa. 

Proposition 19.2. (i) Let (71", V) be any irreducible representation of G. If 
d7l" : g --t gl(V) is the differential of 71", then 

d7l"(H)v = d>'(H)v, HE t, v E V(>.). (19.3) 

(ii) We have 

[H, Xa] = ad(H)Xa = da(H)Xa, (19.4) 

(iii) If (71", V) is a finite-dimensional complex representation ofG and v E V(>.) 
for some>. E X*(T), then d7l"(Xa)v E V(>' + a). 

Proof. For (i), if HE t and t E JR, then for v E V(>.) we have 

7I"(etH )v = >.(etH)v = etd>-(H)v. 

Taking the derivative and setting t = 0, using (19.2) we obtain (19.3). When 
V = gc and 71" = Ad, we have Xa = V(>'), so (19.4) is a special case of (19.3), 
and (ii) follows. 

For (iii), we have, by (19.4), 

Applying this to v and using (19.3) gives, with w = d7l"(Xa)v, 

d7l"(H)w = (d>.(H) + da(H))w, 

sowEV(>.+a). 

Proposition 19.3. (i) We have c(Xa) = X-a. 
(ii) If Xa E Xa, X{3 E X{3, a, f3 E if!, then 

{ tc if f3 = -a , 
[Xa, X{3] E Xa+{3 if a + f3 E if! . 

while [Xa, X{3] = 0 if {3 i= -a and a + (3 ¢ if!. 

o 

(iii) If 0 i= Xa E Xa, then [Xa, c{Xa)] is a nonzero element of it, and 
da([Xa, c(Xa)]) i= o. 
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Proof. For (i), apply c to (19.4) using the complex antilinearity of c, and the 
fact that doo(H) is purely imaginary to obtain 

[H, c(Xa)] = [c(H), c(Xa)] = c[H, Xa] = c(doo(H)Xa) = -doo(H)c(Xa). 

This shows that c(Xa) EX-a' 
Part (ii) is the special case of Proposition 19.2 (iii) when 1r = Ad and 

V = gc since te = V(O) while Xa = V(oo) when a E iP. 
For (iii), we know that [Xa, c(Xa)] E te, and applying c to -i[Xa, c(Xa)] 

gives i[c(Xa), Xa] = -i[Xa, c(Xa)] so -i[Xa, c(Xa)] E t and [Xa, c(Xa)] E it. 
We show that [Xa, c(Xa)]-=I= O. Let ta C t be the kernel of doo. It is of course a 
subspace of codimension 1. Let HI,' .. ,Hr- I be a basis. If [Xa, c(Xa)] = 0, 
then denoting 

(19.5) 

Ya and Za are c-invariant and hence in g, and 

are r + 1 commuting elements of g that are linearly independent over lit This 
contradicts Proposition 19.1, so [Xa, c(Xa)]-=I= O. 

It remains to be shown that doo([Xa, c(Xa)]) -=1= O. If on the contrary 
this vanishes, then [Ho, Xa] = [Ho, X-a] = 0 by (19.4), where Ho = 
-i[Xa, c(Xa)] E t. With Ya and Za as in (19.5), this implies that [Ho, Ya] = 
[Ho, Za] = O. Now 

Thus, ad(Ya)2 Za = 0, yet ad(Ya)Za -=1= 0, contradicting Lemma 19.1. 0 

Proposition 19.4. If dim(T) = 1, then either G = T or dim(G) = 3. If a is 
any root, then Xa is one-dimensional, and a, -a are the only roots. 

Proof. Since t is one-dimensional, let H be a basis vector. Assuming G -=1= T, 
iP is nonempty. The spaces Xa are just the eigenspaces of H on Pc. Since T 
is one-dimensional, so is V. Thus, if a E iP, all f3 E iP are of the form '\00 for a 
nonzero constant. We choose a so that all 1,\1 ~ 1. Let 0 -=1= Xa E Xa, and let 
X_a = c(Xa). We consider the vector space 

V = ffi.X_ a EB t EB EB XAa . 
Aa E <l> 
A>O 

We compute the eigenvalue of ad(H) on V. By Proposition 19.3, each compo
nent space is mapped into another by ad(Xa) and ad(X_a). Indeed, ad(X_a) 
kills X_a, shifts t into ffi.X- a, and shifts XAa into t if ,\ = lor X(A-I)a if,\ -=1= 1. 
The case of ad(Xa) is similar. Moreover, [Xa, X-a] is a nonzero multiple of 
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H, so ad(H) is a nonzero multiple of ad(Xa)ad(X_oJ - ad(X_a)ad(Xa). Its 
trace on V is therefore zero. 

On the other hand, denoting G = do(H), the trace of ad(H) on XAa 
equals )"G dim(XAa ), while the trace of ad(H) on l~.x-a is -G, and the trace 
of ad(H) on t is zero. We see that the trace is -G + LA:>-l )"G dim(XAa). 
Since this is zero, there can be only one XAa with)" > 0, ';;.amely Xa , and 
dim(Xa) = 1. Now g = JRH EEl JRXa EEl JRX-a is three-dimensional. 0 

We return now to the general case. If 0 E <P, let Ta C T be the kernel of 
o. This closed subgroup of T mayor may not be connected. Its Lie algebra is 
the kernel ta of do. 

Proposition 19.5. (i) If 0 E <P, then dim(Xa) = 1. 
(ii) If 0, (3 E <P and 0 = )..(3, ).. E JR, then).. = ±1. 

Proof. The group H = Gc(Ta) is a closed connected Lie subgroup by Theorem 
16.6. It has Ta as a normal subgroup. The Lie algebra of H is the centralizer 
~ in g of ta , so 

~e = tc EEl EB XAa . 
Aa E P 
AER. 

Thus HITa is a rank 1 group with maximal torus TITa. Its complexified Lie 
algebra is therefore three-dimensional by Proposition 19.4. However, ill XAa 
is embedded injectively in this complexified Lie algebra, so ).. = ±1 are the 
only).., and X±a are one-dimensional. 0 

Proposition 19.6. Let 0 E <P and let 0 #- Xa E Xa' Let X_a = c(Xa) E 

X_a. The spaces Xa and X_a generate a complex Lie subalgebra ga,e of ge 
isomorphic to s((2, q. Its intersection ga = g n ga,e is isomorphic to su(2). 
We may choose Xa and the isomorphism ia : 5((2, C) ----+ ga,e so that 

where Ha = [Xa, -Xa]. In this case, Ha E it and 

Proof. Let Ha = [Xa, X-a]. By Proposition 19.3 (iii), Ha is a nonzero element 
of it not in ita. By Proposition 19.3 (iii) and (19.4), we have [Ha, Xa] = 
2)"Xa , where).. is a nonzero real constant. Applying c and using c(Ha) = 
-Ha, we have [Ha,X- a] = -2)..X_a . Now replacing X a , X_a and Ha by 
)..-lXa , )..-lX_a , and )..-2Ha , we may arrange that (19.7) be satisfied. Since 
the three matrices in s((2, q in (19.6) satisfy the same relations, we have an 
isomorphism ia : s((2, q ----+ ga,e such that (19.6) is true. Since the effect of 
the conjugation c on the basis elements X a , X_a, and Ha is known, it is easy 
to check that the C-fixed subalgebra ga of ga,e is mapped to 5u(2) by ia. 0 
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Since Xa is one-dimensional, the group ga does not depend on the choice 
of Xa. 

Proposition 19.7. If X E ta = ker(da), then [X,ga] = O. 

Proof. H centralizes Xa and X-a by (19.4); that is, [H, Xa] = [H, X-a] = 0, 
and it follows that [H, X] = 0 for all X Ega' 0 

In particular, we gave the ambient vector space V of the set cP of roots an 
inner product (Euclidean structure) invariant under W. The Weyl group acts 
on T by conjugation and hence it acts on X*(T). It acts on p by the adjoint 
representation (induced from conjugation) so it permutes the roots. All the 
Weyl group elements are realized as orthogonal motions with respect to this 
metric. 

We may now give a method of constructing Weyl group elements. Let 
a E CPo Let Ta = {t E Tla(t) = I}. 

Theorem 19.1. Let a E CPo There exists a homomorphism ia : SU(2) -+ 
C(Ta)O c G such that the image of the differential dia : .su(2) -+ g is the 
Lie algebra homomorphism of Proposition 19.6. If 

. ( -1) Wa = Za 1 ' (19.8) 

then Wa E N(T) and Wa induces Sa in its action on X*(T). 

Proof. Since SU(2) is simply-connected, it follows from Theorem 14.2 that the 
Lie algebra homomorphism su(2) -+ g of Proposition 19.6 is the differential 
of a homomorphism ia : SU(2) -+ G. By Proposition 19.7, ga centralizes ta, 
and since SU(2) is connected, it follows that ia(SU(2» £;;; C(Ta)o. 

By Proposition 19.3, -iHa f/. ta, so t is generated by its codimension
one subspace ta and ia (su(2») n t. Since Lie(Ta) = ta, it follows that T is 
generated by Ta and Tnia(SU(2»). By construction, Wa normalizes 

and since ia(SU(2» £;;; C(Ta)O, Wa also normalizes Ta. 
Since we chose a W-invariant inner product, any element of the Weyl group 

acts by a Euclidean motion. Since Wa centralizes Ta, it acts trivially on ta 
and thus fixes a codimension-one subspace in V. It also maps a -+ -a, and 
these two properties characterize Sa. 0 

Proposition 19.8. Let (11', V) be a finite-dimensional representation of G, 
and let ..\ E X*(T) such that V("\) "I O. Then 2 (..\, a) / (a, a) E Z for all 
a E CPo 
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Proof. Let 

w = E9 V(A + ka). 
kEZ 

By Proposition 19.3, this subspace is stable under d7r(Xa,) and d7r(X-aJ. It 
is therefore invariant under the Lie algebra ga,c that they generate and its 
subalgebra gao Thus, it is invariant under ia (8U(2)), in particular by Wa in 
Theorem 19.1. It follows that the set {A + ka E X*(T) IkE Z} is invariant 
under Sa. By (19.1), this implies that the number 2 (A, a) / (a, a) E Z. 0 

Theorem 19.2. If if! is the set of roots associated with a compact Lie group 
and its maximal torus T, then if! is a reduced root system. 

Proof. Clearly, if! is a set of nonzero vectors in a Euclidean space V. The 
fact that if! is invariant under Sa, a E if! follows from the construction of 
Wa E N(T), whose conjugation induces Sa in Theorem 19.1. The fact that the 
integers 2 ({3, a) / (a, a) E Z for a, {3 E if! follows from applying Proposition 
19.8 to (Ad, ge). Thus if! is a root system. It is reduced by Proposition 19.5. 

o 

Proposition 19.9. Let A E X*(T). Then there exists a finite-dimensional 
complex representation (7r, V) of G such that V(A) #- o. 

Proof. Consider the subspace L(A) of L2(G) of functions f satisfying 

f(tg) = A(t)f(g) 

for t E T. Let G act on L(A) by right translation: p: G ---+ End(V) is the map 
p(g)f(x) = f(xg). Clearly, L(A) is an invariant subspace under this action, 
and by Theorem 4.3 it decomposes into a direct sum of finite-dimensional 
irreducible invariant subspaces. Let V be one of these subspaces, and let 7r 
be the representation of G on V. Every linear functional on V has the form 
x ---+ (x, fo), where fo is a vector and ( , ) is the L2 inner product. Thus, 
there exists an fo E V such that f(l) = (I, fo) for all f E V. Clearly, fo #- o. 
We have 

Therefore 7r(t)fo = A(t)fo and so V(A) #- o. o 

We call an element A of V a weight if 2 (A, a) / (a, a) E Z for all a E if!. 

Theorem 19.3. Every element of X* (T) is a weight. 

Proof. This follows from Proposition 19.8 and Proposition 19.9. o 
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EXERCISES 

Exercise 19.1. Show that if P c V is a root system, then pi = {xl (x, x) I x E p} 
is also a root system. Note that long roots in P correspond to short roots in pi, since 
we are dividing by the square of the length. (Hint: Prove this first for rank two root 
systems, then note that if 0:, (3 E P are linearly independent roots the intersection 
of p with their span is a root system.) 

Exercise 19.2. Show that the coroots HOt form a root system in it. As in the last 
exercise, long roots inP correspond to short vectors in the root system {HOt} of 
coroots. 



20 

Examples of Root Systems 

It may be easiest to read the next chapter with examples in mind. In this 
chapter we will describe various root systems and illustrate the rank 2 root 
systems. 

In the next chapter, we will introduce various structures in the context of 
an abstract root system whose significance will not yet be clear. Nevertheless 
we describe them now since they appear in the figures. We will assume in this 
chapter that the roots span their ambient vector space V, which in the rank 
2 examples is a two-dimensional Euclidean space. 

The set ifJ of roots will be partitioned into two parts, called ifJ+ and ifJ-. 
Exactly half the roots will be in ifJ+ and the other half in ifJ-. Indeed, ifJ- = 
{-a I a E ifJ+}. The roots in ifJ+ will be called positive. In the figures of this 
chapter, the positive roots are labeled ., and the negative roots are labeled o. 

The roots in ifJ+ that cannot be expressed as sums of other positive roots 
are called simple. They are linearly independent and span V. The lattice 
spanned by ifJ is the same as the lattice spanned by the set E of simple 
positive roots. It is called the root lattice and denoted Aroot . On the other 
hand, the lattice of all >. E V that satisfy 2 (>', a) / (a, a) E Z for all a E ifJ 
is called the weight lattice, denoted A, and its elements are called weights. If 
E = {aI, ... ,ar } are the simple positive roots then let {WI,' .. ,wr } be the 
fundamental dominant weights, characterized by 

2 (wi,aj) _ £ .. 

- U'J (aj, aj) 
(Kronecker 8). 

These span the lattice A. An important particular weight is p, the sum of 
the fundamental dominant weights. It is equal to half the sum of the positive 
roots. (See Proposition 21.16.) 

The root system of type An can be conveniently realized in the subspace of 
co dimension one in Rn+1 consisting of vectors (xo," . ,xn ) satisfying L:i Xi = 
0. Let ei = (0"" ,0,1,0" .. ,0) be the standard basis of Rn+l. The root 
system consists of the n( n - 1) vectors 
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i # j, (20.1) 

having exactly two nonzero entries, one being 1 and the other -1. This is the 
root system attached to the group SU(n+ 1). To see why, choose the maximal 
torus T' of U (n) consisting of diagonal matrices, and let T = T' n SU (n + 1). 
We have X*(T') ~ zn+1, in which the n-tuple (ao,··· ,an) corresponds to 
the character 

so R ® X* (T') ~ Rn+1. The restriction of this character to T annihilates the 
one-dimensional subspace spanned by the vector Vo = (1,··· ,1), so we may 
identify X*(T) with zn+1 /(Zvo) and V = R ® X*(T) with Rn+1 /(Rvo). Any 
element of Rn+1 is congruent modulo Rvo to a unique element of the sub
space of codimension one in Rn+1 consisting of vectors (xo,· .. ,xn ) satisfying 
Li Xi = 0, so we may alternatively regard the root system as living in this 
space. 

Let us check that (20.1) are indeed the roots of SU(n). By Proposition 
11.4, the complexified Lie algebra of SU(n) is s£(n, C). If a = ei - ej, the one
dimensional vector space Xa spanned by the matrix Eij with a 1 in the i, j
position and D's everywhere else is an eigenspace for T affording the character 
a, and these eigenspaces, together with the Lie algebra of T, span V. So the 
ei - ej are precisely the roots of SU(n). 

of 
For example, the root system of type A2 , pictured in Figure 20.1, consists 

al = (1,-1,0), 
(-1,1,0), 

a2 = (0,1, -1), 
(0, -1, 1), 

(1,0, -1), 
(-1,0,1). 

Taking T to be the diagonal torus of SU(3), al and a2 E X*(T) are the roots 

a, (t) ~ t, t,', .,(t) ~ t2t,', t ~ C' t2 tJ E T. 

The corresponding eigenspaces are spanned by 

(
010) 

EI2 = ° ° ° E Xall 

000 
E23 = 001 (

000) 

000 

The fundamental dominant weights WI and W2 are, respectively, WI (t) = tl 

and W2(t) = tal. These are represented in R3/(RvO) by the cosets of (1,0,0) 
and (0, 0, -1), or in the subspace of codimension one in R3 consisting of vectors 
(xo, XI, X2) satisfying Li Xi = ° by (~, -l, -l) and (l, l, -~), respectively. 
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o 

o o 

Fig. 20.1. The root system of type A2. 

Figure 20.1 shows the root system of type A2 associated with the Lie 
group SU(3). The shaded region in Figure 20.1 is the positive Weyl chamber 
C+, which consists of {x E V I (x, a) ;::: 0 for all a E .p+}. It is a fundamental 
domain for the Weyl group. 

o 

o o 

Fig. 20.2. The partial order. 

A role will also be played by a partial order on V. We define x ~ y 
if x - y ~ 0, where x ~ 0 if x is a linear combination, with nonnegative 
coefficients, of the elements of E. The shaded region in Figure 20.2 is the set 
of x such that x ~ 0 for the root system of type A2 . 
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Next we turn to the classical root systems. The root system of type Bn is 
associated with the odd orthogonal group SO(2n+ 1) or with its double cover 
spin(2n + 1). The root system of type en is associated with the symplectic 
group Sp(2n). Finally, the root system oftype Dn is associated with the even 
orthogonal group SO(2n) or its double cover spin(2n). We will now describe 
these root systems but postpone an explanation of how they are related to 
the orthogonal and symplectic groups. Let ei = (0, ... ,0,1,0, ... ,0) be the 
standard basis of ~n. 

The root system of type Bn can be embedded in ~n. The roots are not all 
of the same length. There are 2n short roots 

and 2(n2 - n) long roots 

±ei ± ej 

The simple positive roots are 

(i O:/=j). 

To see that this is the root system of SO (2n + 1), it is most convenient to use 
the representation of SO(2n + 1) in Exercise 5.3. Thus, we replace the usual 
realization of SO(2n + 1) as a group of real matrices by the subgroup of all 
g E U(2n + 1) that satisfy gJtg = J, where 

A maximal torus consists of all diagonal elements, which have the form (when 
n = 4, for example) 

c l 
4 

C l 
3 

C l 
2 

C l 
I 

The Lie algebra 9 consists of all skew-Hermitian matrices X satisfying X J + 
Jt X = O. Now we claim that the complexification of 9 just consists of all 
complex matrices satisfying X J + Jt X = O. Indeed, by Proposition 11.4, any 
complex matrix X can be written uniquely as Xl +iX2 with Xl and X 2 skew
Hermitian, and it is easy to see that X J + Jt X = 0 if and only if Xl and X 2 



20 Examples of Root Systems 131 

satisfy the same identity. Thus, 9 EB ig = {X E gl(n, q I X J + Jt X = a}. It 
now follows from Proposition 11.3 (iii) that this is the complexification. This 
Lie algebra is shown in Figure 20.3 when n = 4. 

tl X14 X15 X16 X17 XIS 0 

X21 X24 X25 X26 X27 0 -XIS 

X31 X32 t3 X36 0 -X27 -X17 

X41 X42 X43 0 -X36 -X26 -X16 

X51 X52 X53 X54 0 -X45 -X35 -X25 -X15 

Fig. 20.3. The Lie algebra 50(9). 

We order the roots so the root spaces Xa: with a E 4>+ are upper triangular. 
In particular, the simple roots are al (t) = t1t2\ acting on Xa:l' the space of 
matrices in which all entries are zero except X12; a2(t) = t2(3" 1 , with root space 
corresponding to X23; a3(t) = t3t4"1 corresponding to X34; and a4(t) = t4, 

corresponding to X35. We have circled these positions. Note, however that 
(for example) X12 appears in a second place which has not been circled. The 
lines connecting the circles, one of them double, map out the Dynkin diagram, 
which will not be explained until Chapter 28. Suffice it to say that simple roots 
are connected in the Dynkin diagram if they are not perpendicular. Now if we 
take ei E X*(T) to be the character ei(t) = ti, then it is clear that the root 
system consists of the 2n2 roots ±ei and ±ei ± ej (i -# j), as claimed. 

The root system of type en is similar, but the long and short roots are 
reversed. Now there are 2n long roots 

and 2(n2 - n) short roots 

(i -# j). 

The simple positive roots are 
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We leave it to the reader to show that Cn is the root system of Sp(2n) in 
Exercise 20.2. (Figure 33.15 may help with this.) 

The root system of type Dn consists of just the long roots in the root 
system of type Bn. There are 2(n2 - n) roots, all of the same length: 

(i=f=j). 

The simple positive roots are 

To see that Dn is the root system of SO(2n), one may again use the realiza
tion of Exercise 5.3. We leave this verification to the reader in exercise 20.2. 
(Figure 33.1 may help with this.) 

.p 

o 

o o o 

Fig. 20.4. The root system of type C2, which coincides with type B2. 

It happens that spin(5) 2:! Sp(4), so the root systems of types B2 and C2 

coincide. These are shown in Figure 20.4. The shaded region is the positive 
Weyl chamber. (We have labeled the roots so that the order coincides with 
the root system C2 in the notations of Bourbaki [15], Planche III at the back 
of the book. For type B2 , the roots al and a2 would be switched.) 

There is a nonreduced root system whose type is called BCn . The root 
system of type BCn can be realized as all elements of the form 
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• 

• 
o 

o o 

o o o 

Fig. 20.5. The nonreduced root system BC2. 

where ei are standard basis vectors of IRn. Nonreduced root systems do not 
occur as root systems of compact Lie groups, but they occur as relative root 
systems. The root system of type B02 may be found in Figure 20.5. 

In addition to the infinite families of Lie groups in the Cartan classification 
are five exceptional groups, of types G2 , F4 , E6 , E7 and E8 • The root system 
of type G2 is shown in Figure 20.6. 

In addition to the three root systems we have just considered there is 
another rank two reduced root system. This is called Al x AI, and it is il
lustrated in Figure 20.7. Unlike the others listed here, this one is reducible. 
If V = VI EB V2 (orthogonal direct sum), and if <PI and <P2 are root systems 
in VI and V2, then <P = <PI U <P2 is a root system in V such that every root 
in <PI is orthogonal to every root in <P2 . The root system <P is reducible if it 
decomposes in this way. 

We leave two other rank 2 root systems, which are neither reduced nor 
irreducible, to the imagination of the reader. Their types are Al x BOI and 
BOI x BOI . 
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. p 

• • 

o 

o o o o 

o 

Fig. 20.6. The root system of type G2. 

o 

o 

Fig. 20.7. The reducible root system Al x AI. 
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EXERCISES 

Exercise 20.1. Show that any irreducible rank 2 root system is isomorphic to one 
of those described in this chapter, of type A 2 , B 2 , G2 or BC2 • 

Exercise 20.2. Verify, as we did for type SO(2n + 1), that the root system of the 
Lie group SO(2n) is of type Dn and that the root system of Sp(2n) is of type Cn. 

Exercise 20.3. Let ei (i = 1,2,3,4) be the standard basis elements of ~4. Show 
that the 48 vectors 

±ei (1 ~ i ~ 4), 

form a root system. This is the root system of Cartan type F4. Compute the order of 
the Weyl group. Show that this root system contains smaller root systems of types 
B3 and C3. 
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Abstract Weyl Groups 

In this chapter, we will associate a Weyl group with an abstract root system, 
and develop some of its properties. 

Let V be a Euclidean space and ~ c Va reduced root system. (At the end 
we will remove the assumption that ~ is reduced, but many of the results of 
this chapter are false without it.) 

Since ~ is a finite set of nonzero vectors, we may choose Po E V such that 
(a, po) =I- 0 for all a E ~. Let ~+ be the set of roots a such that (a, po) > o. 
This consists of exactly half the roots since evidently a root a E ~+ if and 
only if -a ¢ ~+. Elements of ~+ are called positive roots. Elements of set 
~- = ~ - ~+ are called negative roots. 

If a, {3 E ~+ and a + {3 E ~, then evidently a + {3 E 4>+. Let E be the set 
of elements in ~+ that cannot be expressed as a sum of other elements of 4>+ . 
If a E E, then we call a a simple positive root, or sometimes just a simple 
root and we call So. defined by (19.1) a simple reflection. 

Proposition 21.1. (i) The elements of E are linearly independent. 
(ii) If a E 1; and {3 E ~+, then either {3 = a or So.({3) E ~+. 
(iii) If a and {3 are distinct elements of E, then (a, {3} ~ o. 
(iv) Every element a E ~ can be expressed uniquely as a linear combination 

in which each n(3 E Z and either all n(3 ~ 0 (if f3 E ~+) or all n(3 ~ 0 (if 
f3 E ~-). 

Proof. Let 1;' be a subset of ~+ that is minimal with respect to the property 
that every element of ~+ is a linear combination with nonnegative coefficients 
of elements of E'. (Subsets with this property clearly exists - for example E' 
itself.) We will eventually show that 1;' = E. 

First, we show that if a E E' and f3 E 4>+, then either f3 = a or So. ({3) E ~+. 
Otherwise -So.({3) E ~+, and 
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((3, a) ( ) 2-( -) a = (3 + - So ((3) 
a,a 

is a sum of two positive roots (3 and -s,8(a). Both (3 and -s,8(a) can be 
expressed as linear combinations of the elements of E' with nonnegative co
efficients, and therefore 

((3, a) " 
2 (a a) a = ~ n'Y . " 

, "lEE' 

Write 

Because (3 :f= a, and because if> is assumed to be reduced, (3 is not a multiple 
of a. Therefore, at least one of the coefficients n'Y with, :f= a is positive. 
Taking the inner product with Po shows that the coefficient on the left-hand 
side is strictly positive; dividing by this positive constant, we see that a may 
be expressed as a linear combination of the elements, E E' distinct from a, 
and so a may be omitted from E', contradicting its assumed minimality. This 
contradiction shows that so((3) E if>+. 

Next we show that if a and (3 are distinct elements of E', then (a, (3) :::;; o. 
We have already shown that so((3) E if>+. If (a, (3) > 0, then write 

((3, a) 
(3 = so((3) + 2-( -) a. 

a,a 
(21.1) 

Writing so((3) as a linear combination with nonnegative coefficients of the 
elements of E', and noting that the coefficient of a on the right-hand side of 
(21.1) is strictly positive, we may write 

where no > O. We rewrite this 

(1 - n,8) . (3 = L n'Y· ,. 
"I E E' 
"1#,8 

At least one coefficient no > 0 on the right, so taking the inner product with 
Po we see that 1 - n,8 > O. Thus (3 is a linear combination with nonnegative 
coefficients of other elements of E' and hence may be omitted, contradicting 
the minimality of E'. 

Now let us show that the elements of E' are lR-linearly independent. In a 
relation of algebraic dependence, we move all the negative coefficients to the 
other side of the identity and obtain a relation of the form 
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2:= Ca . a = 2:= df3' /3, (21.2) 
aEE1 f3EE2 

where L\ and E2 are disjoint subsets of E' and the coefficients Ca, df3 are all 
positive. Call this vector v. We have 

(v, v) = 2:= cadf3 (a, /3) :s;; 0 
a EEl 
f3 E 172 

since we have already shown that the inner products (a, /3) :s;; O. Therefore, 
v = O. Now taking the inner product of the left-hand side in (21.2) with Po 
gives 

0= 2:= Ca (a, Po) . 
aEE1 

Since (a, Po) > 0 and Ca > 0, this is a contradiction. This proves the linear 
independence of the elements of E'. 

Next let us show that every element of 4)+ may be expressed as a linear 
combination of elements of E' with integer coefficients. We define a function 
h from 4)+ to the positive real numbers as follows. If a E 4)+ we may write 

a = 2:= nf3 . /3, 
f3EE' 

The coefficients nf3 are uniquely determined since the elements of E' are lin
early independent. We define 

(21.3) 

Evidently h(a) > O. We want to show that the coefficients nf3 are integers. 
Assume a counterexample with h(a) minimal. Evidently, a 1: E' since if 
a E E', then na = 1 while all other nf3 = 0, so such an a has all nf3 E Z. 
Since 

o < (a, a) = 2:= nf3 (a, /3) , (21.4) 
f3EE' 

it is impossible that (a, /3) :s;; 0 for all /3 E E'. Thus, there exists "I E E' such 
that (a, "I) > O. Then by what we have already proved, a' = sl(a) E 4)+, and 
by (19.1) we see that 

a' = 2:= n~ . /3, 
f3EE' 

where 
, { nf3 if /3 =I- "I , 

nf3 = n - 2 b,a) if /3 = "I . 
I b,l) 

Since ("t, a) > 0, we have 
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h(a') < h(a) , 

so by induction we have n~ E Z. Since q, is a root system, 2 (-y, a) / (a, a) E Z, 
so nf3 E Z for all (3 E E'. This is a contradiction. 

Finally, let us show that E = E'. 
If a E E, then by definition of E, a cannot be expressed as a linear 

combination with integer coefficients of other elements of q,+. Hence a cannot 
be omitted from E'. Thus E c E'. 

On the other hand, if a E E', then we claim that a E E. Otherwise, we 
may write a = (3 + 'Y with (3, 'Y E q,+, and (3 and 'Y may both be written as 
linear combinations of elements of E' with positive integer coefficients, and 
thus h((3), h(-y) ~ 1, so h(a) = h((3) + h(-y) > 1. But evidently h(a) = 1 since 
a E E'. This contradiction shows that E' c E. 0 

Let W be the group generated by the simple reflections So< with a E E. If 
wE W, let the length l(w) be defined to be the smallest k such that w admits 
a factorization w = Sl ... Sk into simple reflections, or l(w) = 0 if w = 1. Let 
l'(w) be the number of a E q,+ such that w(a) E q,-. We will eventually show 
that the functions land l' are the same. 

Proposition 21.2. Let s = So< (a E E) be a simple reflection, and let w E W. 
We have 

and 

l'(sw) = {l'(W) + 1 ~f w=l(a) E q,+ , 
l' (w) - 1 if w 1 (a) E q,- , 

l'(ws) = {l'(W) + 1 if w(a) E q,+ , 
l'(w) -1 ifw(a) E q,- , 

(21.5) 

(21.6) 

Proof. Since s(q,-) is obtained from q,- by deleting -a and adding a, we see 
that (sw)-lq,- = w-1 (sq,-) is obtained from w-1q,- by deleting -w-1 (a) 
and adding w-1 (a). Since l'(w) is the cardinality of qi+ n w-1qi-, we obtain 
(21.5). To prove (21.6), we note that l'(ws) is the cardinality of q,+n(ws)-lq,-, 
which equals the cardinality of s(q,+ n (wS)-lq,-) = sq,+ nw- 1q,-, and since 
sq,+ is obtained from q,+ by deleting the element a and adjoining -a, (21.6) 
is evident. 0 

If w is any orthogonal linear endomorphism of V, then evidently wso<w-1 

is the reflection in the hyperplane perpendicular to w(a), so 

-1 wso<w = SW(O<) . (21. 7) 

Proposition 21.3. Suppose that all ... ,ak and a are elements of E, and let 
Si = SO<i' Suppose that 

SlS2 ... sk(a) E q,-. 

Then there exists a 1 ::::; j ::::; k such that 

(21.8) 

where the "hat" on the right signifies the omission of the single element Sj. 
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Proof. Let 1 ~ j ~ k be minimal such that Sj+1'" sk(a) E CP+. Then 
SjSj+1 ... sk(a) E CP-. Since aj is the unique element of cP+ mapped into 
cP- by Sj, we have 

and by (21.7) we have 

(Sj+1'" Sk)Sa(Sj+1'" Sk)-l = Sj 

or 

This implies (21.8). o 

Proposition 21.4. Suppose that a1,'" ,ak are elements of E, and let Si = 
Sai' Suppose that l'(SlS2'" Sk) < k. Then there exist 1 ~ i < j ~ k such that 

(21.9) 

where the "hats" on the right signify omission of the elements Si and Sj. 

Proof. Evidently there is a first j such that l'(SlS2'" Sj) < j, and (since 
l'(Sl) = 1) we have j > 1. Then l'(SlS2'" Sj-1) = j - 1, and by Proposition 
21.2 we have SlS2 ... Sj-1 (aj) E CP-. The existence of i satisfying Sl ... Sj-1 = 
Sl ... Si ... Sj-1Sj now follows from Proposition 21.3, which implies (21.9). 0 

Proposition 21.5. If wE W, then l(w) = l'(w). 

Proof. The inequality 
l'(w) ~ l(w) 

follows from Proposition 21.2 because we may write w = SW1, where S is a 
simple reflection and l(W1) = l(w) - 1, and by induction on l(wd we may 
assume that l'(W1) ~ l(W1), so l'(w) ~ l'(W1) + 1 ~ l(W1) + 1 = l(w). 

Let us show that 
l'(w) ~ l(w). 

Indeed, let w = Sl'" Sk be a counterexample with l(w) = k, where each 
Si = sai with ai E E. Thus l'(Sl ... Sk) < k. Then, by Proposition 21.4 there 
exist i and j such that 

This expression for w as a product of k - 2 simple reflections contradicts our 
assumption that l(w) = k. 0 

Proposition 21.6. Ifw(cp+) = CP+, then w = 1. 

Proof. If w(cp+) = CP+, then l'(w) = 0, so l(w) = 0, that is, w = 1. 0 
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Proposition 21. 7. If a E fJ, there exists an element W E W such that W ( a) E 
E. 

Proof. First, assume that a E fJ+. We will argue by induction on h(a), which 
is defined by (21.3). In view of Proposition 21.1 (iv), we know that h(a) is a 
positive integer, and if a ~ E (which we may as well assume), then h( a) > 1. 
As in the proof of Proposition 21.1, (21.4) implies that (0.,13) > 0 for some 
13 E E, and then with a' = s,8(a) we have h(a') < h(a). On the other hand, 
a' E fJ+ since a =I- 13 by Proposition 21.1 (ii). By our inductive hypothesis, 
w'(a') E E for some w' E W. Then w(a) = w'(a') with w = w's,8 E W. This 
shows that if a E fJ+, then there exists w E W such that w(a) E E. 

If, on the other hand, a E fJ- , then -a E fJ+ so we may find WI E W such 
that w1(-a) E E. Letting w1(-a) = 13 we have w(a) = 13 with w = S,8W1. 

In both cases, w(a) E E for some w E W. 0 

Proposition 21.8. The group W contains Sa for every a E fJ. 

Proof. Indeed, w(a) E E for some w E W, so Sw(a) E Wand Sa is conjugate 
in W to sw(a) by (21.7). Therefore Sa E W. 0 

Proposition 21.9. The group W is finite. 

Proof. By Proposition 21.6, w E W is determined by w(fJ+) C fJ. Since fJ is 
finite, W is finite. 0 

Proposition 21.10. Suppose that w E W such that l(w) = k. Write w = 
Sl ... Sk, where Si = Sai' 0.1,··· ,ak E E. Then 

{a E fJ+lw(a) E fJ-} = {ak,sk(ak-1),sksk-1(ak-2),··· ,SkSk-1···s2(a1)}. 

Proof. By Proposition 21.5, the cardinality of {a E fJ+lw(a) E fJ-} is k, so the 
result will be established if we show that the described elements are distinct 
and in the set. Let w = 8IWI, where WI = 82··· 8k, so that l(wt) = l(w} - 1. 
By induction, we have 

{a E fJ+lw1(a) E fJ-} = {ak' sk(ak-1), Sksk-1(ak-2),··· ,SkSk-1··· s3(a2)}, 

and the elements on the right are distinct. We claim that 

(21.10) 

Otherwise, let a E fJ+ such that WI (a) E fJ-, while Sl WI (a) E fJ+. Let 
13 = -WI (a). Then 13 E fJ+, while Sl (13) E fJ-. By Proposition 21.1 (ii), this 
implies that 13 = 0.1. Therefore a = -w11(a1). By Proposition 21.2, since 
l(SlW1) = k = l(wt} + 1, we have -a = wl1(at} E fJ+. This contradiction 
proves (21.10). 

We will be done if we show that the last remaining element Sk··· s2(ad 
is in {a E fJ+ls1w1(a) E fJ-} but not {a E fJ+lw1(a) E fJ-} since that will 
guarantee that it is distinct from the other elements listed. This is clear since 
if a = Sk ... s2(a1) we have WI (a) = 0.1 ~ fJ-, while Sl WI (a) = -0.1 E fJ-. 

o 
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A connected component of the complement of the union of the hyperplanes 

{x E V I (x, 0:) = 0 for all 0: E q>} 

is called an open Weyl chamber. The closure of an open Weyl chamber is 
called a Weyl chamber. For example, C+ = {x E V I (x,o:) ~ 0 for all 0: E 17} 
is called the positive Weyl chamber. Since every element of q>+ is a lin
ear combination of elements of C with positive coefficients, C+ = {x E 

V I (x, 0:) ~ 0 for all 0: E q>+}. The interior 

C~ = {x E Vi (x, 0:) > 0 for all 0: E 17} = {x E Vi (x, 0:) > 0 for all 0: E q>+} 

is an open Weyl chamber. 
If y E V, let W(y) be the stabilizer {w E Wlw(y) = y}. 

Proposition 21.11. Suppose that w E W such that l(w) = k. Write w = 
Sl ... Sk, where Si = Sa;, 0:1,'" ,O:k E 17. Assume that x E C+ such that 
wx E C+ also. 
(i) We have (X,O:i) = 0 for 1 :::;; i :::;; k. 
(ii) Each Si E W(x). 
(iii) We have w(x) = x. 

Proof. If 0: E q>+ and wo: E q>-, then we have (x,o:) = O. Indeed, (x, 0:) ~ 0 
since 0: E q>+ and x E C+, and (x,o:) = (wx, wo:) :::;; 0 since wx E C+ and 
wo: E q>-. 

The elements of {o: E q>+ Iwo: E q>-} are listed in Proposition 21.10. 
Since O:k is in this set, we have Sk(X) = x - (2 (X,O:k)/(O:k,O:k))O:k = x. 
Thus Sk E W(x). Now since Sk(O:k-d E {o: E q>+lwo: E q>-}, we have 
o = (X,Sk(O:k-1)) = (Sk(X),O:k-1) = (X,O:k-1), which implies Sk-1(X) = 
x - 2 (x, O:k-1) / (O:k-1, O:k-1) = x. Proceeding in this way, we prove (i) and 
(ii) simultaneously. Of course, (ii) implies (iii). 0 

Theorem 21.1. The set C+ is a fundamental domain for the action of W on 
V. More precisely, let x E V. 
(i) There exists w E W such that w(x) E C+. 
(ii) If w, w' E Wand w(x) E C+, w'(x) E C~, then w = w'. 
(iii) If w, w' E Wand w(x) E C+, w'(x) E C+, then w(x) = w'(x). 

Proof. Let w E W be chosen so that the cardinality of 

8 = {o: E q>+ I (w(x), 0:) < O} 

is as small as possible. We claim that 8 is empty. If not, then there exists an 
element of (3 E 17 n 8. We have (w(x), -(3) > 0, and since s(3 preserves q>+ 
except for (3, which it maps to -(3, the set 

8' = {o: E q>+ I (w(x),s(3(O:)) < O} 
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is smaller than 8 by one. Since 8' = {a E <1>+1 (s,6w(x), a) < O} this contra
dicts the minimality of 181. Clearly, w(x) E C+. This proves (i). 

We prove (ii). We may assume that w' = 1, so x E C:;.. Since (x, a) > 0 for 
all a E <1>+, we have <1>+ = {a E <1>1 (x,a) > O} = {a E <1>1 (x,a) ~ O}. Since 
w'(x) E C+, if a E <1>+, we have (w- 1(a),x) = (a,w(x)) ~ 0 so w-1(a) E <1>+. 
By Proposition 21.6, this implies that w-1 = 1, whence (ii). 

Part (iii) follows from Proposition 21.11 (iii). D 

Proposition 21.12. The function w f---t (_1)I(w) E {±1} is a character of 
w. Ifa E <1>, then (_1)1(8 0 ) =-1. 

Proof. If l(w) = k and l(w') = k', write w = Sl··· Sk and w' = si ... s~, as 
products of simple reflections. It follows from Proposition 21.4 that we may 
obtain a decomposition of ww' into a product of simple reflections of minimal 
length from ww' = Sl ... sksi ... s~, by discarding elements in pairs until the 
result is reduced. Therefore l (ww') == l (w) + l (w') modulo 2, so w f---t (-1 )l( w) 
is a character. (One may argue alternatively by showing that (_1)I(w) is the 
determinant of w in its action on V.) 

If a E <1>, then by Proposition 21.7 there exists w E W such that w(a) E 

E. By (21.7), we have wsaw-1 = Sw(a), and l(sw(a)) = 1. It follows that 
(_1)8 0 = -1. D 

Proposition 21.13. Let w be a linear transformation of V that maps <1> to 
itself. Then there exists w E W such that w(C+) = wC+. The transformation 
w-1w of V permutes the elements of <1>+ and of E. 

It is possible that w-1w is not the identity. (See Exercise 28.2.) 

Proof. It is sufficient to show that w-1w(C:;') = C:;.. Let x E C:;.. Since the open 
Weyl chambers are defined to be the connected components of the complement 
of the set of hyperplanes perpendicular to the roots, and since w permutes the 
roots, w(C:;') is an open Weyl chamber. By Theorem 21.1 there is an element 
wE W such that w-1w(x) E C+, and w-1w(x) must be in the interior C:;. since 
x lies in an open Weyl chamber, and these are permuted by W as well as by 
w. Now w- 1w(C:;') and C:;. are open Weyl chambers intersecting nontrivially 
in x, so they are equal. 

The positive roots are characterized by the condition that a E <1>+ if and 
only if (a, x) > 0 for x E C:;.. It follows that w-1w permutes the elements of 
<1>+. Since the E are determined by <1>+, these too are permuted by w- 1w. D 

For the remainder of this chapter, we will assume that the set of roots 
spans Vasa vector space. As in the previous chapter, we define a weight to 
be an element A of V such that 2 (>., a) / (a, a) E Z for all a E <1>. Let Aroot be 
the lattice spanned by the roots, and let A be the lattice of weights. 

Proposition 21.14. If A is a weight, then A - W(A) E Aroot . 
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Proof. This is true if w is a simple reflection by (19.1). The general case 
follows, since if w = S1'" Sr, where the Si are simple reflections, we may 
write>. - w(>.) = (>. - sr(>')) + (sr(>') - Sr-1(Sr(>')) +... . 0 

A weight >. is called dominant if >. E C+. We see that every weight is 
equivalent by the action of W to a unique dominant weight. The simple pos
itive roots are linearly independent. Let Vo be the subspace of V that they 
span. Then elements of the dual basis of Vo with respect to the linear forms 
>. ~ 2 (>', a) / (a, a) are called the fundamental dominant weights. Thus, 
if the simple roots are E = {a1,'" ,ah}, then the fundamental dominant 
weights are {'WI. ... ,'Wh}, where 

(Kronecker 8.) 

It is easy to see that a weight in Vo is dominant if and only if it is a linear 
combination, with nonnegative integer coefficients, of the 'Wi. 

An important particular element of V is 

Proposition 21.15. If w E W, then 

w(p)=P- a. (21.11) 

In particular, 
Sa(P) = P - a, aEE. (21.12) 

Proof. Evidently, w(p) is half the sum of the set of w(a), where a E g;+. Like 
g;+, this is a set of exactly half the roots, containing each root or its negative 
but not both. More precisely, this set is obtained from g;+ by replacing each 
a E g;+ such that w-1(a) E g;+ by its negative. Now (21.11) is evident, and 
(21.12) is a special case. 0 

Proposition 21.16. We have p = 'W1 + ... + 'Wh. In particular, p is a domi
nant weight. It lies in q .. 
Proof. Let a = ai E E. By (21.12), we have 

(p,a) 
2-( -}a=p-Sa(P) =a. 

a,a 

Thus 2 (p, ai) / (ai, ai) = 1 for each ai E E. It follows that p is the sum of 
the fundamental dominant weights. Since (p, ai) > 0, p lies in the interior 
ofC+. 0 
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Up until now we have assumed that iP is a reduced root system, and 
much of the foregoing is false without this assumption. In Chapter 19, the 
root systems are reduced, so this is enough for now. Later, however, we will 
encounter relative root systems, which may not be reduced, so let us say a few 
words about them. If iP c V is not reduced, then we may still choose Vo and 
partition iP into positive and negative roots. We call a positive root simple if 
it cannot be expressed as a linear combination (with nonnegative coefficients) 
of other positive roots. 

Proposition 21.17. Let (iP, V) be a root system that is not necessarily re
duced. If 0: and AO: E iP with A > 0, then A = 1,2 or ~. Partition iP into 
positive and negative roots, and let E be the set of simple roots. The elements 
of E are linearly independent. Any positive root may be expressed as a linear 
combination of elements of E with nonnegative integer coefficients. 

Proof. If 0: and (3 are proportional roots, say (3 = AO:, then 2 ((3, o:) / (0:, o:) E Z 
implies that 2A is an integer and, by symmetry, so is 2A -1. The first assertion 
is therefore clear. Let lJI be the set of all roots that are not the double of 
another root. Then it is clear that lJI is another root system with the same 
Weyl group as iP. Let qi+ = iP+ n lJI. With our definitions, the set E of simple 
positive roots of lJI+ is precisely the set of simple positive roots of iP. They 
are linearly independent by Proposition 21.1. If 0: E iP+, we need to know 
that 0: can be expressed as a linear combination, with integer coefficients, of 
the elements of E. If 0: E qi, this follows from Proposition 21.1, applied to lJI. 
Otherwise, 0:/2 E lJI, so 0:/2 is a linear combination of the elements of E with 
integer coefficients, and therefore so is 0:. 0 

EXERCISES 

Exercise 21.1. Suppose that S is any subset of iP such that if Q E iP, then either 
Q E iP+ or -Q E iP+. Show that there exists w E W such that w( S) ~ iP+. If either 
Q E iP+ or -Q E iP+ but never both, then w is unique. 
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The Fundamental Group 

In this chapter, we will look more closely at the fundamental group of a 
compact Lie group G. We will show that it is a finitely generated Abelian 
group and that every loop in G can be deformed into any given maximal 
torus. The key arguments are topological and are adapted from Adams [1]. 

Proposition 22.1. Let G be a connected topological group and r a discrete 
normal subgroup. Then r c Z(G). 

Proof. Let, E r. Then g --+ g,g-1 is a continuous map G --+ r. Since G 
is connected and r discrete, it is constant, so g,g-1 = , for all g. Therefore, 
,E Z(G). 0 

Proposition 22.2. If G is a connected Lie group, then the fundamental group 
7Tl (G) is Abelian. 

Proof. Let p : G --+ G be the universal cover. We ~dentify the kernel ker(Pl 
with 7Tl (G). This is a discrete normal subgroup of G and hence central in G 
by Proposition 22.1. In particular, it is Abelian. 0 

For the remainder of this chapter, let G be a compact connected Lie group 
and T a maximal torus. Other notations will be as in Chapter 19. We recall 
that if Q is a root of G, then To. C T is the kernel of Q. An element t EGis 
called regular if t is contained in a unique maximal torus. Clearly, a generator 
of a maximal torus is regular. An element of G is singular if it is not regular. 
Let Greg and Gsing be the subsets of regular and singular elements of G, 
respectively. 

Proposition 22.3. (i) no.EcP To. is the center Z(G). 
(ii) Uo.EcP To. is the set of singular elements ofT. 

Of course, To. = T_o., so we could equally well write Z(G) = no.EcP+ To.. 
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Proof. For (i), any element of G is conjugate to an element of T. If it is 
in Z(G), conjugation does not move it, so Z(G) c T. G is generated by 
T together with the subgroups ia (SU(2)) as a runs through the roots of G 
because the Lie algebras of these groups generate the Lie algebra of g, and G 
is connected. Hence x E T is in Z(G) if and only if it commutes with each of 
these subgroups. From the construction of the groups ia (SU(2)), this is true 
if and only if x is in the kernel of the representation induced by Ad on the 
two-dimensional T-invariant subspace Xa EI1 X-a. This kernel is Ta, for every 
root a. Thus, the center of G is the intersection of the Ta. 

For (ii), suppose that T and T' are distinct maximal tori containing t. Then 
both are contained in the connected centralizer C(t)O, and so by Theorem 
16.5 applied to this connected Lie group, they are conjugate in C(t)o. The 
complexified Lie algebra of C(t)O must contain Xa for some a since otherwise 
C(t)O would be a compact connected Lie group with no roots and hence a 
torus, contradicting the assumption that T i= T'. Thus t ETa. Conversely, 
if t ETa, it is contained in every maximal torus in C(Ta)O, which is non
Abelian, so there are more than one of these. 0 

Proposition 22.4. The set Gsing is a finite union of submanifolds of G, each 
of codimension at least 3. 

Proof. We first show that Gsing is the finite union of smooth images of man
ifolds of dimensions :::; dim(G) - 3 and then discuss how the more precise 
statement is obtained. Let a E ~. The set of conjugates of Ta is the image 
of GjCG(Ta) x Ta under the smooth map (gCG(Ta),u) I-t gug- l . The di
mension of CG(Ta) is at least r + 2 since its complexified Lie algebra con
tains te, Xa, and X-a. Thus, the dimension of this manifold is at most 
dim(G) - (r + 2) + (r - 1) = dim (G) - 3. 

To prove the more precise statement, if S c ~ is any nonempty subset, let 
Us = n{Tala E S}. Let Vs be the open subset of Us consisting of elements 
not contained in Us' for any larger S'. It is easily checked along the lines of 
(18.2) that the Jacobian of the map 

GjCG(Us) x Vs ----t G, 

is nonvanishing, so its image is a submanifold of G by the Inverse Function 
Theorem. The union of these submanifolds is Gsing , and each has dimension 
:::; dim(G) - 3. 0 

Lemma 22.1. Let X and Y be Hausdorff topological spaces and f : X ----t Y 
a local homeomorphism. Suppose that U E X is a dense open set and that the 
restriction of f to U is injective. Then f is injective. 

Proof. If Xl i= X2 are elements of X such that f(Xl) = f(X2), find open 
neighborhoods Vl and V2 of Xl and X2, respectively, that are disjoint, and 
such that f induces a homeomorphism Vi ----t f(Vi). Note that Un Vi is 
a dense open subset of Vi, so feU n Vi) is a dense open subset of I(Vi). 
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Since f(V1 ) n f(V2) -I- 0, it follows that f(U n Vi n V2) is nonempty. If z E 

f(U n VI n V2), then there exist elements Yi E un Vi such that f(Yi) = z. 
Since Vi are disjoint Yl -I- Y2; yet f(Yl) = f(Y2), a contradiction since flU is 
~~w. 0 

We define a map ¢ : GIT x Treg --t Greg by ¢(gT, t) = gtg-1 . It is the 
restriction to the regular elements of the map studied in Chapter 18. 

Proposition 22.5. (i) The map ¢ is a covering map of degree IWI. 
(ii) If t E Treg , then the IWI elements wtw- 1 , w E Ware all distinct. 

Proof. For t E Treg , the Jacobian of this map, computed in (18.2), is nonzero. 
Thus the map ¢ is a local homeomorphism. 

We define an action of W = N(T)IT on GIT x Treg by 

w=nTE W. 

W acts freely on GIT, so the quotient map GIT x Treg --t W\(GIT x Treg) 
is a covering map of degree IWI. The map ¢ factors through W\(GIT x 
Treg). Consider the induced map 'l/J : W\(GIT x Treg) --t Greg. We have a 
commutative diagram: 

G IT x Treg -W\ (G IT x Treg) 

~j~ 
Greg 

Both ¢ and the horizontal arrow are local homeomorphisms, so'l/J is a local 
homeomorphism. By Proposition 18.3, the elements wtw-1 are all distinct for 
t in a dense subset of Treg . Thus 'l/J is injective on a dense subset of W\ (G IT x 
Treg ), and since it is a local homeomorphism, it is therefore injective by Lemma 
22.1. This proves both (i) and (ii). 0 

Proposition 22.6. Let p : X --t Y be a covering map. Then the induced 
map 7fl (X) --t 7fl (Y) is injective. 

Proof. Suppose that Po and PI are loops in X whose images in Y are path
homotopic. It is an immediate consequence of Proposition 13.2 that Po and 
PI are themselves path-homotopic. 0 

Proposition 22.7. The inclusion Greg --t G induces an isomorphism of fun
damental groups: 7fl (Greg) ~ 7fl (G). 

Proof. Of course, we usually take the base point of G to be the identity, 
but that is not in Greg. Since G is connected, the isomorphism class of its 
fundamental group does not change if we move the base point P into Greg. 
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First, if P : [0,1] --+ G is a loop beginning and ending at P, the path may 
intersect Gsing ' We may replace the path by a smooth path. Since Gsing is a 
finite union of submanifolds of co dimension at least 3, we may move the path 
slightly and avoid Gsing . (For this we only need co dimension 2.) Therefore, 
the induced map 1r1 (Greg) --+ 1r1 (G) is surjective. 

Now suppose that Po and PI are two paths in Greg that are path-homotopic 
in G. We may assume that both the paths and the homotopy are smooth. 
Since Gsing is a finite union of submanifolds of codimension at least 3, we may 
perturb the homotopy to avoid it, so Po and PI are homotopic in Greg. Thus, 
the map 1r1 (Greg) --+ 1r1 (G) is injective. 0 

Proposition 22.8. We have 1r1 (G IT) = l. 

Proof. Let to E Treg and consider the map fo : GIT --+ G, fo(gT) = gtOg- l . 

We will show that the map 1r1 (G IT) --+ 1r1 (G) induced by fo is injective. We 
may factor fo as 

GIT ~ GIT x Treg ~ Greg --+ G, 

where the first map v sends gT --+ (gT, to). We will show that each induced 
map 

(22.1) 

is injective. It should be noted that Treg might not be connected, so G IT x Treg 
might not be connected, and 1r1 (G IT x Treg) depends on the choice of a 
connected component for its base point. We choose the base point to be (T, to). 

We can factor the identity map G IT as G IT ~ G IT x Treg --+ G IT, 
where the second map is the projection. Applying the functor 1r1, we see that 
1r1 (v) has a left inverse and is therefore injective. Also 1r1 (¢) is injective by 
Propositions 22.5 and 22.6, and the third map is injective by Proposition 
22.7. Thus, the map induced by fo injects 1r1(GIT) --+ 1r1(G). On the other 
hand this map is homotopic to the identity map, as we can see by moving 
to to 1 E G. Thus fo induces the trivial map 1r1 (G IT) --+ 1r1 (G) and sO 
1r1(GIT) = 1. 0 

Theorem 22.1. The induced map 1r1(T) --+ 1r1(G) is surjective. The group 
1r1(G) is finitely generated and Abelian. 

Proof. We use have the exact sequence 

of the fibration G --+ GIT. It follows using Proposition 22.8 that 1r1(T) --+ 
1r1(G) is surjective. Concretely, given any loop in G, its image in GIT can be 
deformed to the identity, and lifting this homotopy to G deforms the original 
path to a path lying entirely in T. As a quotient of a finitely generated Abelian 
group, 1r1 (G) is finitely generated and Abelian. 0 
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Semisimple Compact Groups 

A Lie algebra is semisimple if it has no Abelian ideals. A compact Lie group is 
semisimple if its Lie algebra is semisimple. For example, SU(n) and O(n) are 
semisimple, but U(n) is not, since the scalar matrices in u(n) form an Abelian 
ideal. More generally, we define a Lie group to be semisimple if its Lie algebra 
is semisimple and it has a faithful finite-dimensional complex representation. 
(This criterion excludes groups such as the universal cover of SL(2, lR), all of 
whose finite-dimensional complex representations factor through SL(2, lR) and 
are hence not faithful; see Exercise 13.1.) 

If 9 is a Lie algebra, the center of 9 is {X E 9 I [X, Y] = 0 for all Y E g}. 
It is an ideal of g. On the other hand, if G is a connected Lie group, then the 
center Z(G) is a Lie group by Theorem 15.2. 

Proposition 23.1. If G is a connected Lie group and 9 = Lie(G), then the 
center of 9 is the Lie algebra of Z (G). 

Proof. Let X E g. Then X is in the center of 9 if and only if ad(Y)X = 0 
for all Y, which implies that Ad(etY)X = X by Proposition 8.2. This means 
Ad(g)X = X for all g in a neighborhood of the identity, and since G is 
connected, for all g E G. This means that geX g-l = eX, so X is in the Lie 
algebra of the center. 0 

Proposition 23.2. Let 9 be the Lie algebra of a compact Lie group G. If a is 
an Abelian ideal, then a is contained in the center of g. 

This statement is false without the assumption that 9 is the Lie algebra of a 
compact Lie group. For example, let 

and let a be the subalgebra with c = o. Then a is an Abelian ideal in g, but 
it is not contained in the center. 
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Proof. Let Ao = {eX I X E a}. By Proposition 15.2, Ao is an Abelian group, 
so its closure A is also. Moreover, Ao is the continuous image of a connected 
set and hence connected, and so A is a connected Abelian subgro".lp of G. By 
Theorem 15.2, it is a torus. 

Since a is an ideal, Ad( G)a = a. Remembering that Ad : G -+ GL(g) is 
the representation induced by the conjugation action of G on itself, it follows 
that Ao, and hence A, are normal subgroups. By Proposition 15.7, the conju
gation action of G on A is actually trivial, so A is contained in the center of 
G. Therefore, a is contained in the center of g. 0 

Proposition 23.3. Let G be a compact connected Lie group. Then G is 
semisimple if and only if the center of G is finite. 

Proof. By Proposition 23.2, G is semisimple if and only if 9 has a trivial 
center. Since by Proposition 23.1 the center of 9 is the Lie algebra of Z(G), a 
necessary and sufficient condition is for Z(G) to be finite. 0 

In this chapter, let G be a compact connected Lie group and T a max
imal torus. Let V = IR 0 X*(T) and other notations be as in Chapter 19. 
Particularly, let P c V be the set of roots with respect to T. 

Although the title of this chapter seems to imply that semisimple com
pact Lie groups are our current subject matter, we do not assume that G is 
semisimple in this chapter except where we explicitly impose that assumption. 

We will show presently that G is semisimple if and only if V is spanned 
by P. Whether or not this is true, we will denote by A the set of weights of G 
with respect to T. These are the elements>. of V that satisfy 

2 (>., a) 
( ) E Z for all a E P. 
a,a 

If P spans V, these form a lattice. Otherwise, instead of a lattice, A is a set 
of affine subspaces of dimension> O. Let A root C V be the lattice spanned by 
the roots. 

If P spans V, then both A and Aroot are spanning lattices in V and, since 
A .:2 A root , the index [A : A root ] is finite. It is occasionally true that A = A root 

(e.g. with the exceptional group G2 ), but usually this is not the case. We find 
that A .:2 X*(T) .:2 A root . It is possible that X*(T) = A or that X*(T) = Aroot. 

or it can be any lattice in between. It may be shown that if G is semisimple 
and simply-connected, then X* (T) = A. 

Let us ponder the example of a group that is not semisimple, say G = U (n). 
The center of Z (G) consists of the scalar matrices in U (n) and is a one
dimensional torus. (It happens to be connected but in general it may not be.) 
On the other hand, the commutator subgroup of Gis G' = SU(n). The groups 
Z(G) and SU(n) are both normal. They are not disjoint, but their intersection 
is finite. The groups GjZ(G) and G' are both semisimple. The Lie algebra of 
G is the direct sum of the Lie algebras of G' and Z(G). The Lie algebras of 
GjZ(G) and G' are isomorphic. 
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We will show in this chapter that this simple picture remains true for an 
arbitrary compact connected Lie group G: the center Z(G) and the derived 
group G' are normal closed Lie subgroups with finite intersection, their Lie 
algebras are complementary in G, and both GjZ(G) and G' are semisimple 
Lie groups. The Lie algebras of GjZ(G) and G' are isomorphic. 

Proposition 23.4. If Ha is as in Proposition 19.6 and Wa E N(T) is as in 
Theorem 19.1, then ad(wa)H" = -H". 

Proof. Since w" lies in i,,(SU(2)), and since by Proposition 19.6 the element 
-iH" lies in the image of the Lie algebra of SU(2) under the differential of 
i", we may work in SU(2) to confirm this. The result follows from (19.6) and 
(19.8). D 

Proposition 23.5. Let ,x E V and 0: E if>. Then,x and 0: are orthogonal if 
and only if d,x(H,,) = 0 with Ha as in Proposition 19.3. 

(See Remark 19.1 about the notation d,x.) 

Proof. To show that the orthogonal complement in V of the space spanned 
by 0: is the kernel of the linear functional ,x -+ d,x(H,,) , it is sufficient to 
show that the orthogonal complement of 0: is contained in the kernel of this 
functional since both are subspaces of codimension 1. 

Assuming therefore that 0: and ,x are orthogonal, s,,(,x) = ,x, and since the 
action of W on X* (T) and V = lR I8i X* (T) is induced by the action of W on 
T by conjugation, whose differential is the action of W on t via Ad, we have 

by Proposition 23.4. The result is now proved. D 

It follows from Proposition 23.5 that the linear forms ,x f--t (,x,o:) and 
d,x( -iHa) are proportional. Thus, there exists a real scalar multiple ha of Ha 
such that 

(23.1) 

for all ,x E V, and for some purposes this is a more convenient basis. If 0: 

and (3 E if> such that 0: + (3 E if> also, then (23.1) implies that d,x annihilates 
h" + hf3 - h"+f3 for every ,x E V and therefore 

(23.2) 

Similarly, 
(23.3) 

Proposition 23.6. The roots if> span V if and only if the -iH" span t as a 
real vector space. More precisely, if> spans a vector subspace of V of the same 
dimension as the vector subspace of t spanned by the -iH". 
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Proof. The second assertion implies the first because dim(V) = dim(t). We 
will prove the result by considering the vector space of those A E V that are 
perpendicular to the roots u. The dimension of this space is dim(V) minus 
the dimension of the subspace spanned by q,. By Proposition 23.5, this is the 
same as the space of linear forms on t that annihilate the -iHo" and the result 
follows. 0 

Lemma 23.1. Let U be a compact Abelian group and Ul ,··· ,Un closed sub
groups. A character X E X*(U) vanishes on n Ui if and only if it is in the 
subgroup of X* (U) generated by the images of the X* (U /Ui). 

Proof. The general case follows easily from the special case where n = 2. We 
therefore assume that n = 2 and prove 

We are identifying X* (U /W) with its image in X* (U), where W is a closed 
subgroup. Let V = U/(Ul n U2), Vl = Ut/(Ul n U2), and V2 = U2/(Ul n U2). 
It is clearly sufficient to show that if Vl n V2 is trivial, then 

Let X E X*(V). Since Vl n V2 = {O}, the sum Vl + V2 is direct. Therefore, 
there exist characters Xl and X2 of Vl + V2 such that Xi vanishes on Vi and the 
restriction of X to Vl + V2 is Xl + X2. We extend Xl arbitrarily to a character 
of V. We extend X2 to V by the definition X2 = X - Xl. 0 

Lemma 23.2. Let A be a nontrivial character of a compact torus T, and let 
T>. be the kernel of A. Then A generates the image of X*(T/T>.) in X*(T). 

Proof. T /T>. is a one-dimensional torus, so its character group is infinite cyclic. 
If p, is a generator, then A is a nonzero element of X*(T/T>.), so A = np, for 
some nonzero integer n. Since J.l E X*(T/T>.), the character J.l vanishes on T>., 
so T>. ~ Tw The other inclusion T,.,. ~ T>. is also clear since A = nf-L implies 
that wherever f-L vanishes, so does A. Therefore T,.,. = T>. and n = [T>. : T,.,.J = 1. 
Thus A generates X*(T/T>.). 0 

Proposition 23.7. We have 

X*(T/Z(G)) = Aroot . (23.4) 

In other words, X E X* (T) is trivial on Z (G) if and only if X E Aroot . 

Proof. Since Z(G) c T, IZ(G)I is the index in X*(T) of the subgroup of char
acters vanishing on Z(G) = noE<P+ To (Proposition 22.3). By Lemmas 23.1 
and 23.2, this subgroup equals 

This proves (23.4). o 
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Proposition 23.8. If G is a compact connected Lie group, then G is semisim
ple if and only if (p spans V. 

Proof. If (p spans V, then [A: Arootl is finite and, by Proposition 23.7, 

IZ(G)I = [X*(T) : Aroot]. 

Thus 1 Z (G) 1 is finite if and only if Aroot is a lattice of maximal rank in X* (T), 
which is equivalent to its spanning lR ® X*(T) = V. D 

Theorem 23.1. If G is a semisimple compact connected Lie group, then both 
the center Z(G) and the fundamental group 11"1(G) are finite Abelian groups. 
The orders of both are bounded by [A : Arootl. 

Proof. Since G is semisimple, [A: Aroot] is finite and, by Proposition 23.7, 

IZ(G)I = [X*(T) : Aroot] ~ [A: Aroot]. 

Now let us consider the fundamental group. We do not as yet know that 
it is finite. However, we know by Theorem 22.1 that it is a finitely generated 
Abelian group. Let p : G --+ G be the universal cover. Identifying ker(p) = 
11"1 (G), unless 111"1 (G) 1 ~ [A : Aroot], there will be a subgroup r of finite 
index N > [A : Aroot]. The quotient G' = r\G is then a finite cover of G 
and hence compact. The projection map p' : G' --+ G is a covering map 
and hence a local homeomorphism. It induces an isomorphism of Lie algebras 
Lie(G') ~ Lie(G), so the roots of G' are the same as the roots of G. It follows 
that G' is semisimple, and [A : Arootl is not changed if we replace G by G'. The 
kernel of p' is contained in Z( G') by Proposition 22.1, so IZ( G') 1 ;;::: 1 ker(p') 1 = 
N> [A: Aroot], and this contradicts what we have already proved. D 

Let a be the Lie algebra of Z(G), and let t' be the linear span of the -iHo 
or, equivalently of the -iho . 

Proposition 23.9. We have t = l' EB a. 

Proof. The co dimension of 3 in t is the co dimension of Z(G) in T, that is, the 
rank of the free Abelian group X*(T/Z(G)). By Proposition 23.7, this equals 
the rank of Aroot or, equivalently, the dimension of the vector space l' that it 
spans in V. Thus dim(t) = dim(1') + dim(3). 

We will show that t' n 3 = {O}, and the result will follow. Let us partition 
the roots into positive and negative roots as in Chapter 21, and let E denote 
the simple positive roots. Every root is a linear combination with integer 
coefficients of the Q E E, by Proposition 21.1, so by (23.2) and (23.3) the ho 
with Q E E span t'. Suppose that 
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Then ad(H) = O. If X(3 E X(3 for f3 E iP, then 

0= ad(H)X(3 = (L Cadf3(ho,)) X(3. 
aEE 

By (23.1), this implies that 

for all f3 E iP. Therefore I: cao: = 0, and since the 0: E E are linearly inde
pendent, it follows that the coefficients Ca all vanish. 0 

Proposition 23.10. Let gc be the direct sum of tic with the Xa, 0: E iP. Then 
gc is a complex Lie algebra. It is an ideal of gc· If g' = gc n g, then g' is 
isomorphic to the Lie algebra of GIZ(G), which is a semisimple Lie group. 
Moreover, 9 = g' EB J. 

Proof. It follows from Proposition 19.3 (ii) that if Xa E Xa and X(3 E X(3 then 
the commutator [Xa, X(3] is in gc, since [Xa, X(3] is zero if 0: + f3 is nonzero or 
not a root, is in Xa+(3 if 0: + f3 is a root, and is in CoHa ~ tic if f3 = -0:. It is 
equally clear that [Ha, X(3] and [Ha, H(3] are in gc. Thus gc is a complex Lie 
algebra. Since that gc is spanned by the t and the Xa , and since [X, gc] c gc 
when X E t or X E Xa , gc is an ideal of gc and g' is an ideal of g. 

The Lie algebra of GIZ(G) is g/3. It is clear from Proposition 23.9 that 
this is isomorphic to g', and in fact 9 = g' EBJ. That GIZ(G) is semisimple is 
clear from the criterion of Proposition 23.6. 0 

We will denote by G' or [G, G] the commutator subgroup or derived group 
of G. It is the closure of the group generated by commutators xyx-1y-l, 
x,yE G. 

Theorem 23.2. The commutator subgroup G' of the compact connected Lie 
group G is a semisimple compact connected Lie group with Lie algebra g'. Its 
intersection with Z (G) is finite. If G is semisimple, then G = G'. 

Proof. Since GIZ(G) is a semisimple Lie group with Lie algebra isomorphic 
to g' by Proposition 23.10, its fundamental group is finite by Proposition 23.1, 
so its universal cover is a compact Lie group a1 with Lie algebra isomorphic 
to g'. By Theorem 14.2, there exists a Lie group homomorphism a1 ---+ G 
that induces the isomorphism Lie(a1) ~ g'. Let Gl be the image of this 
homomorphism. Then G l is a compact connected Lie subgroup of G with Lie 
algebra g'. The result will follow easily from the existence of such a subgroup. 
We have only to show that G1 = G'. 

The Lie algebra of GIG1 is gig' ~ J, so GIGl is Abelian, and therefore G l 

contains the commutator subgroup G'. On the other hand, the Lie algebra of 
G' contains the Lie algebras of the ia(SU(2)), and it is easy to see that the 
sum of these Lie algebras is just g', so G' contains G1 . 0 
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EXERCISES 

Exercise 23.1. Let Crr, V) be a finite-dimensional representation of the universal 
cover SL(2, JR) of SL(2, JR). Show that 11: factors through SL(2, JR) and is therefore 
not faithful. 

Exercise 23.2. If g is a Lie algebra let [g, gj be the vector space spanned by [X, Yj 
with X, Y E g. Show that [g, gj is an ideal of g. 

Exercise 23.3. Suppose that g is a real or complex Lie algebra. Assume that there 
exists an invariant inner product B : g x g --+ C. Thus B is positive definite 
symmetric or Hermitian and satisfies the ad-invariance property (10.1). Let 3 be the 
center of g. Show that the orthogonal complement of g is [g, gj. 

Exercise 23.4. In the setting of Theorem 23.2, show that the Lie algebra of G' is 
[g,gj. 
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Highest-Weight Vectors 

If G is a compact connected Lie group, we will show in Chapter 25 that its 
irreducible representations are parametrized uniquely by their highest-weight 
vectors. In this chapter, we will explain what this means and give some illus
trative examples. The proofs will be postponed until later chapters, mostly 
Chapter 25. 

We return to the figures in Chapter 20 (which the reader should review). 
Let T be a maximal torus in G, with X*(T) embedded as a lattice in the 
Euclidean space V = IR 0 X*(T). Let Aroot ~ X*(T) be the lattice spanned 
by the roots. We will assume in this section that G is semisimple, which for 
compact connected G boils down to the assumption that Aroot spans V. Let A 
be the weight lattice, which is spanned by the fundamental dominant weights. 

For example, if G = SU(3), the lattices A and its sublattice Aroot (of 
index 3) are marked in Figure 24.1. We have marked the positive Weyl cham
ber. The weight lattice A is marked with light dots and the root sublattice 
with darker ones. We have also marked the positive Weyl chamber, which is 
a fundamental group for the Weyl group W , acting by simple reflections . 

• • 

• • 

• 

• • • • 
Fig. 24.1. The weight and root lattices for SU(2). 
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Let (7r, V) be an irreducible complex representation of G. Then the re
striction of 7r to T is a representation of T that will not be irreducible if 
7r is not one-dimensional (since the irreducible representations of T are one
dimensional). It can be decomposed into a direct sum of one-dimensional 
irreducible subspaces of T corresponding to the characters of T. Some char
acters may occur with multiplicity greater than one. If A E X*(T), let m(A) 
be the multiplicity of A in the decomposition of 7r over T. If m(A) =f 0, we say 
that A is a "weight" of the representation. 

For example, let G = SU(3), and let T be the diagonal torus. Let WI, W2 : 

T ~ C be the fundamental dominant weights, labeled as in Chapter 20. 
The standard representation of SU(3) is just the usual embedding SU(3) ~ 
GL(3, C). The three one-dimensional subspaces spanned by the standard basis 
vectors afford the characters WI, -WI +W2, and -W2. These are the weights of 
the standard representation. Each occurs with multiplicity one. On the other 
hand, the contragredient of the standard representation is its composition with 
the transpose-inverse automorphism of GL(3, C). The standard basis vectors 
in this dual representation afford the characters -WI, WI - W2, and W2. 

In Figure 24.1 (left), we have labeled the three weights in the standard 
representation with their multiplicities. (For this example each multiplicity is 
one.) In Figure 24.1 (right), we have labeled the three weights in the dual of 
the standard representation. Such a diagram, illustrating the weights of an 
irreducible representation, is called a weight diagram. 

In each irreducible representation, there is always a weight A in the positive 
Weyl chamber such that if f.1, is another weight then A ~ f.1, in the partial order. 
This weight is called the highest-weight vector of the representation. We have 
circled the highest-weight vectors in Figure 24.2. 

1 

1 1 
1 

Fig. 24.2. Left: The standard representation; right: its dual. 

The highest-weight vector can be any element of An C+. In fact, there is 
a bijection between An C+ and the irreducible representations of G. (This is 
true if G is simply-connected, in particular for SU(3), the case at hand - see 
Remark 25.1.) So we will denote 7r = 7r(A) if A is the highest-weight vector 
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of 7f. For example, if ,X = 3Wl + 6W2, the weight diagram of 7r is shown in 
Figure 24.3. 

) - - r- -i. - -Q) 
/ \ 

l' 2 2 1 
/ \ 

/ \ 
) 2 3 3 2 l. 

/ 

l' 2 3 3 
/ 

/ \ 
) 2 3 4 4 2 l. 

/ \ 
l' 2 3 4 3 2 1 / \ 

/ \ 1. 2 3 4 4 4 4 3 2 ) 
\ / 
1 2 3 3 3 3 3 2 l' \ / 

\ / 
1. 2 2 2 2 2 2 ) 

\ / 
1- -r- ~ -i.-' - r- ~ -i.- '-r- ~...:{ 

Fig, 24,3, The irreducible representation 7r(3Wl + 6W2) of SU(2). 

From this we can see several features of the general situation. The set of 
weights can be characterized as follows. First, if IL is a weight of 7r('x) then 
,X ~ IL in the partial order. In Figure 24.3, this puts ,X in a wedge below and 
to the left of 'x. (Note that ,x = 3Wl + 6W2 is marked with a circle.) But since 
the set of weights is invariant under the Weyl group W, we can actually say 
that ,x ~ W(IL) for all W E W. In Figure 24.3, this puts ,x in the hexagonal 
region with vertices {w(,X) I wE W}. This region is marked with dashed lines. 

It will be noted that not every element of A inside the hexagon is a weight 
of 7r('x). Indeed, if IL is a weight of A then ,x - IL E Aroot . In the particular 
example of Figure 24.3, ,x is itself in Aroot , so the weights of 7r('x) are elements 
of the weight lattice. 

Next let G = Sp(4). The root system is of type C2 . The weight lattice and 
root lattice are illustrated in Figure 24.4. 

As in Figure 24.1, the weight lattice A is marked with light dots and 
the root sublattice with darker ones. We have also marked the positive Weyl 
chamber, which is a fundamental group for the Weyl group W, acting by 
simple reflections. 
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• • 

• • 

• • • 

• • • • • 

• • • • • 
Fig. 24.4. The root and weight lattices of the C2 root system. 

The group Sp(4) admits a homomorphism Sp(4) -+ SO(5), so it has 
a four-dimensional as well as a five-dimensional irreducible representation. 
These are 1T(wd and 1T(Wz), respectively. Their root diagrams may be found 
in Figure 24.5. 

1 

1 1 
1 1 

1 

Fig. 24.5. The fundamental representations of Sp(4). 

The weight diagram of the irreducible representation 1T(2wl + 3wz) of 
Sp(4) is shown in Figure 24.6. 
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1 CD 

1 2 2 

1 2 4 4 

1 2 4 5 4 2 1 

1 3 4 6 6 4 3 1 

1 2 4 5 6 5 4 2 1 

1 2 4 4 4 2 1 

1 2 3 2 1 

1 1 1 

Fig. 24.6. The irreducible representation 7r(2tvi + 3tv2) of Sp(4). 

EXERCISES 

Exercise 24.1. Consider the adjoint representation of SU(3) acting on the eight
dimensional Lie algebra 9 of SU(3) . (It may be shown to be irreducible.) Show that 
the highest-weight vector is tvi + tv2, and construct a weight diagram. 

Exercise 24.2. Construct a weight diagram for the adjoint representation of Sp(4) 
or, equivalently, SO(5). 

Exercise 24.3. Consider the symmetric square of the standard representation of 
SU(3) . Show that this representation has dimension six, and that its highest-weight 
vector is 2tvi. Construct its weight diagram. 

Exercise 24.4. Consider the tensor product of the contragredient of the standard 
representation of SU(3), having highest-weight vector tv2, with the adjoint represen
tation, having highest-weight vector tvi +tv2. We will see later in Exercise 25.4 that 
this tensor product has three irreducible constituents. They are the contragredient 
of the standard representation, the symmetric square of the standard representa
tion, and another piece, which we will call7r''''1+2tD2' The first two pieces are known, 
and the third can be obtained by subtracting the two others. Accepting for now 
the validity of this decomposition, construct the weight diagram for the irreducible 
representation 7r ""1 +2""2' 
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The Weyl Character Formula 

The character formula of Weyl [129] is the gem of the representation theory 
of compact Lie groups. 

Let G be a compact connected Lie group and T a maximal torus. Most 
notations will be as in Chapter 19 and Chapter 21. We will assume for sim
plicity that G is semisimple, then discuss at the end the minor modifications 
needed in the general case. 

As in Chapter 23, let A be the set of weights in V, and let Aroot be the 
lattice spanned by the roots. We recall from Chapter 23 that for G semisimple 
we have 

A;2 X*(T) ;2 Aroot , 

and each of these is a spanning lattice of V. 
If G is not semisimple, then the roots do not span V. We still define a 

weight, as in the semisimple case, to be a >. E V such that 2 (>', a) / (a, a) E Z 
for all a E iP, but then the set A of weights defined this way is not a discrete 
subset. We still have A :J X*(T) :J Aroot , but in this case [A : X*(T)] and 
[X* (T) : Aroot ] are infinite. As we have noted, we will assume that G is 
semisimple for most of the chapter. 

Theorem 25.1. Let G be a compact connected semisimple Lie group and T 
a maximal torus in G. Let W = N(T)/T be the Weyl group and iP the root 
system, as in Chapter 19. Then W is generated by the Wo: (a E iP) defined in 
Proposition 19.1. 

This means that we may identify W with the Weyl group of iP as studied in 
Chapter 21. 

Proof. Let W' C W be the subgroup of W generated by Wo: (a E iP). Then W' 
is the Weyl group as defined in Chapter 19, and we will show that W = W'. 
Except that the group denoted W in Chapter 21 will be denoted temporarily 
as W', we will follow the notations of that chapter. In particular, we choose 
an ordering of the roots and denote by iP+ the positive roots, by E the simple 
positive roots, and by C+ the positive Weyl chamber. 
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Let w E W. By Proposition 21.13 there exists w E W' such that w-1w 
permutes the elements of q>+ and E. We will show that w = w. We note that 
if p denotes half the sum of the positive roots, as in Chapter 21, then p is in 
the interior of the positive Weyl chamber by Proposition 21.16. It is fixed by 

-1 -W w. 
Let n E N(T) represent w-1w E W = N(T)/T. 

where the ho. E Lie(T) are as in Chapter 23. In view of (23.2), we see that 
Ad(n) fixes hpo On the other hand, since p is in the interior of the positive 
Weyl chamber, hp is not fixed by Ad(wo.) for any p. Thus, in the notation of 
Proposition 22.3, it is not contained in the Lie algebra to. of any To.. Hence, 
by that proposition, the one-parameter subgroup S = {exp(thp ) It E~} C T 
contains regular elements. This means that T is the unique torus that contains 
S and so the centralizer Ga(S) is contained in the normalizer Na(T). The 
group Ga(S) is connected by Theorem 16.6, so n E Ga(S) ~ Na(T)O = T by 
Proposition 15.8. Therefore w = W, as required. 0 

We have written the characters of T additively. Sometimes we want to write 
them multiplicatively, however, so we introduce symbols e>' for A E V subject 
to the rule e>'el-' = eMI-'. More formally, let A ::J X* (T) be the additive group 
of weights. If R is a commutative ring, let £(R) denote the free R-module on 
the set of symbols {e>'IA E A}. It consists of all formal sums 2:>'EA n>. e>' with 
n>. E R such that n>. = 0 for all but finitely many A. It is a ring with the 
multiplication 

(25.1) 

This makes sense because only finitely many n>. and only finitely many ml-' 
are nonzero. Of course, £(R) is just the group algebra over R of A. The Weyl 
group acts on £(R), and we will denote by £(R)W the subring of W-invariant 
elements. Usually, we are interested in the case R = Z, and we will denote 
£ = £(Z), £w = £(Z)w. 

If ~ = 2:>. n>. . e>', we will sometimes denote m(~, A) = n>., the multiplicity 
of A in ~. We will denote by ~ = 2:>. n>. . e->' the conjugate of ~. 

By Theorem 18.1, class functions on G are the same thing as W-invariant 
functions on T. In particular, if X is the character of a representation of G, 
then its restriction to T is a sum of characters of T and is invariant under the 
action of W. Thus, if A E X*(T) ~ A, let n>.(x) denote the multiplicity of A 
in this restriction. We associate with X the element 
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We will identify X with this expression. We thus regard characters X as ele
ments of £w. The operation of conjugation that we have defined corresponds 
to the conjugation of characters. The conjugate of a character is a character 
by Proposition 2.6. 

Remark 25.1. Although characters of G can thus be represented as elements of 
£w, not every element of £w is well-defined as a function on G if A¥- X*(T). 
It may be shown that A = X*(T) if and only if G is simply-connected, so an 
element of £w can always be regarded as a class function on the universal 
cover of G. However, there is no need to do this. No problems will arise from 
working with a ring some of whose elements - including those we are really 
interested in, the characters of G - are well-defined functions on G and others 
are not. It is sometimes convenient to enlarge £ a bit more: let £2 be the free 
Z-module on the set of symbols {eAI-X E ~A}. 

Let E = {al,··· ,ar } be the simple roots and let {tvl,··· ,tvr } be the 
fundamental dominant weights. Let ei = e1X1;. Then £(Z) is the ring of Laurent 
polynomials with integer coefficients: 

It is the localization S-lZ[eb ... ,erl, where S is the multiplicative subset of 
Z[el'· .. ,erl generated by {ell, ... ,e;:-l}. As such, it is a unique factorization 
domain. (See Lang [90], Exercise 5 on p. 115.) 

We will denote by Ll E £ the element 

Proposition 25.1. We have w(Ll) = (_l)l(w) Ll for all wE W. 

Proof. Applying w to Ll gives 

e-W(p) II (1 - ew(a)) II (1- ew(a)) = 

a E 41+ a E 41+ 
w(a) E 41+ w(a) E 41-

e-w(p) II (1- ea) II (1- e-a ) = 

a E 41+ a E 41+ 
w- 1(a) E 41+ w-1(a) E 41-

II 
aE4I+ a E 41+ 

w- 1 (a) E 41-

By (21.11) and the fact that the cardinality of {w E q>+ I w( a) E q>-} equals 
l(w), this equals (_l)l(w)Ll. 0 
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This proof can be made more transparent by writing 

..1 = IT (e"'/2 - e-"'/2). 
",EcP+ 

(25.2) 

However, 01/2 may not be an element of A, so each individual factor on the 
right is not really an element of £ but of the larger ring £2. Proposition 25.1 
follows by noting that by Proposition 21.1 (ii) every simple reflection alters 
the sign of exactly one term in (25.2), and the result follows. 

Proposition 25.2. If ~ E £ satisfies w(~) = (_I)I(w)~ for all wE W, then ~ 
is divisible by ..1 in £. 

Proof. In the ring £, by Proposition 25.1, ..1 is a product of distinct irreducible 
elements 1 - e"', where a runs through cp+, times a unit e-p . It is therefore 
sufficient to show that ~ is divisible by each 1 - e"'. By Proposition 21.12, 
we have s"'(~) = -~. Write ~ = I:'\EA n,X . l. Since s"'(~) = -~, we have 
ns",(,X) = -n,X. Noting that S",(A) = A - ka where k E IE, we see that 

~ = l: n,X(e'x - e,X-k",). 
'xEA 

,X mod (s",) 

The notation means that we choose only one representative for each s'" orbit 
of A. (If S",(A) = A, then n,X = 0.) Since 

this is divisible by ..1. D 

X(A) = ..1-1 l: (_I)W ew(A+p). (25.3) 
wEW 

Strictly speaking, we are only interested in X(A) when A E X*(T), but we 
make this definition for all weights. By Proposition 25.2, X(A) E £. Moreover, 
applying w E W multiplies both I:wEw(-I)Wew('x+p) and ..1 by (_I)W, so 
X(A) is actually in £w. 

We will eventually prove that if A E X* (T) n C+ this is an irreducible 
character of G. Then (25.3) is called the Weyl character formula. 

If ~ = I: n,X e'x E £, we define the support of ~ to be the finite set supp(~) = 
{A ELI n,X #- o}. We define a partial order on V by A =;< JL if A = JL+ I:"'EL' C"'OI, 

where e", ~ O. 

Proposition 25.3. If A E C+, then A ~ W(A) for W E W. If A E C+ and 
W #- 1, then W(A) >- A. 
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Proof. It is easy to see that, for x E V, x >,:= 0 if and only if (x, v) ? 0 for 
all v E C,+-. So if A E C+ and A '" W(A), then there exists v E C'+- such that 
(A - W(A), v) < O. We choose W to maximize (W(A), v). Since W(A) -I- A and 
A E C+, it follows from Theorem 21.1 that W(A) ~ C+. Therefore, there exists 
a E E such that (W(A), a) < O. Now 

/ (W(A), a) ) 
(SaW(A), v) = \ W (A) - 2 (a, a) a, v = 

(W(A), a) 
(w (A) ,v) - 2 ( ) (a, v) > (w (A) ,v) . 

a,a 

The maximality of (W(A), v) is contradicted. D 

Proposition 25.4. Let A E C+. Then A E supp X(A). Indeed, writing X(A) = 
2:IL nIL . j1, we have n.x = 1. Moreover, if j1 E supp X(A), then A >,:= j1, and 
A - j1 E Aroot . In particular, A is the largest weight in the support of X(A). 

Proof. We enlarge the ring £ as follows. Let t be the "completion" consisting 
of all formal sums 2:.xEA n.x . A, where we now allow n.x -I- 0 for an infinite 
number of A. However, we ask that there be a v E V such that n.x -I- 0 implies 
that A ~ v. This means that, in the product (25.1), only finitely many terms 
will be nonzero, so t is a ring. We can write 

so in t we have 

Therefore, 

.1 = eP II (1 - e-a ), 

aEP+ 

.1-1 = e-P II (1 + e-a + e-2a + ... ). 
aEP+ 

Each factor in the product is -< 0 except 1, and by Proposition 25.3 every 
term in the sum is -< 0 except that corresponding to W = 1. Hence, every 
term in the expansion is ~ A, and exactly one term contributes A itself. 

It remains to be seen that if elL appears in the expansion of the right-hand 
side of (25.4), then A-j1 is an element of Aroot . We note that W(A+p)-(A+p) E 
Aroot by Proposition 21.14, and of course all the contributions coming from 
the product over a E ijj+ are roots, and the result follows. D 

Now let us write the Weyl integration formula in terms of .1. 

Theorem 25.2. If f is a class function on G, we have 

fa f(g) dg = 1~ll f(t) 1.1(tW dt. (25.5) 
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Here there is an abuse of notation since Ll is itself only an element of £', 
not even W-invariant, so it is not identifiable as a function on the group. (See 
Remark 25.1.) However, it will follow from the proof that Ll.1 is always a 
function on the group, and we will naturally denote Ll.1 as ILlI2. 

Proof. We will show that 

(25.6) 

Indeed, since the complexification of p is the direct sum of the spaces Xo on 
each of which t E T acts by a(t) in the adjoint representation, 

In £', this becomes the element 

Now (25.5) is just the Weyl integration formula, Theorem 18.2. o 

We now introduce an inner product on £,W. If~, 'f/ E £,W, let 

1 --
(~,'f/) = IWlm((~Ll)('f/Ll),O). (25.7) 

That is, it is the multiplicity of the zero weight in (~Ll)('f/Ll) divided by IWI. 

Theorem 25.3. If ~ and 'f} are characters of G, identified with elements of £', 
then the inner product (25.7) agrees with the L2 inner product of the charac
ters. 

Proof. The L2 inner product of ~ and 'f/ is just the integral of ~.r; over the group 
and, using (25.5), this is just W-1 times the multiplicity of 0 in (~Ll)(1JLl). 0 

Proposition 25.5. If>. and /-L are weights in C+, we have 

( (>.) ()) = { 1 if>. = /-L, 
X ,x /-L 0 otherwise. 

Proof. Using (25.7), this inner product is the multiplicity of 0 in 
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~ [ L (_l)w+w' eW(p+).)-W'(P+IL)]. 
I I w,w'EW 

We must therefore ask, with both>' and I-" E C+, under what circumstances 
w(p + >.) - w'(p + 1-") = 0 can vanish. Then p + >. = w-1w'(p + 1-"). Since both 
p + >. and p + I-" are in q., it follows from Theorem 21.1 that w must equal 
w' and so >. must equal 1-". The number of solutions is thus IWI if>. = I-" and 
zero otherwise. 0 

Proposition 25.6. The set of x(>.), >. E An C't-, is an algebraic basis of the 
free Z-module £W. 

Proof. The linear independence of the X(>.) follows from their orthogonality. 
We must show that they span. Clearly, £w is spanned by elements of the form 

B(>') = L ell, 
ILEW·), 

where W· >. is the orbit of >. under the action of W. It is sufficient to show 
that B(>') is in the Z-linear span of the X(>.). It follows from Proposition 25.4 
that when we expand B(>') - X(>.) in terms of the B(I-") , only I-" E A with 
I-" -< >. can occur and, by induction, these are in the span of the X(I-"). 0 

Theorem 25.4. (Weyl) Assume that G is semisimple. If>. E X*(T) n C+, 
then X(>.) is the character of an irreducible representation of G, and every 
irreducible representation is obtained this way. 

We will denote by 11"(>') the irreducible representation of G with character XA. 

Proof. Let X be an irreducible representation of G. Regarding X as an element 
of £w, we may expand X in terms of the X(>.) by Proposition 25.6. We write 

x= L n).· X(>.), n). EZ. 

We have 
1 = (x, X) = Ln~. 

). 

Therefore, exactly one n). is nonzero, and that has value ±1. Thus, either X(>.) 
or its negative is an irreducible character of G. To see that -X(>.) is not a 
character, consider its restriction to T. By Proposition 25.4, the multiplicity 
of the character>' in -X(>.) is -1, which is impossible if -X(>.) is a character. 
Hence X(>.) = X is an irreducible character of G. 

We have shown that every irreducible character of G is a X(>.). It remains 
to be shown that every X(>.) is a character. Since the class functions on G are 
identical to the W-invariant functions on T, the closure in L2(G) of £(C)w is 
identified with the space of all class functions on G. By Proposition 25.6, the 
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X(A) form an L2-basis of £(C)w. Since by the Peter-Weyl Theorem the set of 
irreducible characters of G are an L2 basis of the space of class functions, the 
characters of G cannot be a proper subset of the set of X(A). 0 

Now let us step back and see what we have established. We know that in 
group representation theory there is a duality between the irreducible char
acters of a group and its conjugacy classes. We can study both the conjugacy 
classes and the irreducible representations of a compact Lie group by restrict
ing them to T. We find that the conjugacy classes of G are in one-to-one 
correspondence with the W-orbits of T. Dually, the irreducible representa
tions of G are parametrized by the orbits of Won X*(T). 

We study these orbits by embedding X*(T) in a Euclidean space V. The 
positive Weyl chamber C+ is a fundamental domain for the action of Won V, 
and so the dominant weights - those in C+ - are thus used to parametrize the 
irreducible representations. Of the weights that appear in the parametrized 
representation X(A), the parametrizing weight A E C+nX*(T) is maximal with 
respect to the partial order. We therefore call it the highest-weight vector of 
the representation. 

Proposition 25.7. We have 

L1 = L (_l)l(w)ew(p). (25.8) 
wEW 

Proof. The irreducible representation X(O) with highest-weight vector 0 is 
obviously the trivial representation. Therefore X(O) = eO = 1. The formula 
now follows from (25.3). 0 

Weyl gave a formula for the dimension of the irreducible representation 
with character x),. Of course, this is the value x), at the identity element of G, 
but we cannot simply plug the identity into the Weyl character formula since 
the numerator and denominator both vanish there. Naturally, the solution is 
to use L'Hopital's rule, which can be formulated purely algebraically in this 
context. 

Theorem 25.5. (Weyl) The dimension of 7r(A) is 

TIaE4>+ (A + p, a) 
TIaE4>+ (p, a) 

Proof. Let n : £2 ---+ IE be the map 

The dimension we wish to compute is n(X),). 

(25.9) 
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If a E~, let aa : £2 --t £2 be the map 

It is straightforward to check that aa is a derivation and that the operators 
aa commute with each other. Let a = IIaE<P+ aa. 

We show that if w E Wand f E £2, we have 

wa(f) = (-I)I(w)aw(f). (25.10) 

We note first that 
aw(a) 0 w = w 0 aa (25.11) 

since applying the operator on the left-hand side to eA gives (w('x), w(a)) eW(A), 
while the second gives (,x, a) eA, and these are equal. Now, to prove (25.10), 
we may assume that w = sf3 is a simple reflection. By (25.11), we have 

w 0 ( II aW(a») = a 0 W. 

aE<P+ 

But by Proposition 21.1 (ii), the set of w(a) consists of ~+ with just one 
element, namely (3, replaced by its negative. So (25.10) is proved. 

We consider now what happens when we apply e 0 a to both sides of the 
identity 

L (_I)AewCA+p) = XA' II (ea / 2 - e-a / 2). (25.12) 
wEW aE<P+ 

On the left-hand side, by (25.10), applying a gives 

L w (aeA+P) = L ( II (,x + p,a) eA+p) • 

wEW wEW aE<P+ 

Now applying il gives IWI IIaE<P+ (,x + p, a). 
On the other hand, we apply a = II af3 one derivation at a time to the 

right-hand side of (25.12), expanding by the Leibnitz product rule to obtain 
a sum of terms, each of which is a product of XA and the terms ea / 2 - e-a / 2 , 

with various subsets of the af3 applied to each factor. When we apply il, any 
term in which a ea/2 - e-a/2 is not hit by at least one af3 will be killed. Since 
the number of operators af3 and the number of factors ea/2 - e-a/2 are equal, 
only the terms in which each ea/2 - e-a/2 is hit by exactly one af3 survive. 
Of course, XA is not hit by a a{3 in any such term. In other words, 
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where 

We have proved that 

IWI II (A + p, a) = () . il(X>.)· 
oE!P+ 

To evaluate (), we take A = 0, so that X>. is the character of the trivial rep
resentation, and il(n) = 1. We see that () = IWI I1oE!P+ (p, a). Dividing by 
this, we obtain (25.9). D 

Proposition 25.8. (Brauer) Suppose that A and J.L are in X* (T) n C+. De
compose XP, into a sum of weights v E X*(T) with multiplicities m(v): 

v 

Suppose that for every v with m(v) #- 0 the weight A + v is dominant. Then 

(25.13) 
v 

Since X>.Xp, is the character of the tensor product representation, this gives 
the decomposition of this tensor product into irreducibles. The method of 
proof can be extended to the case where A + v is not dominant for all v, 
though the answer is a bit more complicated to state (Exercise 25.5). 

Proof. By the Weyl character formula, we may write 

v W 

Interchange the order of summation, so that the sum over v is the inner sum, 
and make the variable change v ----+ w(v). Since m(v) = m(wv), we get 

..:1-1 L L m(v) (_l)l(w) eW(>'+V+p). 

W v 

Now we may interchange the order of summation again and apply the Weyl 
character formula to obtain (25.13). D 

Thus far in the proofs we have assumed that G is semisimple. This as
sumption was used, for example, in defining the ring £ and proving that it 
is a unique factorization domain. We now remove this assumption. The ob
stacles toward simply generalizing the proofs in the semisimple case are not 
insurmountable, but instead we will deduce the Weyl character formula in the 
general case from the already proved semisimple case. 
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Let G be an arbitrary compact connected Lie group. Let A c V = lR ® 
X* (T) be the set of weights, which is not a lattice if G is not semisimple but 
which contains X*(T). As in Chapter 21 (where we made no assumption that 
t[> spans V), we may define a positive Weyl chamber C+. We may still define 
p to be half the sum of the positive roots, and it is a weight. The ring £ may 
still be defined to be the free Abelian group on the symbols eA with A E A, 
and it is still an integral domain. It is not Noetherian. We may still define 

Ll = e-P II (en - 1). 
nEg;+ 

We may still regard the character of an irreducible representation of G as 
an element of £w. If A E X*(T) nC+, we can still define X(A) by (25.3). The 
Weyl character formula is still true in this more general context. 

Theorem 25.6. (Weyl) If G is a compact connected Lie group, and if A E 
X*(T) n C+, then X(A) is the character of an irreducible representation of G, 
and the character of every irreducible representation is of this form. 

Proof. Let G' be the commutator subgroup of G, T' = Tn G', Z = Z(G) 
the center, and Z' = T' n Z. Then Z' is finite and G' is semisimple. We have 
a surjective homomorphism X*(T) ---+ X*(T'), which we can extend to a 
surjective linear transformation p : V ---+ V', where V' = X*(T'). 

If C~ is the positive Weyl chamber in V', then C+ = p-lC~ is a positive 
Weyl chamber in V. Let N be the image of A in X*(T'), and let X'(N) be the 
character of the irreducible representation of G' with highest-weight vector 
A'. The character N lies in C~ if and only if A lies in C+. 

The restriction of A to Z is a character that we denote w : Z ---+ ex. 
By the Weyl character formula for the semisimple group G', which is al

ready proved, there exists a representation (7f', V') of G' with character X'(N). 
The central character of 7f' is a character of Z', which agrees with the restric
tion of w. Therefore, we may define a representation (7f, V') of G = G'Z by 
7f(g'z) = 7f'(g')w(z) for g' E G', Z E Z, and this is well-defined. 

If v E X*(T), and if v' is the image of v in X*(T'), then the multiplicity of 
v in X(A) is the same as the multiplicity of v' in X'(N). This is the multiplicity 
of v in 7f. Indeed, if V' (v') is the v' eigenspace of 7f' restricted to T', then 7f 

acts by v on V'(v') because v is the unique character of T whose restriction 
to T' is v' and whose restriction to Z is w. It is now clear that the character 
of 7f is X(A). 

To see that every irreducible representation of G has character X(A) for 
some A E X*(T) n C+, if 7f is such a character, 7f' = 7fIG' is an irreducible 
representation. This is because G = G' Z, and by Schur's Lemma Z acts by 
scalars in 7f, so if 7f' were reducible, then 7f would also be reducible. The 
character of 7f is X' ( N) for some N, and if the central character of 7f is w, let 
A be the character of T whose restriction to T' is A' and whose restriction to 
Z is w. It is easy to see that the character of 7f is X(A). 0 
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When G is not semisimple, it may be useful to shift p by a W-invariant 
element of lR. ® X*(T) so that it is in X*(T). Let us illustrate this with 
G = U(n). We identify X*(T) with zn by mapping the character 

(25.14) 

to (kI,··· ,kn) E zn. Then p is ~(n -1,n - 3,··· ,1- n). If n is even, it 
is an element of lR. ® X*(T) but not of X*(T). However, if we add to it the 
W-invariant element ~(n - 1,··· ,n - 1), we get 

8 = (n - 1, n - 2,··· ,1,0) E X*(T). (25.15) 

We can now write the Weyl character formula in the form 

x(,x) = £101 L (_I)I(w)ew(>'H), (25.16) 
wEW 

where 
£10 = L (_I)I(w)ew(O). 

wEW 

We have simply multiplied the numerator and the denominator by the same 
W-invariant element so that both the numerator and the denominator are in 
X*(T). 

In (25.6), we write the factor 1£11 2 = 1£1012 since (£10/£1)2 = e2(o-p). As 
a function on the group, this is just det(g)n-l, which has absolute value l. 
Therefore, we may write the Weyl integration formula in the form 

fa f(g) dg = 1~ll f(t) lL1o(t)12 dt. (25.17) 

EXERCISES 

In the first batch of exercises, G = SU(3) and, as usual, w! and W2 are the funda
mental dominant weights. 

Exercise 25.1. By Proposition 25.4, all the weights in X>. lie in the set 

S(>') = {JL E A I>' >? w(JL) for all W E W, >. - JL E Aroot}. 

Confirm by examining the weights that this is true for all the examples in Chapter 24 
- in fact, for all these examples, S(JL) is exactly the set of weights. 

Exercise 25.2. Use the Weyl dimension formula to compute the dimension of X2"'1. 
Deduce from this that the symmetric square of the standard representation is irre
ducible. 
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Exercise 25.3. Use the Weyl dimension formula to compute the dimension of 
XW 1 +2W2' Deduce from this that the symmetric square of the standard represen
tation is irreducible. 

Exercise 25.4. Use Brauer's method (Proposition 25.8) to compute the tensor 
product of the contragredient of the standard representation (with character XW2) 
and the adjoint representation (with character X W1 +W2 ). 

Exercise 25.5. Prove the following extension of Proposition 25.8. Suppose that oX 
is dominant and that II is any weight. By Proposition 21.1, there exists a Weyl group 
element such that w(lI+oX+p) E C+. The point w(lI+oX+p) is uniquely determined, 
even though W may not be. If w(lI+oX+p) is on the boundary of C+, define ~(II, oX) = o. 
If w(1I + oX + p) is not on the boundary of C+, explain why w(lI+ oX + p) - P E C+ and 
W is uniquely determined. In this case, define ~(II, oX) = (-l)l(w)Xw(I/+>'+p)_p, Prove 
that if f1 is a dominant weight, and XI-' = L: m(lI)el/, then 

XI-'X>. = L m(II)~(II, oX). 
1/ 

Exercise 25.6. Use the last exercise to compute the decomposition of X;'1 into 
irreducibles, and obtain another proof that the symmetric square of the standard 
representation is irreducible. 
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Spin 

In this chapter, we will take a closer look at the groups SO(N) and their 
double covers, Spin(N). We assume that N ~ 3 and that N = 2n + 1 or 2n. 
The group Spin(N) was constructed at the end of Chapter 13 as the universal 
cover ofSO(N). Since we proved that 71'1 (SO(N)) ~ Z/2Z, it is a double cover. 
In this chapter, we will construct and study the interesting and important spin 
representations of the group Spin(N). We will also show how to compute the 
center of Spin(N). 

The spin representation can be realized concretely as acting on a certain 
ring, the Clifford algebra. We will not use the Clifford algebras, for which 
see Artin [4], Chevalley [27], Goodman and Wallach [47], and Lawson and 
Michelsohn [92]. 

Let G = SO(N) and let G = Spin(N). We will take G in the realization 
of Exercise 5.3; that is, as the group of unitary matrices satisfying g J t g = J, 
where J is (5.3). Let p: G ---+ G be the covering map. Let T be the diagonal 
torus in G, and let T = p-l(T). It is a double cover of T. 

Proposition 26.1. The group T is connected and is a maximal torus of G. 

Proof. Let II c G be the kernel of p. The connected component TO of the 
identity in T is a torus of the same dimension as T, so it is a maximal torus 
in G. Its image in G is isomorphic to TO / (TO n II) ~ TO II / II. This is a torus 
of G contained in T, and of the same dimension as T, so it is all of T. Thus, 
the composition 

is surjective. We see that 

canonically and therefore T = TO II. 
We may identify II with the f'!lldamental group 71'1 (G) by Theorem 13.2. It 

is a discrete normal subgroup of G and hence central in G by Proposition 22.1. 
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Thus it is contained in every maximal torus by Proposition 22.3, particularly 
in TO. Thus TO = TO II = T and so T is connected and a maximal torus. D 

Composition withp is a homomorphism X*(T) ~ X*(T), which induces 
an isomorphism lR.0X*(T) ~ lR.0X*(T). We will identify these two vector 
spaces, which we denote by V. From the short exact sequence 

1 ~ 1f1 (G) ~ T ~ T ~ 1, 

we have a short exact sequence 

o ~ X*(T) ~ X*(T) ~ X*(1f1(G)) ~ O. (26.1) 

(8urjectivity of the last map uses Exercise 4.2.) We recall that Araot ~ 
X* (T) ~ A, where A and Araot are the root and weight lattices. 

A typical element of T has the form 

t1 

if N = 2n + 1 is odd, 

t= 

if N = 2n is even. 

In either case, V is spanned by ell··· ,en, where ei(t) = ti. The root system, 
as we have already seen in Chapter 20, consists of all ±ei ± ej (i -=I- j), with 
the additional roots ±ei included only if N = 2n + 1 is odd. Order the roots 
so that the positive roots are ei ± ej (i < j) and (if N is odd) ei. This is the 
ordering that makes the root eigenspaces Xc> upper triangular. 8ee Figure 33.1 
and Figure 20.3 for the groups 80(8) and 80(9). 

It is easy to check that the simple roots are 

Ltl = el - e2, 

Lt2 = e2 - e3, 

Ltn-l = en-l - en 

{ en-l + en if N = 2n, 
Lt = n en if N = 2n + 1. 

(26.2) 
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The Weyl group may now be described. 

Theorem 26.1. The Weyl group W of O(N) has order 2n . n! if N = 2n + 1 
and order 2n - 1 . n! if N = 2n. It has as a subgroup the symmetric group Sn, 
which simply permutes the ti in the action on T, or dually the ei in its action 
on V. It also has a subgroup H consisting of transformations of the form 

or 

If N = 2n + 1, then H consists of all such transformations, and its order 
is 2n. If N = 2n, then H only contains transformations that change an even 
number of signs. In either case, H is a normal subgroup of Wand W = H . Sn 
is a semidirect product. 

Proof. Regarding Sn and H as groups of linear transformations of V, the 
group H is normalized by Sn, and H n Sn = {I}, so the semidirect product 
H· Sn exists and has order 2nn! or 2n- In! depending on whether IHI = 2n or 
2n-l. We must show that this is exactly the group generated by the simple 
reflections. 

The W-invariant inner product can be chosen to be the standard Euclidean 
one in which the ei are an orthonormal basis. The simple reflections with 
respect to at, ... ,an-I are identical with the simple reflections in the Weyl 
group Sn of U(n), which is not surprising since we may embed U(n) ----+ O(2n) 
or O(2n + 1) by 

or 

where 

Under this embedding, the Weyl group Sn of U(n) gets embedded in the Weyl 
group of O(N). In its action on the torus, the ti are simply permuted, and in 
the action on X*(T), the ei are permuted. 

Now let us consider the simple reflection with respect to an. If N = 2n+ 1, 
then since an = en this just has the effect en f----t -en, and all other ei f----t ei. 
A representative in N(T) can be taken to be 

In- I 1\ 

001 
Wn = 0-10 

100 
In-III 

It is clear that all elements of the group H described in the statement of the 
theorem that change the sign of exactly one ei can be generated by conjugating 
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Wn by elements of Sn and that these generate H. Thus W contains HSn. On 
the other hand, all simple reflections are contained in HSn, so W = HSn in 
this case. 

If N = 2n, then since an = en-l + en, the simple reflection in an has the 
effect en-l f---+ -en, en f---+ -en-I' A representative in N(T) can be taken 
to be 

I I n - 2 1\ 

001 0 
000 1 

W n = 100 0 
o 1 0 0 

\ I n - 2 '1 

If we multiply this by the simple reflection in an-I, which just interchanges 
en-l and en, we get the element of the group H that changes the signs of 
en-l and en and leaves everything else fixed. It is clear that all elements of 
the group H described in the statement of the theorem that change the sign of 
exactly two ei can be generated by conjugating this element of W by elements 
of Sn and that these generate H. Again W contains HSn, and again all simple 
reflections are contained in HSn, so W = HSn in this case. 0 

Proposition 26.2. The weight lattice A consists of all elements of V of the 
form 

where Ci E Z are either all even or all odd. 

Proof. Write -X E V as ~ I: Ciei with ai E JR. In order to be in A, we must 
have 2 (-X, a) / (a, a) E Z for all a E q>. Whether the root system is Bn or 
Dn , we have elements ±ei ± ej E q>, and for these the condition reduces to 
~(±Ci ± Cj) E Z, which implies that Ci are integers and Ci == Cj modulo 2. If 
this is satisfied, then 2 (-X, a) / (a, a) E Z remains true when a is of the form 
±ei' (These are only roots if N is odd and the root system is of type Bn.) 0 

Proposition 26.3. We have A = X*(T). 

According to Remark 25.1, this is true for any simply-connected semisimple 
Lie group. We have not proved this general fact, however, but we prove it now 
for Spin(N). 

Proof. We have X* (T) C X* (T) ~ A. The index of X* (T) in X* (T) is 2 by 
the short exact sequence (26.1). On the other hand, the index of X*(T) in A 
is 2 by Proposition 26.2, so A = X*(T). 0 

From (26.2), we can compute the fundamental dominant weights Wi. If 
N = 2n + 1 is odd, these are 



Wl = el, 

W2 = el + e2, 

Wn-l = el + e2 + ... + en-l, 

Wn = ~(el + e2 + ... + en-l + en). 
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On the other hand, if N = 2n is even, the last two are a little changed. In 
this case, the fundamental weights are 

Wl = el, 

W2 = el + e2, 

Wn-l = ~(el + e2 + ... + en-l - en), 

Wn = ~(el + e2 + ... + en-l + en)· 

Of course, to check the correctness of these weights, what one must check is 
that 2 (Wi, aj) / (aj, aj) = 1 if i = j, and 0 if i i= j, and this is easily done. 

We say that a weight is integral if it is in X* (T) and half-integral if it is not. 
The integral weights, of course, are highest-weight vectors of representations 
of SO(N). By Proposition 26.3, the half-integral weights are highest-weight 
vectors of representations of Spin(N). They are not highest-weight vectors of 
representations of SO(N). 

If N = 2n+ 1, we see that just the last fundamental weight is half-integral, 
but if N = 2n, the last two fundamental weights are half-integral. The repre
sentations with highest-weight vectors Wn (when N = 2n + 1) or Wn-l and 
Wn (when N = 2n) are called the spin representations. 

Theorem 26.2. (i) If N = 2n + 1, the dimension of the spin representation 
w( w n) is 2n. The weights that occur with nonzero multiplicity in this repre
sentation all occur with multiplicity one; they are 

~(±el ± e2 ± ... ± en). 

(ii) If N = 2n, the dimensions of the spin representations w( wn-d and w( w n) 
are each 2n-l. The weights that occur with nonzero multiplicity in this repre
sentation all occur with multiplicity one; they are 

~(±el ± e2 ± ... ± en), 

where the number of minus signs is odd for w(wn-d and even for w(wn). 

Proof. There is enough information in Proposition 25.4 to determine the 
weights in the spin representations. 

Specifically, let A = Wn and N = 2n + 1 or 2n, or A = Wn-l if N = 2n. Let 
SeA) be as in Exercise 25.1. Then it is not hard to check that SeA) is exactly the 
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set of characters stated in the theorem. By Proposition 25.4, S(>') ~ supp X-\. 
On the other hand, it is easy to check that S(>') consists of a single Weyl group 
orbit, namely the orbit of the highest-weight vector >., so S(>') ~ supp X-\, 
and, for this orbit, Proposition 25.4 also tells us that each weight appears in 
XA with multiplicity exactly one. 0 

The center of SO(N) consists of {±IN } if N is even but is trivial if N 
is odd. The center of Spin(N) is more subtle, but we now have the tools to 
compute it. 

Theorem 26.3. Let G be a semisimple compact connected Lie group, and let 
T be a maximal torus. Then Z(G) ~ X*(T)jAroot . 

Proof. Since Z(G) is contained in every maximal torus, particularly T, we 
have a short exact sequence 

1 ----t Z (G) ----t T ----t T j Z (G) ----t 1. 

Hence, we have a short exact sequence 

o ----t X*(TjZ(G)) ----t X*(T) ----t X*(Z(G)) ----t O. 

(Surjectivity of the map onto X* (Z(G)) follows from Exercise 4.2.) By Propo
sition 23.7, X*(TjZ(G)) = Aroot , so X*(Z(G)) ~ X*(T)jAroot • Now every 
finite Abelian group is isomorphic to its dual. (See Lang [90J, Theorem 9.1 on 
p.47.) The result follows. 0 

Theorem 26.4. If N = 2n+ 1, then Z(G) ~ Zj2Z. If N = 2n, then Z(G) ~ 
Zj4Z ifn is odd, while Z(G) ~ (Zj2Z) X (Zj2Z) ifn is even. 

Proof. X* (T) is described explicitly by Propositions 26.2 and 26.3, and we 
have also described the simple roots, which generate Aroot . We leave the ver
ification that X*(T)jAroot is as described to the reader. The result follows 
from Theorem 26.3. 0 

EXERCISES 

Exercise 26.1. Check the details in the proof of Theorem 26.2. That is, verify that 
S(>') is exactly the set of characters stated in the theorem and that it consists of 
just the W orbit of >.. 

Exercise 26.2. Prove that the restriction of the spin representation of Spin(2n+ 1) 
to Spin(2n) is the sum of the two spin representations of Spin(2n). 

Exercise 26.3. Prove that the restriction of either spin representation of Spin(2n) 
to Spin(2n - 1) is the spin representation of Spin(2n). 
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Exercise 26.4. Show that one of the spin representations of Spin(6) gives an iso
morphism Spin(6) ~ SU(4). What is the significance of the fact that there are two 
spin representations? 

For another spin exercise, see Exercise 33.3. 

Exercise 26.5. Verify the description of X*(T)jAroot in Theorem 26.4. 

Exercise 26.6. Let G be a compact connected Lie group whose root system is of 
type G2 • (See Figure 20.6.) Prove that G is simply-connected. 
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Complexification 

Thus far, we have investigated the representations of compact connected Lie 
groups. In this chapter, we will see how the representation theory of com
pact connected Lie groups has implications for at least some noncompact Lie 
groups. 

Let K be a Lie group. An analytic complexijication consists of a complex 
analytic group G with a Lie group homomorphism i : K --+ G such that 
whenever I : K --+ H is a Lie group homomorphism into a complex analytic 
group, there exists a unique analytic homomorphism F : G --+ H such that 
1= Foi. This is a universal property, so it characterizes G up to isomorphism. 

A consequence of this definition is that the finite-dimensional represen
tations of K are in bijection with the finite-dimensional analytic represen
tations of G. Indeed, we may take H to be GL(n, q. A finite-dimensional 
representation of K is a Lie group homomorphism K --+ GL(n, q, and so 
any finite-dimensional representation of K extends uniquely to an analytic 
representation of G. 

Proposition 27.1. The group SL( n, q is the analytic complexijication 01 the 
Lie group SL(n,lR). 

Prool. Given any complex analytic group H and any Lie group homomor
phism I : SL(n,lR) --+ H, the differential is a Lie algebra homomor
phism sl(n, lR) --+ Lie(H). Since Lie(H) is a complex Lie algebra, this 
homomorphism extends uniquely to a complex Lie algebra homomorphism 
sl(n, q --+ Lie(H) by Proposition 11.3. By Theorems 13.5 and 13.6, SL(n, q 
is simply-connected, so by Theorem 14.2 this map is the differential of a Lie 
group homomorphism F : SL(n, q --+ H. We need to show that F is ana
lytic. Consider the commutative diagram 
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s[(n,q • Lie(H) 

1exp 1exp 

SL(n,q • H 

The top, left, and right arrows are all holomorphic maps, and exp : s[(n, q --+ 
SL( n, q is a local homeomorphism in a neighborhood of the identity. Hence 
F is holomorphic near 1. If 9 E SL(n, q and if l(g) : SL(n, q --+ SL(n, q 
and l(F(g)) : H --+ H denote left translation with respect to 9 and F(g), 
then l(g) and l(F(g)) are analytic, and F = l(F(g)) oFol(g)-l. Since F is 
analytic at 1, it follows that it is analytic at g. D 

We recall from Chapter 14, particularly the proof of Proposition 14.1, 
that if G is a Lie group and l) a Lie subalgebra of Lie( G), then there is an 
involutory family of tangent vectors spanned by the left-invariant vector fields 
corresponding to the elements of l). Since these vector fields are left-invariant, 
this involutory family is invariant under left translation. 

Proposition 27.2. Let G be a Lie group and let l) be a Lie subalgebra of 
Lie( G). Let H be a closed connected subset of G that is an integral submanifold 
of the involutory family associated with l), and suppose that 1 E H. Then H 
is a subgroup of G. 

One must not conclude from this that every Lie subalgebra of Lie( G) is 
the Lie algebra of a closed Lie subgroup. For example, if G = (lRjZ)2, then 
the one-dimensional subalgebra spanned by a vector (Xl, X2) E Lie( G) = 1R2 

is the Lie algebra of a closed subgroup only if xI! X2 is rational or X2 = o. 
Proof. Let x E H and let U = {y E HI x-1y E H}. 

We show that U is open in H. If y E U = H n xH, both H and xH are 
integral submanifolds for the involutory family associated with l), since the 
vector fields corresponding to elements of l) are left-invariant. Hence by the 
uniqueness assertion of the Local Frobenius Theorem (Theorem 14.1) Hand 
xH have the same intersection with a neighborhood of yin G, and it follows 
that U contains a neighborhood of y in H. 

We next show that the complement of U is open in H. Suppose that y 
is an element H - U. Thus y E H but x-1y i H. By the Local Frobenius 
Theorem there exists an integral manifold V through x-1y. Since H is closed, 
the intersection of V with a sufficiently small neighborhood of x-1y in G 
is disjoint from H. Replacing V by its intersection with this neighborhood, 
we may assume that the intersection x V n H = 0. Since H and x V are 
both integral manifolds through y, they have the same intersection with a 
neighborhood of y in G, and so xz E V for z near y in H. Thus z i u. It 
follows that H - U is open. 
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We see that U is both open and closed in H and nonempty since 1 E U. 
Since H is connected, it follows that U = H. This proves that if x, y E H, 
then x-1y E H. This implies that H is a subgroup of G. D 

Theorem 27.1. Let K be a compact connected Lie group. Then K has an 
analytic complexification K ---+ G, where G is a complex analytic group. The 
induced map 7rl(K) ---+ 7rl(G) is an isomorphism. The Lie algebra ofG is the 
complexification of the Lie algebra of K. Any faithful complex representation 
of K can be extended to a faithful analytic complex representation of G. Any 
analytic representation of G is completely reducible. 

Proof. By Theorem 4.2, K has a faithful complex representation, which is 
unitarizable, so we may assume that K is a closed subgroup of U(n) for some n. 
The embedding K ---+ U (n) is the differential of a Lie algebra homomorphism 
t ---+ g£(n, q, where t is the Lie algebra of K. This extends, by Proposition 
11.3, to a homomorphism of complex Lie algebras te ---+ g£(n, q, and we 
identify te with its image. 

Let P = {eiXIX E t} c GL(n,q, and let G = PK. Let pI C GL(n,q 
be the set of positive definite Hermitian matrices. By Theorem 13.4, the mul
tiplication map pI x U(n) ---+ GL(n, q is a homeomorphism. Moreover, the 
exponentiation map from the vector space of Hermitian matrices to pI is a 
homeomorphism. Since it is a closed subspace of the real vector space of Her
mitian matrices, P is a closed topological subspace of pI, and G = P K is a 
closed subset of GL(n, q = pIU(n). 

We associate with each element of te a left-invariant vector field on 
GL(n, q and consider the resulting involutory family on GL(n, C). We will 
show that G is an integral submanifold of this involutory family. We must 
check that the left-invariant vector field associated with an element Z of te 
is everywhere tangent to G. It is easiest to check this separately in the cases 
Z = Y and Z = iY with YEt. Near the point eixk E G, with X E t and 
k E K, the path t ---+ ei(X+tAd(k)Y) k is tangent to G when t = 0 and is also 
tangent to the path 

(The two paths are not identical if [X, YJ f:. 0, but this is not a problem.) 
The latter path is the left translate by eiX k of a path through the identity 
tangent to the left-invariant vector field corresponding to iY E t. Since this 
vector field is left invariant, this shows that it is tangent to G at eiX k. This 
settles the case Z = iY. The case where Z = Y is similar and easier. 

It follows from Proposition 27.2 that G is a closed subgroup of GL(n, q. 
Since P is homeomorphic to a vector space, it is contractible, and since G is 
homeomorphic to P x K, it follows that the inclusion K ---+ G induces an 
isomorphism of fundamental groups. 

The Lie algebra of G is, by construction, it + t = te. 
To show that G is the analytic complexification of K, let H be a com

plex analytic group and f : K ---+ H be a Lie group homomorphism. 
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We have an induced homomorphism t -----t Lie(H) of Lie algebras, which 
induces a homomorphism tIC = Lie(G) -----t Lie(H) of complex Lie alge
bras, by Proposition 11.3. If G is the universal covering group of G, then 
by Proposition 14.2 we obtain a Lie group homomorphism G -----t H. To 
show that it factors through G ~ G/7r1(G), we must show that the com
posite 7r1 (G) -----t G -----t H is trivial. But this coincides with the composition 
7rl(G) ~ 7r1(K) -----t k -----t K -----t H, where k is the universal covering group 
of K, and the composition 7rl (K) -----t k -----t K is already trivial. Hence the 
map G -----t H factors through G, proving that G has the universal property 
of the complexification. 

We constructed G as an analytic subgroup of GL( n, C) starting with an 
arbitrary faithful complex representation of K. Looking at this another way, 
we have actually proved that any faithful complex representation of K can be 
extended to a faithful analytic complex representation of G. The reason is that 
if we started with another faithful complex representation and constructed the 
complexification using that one, we would have gotten a group isomorphic to 
G because the complexification is characterized up to isomorphism by its 
universal property. 

It remains to be shown that analytic representations of G are completely 
reducible. If (7r, V) is an analytic representation of G, then, since K is compact, 
by Proposition 2.1 there is a K-invariant inner product on V, and if U is an 
invariant subspace, then V = U EEl W, where W is the orthogonal complement 
of U. Then we claim that W is G-invariant. Indeed, it is invariant under t 
and hence under tIC = t EEl it, which is the Lie algebra of G and, since G is 
connected, under G itself. 0 

In addition to this notion of analytic complexification, there is another one, 
which we will call algebmic complexijication. If 9 is an affine algebraic group 
defined over the real numbers, then K = 9(JR.) is a Lie group and G = 9(C) 
is a complex analytic group, and G is the algebmic complexijication of K. We 
will assume that 9(JR.) is Zariski-dense in 9 to exclude examples such as 

9 = {(x,y) I x2 + y2 = ±1}, 

which is an algebraic group with group law (x, y)(z, w) = (xz - yw, xw + yz) 
but which has one Zariski-connected component with no real points. 

The algebraic complexification depends on more than just the isomorphism 
class of K as a Lie group - it also depends on its realization as the group of 
real points of an algebraic group. We illustrate this difficulty with an example. 

Let Ga and Gm be the "additive group" and the "multiplicative group." 
These are algebraic groups such that for any field Ga(F) ~ F (additive group) 
and Gm (F) ~ FX. The groups 91 = Ga x (Z/2Z) and 92 = Gm have iso
morphic groups of real points since 91 (JR.) ~ JR. x (Z/2Z) and 92(JR.) ~ JR. x, 
and these are isomorphic as Lie groups. Their complexifications are 91(C) ~ 
ex (Z/2Z) and 92(C) ~ ex. These groups are not isomorphic. 
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We see that the algebraic complexification is a functor not from the cate
gory of Lie groups but rather from the category of algebraic groups 9 defined 
over R such that 9(R) is Zariski dense in 9. This may seem an unfortunate 
complication, but sometimes the algebraic complexification is preferred. For 
example, the analytic complexification of R x is not C x but the disconnected 
group C x (Zj2Z). Often this is not what we want. 

If 9 is an algebraic group defined over F = R or C, and if K = 9(F), 
then we call a complex representation 7r : K --+ GL(n, C) algebraic if there is 
a homomorphism of algebraic groups 9 --+ GL(n) defined over C such that 
the induced map of rational points is 7r. (This amounts to assuming that the 
matrix coefficients of 7r are polynomial functions.) With this definition, the 
algebraic complexification has an interpretation in terms of representations 
like that of the analytic complexification. 

Proposition 27.3. If G = 9(C) is the algebraic complexijication of K = 
9(R), then any algebraic complex representation of K extends uniquely to an 
algebraic representation of G. 

Proof. This is clear since a polynomial function extends uniquely from 9(R) 
~9~. 0 

If K is a field and L is a Galois extension, we say that algebraic groups 
91 and 92 defined over K are Lj K -Galois forms of each other - or (more 
succinctly) Lj K -forms - ifthere is an isomorphism 91 ~ 92 defined over L. 
If K = R and L = C this means that K1 = 91(J~.) and K2 = 92(lR) have 
isomorphic algebraic complexifications. A CjlR-Galois form is called a real 
form. 

The example in Proposition 27.4 will help to clarify this concept. 

Proposition 27.4. U (n) is a real form of GL( n, R). 

Compare this with Proposition 11.4, which is the Lie algebra analog of this 
statement. 

Proof Let 91 be the algebraic group GL(n), and let 

92 = {(A, B) E Matn x Matn I A . t A + B . t B = I, A· t B = B . t A}. 

The group law for G2 is given by 

(A,B)(C,D) = (AC-BD,AD+BC). 

We leave it to the reader to check that this is a group. This definition is 
constructed so that 92(R) = U(n) under the map (A,B) --+ A+Bi, when A 
and B are real matrices. 

We show that 92(C) ~ GL(n, C). Specifically, we show that if g E GL(n, C) 
then there are unique matrices (A, B) E Matn (C) such that A· t A + B . t B = I 
and A . t B = B . t A with A + Bi = g. We consider uniqueness first. We have 
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(A + Bi) (t A - t Bi) = (A t A + B t B) + (Bt A - At B)i = I, 

so we must have g-l = t A - t Bi and thus tg-1 = A - Bi. We may now solve 
for A and B and obtain 

(27.1) 

This proves uniqueness. Moreover, if we define A and B by (27.1), then it is 
easy to see that (A, B) E G2(q and A + Bi = g. 0 

It can be seen similarly that SU(n) and SL(n, JR) are C/JR Galois forms of 
each other. One has only to impose in the definition of the second group G2 an 
additional polynomial relation corresponding to the condition det( A + Bi) = 1. 
(This condition, written out in terms of matrix entries, will not involve i, so 
the resulting algebraic group is defined over JR.) 

Remark 27.1. Classification of Galois forms of a group is a problem in Ga
lois cohomology. Indeed, the set of Galois forms of g is parametrized by 
HI (Gal(L/K), AutW)). See Springer [113], Satake [108] and III.1 of Serre 
[111]. Tits [119] contains the definitive classification over real, p-adic, finite, 
and number fields. 

Galois forms are important because if G1 and G2 are Galois forms of each 
other, then we expect the representation theories of G1 and G2 to be related. 
We have already seen this principle applied (for example) in Theorem 14.3. 
Our next proposition gives a typical application. 

Proposition 27.5. Let 7r: GL(n,JR) --+ GL(m,q be an algebraic represen
tation. Then 7r is completely reducible. 

This would not be true if we removed the assumption of algebraicity. For 
example, the representation 7r : GL(n, JR) --+ GL(2, JR) defined by 

is not completely reducible - and it is not algebraic. 

Proof. Any irreducible algebraic representations of GL(n, JR) can be extended 
to an algebraic representation of GL(n, q and then restricted to U(n), where 
it is completely reducible because U(n) is compact. 0 

The irreducible algebraic complex representations of GL( n, JR) are the same 
as the irreducible algebraic complex representations of GL( n, q, which in 
turn are the same as the irreducible complex representations of U(n). (The 
latter are automatically algebraic, and indeed we will later construct them as 
algebraic representations.) 
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These finite-dimensional representations of GL(n,~) may be parametrized 
by their highest-weight vectors and classified as in the previous chapter. Their 
characters are given by the Weyl character formula. 

Although the irreducible algebraic complex representations of GL(n,~) 
are thus the same as the irreducible representations of the compact group 
U(n), their significance is very different. These finite-dimensional represen
tations of GL(n,~) are not unitary (except for the one-dimensional ones). 
They therefore do not appear in the Fourier inversion formula (Plancherel 
Theorem). Unlike U(n), the noncompact group GL(n,~) has unitary repre
sentations that are infinite-dimensional, and it is these infinite-dimensional 
representations that appear in the Plancherel Theorem. 

EXERCISES 

Exercise 27.1. If F is a field, let 

OJ(n, F) = {g E GL(n, F) I 9 Jtg = J}, 

Show that OJ(C) is the analytic complexification of O(n). (Use Exercise 5.3.) 



28 

Coxeter Groups 

Let G be a group, and let I be a set of generators of G, each of which has 
order 2. If Si, Sj E I, let n(si' Sj) be the order of SiSj. We assume this order to 
be finite for all Si, Sj. The pair (G,I) is called a Coxeter group if the relations 

S; = 1, (28.1) 

are a presentation of W. This means that W is isomorphic to the quotient of 
the free group on a set of generators {ai}, one for each Si E I, by the smallest 
normal subgroup containing all elements 

and in this isomorphism each generator ai t--+ Si. Equivalently, G has the 
following universal property: if r is any other group having elements Vi (one 
for each generator Si) satisfying the same relations (28.1), that is, if 

2 -1 Vi - , 

then there exists a unique homomorphism G ---+ r such that each Si ---+ Vi. 

Now let B be a group and I be a set of generators of B that are not 
assumed to have order 2. We assume there to be given a map n : I x I -+ Z 
such that if Ui, Uj E I then n( Ui, Uj) is a nonnegative integer such that 

(28.2) 

where there are n( Ui, Uj) terms on both sides. If n(ui' Uj) is odd, the last term 
on the left is Ui and the last term on the right is Uj, while if n( Ui, Uj) is even, 
the last term on the left is Uj and the last term on the right is Ui. If these 
relations give a presentation of B, then we call (B, I, n) a braid group. We call 
(28.2) the braid relation. 

The term braid group is used due to the fact that the braid group of type 
An is Artin's original braid group, which is a fundamental object in knot 
theory. Although Artin's braid group will not play any role in this book, 
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abstract braid groups will playa role in our discussion of Hecke algebras in 
Chapter 48, and the surprising relationship between Weyl groups (from group 
theory) and braid groups (from knot theory) underlies the use by Jones of 
Hecke algebras in defining new knot invariants. See Jones [74] and Goodman 
and Wallach [47] Section 10.4. 

Consider a set of paths represented by a set of n+ 1 nonintersecting strings 
connected to two (infinite) parallel posts in 1R3 to be a braid. Braids are 
equivalent if they are homotopic. The "multiplication" in the braid group is 
concatenation: to multiply two braids, the endpoints of the first braid on the 
right post are tied to the endpoints of the second braid on the left post. In 
Figure 28.1, we give generators Ul and U2 for the braid group of type A2 

and calculate their product. In Figure 28.2, we consider Ul U2Ul and U2Ul U2; 

clearly these two braids are homotopic, so the braid relation Ul U2Ul = U2Ul U2 

is satisfied. 

x 

Fig. 28.1. Generators Ul and U2 of the braid group of type A2 and UIU2. 

Fig. 28.2. The braid relation. Left: UIU2Ul. Right: U2UIU2. 
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We did not have to make the map n part of the defining data in the 
Coxeter group since n(si' Sj) is just the order of SiSj. This is no longer true 
in the braid group. Coxeter groups are often finite, but the braid group (B, I) 
never is if III > 1. 

We note that the Si in the Coxeter group G satisfy the braid relation. 
Indeed, one may write out (SiSj)n(s.,sj) = 1 as a product of 2n(si' Sj) terms 
and move half of them to the right to obtain the braid relation. 

We return to the context of Chapter 21. Let V be a vector space, if> a 
reduced root system in V, and W the Weyl group. We partition if> into positive 
and negative roots and denote by E the simple positive roots. Let I be the 
set {So. I Q E E} of simple reflections. By definition, W is generated by the set 
I. Let n(so., s(3) denote the order of so.s{3. We will eventually show that (W, I) 
is a Coxeter group. It is evident that the relations (28.1) are satisfied, but we 
need to see that they give a presentation of W. 

Let B be the braid group with generators Uo. indexed by the simple pos
itive roots satisfying (28.2) with n(uo.,u{3) = n(so.,s{3) when Ui = Uo. and 
Uj = Uo.. Since the braid relations are satisfied by the So. there exists a ho
momorphism B ---t W in which Uo. f---t So.. Let G be the Coxeter group with 
generators to. indexed by the simple roots, so (28.1) is satisfied. We also have 
a homomorphism G ---t W with to. f---t So.. 

Proposition 28.1. Let wE W such that l(w) = r. Let SI ... Sr = si ... s~ be 
two decompositions of w into products of simple reflections, where Si = sa. 
and s~ = S{3. for simple roots Qi and {3j. Let Ui = Uo.. and u~ = u{3. be the 
corresponding elements of the braid group, and let ti = to. and t~ = t{3i be the 
corresponding elements of the Coxeter group. Then Ul ... Ur = ui ... u~ and 
tl·· ·tr = ti·· ·t~. 
Proof. The proof is identical for the braid group and the Coxeter group. We 
prove this for the braid group. 

Let us assume that we have a counterexample of shortest length. Thus, 
l(SI ... sr) = rand 

(28.3) 

We will show that 

(28.4) 

Before we prove this, let us explain how it implies the proposition. The W 
element in (28.4) is w and thus has length r, so we may repeat the process, 
obtaining 

Repeating the process, we eventually obtain 

(28.5) 
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Moving all the s's on the left together (s~srr = 1, so r is a multiple of 
n(sr, s~). Now (28.5) contradicts the braid relation. 

It remains to prove (28.4). Note that ws~ = s~ ... s~_l has length r -1, so 
by Proposition 21.2 we have w(!3r) E ,p-. Now, by Proposition 21.3, we have 

(28.6) 

for some 1 :::;: i :::;: r, where the hat denotes an omitted element. Using (28.3) 

and this element of W has length r - 1. (If it had a shorter length, multiplying 
on the right by s~ would contradict the assumption that l(w) = r). By the 
minimality of the counterexample, we have 

(28.7) 

We now claim that i = 1. Suppose i > 1. Cancel Sl ... Si-1 in (28.6) to obtain 

and, since i > 1, this has length r - i + 1 < r. By the minimality of the 
counterexample (28.3), we have 

We can multiply this identity on the left by U1 ... Ui-1 and then use (28.7) to 
obtain a contradiction to (28.3). This proves that i = 1. 

Now (28.6) proves the first part of (28.4). As for the second part, suppose 
U2'" Ur-1U~ = U1'" Ur . Then multiplying (28.7) on the right by u~ gives a 
contradiction to (28.3), and (28.4) is proved. 0 

Theorem 28.1. Let W be the Weyl group of the root system,p, and let I be 
the set of simple reflections in W. Then (w, 1) is a Coxeter group. 

Proof. Let G be the Coxeter group with generators ta, taking n(ta, t(3) in 
(28.1) to be the order of sas(3 in W. We have a surjective homomorphism 
G ---+ W such that ta ---+ Sa, and we have to show that the homomorphism 
G ---+ W is injective. Suppose that it ... tn is in the kernel, where ti = ta; for 
simple roots ai. We will denote Si = Sa;. We have Sl ... Sn = 1, and we will 
show that t1 ... tn = 1. 

It follows from Proposition 21.12 that n is even. Let n = 2r. Letting 
, -1' -1 t d"l 1 t' t- 1 h 1 ~ . ~ h sl = sn ,s2 = sn_1, e c., an SImI ar Y i = n+1-i w en "Z" r, we ave 

81' .. 8 r = s~ ... S~ 

and we want to show that t1 ... tr = t~ ... t~. Otherwise, 

t1 ... tr ~ t~ ... t~ . (28.8) 
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We assume this counterexample minimizes r. By Proposition 28.1, we already 
have a contradiction unless l(SI '" sr) < r. It follows from Proposition 21.4 
that 

(28.9) 

for some i and j. Moving s~ to the other side, 

and by the minimality of r we therefore have 

so tl'" £. ... i· ... t = t'l ... t' 1t' • J r r- r' 

It follows from (28.8) that 

(28.10) 

Now, comparing (28.9) and (28.10), we have 

where there are r - 1 terms on both sides, again contradicting the minimality 
~r. D 

We now describe (without proof) the classification of the possible reduced 
root systems and their associated finite Coxeter groups. If <P1 and <P2 are root 
systems in vector spaces VI, V2 , then <P1 U <P2 is a root system in VI EB V2 . 

Such a root system is called reducible. Naturally, it is enough to classify the 
irreducible root systems. 

The Dynkin diagram represents the Coxeter group in compact form. It is a 
graph whose vertices are in bijection with E. Let us label E = {aI, ... ,ar }, 

and let Si = Sai' Let O( ai, aj) be the angle between the roots ai and aj. Then 

6ifO(ai,aj) = 5;. 
These four cases arise in the rank 2 root systems Al x A 1, A2 , B2 and G2 , as 
the reader may confirm by consulting the figures in Chapter 20. 

In the Dynkin diagram, we connect the vertices corresponding to ai and 
aj only if the roots are not orthogonal. If they make an angle of 21f /3, we 
connect them with a single bond; if they make an angle of 61f / 4, we connect 
them with a double bond; and if they make an angle of 51f /6, we connect them 
with a triple bond. The latter case only arises with the exceptional group G2 . 
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If ai and aj make an angle of 37r/4 or 57r/6, then these two roots have 
different lengths; see Figures 20.4 and 20.6. In the Dynkin diagram, there will 
be a double or triple bond in these examples, and we draw an arrow from 
the long root to the short root. The triple bond (corresponding to an angle 
of 57r /6) is rare - it is only found in the Dynkin diagram of a single group, 
the exceptional group G2 • If there are no double or triple bonds, the Dynkin 
diagram is called simply-laced. 

Fig. 28.3. The Dynkin diagram for the type A5 root system. 

The root system of type An is associated with the Lie group SU (n + 1). 
The corresponding abstract root system is described in Chapter 20. All roots 
have the same length, so the Dynkin diagram is simply-laced. In Figure 28.3 
we illustrate the Dynkin diagram when n = 5. The case of general n is the 
same - exactly n nodes strung together in a line (-- ... - ). 

Fig. 28.4. The Dynkin diagram for the type B5 root system. 

The root system of type En is associated with the odd orthogonal group 
SO(2n+ 1). The corresponding abstract root system is described in Chapter 20. 
There are both long and short roots, so the Dynkin diagram is not simply 
laced. See Figure 28.4 for the Dynkin diagram of type B5 . The general case 
is the same (-- ... -~ ), with the arrow pointing towards the an node 
corresponding to the unique short simple root. 

Fig. 28.5. The Dynkin diagram for the type C5 root system. 

The root system of type Cn is associated with the symplectic group Sp(2n). 
The corresponding abstract root system is described in Chapter 20. There are 
both long and short roots, so the Dynkin diagram is not simply laced. See 
Figure 28.5 for the Dynkin diagram of type C5 • The general case is the same 
( --... -~ ), with the arrow pointing from the an node corresponding 
to the unique long simple root, towards an-l. 

The root system of type Dn is associated with the even orthogonal group 
O(2n). All roots have the same length, so the Dynkin diagram is simply
laced. See Figure 28.6 for the Dynkin diagram of type D6 • The general case is 
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Fig. 28.6. The Dynkin diagram for the type D6 root system. 

similar, but the cases n = 2 or n = 3 are degenerate, and coincide with the root 
systems Al x At and A3 • For this reason, the family Dn is usually considered 
to begin with n = 4. See Figure 33.2 and the discussion in Chapter 33 for 
further information about these degenerate cases. 

These are the "classical" root systems, which come in infinite families. 
There are also five exceptional root systems, denoted E6 , E7, Es, F4 and G2 • 

Their Dynkin diagrams are illustrated in Figures 28.7-28.10. 

Fig. 28.7. The Dynkin diagram for the type E6 root system . 

• • • • • 
Fig. 28.8. The Dynkin diagram for the type E7 root system . 

• • • as 

Fig. 28.9. The Dynkin diagram for the type Es root system. 
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~1 ( ~2 

Fig. 28.10. The Dynkin diagrams of types F4 (left) and G2 (right). 

EXERCISES 

Exercise 28.1. For the root systems of types An, Bn, Cn, Dn and G2 described 
in Chapter 20 identify the simple roots and the angles between them. Confirm that 
their Dynkin diagrams are as described in this Chapter. 

Exercise 28.2. Let tP be a root system in a Euclidean space V. Let W be the Weyl 
group, and let W' be the group of all linear transformations of V that preserve tP. 
Show that W is a normal subgroup of W' and that W' jW is isomorphic to the 
group of all symmetries of the Dynkin diagram of the associated Coxeter group. 
(Use Proposition 21.13.) 
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The Iwasawa Decomposition 

Let us begin this topic with an example. Let G = GL(n, C). It is the complex
ification of K = U(n), which is a maximal compact subgroup. Let T be the 
maximal torus of K consisting of diagonal matrices whose eigenvalues have 
absolute value 1. The complexification Tc of T can be factored as T A, where 
A is the group of diagonal matrices whose eigenvalues are positive real num
bers. Let B be the group of upper triangular matrices in G, and let Bo be the 
subgroup of elements of B whose diagonal entries are positive real numbers. 
Finally, let N be the subgroup of unipotent elements of B. Recalling that a 
matrix is called unipotent if its only eigenvalue is 1, the elements of N are 
upper triangular matrices whose diagonal entries are all equal to 1. We may 
factor B = TN and Bo = AN. The subgroup N is normal in B and Bo, so 
these decompositions are semidirect products. 

Proposition 29.1. With G = GL(n, C), K = U(n), and Bo as above, every 
element of 9 E G can be factored uniquely as bk where b E Bo and k E K, or as 
avk, where a E A, v E N, and k E K. The multiplication map A x N x K ---+ 
G is a diffeomorphism. 

Proof. Let 9 E G. Let V1,'" ,Vn be the rows of g. Let a be the diagonal 
matrix whose elements are IV11,'" ,Ivnl. Then the rows of a-1g have length 
1. Let Ui = vdlvil be these rows. 

By the Gram-Schmidt orthogonalization algorithm, we find constants (}ij 
(i < j) such that Un, Un-1 +(}n-1,nUn, U3+(}13U1 + (}23 U2, ... are orthonormal. 
This means that if 

1 (}2n (

1 (}12 ... (}In) 
-1 

V = .., 

1 

then k = v-1a-1g is unitary, and so 9 = avk = bok with bo = avo This 
proves the existence of the required factorizations. We have Bo n K = {I} 
and AnN = {I}, so the factorizations are unique. It is easy to see that 
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the matrices a, v, and k depend continuously on g, so the multiplication map 
A x N x K ---t G has a continuous inverse and hence is a diffeomorphism. D 

The decomposition G ~ A x N x K is called the Iwasawa decomposition 
ofGL(n,q. 

To give another example, if G = GL(n,R), one takes K = O(n) to be a 
maximal compact subgroup, A is the same group of diagonal real matrices 
with positive eigenvalues as in the complex case, and N is the group of upper 
triangular unipotent real matrices. Again there is an Iwasawa decomposition, 
and one may prove it by the Gram-Schmidt orthogonalization process. 

In this section, we will prove an Iwasawa decomposition if G is a complex 
Lie group that is the complexification of a compact connected Lie group K. 
This result contains the first example of G = GL( n, q, though not the second 
example of G = GL(n, R). A more general Iwasawa decomposition containing 
both examples will be obtained in Theorem 32.2. 

We say that a Lie algebra n is nilpotent if there exists a finite chain of 
ideals 

n = nl ::J n2 ::J ... ::J nN = {O} 

such that [n, nkl ~ nk+!. 

Example 29.1. Let F be a field, and let n be the Lie algebra over F consisting 
of upper triangular nilpotent matrices in GL(n, F). Let 

nk = {g E n I gij = 0 if j < i + k} . 

For example, if n = 3, 

n3 = {O}. 

This Lie algebra is nilpotent. 

We also say that a Lie algebra b is solvable if there exists a finite chain of 
Lie subalgebras 

(29.1) 

such that [bi, bil ~ bi+!. It is not necessarily true that bi is an ideal in b. 
However, the assumption that [bi, bil ~ bH1 obviously implies that [bi, bi+!l ~ 
bHb so bHl is an ideal in bi' 

Clearly, a nilpotent Lie algebra is solvable. The converse is not true, as 
the next example shows. 

Example 29.2. Let F be a field, and let b be the Lie algebra over F consisting 
of all upper triangular matrices in GL(n, F). Let 

bk = {g E b I gij = 0 if j < i + k - I} . 
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Thus, if n = 3, 

This Lie algebra is solvable. It is not nilpotent. 

Proposition 29.2. Let b be a Lie algebra, bf an ideal of b, and bf! = b fb f • 

Then b is solvable if and only if bf and bf! are both solvable. 

Proof. Given a chain of Lie subalgebras (29.1) satisfying rbi, bi] C bi+l' one 
may intersect them with bf or consider their images in bf! and obtain corre
sponding chains in bf and bf! showing that these are solvable. 

Conversely, suppose that bf and bf! are both solvable. Then there are chains 

bf = b~ ~ b~ ~ ... ~ b:W = {O}, 

Let bi be the preimage of b~f in b. Splicing the two chains in b as 

shows that b is solvable. o 

Proposition 29.3. (Dynkin) Let 9 C g[(V) be a Lie algebra of linear trans
formations over a field F of characteristic zero, and let I:J be an ideal of g. Let 
>. : I:J --t F be a linear form. Then the space 

W = {v E V I Yv = >'(Y)v for all Y E I)} 

is invariant under all of g. 

Proof. If W = 0, there is nothing to prove, so assume 0 t Vo E W. Fix an 
element X E g. Let Wo be the linear span of vo, X VO, X2vo, ... , and let d be 
the dimension of Woo 

If Z E I), then we will prove that 

Z(Wo) ~ Wo and the trace of Z on Wo is dim(Wo) . >'(Z). (29.2) 

To prove this, note that 

X X 2 Xd-l VO, VO, Vo, ... , Vo (29.3) 

is a basis of Woo With respect to this basis, for suitable Cij E F, we have 

ZXivo = >'(Z)Xivo + L CijXjVO. 
j<i 

(29.4) 
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This is proved by induction since 

By the induction hypothesis, XZXi-IVO is X>.(Z)Xi-IVO plus a linear com
bination of Xjvo with j < i, and [X, Z]Xi-IVO is >'([X, ZJ)Xi-IVO plus a 
linear combination of xjvo with j < i - 1. The formula (29.4) follows. The 
invariance of Wo under Z is now clear, and (29.2) also follows from (29.4) 
because with respect to the basis (29.3) the matrix of Z is upper triangular 
and the diagonal entries all equal >'(Z). 

Now let us show that X Vo E W. Let Y E r,. What we must show is that 
YXvo = >'(Y)Xvo. The space Wo is invariant under both X (obviously) and 
Y (by (29.2) taking Z = Y). Thus, the trace of [X, Y] = XY - YX on Wo is 
zero. Since Y E r, and r, is an ideal, [X, Y] E r, and we may take Z = [X, Y] 
in (29.2). Since the characteristic of F is 0, we see that >'([X, YJ) = O. Now 

YXvo = XYvo - [X, Y]vo = >'(Y)Xvo - >'([X, YJ)vo = >'(Y)Xvo, 

as required. o 

Theorem 29.1. (Lie) Let b ~ g[(V) be a solvable Lie algebra of linear trans
formations over an algebraically closed field of characteristic zero. Assume 
that V:I O. 
(i) There exists a vector v E V that is a simultaneous eigenvector for all of b. 
(ii) There exists a basis of V with respect to which all elements of b are 
represented by upper triangular matrices. 

Proof. To prove (i), we may clearly assume that b :I O. Let us first observe 
that b has an ideal r, of codimension 1. Indeed, since b is solvable, [b, b] is 
a proper ideal, and the quotient Lie algebra b/[b, b] is Abelian; hence any 
subspace at all of b/[b, b] is an ideal. We choose a subspace of codimension 1, 
and let r, be its preimage in b. 

Now r, is solvable and of strictly smaller dimension than b, so by induction 
there exists a simultaneous eigenvector Vo for all of r,. Let >. : r, ---t F be such 
that Xvo = >'(X)vo. The space W = {v E VIXv = >'(X)v for all X E r,} is 
nonzero, and by Proposition 29.3 it is b-invariant. Let Z E b - r,. Since F is 
assumed to be algebraically closed, Z has an eigenvector on W, which will be 
an eigenvector VI for all of b since it is already an eigenvector for r,. 

For (ii), the Lie algebra of linear transformations of V/FVI induced by 
those of b is solvable, so by induction this quotient space has a basis V2, ... ,Vd 
with respect to which every X E b is upper triangular. This means that 
for suitable aij E F, we have X Vi = E2~j~i aijVj' Letting V2,'" ,Vd be 
representatives of the cosets Vi in V, it follows that X is upper triangular 
with respect to the basis VI,' ., ,Vd. 0 
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Let K be a compact Lie group and t its Lie algebra. Let 9 = tc be the 
analytic complexification of t, so that 9 is the Lie algebra of the complex Lie 
group G that is the complexification of K. Let T be a maximal torus of K. We 
can embed its analytic complexification Tc into G by the universal property 
of the complexification. 

Let ifJ be the root system of K and let ifJ+ be the positive roots with respect 
to some ordering. If a E ifJ, let Xa C 9 be the a-eigenspace. By Proposition 
19.3 (ii), 

(29.5) 

is a complex Lie subalgebra of gj indeed, if a and {3 are positive roots, it is 
impossible that a = -{3, so [Xa, X.a] c Xa+.a if a + (3 is a positive root, and 
otherwise it is zero. In either case, it is in n. 

Proposition 29.4. The Lie algebra n defined by {29.5} is nilpotent. 

Proof. Let ifJt be the set of positive roots a such that a is expressible as the 
sum of at least k simple positive roots. Thus ifJt = ifJ, ifJt ::J ifJt ::J ifJt ::J ... , 

and eventually ifJt is empty. Define 

It follows from Proposition 19.3 (ii) that [n, nk] ~ nk+l, and eventually nk is 
zero, so n is nilpotent. 0 

Now let t be the Lie algebra of T, and let b = tc EBn. Since ltc, Xa] ~ Xa, it 
is clear that b, like n, is closed under the Lie bracket and forms a complex Lie 
algebra. Moreover, since tc is Abelian and normalizes n, we have [b, b] c n, 
and since n is nilpotent and hence solvable, it follows that b is solvable. 

We aim to show that both nand b are the Lie algebras of closed complex 
Lie subgroups of G. 

Proposition 29.5. Let G be the complexification of a compact Lie group K, 
and let n be as in {29.5}. If 7r : G --+ GL(V) is any representation and X En, 
then 7r(X) is nilpotent as a linear transformation; that is, 7r(X)N = 0 for all 
sufficiently large N. 

We note that it is possible for a nilpotent Lie algebra of linear transformations 
to contain linear transformations that are not nilpotent. For example, an 
Abelian Lie algebra is nilpotent as a Lie algebra but might well contain linear 
transformations that are not nilpotent. 

Proof. By Theorem 29.1, we may choose a basis of V such that all 7r(X) are 
upper triangular for X E b, where we are identifying 7r(X) with its matrix 
with respect to the chosen basis. What we must show is that if X E n, then 
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the diagonal entries of this matrix are zero. It is sufficient to show this if 
X E Xa , where a is a positive root. 

By the definition of a root, the character a of T is nonzero, and so its 
differential da is nonzero. This means that there exists H E t such that 
da(H) # 0, and by (19.4) the commutator [7I'(H), 71'(Xa)] is a nonzero multiple 
of 71'(Xa). Because it is a nonzero multiple of the commutator of two upper 
triangular matrices, it follows that 71'(Xa) is an upper triangular matrix with 
zeros on the diagonal. Thus, it is nilpotent. D 

Theorem 29.2. (i) Let G be the complexification of a compact connected Lie 
group K, let T be a maximal torus of K, let t be the Lie algebra ofT, and let 
Tc be its complexification. Let n be as in (29.5), and let b = tc EEl n. Then N 
and B are the Lie algebras of closed complex Lie subgroups of G. 
(ii) We may embed G in GL(n, C) for some n in such a way that K consists 
of unitary matrices, Tc consists of diagonal matrices, and B consists of upper 
triangular matrices. 
(iii) If u is a real Lie subalgebra of n, then u is the Lie algebra of a Lie 
subgroup of N. Ifu is a complex Lie subalgebra ofn, then u is the Lie algebra 
of a complex analytic subgroup of N. 

The group B is called the standard Borel subgroup of G. A conjugate of B is 
called a Borel subgroup. 

Proof. We will prove parts (i) and (ii) simultaneously. 
Let 71' : K --+ GL(V) be a faithful representation. We choose on V an inner 

product with respect to which 71'(k) is unitary for k E K. By Theorem 27.1, 
we may extend 71' to a faithful complex analytic representation of G. We have 
already noted that b is a solvable Lie algebra, so by Theorem 29.1 we may find 
a basis Vb'" , Vn of V with respect to which the linear transformations 71'(X) 
with X E b are upper triangular. This means that 71'(X)Vi E I:j:;;;i FVj. We 
claim that we may assume that the Vi are orthonormal. This is accomplished 
by Gram-Schmidt orthonormalization. We first divide Vi by IVil so Vi has 
length 1. Next we replace V2 by V2 - (V2, Vl) Vl and so forth so that the Vi are 
orthonormal. The matrices 71'(X) with X E b remain upper triangular after 
these changes. 

We identify G with its image in GL( n, C) and its Lie algebra with the 
corresponding Lie subalgebra of Matn(C) = gl(n, C). Thus we write X instead 
of 71'(X) and regard it as a matrix. 

Let 
N = {exp(X) IX En}. 

We will show that N is a closed analytic subgroup of G whose Lie algebra 
is N. 

By Remark 8.1, if X E n and Y = exp(X), then 

Y = I + X + !X2 + ... + ~xn. 
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This is now a series with only finitely many terms since X is nilpotent by 
Proposition 29.5. Moreover, Y - I is a finite sum of upper triangular nilpotent 
matrices and hence is itself nilpotent, and reverting the exponential series, we 
have X = 10g(Y), where we define 

10g(Y) = (Y -1) -!(y _1)2 + ~(Y _1)3 - ... + (_It-l~(Y -It 

if Y is an upper triangular unipotent matrix. As with the exponential series, 
only finitely many terms are needed since (Y - I)n = O. This series defines a 
continuous map log : N ----+ n, which is the inverse of the exponential map. 
Therefore n is homeomorphic to N. 

Now we can see that N is a closed subset of GL(n, q and in fact an 
affine subvariety. Let n' be the Lie subalgebra of g£(n, q consisting of upper 
triangular nilpotent matrices, and let .A1, ... ,.Ar be a set of linear functionals 
on n' such that the intersection of the kernels of the .Ai is n. N may be 
characterized as follows. An element 9 E GL(n, q is in N if and only if it is 
upper triangular and unipotent, and each .Ai ( log(g») = O. These conditions 
amount to a set of polynomial equations characterizing N, showing that it is 
closed. 

We may also show that N is a group. Indeed, its intersection with a 
neighborhood of the identity is a local group by Proposition 14.1. Thus if 
g, h are near the identity in N, we have gh E N, so ¢i(g, h) = 0 where 
¢i(g, h) = .Ai ( exp(gh»). Thus, the polynomial ¢i vanishes near the identity in 
N x N, and since N is a connected affine subvariety of GL(n, q, this polyno
mial vanishes identically on all of N. Thus N is closed under multiplication, 
and it is a group. 

Since ltc, n] en, the group Te normalizes N, so B = TeN is a subgroup of 
G. It is not hard to show that it is a closed Lie subgroup and its Lie algebra 
is b. 

The same argument that proved that N is a Lie group proves (iii). 0 

The Borel subgroup is a bit too big for the Iwasawa decomposition since 
it has a nontrivial intersection with K. Let (l = it. It is the Lie algebra of a 
closed connected Lie subgroup A of T. If we embed K and G into GL(n, q 
as in Theorem 29.2, the elements of T are diagonal, and A consists of the 
subgroup of elements of T whose diagonal entries are positive real numbers. 
Let Bo = AN. 

Theorem 29.3. (Iwasawa Decomposition) With notations as in Theorem 
29.2 and Bo and A as above, every element of 9 E G can be factored uniquely 
as bk where b E Bo and k E K, or as avk where a E A, v E Nand k E K. 
The multiplication map A x N x K ----+ G is a diffeomorphism. 

Proof. Let G' = GL(n, q, K' = U(n), A' be the subgroup of GL(n, q con
sisting of diagonal matrices with positive real eigenvalues, and N' be the 
subgroup of upper triangular unipotent matrices in G'. By Theorem 29.2 (ii), 
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we may embed G into G' for suitable n such that K ends up in K', N ends 
up in N', and A ends up in Kb. 

We have a commutative diagram 

AxNxK ----.. A' X N' X K' 

G -------..... G' 

where the vertical arrows are multiplications and the horizontal arrows are 
inclusions. By Proposition 29.1, the composition 

A x N x K --+ A' X N' X K' --+ G' (29.6) 

is a diffeomorphism onto its image, and so the multiplication A x N x K --+ G 
is a diffeomorphism onto its image. We must show that it is surjective. 

Since A, N, and K are each closed in A', N', and K', respectively, the 
image of (29.6) is closed in G' and hence in G. We will show that this image 
is also open in G. We note that a + n + e = 9 since tc c a + e, and each 
ex", c n + e. It follows that the dimension of A x N x K is greater than or 
equal to that of G. (These dimensions are actually equal, though we do not 
need this fact, since it is not hard to see that the sum a + n + e is direct.) 
Since multiplication is a diffeomorphism onto its image, this image is open and 
closed in G. But G is connected, so this image is all of G, and the theorem is 
now clear. D 

As an application, we may now show why flag manifolds have a complex 
structure. 

Theorem 29.4. Let K be a compact connected Lie group and T a maximal 
torus. Then X = KIT can be given the structure of a complex manifold in 
such a way that the translation maps g : xT --+ gxT are holomorphic. This 
action of K can be extended to an action of the analytic complexification G 
by holomorphic maps. 

Proof. By the Iwasawa decomposition, we may write G = BK. Since BnK = 

T, we have GIB ~ KIT, and this diffeomorphism is K-equivariant. Now G 
is a complex Lie group and B is a closed analytic subgroup, so the quotient 
G I B has the structure of a complex analytic manifold, and the action of G, 
a fortiori of K, consists of holomorphic maps. D 
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The Bruhat Decomposition 

The Bruhat decomposition was discovered quite late in the history of Lie 
groups, which is surprising in view of its fundamental importance. It was 
preceded by Ehresmann's discovery of a closely related cell decomposition for 
flag manifolds. 

Let G = GL(n, F), where F is a field, and let B be the Borel subgroup of 
upper triangular matrices in G. Taking T C B to be the subgroup of diagonal 
matrices in G, the normalizer N(T) consists of all monomial matrices. The 
Weyl group W = N(T)/T ~ Sn. If w E W is represented by w E N(T) 
then since T C B the double coset BwB is independent of the choice of 
representative w, so by abuse of notation we write BwB for BwB. It is a 
remarkable and extremely important fact that w ---+ BwB is a bijection 
between the elements of Wand the double cosets B\G/B. Thus 

G = UBwB (disjoint). (30.1) 

We will prove this and also obtain a similar statement in complex Lie groups. 
Specifically, if G is a complex Lie group obtained by complexification of a com
pact Lie group, we will prove a "Bruhat decomposition" analogous to (30.1) 
in G. A more general Bruhat decomposition will be found in Theorem 32.5. 

We will prove the Bruhat decomposition for a group with a Tits' system, 
which consists of a pair of subgroups Band N satisfying certain axioms. The 
use of the notation N differs from that of Chapter 29, though the results of 
that chapter are very relevant here. 

Let G be a group, and let Band N be subgroups such that T = B n N is 
normal in N. Let W be the quotient group N/T. As with GL(n,F), we write 
wB instead of wB when wEN represents the Weyl group element w, and 
similarly we will denote Bw = Bw and BwB = BwB. 

Let G be a group with subgroups Band N satisfying the following condi
tions. 

AxiOIll TSl. The group T = B n N is normal in N. 
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Axiom TS2. There is specified a set I of generators of the group W = NIT 
such that if s E I then S2 = 1. 

Axiom TS3. Let wE Wand s E I. Then 

wBs c BwsB U BwB. (30.2) 

Axiom TS4. Let s E I. Then sBs-1 =I- B. 

Axiom TS5. The group G is generated by Nand B. 

Then we say that (B, N,I) is a Tits' system. 
We will be particularly concerned with the double cosets C(w) = BwB 

with w E W. Then Axiom TS3 can be rewritten 

C(w) C(s) c C(w) U C(ws), 

which is obviously equivalent to (30.2). Taking inverses, this is equivalent to 

C (s ) C ( w) C C (w) U C (sw). (30.3) 

As a first example, let G = GL(n, F), where F is any field. Let B be 
the Borel subgroup of upper triangular matrices in G, let T be the standard 
"maximal torus" of all diagonal elements, and let N be the normalizer in G of 
T. The group N consists of the monomial matrices, that is, matrices having 
exactly one nonzero entry in each row and column. Let I = {Sl,··· ,sn-d be 
the set of simple reflections, namely Si is the image in W = NIT of 

(

Ii_l ) o 1 
10· 

I n - 1- i 

We will prove in Theorem 30.1 below that this (B, N, I) is a Tits' system. 
The proof will require introducing a root system into GL(n, F). Of course, we 
have already done this if F = te, but let us revisit the definitions in this new 
context. 

Let X* (T) be the group of rational characters of T. In case F is a finite 
field, we don't want any torsion in X*(T); that is, we want X E X*(T) to have 
infinite order so that ffi. ® X* (T) will be nonzero. So we define an element of 
X* (T) to be a character of T( F), the group of diagonal matrices in GL( n, F), 
where F is the algebraic closure of F, of the form 

(30.4) 
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where ki E Z. Then X*(T) ~ zn, so V =]R (8) X*(T) ~ ]Rn. 

As usual, we write the group law in X*(T) additively. 
In this context, by a root of T in G we mean an element a E X* (T) such 

that there exists a group isomorphism Xa of F onto a subgroup Xa of G 
consisting of unipotent matrices such that 

t E T, ), E F. (30.5) 

(Strictly speaking, we should require that this identity be true as an equality 
of morphisms from the additive group into G.) There are n2 - n roots, which 
may be described explicitly as follows. If 1 ~ i, j ~ nand i f:. j, let 

(30.6) 

when t is as in (30.4). Then aij E X*(T), and if Eij is the matrix with 1 in 
the i, j position and O's elsewhere, and if 

then (30.5) is clearly valid. The set ~ consisting of aij is a root system; we 
leave the reader to check this but in fact it is identical to the root system 
of GL(n, IC) or its maximal compact subgroup U(n) already introduced in 
Chapter 19 when n = C. Let ~+ consist of the "positive roots" aij with i < j, 
and let E consist of the "simple roots" ai,i+1. We will sometimes denote the 
simple reflections Si = Sa, where a = ai,i+l. 

Suppose that a is a simple root. Let Ta C T be the kernel of a. Let Ma be 
the centralizer of Ta , and let Pa be the "parabolic subgroup" generated by B 
and Ma. (The term parabolic subgroup will be formally defined in Chapter 33.) 
We have a semidirect product decomposition Pa = MaUa, where Ua is the 
group generated by the x,B(>') with f3 E p+ - {a}. For example, if n = 4 and 
a=a23, then 

where * indicates an arbitrary value. 

Lemma 30.1. Let G = GL(n, F) for any field F, and let other notations be 
as above. If S is a simple reflection, then B U C ( s) is a subgroup of G. 
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Proof. First, let us check this when n = 2. In this case, there is only one 
simple root Sa where a = a12. We check easily that 

C(sa) = BSaB = { ( ~ :) E GL(2, F) I c '" 0 } , 

so C(sa) U B = G. 
In the general case, both C(sa) and B are subsets of Pa. We claim that 

their union is all of Pa. Both double cosets are right-invariant by Ua since 
Ua c B, so it is sufficient to show that C(sa) U B ::J Ma. Passing to the 
quotient in PalUa ~ Ma ~ GL(2) x (FX)n-2, this reduces to the case n = 2 
just considered. D 

We have an action of W on cP as in Chapter 21. This action is such that if 
wEN represents the Weyl group element w E W, we have 

(30.7) 

Other notations, such as the length function l : W -----+ Z, will be as in that 
chapter. 

Lemma 30.2. Let G = GL(n, F) for any field F, and let other notations 
be as above. If a is a simple root and w E W such that w( a) E CP+, then 
C(w)C(s) = C(ws). 

Proof. We will show that 
wBs ~ BwsB. 

If this is known, then multiplying both left and right by B gives C(w) C(s) = 
BwBsB ~ BwsB = C(ws). The other inclusion is obvious, so this is sufficient. 
Let W and a be representatives of wand s as cosets in NIT = W, and let 
bE B. We may write b = tXa(>')u, where t E T, >. E F, and u E Ua. Then 

wba = wtw-1 . WXa(>.)W-1 . wa . a-1ua. 

We have wtw-1 ETc B since wEN = N(T). We have wXa(>.)w-1 E 

xw(a)(F) c Busing (30.7) and the fact that w(a) E CP+. We have a-1ua E 

Ua c B since Ma normalizes Ua and a E Ma. We see that wba E BwsB as 
required. D 

Proposition 30.1. Let G = GL(n, F) for any field F, and let other notations 
be as above. If w, w' E W are such that l( ww') = l( w) + l( w'), then 

C(ww') = C(w) . C(w'). 

Proof. It is sufficient to show that if l(w) = r, and if w 
decomposition into simple reflections, then 

S1 ••• Sr is a 

(30.8) 
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Indeed, assuming we know this fact, let w' = s~ ... S~, be a decomposition into 
simple reflections with r' = l(r'). Then SI ... srs~ ... S~, is a decomposition of 
ww' into simple reflections with l (ww') = r + r', so 

C(ww') = C(SI)" ,C(sr)C(S~)" ,C(S~,) = C(w)C(w'). 

To prove (30.8), let Sr = Sa, and let WI = SI'" Sr-l. Then l(WlSaJ 
l(Wl)+1, so by Propositions 21.2 and 21.5 we have w'(a) E CP+. Thus, Lemma 
30.2 is applicable and C(w) = C(Wl) C(sr)' By induction on r, we have C(wd = 
C(SI)'" C(sr-d and so we are done. 0 

Theorem 30.1. With G = GL(n, F) and B, N, I as above, (B, N,I) is a 
Tits' system in G. 

Proof. Only Axiom TS3 requires proof; the others can be safely left to the 
reader. Let a E E such that S = Sa. 

First, suppose that w(a) E CP+. In this case, it follows from Lemma 30.2 
that wBs c BwsB. 

Next suppose that w(a) r/:. CP+. Then wsa(a) = w(-a) = -w(a) E CP+, so 
we may apply the case just considered, with WSa replacing w, to see that 

wsBs C Bws2 B = BwB. (30.9) 

By Lemma 30.1, B U BsB is a group containing a representative of the coset 
of s E NIT, so B U BsB = sB U sBsB and thus 

Bs c sB U sBsB. 

Using (30.9), 
wBs c wsB U wsBsB c BwsB U BwB. 

This proves Axiom TS3. o 

As a second example of a Tits' system, let K be a compact connected Lie 
group, and let G be its complexification. Let T be a maximal torus of K, let 
Te be the complexification of T, and let B be the Borel subgroup of G as 
constructed in Chapter 29. Let N be the normalizer in G of Te, and let I 
be the set of simple reflections in W = NIT. We will prove that (B, N, J) is 
a Tits' system in G, closely paralleling the proof just given for GL(n, F). In 
fact, if F = C and K = U(n), so G = GL(n, q, the two examples, including 
the method of proof, exactly coincide. 

The key to the proof is the construction of the "parabolic subgroup" Pa 

corresponding to a simple root a E E. (The term parabolic subgroup will be 
formally defined in Chapter 33.) Let Ta be the kernel of a in T. The centralizer 
GK(Ta) played a key role in Chapter 19, particularly in the proof of Theo
rem 19.1, where a homomorphism ia : SU(2) --t GK(Ta) was constructed. 
This homomorphism extends to a homomorphism, which we will also denote 
as ia, of the complexification SL(2, q into the centralizer Gc(Ta) of Ta in 
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G. Let POI. be the subgroup generated by iOi. (SL(2, q) and B. Let MOl. be the 
group generated by iOi. (SL(2, q) and Te. Finally, let 

If {31, {32 E {{3 E 4>+ I {3 =I- a}, then {31 + {32 =I- 0, and if {31 + {32 is a root, it is 
also in {{3 E 4>+ I {3 =I- a}. It follows from this observation and Proposition 19.3 
that UOI. is closed under the Lie bracket; that is, it is a complex Lie algebra of 
the Lie algebra denoted n in Chapter 29. Theorem 29.2 (iii) shows that it is 
the Lie algebra of a complex Lie subgroup UOI. of G. 

Proposition 30.2. Let G be the complexification of the compact connected 
Lie group K, let a be a simple positive root of G with respect to a fixed maximal 
torus T of K, and let other notations be as above. Then MOl. normalizes UOI.' 

Proof. It is clear that B normalizes UOI.' so we need to show that iOi. (SL(2, q) 
normalizes UOI.' If 'Y E {{3 E 4>+ I {3 =I- a} and 8 = a or -a, then 'Y + 8 =I- 0, 
and if 'Y + 8 E 4>, then 'Y + 8 E {{3 E 4>+ I {3 =I- a}. Thus [X±o., X')'] ~ UOI.' and 
since by Theorem 19.1 and Proposition 19.6 the Lie algebra of iOl.(SL(2,q) 
is generated by XOI. and X-OI., it follows that the Lie algebra of iOi. (SL(2, q) 
normalizes the Lie algebra of UOI.' Since both groups are connected, it follows 
that iOl.(SL(2,q) normalizes UOI.' 

D 

Since MOl. normalizes UOI.' we may define POI. to be the semidirect product 
MOI.UOI.' An analog of Lemma 30.1 is true in this context. 

Lemma 30.3. Let G be the complexification of the compact connected Lie 
group K, and let other notations be as above. If s is a simple reflection, then 
BUC(s) is a subgroup ofG. 

Proof. Indeed, if s = sO., then BUC(s) = POI.' From Theorem 19.1, the group 
MOl. contains a representative of s E NIT, so it is clear that BUC(s) C POI.' As 
for the other inclusion, both B and C(s) are invariant under right multiplica
tion by UOI.' so it is sufficient to show that MOl. E B U C(s). Moreover, both B 
and C(s) are invariant under right multiplication by Te, so it is sufficient to 
show that iOl.(SL(2,Q) C B U C(s). This is identical to Lemma 30.1 except 
that we work with SL(2, Q instead of GL(2, F). We have 

. (ab) {B ifc=O, 
~OI. cd E C(s)ifc=l-O. 

This completes the proof. D 

Theorem 30.2. Let G be the complexification of the compact connected Lie 
group K. With B,N,I as above, (B,N,!) is a Tits' system in G. 
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Proof. The proof of this is identical to Theorem 30.1. The analog of Lemma 
30.2 is true, and the proof is the same except that we use Lemma 30.3 instead 
of Lemma 30.1. All other details are the same. 0 

Now that we have two examples of Tits' systems, let us prove the Bruhat 
decomposition. 

Theorem 30.3. Let (B, N, 1) be a Tits' system within a group G, and let W 
be the corresponding Weyl group. Then 

G= U BwB, (30.10) 
wEW 

and this union is disjoint. 

Proof. Let us show that UWEW C (w) is a group. It is clearly closed under 
inverses. We must show that it is closed under multiplication. 

Let us consider C(WI) . C(W2), where WI, W2 E W. We show by induction 
on l( W2) that this is contained in a union of double cosets. If l( W2) = 0, then 
W2 = 1 and the assertion is obvious. If l(W2) > 0, write W2 = sw~, where s E I 
and l(w~) < l(W2). Then, by Axiom TS3, we have 

C(WI) . C(W2) = BWIBsw~B c BWIBw~B U BWISBw~B, 

and by induction this is contained in a union of double cosets. 
We have shown that the right-hand side of (30.10) is a group, and since it 

clearly contains Band N, it must be all of G by Axiom TS5. 
It remains to be shown that the union (30.10) is disjoint. Of course, two 

double cosets are either disjoint or equal, so assume that C (w) = C (w'), where 
w, w' E W. We will show that w = w'. 

Without loss of generality, we may assume that l(w) :::;; l(w' ), and we 
proceed by induction on l(w). If l(w) = 0, then w = 1, and so B = C(W'). 
Thus, in NIT, a representative for w' will lie in B. Since BnN = T, this means 
that w' = 1, and we are done in this case. Assume therefore that l (w) > ° 
and that whenever C(WI) = C(wD with l(wI) < l(w) we have WI = w~. 

Write w = w"s, where s E I and l(w") < l(w). Thus w"s E C(w' ), and 
since s has order 2, we have 

w" E C(w')s C C(w' ) UC(w's) 

by Axiom TS3. Since two double cosets are either disjoint or equal, this means 
that either 

C(w") = C(w' ) or C(w") = C(w's). 

Our induction hypothesis implies that either w" = w' or w" = w's. The first 
case is impossible since l(w") < l(w) :( l(w' ). Therefore w" = w's. Hence 
w = w" s = w', as required. 0 
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Symmetric Spaces 

We have devoted some attention to an important class of homogeneous spaces 
of Lie groups, namely flag manifolds. An even more important class is that of 
symmetric spaces. In differential geometry, a symmetric space is a Rieman
nian manifold in which around every point there is an isometry reversing the 
direction of every geodesic. 

Our approach to symmetric spaces will be to alternate the examination of 
examples with an explanation of general principles. In a few places (Remark 
31.2, Theorem 31.2, Theorem 31.3, Proposition 31.3, and in the next chapter 
Theorem 32.5) we will make use of results from Helgason [56]. This should 
cause no problems for the reader. These are facts that need to be included 
to complete the picture, though we do not have space to prove them from 
scratch. They can be skipped without serious loss of continuity. In addition to 
Helgason [56], a second indispensable work on (mainly Hermitian) symmetric 
spaces is Satake [109]. 

It turns out that symmetric spaces (apart from Euclidean spaces) are con
structed mainly as homogeneous spaces of Lie groups. In this chapter, an 
involution of a Lie group G is an automorphism of order 2. 

Proposition 31.1. Suppose that G is a connected Lie group with an involu
tion (). Assume that the group 

K = {g E G I ()(g) = g} (31.1) 

is a compact Lie subgroup. In this setting, X = G / K is a symmetric space. 

The involution () is called a Cartan involution of G, and the involution it 
induces on the Lie algebra is called a Cartan involution of Lie(G). 

Proof. Clearly, G acts transitively on G / K, and K is the stabilizer of the 
base point xo, that is, the coset KEG / K. We put a positive definite inner 
product on the tangent space Txo (X) that is invariant under the compact 
group K and also under (). If x E X, then we may find g E G such that 



31 Symmetric Spaces 213 

g(xo) = x, and 9 induces an isomorphism Txo(X) -----+ Tx(X) by which we 
may transfer this positive definite inner product to Tx(X). Because the inner 
product on Txo(X) is invariant under K, this inner product does not depend 
on the choice of g. Thus X becomes a Riemannian manifold. The involution () 
induces an automorphism of X that preserves geodesics through K, reversing 
their direction, so X is a symmetric space. D 

We now come to a striking algebraic fact that leads to the appearance 
of symmetric spaces in pairs. The involution () induces an involution of 9 = 
Lie(G). The +1 eigenspace of () is of course e = Lie(K). Let p be the -1 
eigenspace. Evidently, 

[e,eJ c e, [e,pJ c p, [p,pJ c e. 

From this, it is clear that 
(31.2) 

is a Lie subalgebra of ge = C ® g. We observe that 9 and ge have the same 
complexification; that is, ge = 9 EEl ig = ge EEl ige. 

The appearance of these two Lie algebras with a common complexification 
means that symmetric spaces come in pairs. To proceed further, we will make 
some assumptions, which we now explain. 

Hypothesis 31.1. Let G be a noncompact connected semisimple Lie group 
with Lie algebra g. Let () be an involution of G such that the fixed subgroup 
K of () is compact, as in Proposition 31.1. Let e and p be the +1 and -1 
eigenspaces of() on g, and let ge be the Lie algebra defined by {31.2}. We will 
assume that ge is the Lie algebra of a second Lie group Ge that is compact. 
Let Ge be the complexification ofGe {Theorem 27.1}. We assume that the Lie 
algebra homomorphism 9 -----+ ge is the differential of a Lie group embedding 
G -----+ Ge and that () extends to an automorphism of Ge, also denoted (), 
which stabilizes Ge . 

This means G and Ge can be embedded compatibly in the complex analytic 
group Ge. The involution () extends to ge and induces an involution on ge 
such that 

X +iY 1------7 X -iY, X E e,Y E p. 

The last statement in Hypothesis 31.1 means that this () is the differential of an 
automorphism of Ge. As a consequence the homogeneous space Xc = Gel K 
is also a symmetric space, again by Proposition 31.1. The symmetric spaces 
X and Xc, one noncompact and the other compact, are said to be in duality 
with each other. 

Remark 31.1. Although Hypothesis 31.1 may seem rather special, we will see 
in Theorem 31.3 that every noncompact semisimple Lie group admits a Cartan 
involution () such that this hypothesis is satisfied. Our proof of Theorem 31.3 
will not be self-contained, but we do not really need to rely on it as motivation 
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because we will give numerous examples in this chapter and the next where 
Hypothesis 31.1 is satisfied. 

Remark 31.2. We do not specify G, K, and Gc up to isomorphism by this 
description since different K could correspond to the same pair G and (). But 
K is always connected and contains the center of G (Helgason [56], Chapter 
VI, Theorem LIon p. 252). If we replace G by a semisimple covering group, 
the center increases, so we must also enlarge K, and the quotient space G j K 
is unchanged. Hence, there is a unique symmetric space of noncompact type 
determined by the real semisimple Lie algebra g. By contrast, the symmetric 
space of compact type is not uniquely determined by gc. There could be a 
finite number of different choices for Gc and K resulting in different compact 
symmetric spaces that have the same universal covering space. We will not 
distinguish a particular one as the dual of X but say that anyone of these 
compact spaces is in duality with X. See Helgason [56], Chapter VII, for a 
discussion of this point and other subtleties in the compact case. 

Example 31.1. Suppose that G = SL(n,lR) and K = SO(n). Then 9 = .s((n,lR) 
and the involution () : G ~ G is ()(g) = tg-l. The induced involution on 9 
is X ~ - t X. This p consists of symmetric matrices, and gc consists of 
the skew-Hermitian matrices in .s((n, C); that is, gc = .su(n). The Lie groups 
G = SL(n,lR) and Gc = SU(n) are subgroups of their common complex
ification Gc = SL(n, C). The symmetric spaces X = SL(n, R)jSO(n) and 
Xc = SU(n)jSO(n) are in duality. 

Let us obtain concrete realizations of the symmetric spaces G / K and G c/ K 
in Example 31.1. The group GL(n,lR) acts on the cone Pn(lR) of positive 
definite symmetric matrices by the action 

(31.3) 

On the other hand, the group U(n) acts on the space en(lR) of unitary sym
metric matrices by the same formula (31.3). (The notation en(lR) does not 
imply that the elements of this space are real matrices.) 

Proposition 31.2. Suppose that x E Pn(lR) or en(IR). 
(i) There exists 9 E SO( n) such that g x t g is diagonal. 
(ii) The actions of GL(n,lR) and U(n) are transitive. 
(iii) Let p be the vector space of real symmetric matrices. We have 

See Theorem 47.6 in Chapter 47 for an application. 

Proof. If x E Pn (1R) , then (i) is of course just the spectral theorem. However, if 
x E en (lR), this statement may be less familiar. It is instructive to give a unified 
proof of the two cases. Give (Cn its usual inner product, so (u, v) = l:i UiVi. 
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Let A be an eigenvalue of x. We will show that the eigenspace VA = {v E 

en I xv = AV} is stable under complex conjugation. Suppose that v E VA' If 
x E Pn{lR.), then both x and A are real, and simply conjugating the identity 
xv = AV gives xv = AV. On the other hand, if x E cn{lR), then x = tx -1 = X-I 

and IAI = 1 so X = A-I. Thus, conjugating xv = AV gives X-IV = A -lV, which 
implies that xv = AV. 

Now we can show that en has an orthonormal basis consisting of eigen
vectors VI," . ,Vn such that Vi E IRn. The adjoint of x with respect to the 
standard inner product is x or X-I depending on whether x E Pn(IR) or cn(IR). 
In either case, x is the matrix of a normal operator - one that commutes with 
its adjoint - and en is the orthogonal direct sum of the eigenspaces of x. 
Each eigenspace has an orthonormal basis consisting of real vectors. Indeed, 
if VI, ... ,Vk is a basis of VA' then since we have proved that Vi E VA' the space 
is spanned by ~(Vi + Vi) and ~(Vi - Vi); selecting a basis from this spanning 
set and applying the usual Gram-Schmidt orthogonalization process gives an 
orthonormal basis of real vectors. 

In either case, we see that en has an orthonormal basis consisting of 
eigenvectors Vb'" ,vn such that Vi E lRn. Let XVi = AiVi' Then, if k E O(n) 
is the matrix with columns Xi and d is the diagonal matrix with diagonal 
entries Ai, we have xk = kd so k-1xk = 8. As k-1 = tk we may take the 
matrix 9 = k-1 . If the determinant of k is -1, we can switch the sign of the 
first entry without harm, so we may assume k E SO(n) and (i) is proved. 

For (i), we have shown that each orbit in Pn(lR) or cn(lR) contains a 
diagonal matrix. The eigenvalues are positive real if x E Pn(lR) or of absolute 
value 1 if x E cn(lR). In either case, applying the action (31.3) with 9 E 
GL(n, lR) or U(n) diagonal will reduce to the identity, proving (ii). For (iii), 
we use (ii) to write an arbitrary element x ofPn(lR) or cn(lR) as kdk-l, where 
k is orthogonal and d diagonal. The eigenvalues of d are either positive real if 
x E Pn(lR) or of absolute value 1 if x E cn(lR). Thus d = eY , where Y is real 
or purely imaginary, and x = eX or eiX , where X = kYk-1 or -ikYk-1 is 
real. D 

In the action (31.3) of GL(n, lR) or U(n) on Pn(lR) or cn(lR), the stabi
lizer of I is O(n), so we may identify the coset spaces GL(n,lR)jO(n) and 
U(n)jO(n) with Pn(lR) and cn(lR), respectively. The actions of SL(n,lR) and 
SU(n) on Pn(lR) and cn(lR) are not transitive. Let P~(lR) and c~(lR) be 
the subspaces of matrices of determinant 1. Then the actions of SL(n, lR) 
and SU(n) on P~(lR) and c~(lR) are transitive, so we may identify P~(lR) = 
SL(n,lR)jSO(n) and c~(lR) = SU(n)jSO(n). Thus, we obtain concrete models 
of the dual symmetric spaces P~(lR) and c~(lR). 

We say that a symmetric space X is reducible if its universal cover de
composes into a product of two lower-dimensional symmetric spaces. If X 
is irreducible (i.e., not reducible) and not a Euclidean space, then it is clas
sified into one of four types, called I, II, III, and IV. We next explain this 
classification. 
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Example 31.2. If Ko is a compact Lie group, then Ko is itself a compact sym
metric space, the geodesic reversing involution being k f---t k- 1 . A symmetric 
space of this type is called Type II. 

Example 31.3. Suppose that G is itself obtained by complexification of a com
pact Lie group Ko and that the involution () of G is the automorphism of 
G as a real Lie group induced by complex conjugation. This means that on 
the Lie algebra 9 = to EB ito of G, where to = Lie(K), the involution () sends 
X + iY f---t X - iY, Y E to. The fixed subgroup of () is K o, and the sym
metric space is G / K o. A symmetric space of this type is called Type IV. It is 
noncompact. 

We will show that the Type II and Type IV symmetric spaces are in 
duality. For this, we need a couple of lemmas. If R is a ring and e, fER we 
call e and f orthogonal central idempotents if ex = xe and f x = x f for all 
x E R, e2 = e, p = f, and ef = fe. 

Lemma 31.1. (Pierce Decomposition) Let R be a ring, and let e and f 
be orthogonal central idempotents. Assume that 1 = e + f. Then Re and Rf 
are (two-sided) ideals of R, and each is a ring with identity elements e and f, 
respectively. The ring R decomposes as Re EB Rf. 

Proof. It is straightforward to see that Re is closed under multiplication and 
is a ring with identity element e and similarly for Rf. Since 1 = e + f, we 
have R = Re + Rf, and Re n Rf = 0 because if x E Re n Rf we can write 
x = re = r' f, so x = r' f2 = ref = O. 0 

Lemma 31.2. Regard C 0 C = C 0IR C as a C-algebra with scalar multipli
cation a(x 0 y) = ax 0 y, a E C. Then C 0 C and C EB C are isomorphic as 
C-algebras. 

Proof. Let 
e = ~(1 01 + i 0 i), f= ~(101-i0i). (31.4) 

It is easily checked that e and f are orthogonal central idempotents whose 
sum is the identity element 101, and so we obtain a Pierce decomposition by 
Lemma 31.1. The ideals generated by e and f are both isomorphic to C. 0 

Theorem 31.1. Let Ko be a compact connected Lie group. Then the compact 
and noncompact symmetric spaces of Examples 31.2 and 31.3 are in duality. 

Proof. Let 9 and to be the Lie algebras of G and K o, respectively. We have 
g = ([0£0. The involution () : 9 --+ g takes a0X --+ a0X. By Lemma 31.2, 
we have 91(; = C 0 C 0 to ~ C 0 to EB C 0 to. Now () induces the automorphism 

a, b E C, X E to. 
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The + 1 and -1 eigenspaces are spanned by vectors of the form 1 0 1 0 X 
and 10 i 0 X (X E to), so the Lie algebra ge as in (31.2) will be spanned by 
vectors of the form 1 0 1 0 X and i 0 i 0 X, and the Lie algebra t is 1 0 1 0 to. 

Thus, with e and f as in (31.4), ge is the JR.-linear span of e0to and f0to. 
We can identify 

ge = e 0 to EB f 0 to ~ to EB to· 

The involution () interchanges these two components, and since 1 0 1 = e + f, 
t = 1 0 to ~ to embedded diagonally in to 0 to. 

From this description, we see that ge is the Lie algebra of K x K, which we 
take to be the group Ge. The involution () : KxK -+ KxK is ()(x, y) = (y, x), 
and K is embedded diagonally. This differs from the description of the compact 
symmetric space of Type II in Example 31.2, but it is equivalent. We may see 
this as follows. We can map K -+ GelK by x -+ (x,l)K. The involution 
sends this to (1, x)K = (x-I, l)K since (x, x) E K embedded diagonally. 
Thus, if we represent the cosets of Gel K this way, the symmetric space is 
parametrized by K, and the involution corresponds to x -+ X-I. 0 

If GIK and GelK are noncompact and compact symmetric spaces in du
ality, and if G I K and Gel K are not of types IV and II, they are said to be 
of types III and I, respectively. 

Theorem 31.2. Let G be a noncompact, connected semisimple Lie group with 
an involution () satisfying Hypothesis 31.1. Then K is a maximal compact sub
group of G. Indeed, if K' is any compact subgroup of G, then K' is conjugate 
to a subgroup of K. 

Proof. This follows from Helgason [56], Theorem 2.1 of Chapter VI on page 
246. (Note the hypothesis that K be compact in our Proposition 31.1.) The 
proof in [56] depends on showing that G / K is a space of constant negative 
curvature. A compact group of isometries of such a space has a fixed point 
([56], Theorem 13.1 of Chapter I on page 75). Now if K' fixes xK E GIK, 
then X-I K'x ~ K. 0 

A semisimple real Lie algebra 9 is compact if and only if the Killing form 
is negative definite. If this is the case, then ad(g) is contained in the Lie 
algebra of the compact orthogonal group with respect to this negative definite 
quadratic form, and it follows that 9 is the Lie algebra of a compact Lie group. 
A semisimple Lie algebra is simple if it has no proper nontrivial ideals. 

Theorem 31.3. If 9 is a noncompact Lie algebra, then there exists a non
compact Lie group G with Lie algebra 9 and a Cartan involution () of G whose 
fixed points are a maximal subgroup K of G so that G I K is a symmetric space 
of noncompact type. In particular, Hypothesis 31.1 is satisfied. If 9 is simple, 
then G I K is irreducible, and this construction gives a one-to-one correspon
dence between the simple real Lie algebras and the irreducible noncompact 
symmetric spaces of noncompact type. 



218 Lie Groups 

Although we will not need this fact, it is very striking that the classifica
tion of irreducible symmetric spaces of noncompact type is the same as the 
classification of noncompact real forms of the semisimple Lie algebras. 

Proof. It follows from Helgason [56], Chapter III, Theorem 6.4 on p. 181, that 
{I has a compact form; that is, a compact Lie algebra {Ie with an isomorphic 
complexification. It follows from Theorems 7.1 and 7.2 in Chapter III of [56] 
that we may arrange things so that {Ie = t + ip and {I = t + p, where t and p 
are the + 1 and -1 eigenspaces of a Cartan involution (), and that this Cartan 
involution is essentially unique. Let Ge be the adjoint group of {Ie; that is, the 
group generated by exponentials of endomorphisms ad(X) with X E {Ie. It is a 
compact Lie group with Lie algebra {Ie - see Helgason [56], Chapter II, Section 
5. Thus Ge is a group of linear transformations of {Ie, but we extend them to 
complex linear transformations of {Ie, and so Ge and the other groups G, Ge, 
and K that we will construct will all be subgroups of GL({lc). Let Ge be the 
complexification of Ge . The conjugation of {Ie with respect to {I induces an 
automorphism of Ge as a real Lie group whose fixed-point set can be taken to 
be G. The Cartan involution () induces an involution of G whose fixed-point 
set K is a subgroup with Lie algebra t. D 

In Table 31.1, we give the classification of Cartan [21] of the Type I and 
Type III symmetric spaces. (The symmetric spaces of Type II and Type IV, 
as we have already seen, correspond to complex semisimple Lie algebras.) 

In Table 31.1, the group SO* (2n) consists of all elements of SO(2n, q that 
stabilize the skew-Hermitian form 

The subgroups S(O(p) x O(q)) and S(U(p) x U(q)) are the subgroups of 
O(P) x O(q) and U(P) x U(q) consisting of elements of determinant 1. Cartan 
considered the special cases q = 1 significant enough to warrant independent 
classifications. The group S(O(p) x 0(1)) ~ O(p), and we have written K 
this way for types BII and DII. 

For the exceptional groups, we have only described the Lie algebra of the 
maximal compact subgroup. We have given the real form from the classifica
tion of Tits [119]. In this classification, 2Eg~2 = iEg,r, for example, where i, 
d, and r are numbers whose significance we will briefly discuss. They will all 
reappear in the next chapter. 

The number i = 1 if the group is an inner form and 2 if it is an outer 
form. As we mentioned in Remark 27.1, real forms of Ge are parametrized by 
elements of HI (Gal(CjlR),Aut(Gc)). If the defining cocycle is in the image 
of 

HI (Gal(CjlR), Inn(Ge )) ~ HI (Gal(CjlR), Aut (Ge )) , 

where Inn( G e) is the group of inner automorphisms, then the group is an inner 
form. Looking ahead to the next chapter, where we introduce the Satake dia
grams, G is an inner form if and only if the symmetry of the Satake diagram, 
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Table 31.1. Real forms and Type I and Type III symmetric spaces. 

Cartan's 
G G c KO or e dimension absolute/reI. 

class rank root systems 

AI SL(n,R) SU(n) SO(n) 
~(n-l)(n+2) An- l 

n-l An- l 

All SL(n, JH[) SU(2n) Sp(2n) 
(n-l)(2n+l) A 2n- l 

n-l A n- l 

SU(p, q) 2pq A p+q- l 
AlII 

p,q> 1 
SU(p + q) S(U(p) x U(q)) 

min(p, q) { Cp (p = q) 
BCp (p> q) 

AIV SU(p,l) SU(p+ 1) S(U(p) x U(q)) 
2p Ap 
1 BCl 

SO(p, q) 
pq B(p+q-l)/2 

BI p,q> 1 SO(p + q) S(O(p) x O(q)) 
min(p, q) { Bq (p > q) 

p+ q odd Dp (p = q) 

BII 
SO(p, l) 

SO(p+ 1) O(P) 
2p Bp/2 

p+ 1 odd 1 Bl 
SO(p, q) 

pq D(p+q)/2 
DI p,q> 1 SO(p+ q) S(O(p) x O(q)) 

min(p, q) { Bq (p> q) 
p+qeven Dp (p = q) 

DII 
SO(p, l) 

SO(p + 1) O(p) 2p D(p+1)/2 
P + 1 even Al 

n-l Dn 
DIll SO*(2n) SO(2n) U(n) 

m = [n/2] { C m n=2m 
BCm n= 2m+l 

CI Sp(2n,R) Sp(2n) U(n) 
n(n + 1) Cn 

n Cn 

4pq Cp+q 
CII Sp(2p,2q) Sp(2p + 2q) Sp(2p) x Sp(2q) 

min(p, q) { BCq (p> q) 
Cp (p = q) 

EI 1 E~,6 E6 sp(8) 42 E6 E6 
Ell ~Et,4 E6 SU(6) x sU(2) 40 E6 F4 
EIII "E~~2 E6 so(10) x u(l) 32 E6 G 2 

EIV 1 Et~2 E6 f4 26 E6 A2 
EV E¥,7 E7 so(lO) x u(l) 70 E7 E7 
EVI E¥,4 E7 so(12) x sU(2) 64 E7 F4 
EVIl E7~3 E7 e6 x u(l) 54 E7 C3 

EVIII E¥,s Es so(16) 128 Es Es 
EIX E~~4 Es e7 x su(2) 112 Es F4 
FI F4',4 F4 sp(6) x su(2) 28 F4 F4 
FII Ft,} F4 so(9) 16 F4 Al 

G G~,2 G2 su(2) x su(2) 8 G 2 G 2 
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corresponding to the permutation a f-----t -O(a) of the relative root system, is 
trivial. Thus, from Figure 32.3, we see that SO(6, 6) is an inner form, but the 
quasisplit group SO(7,5) is an outer form. For the exceptional groups, only 
E6 admits an outer automorphism (corresponding to the nontrivial automor
phism of its Dynkin diagram). Thus, for the other exceptional groups, this 
parameter is omitted from the notation. 

The number r is the (real) rank - the dimension of the group A = exp(a), 
where a is a maximal Abelian subspace of p. The number d is the dimension 
of the anisotropic kernel, which is the maximal compact subgroup of the 
centralizer of A. Both A and M will play an extensive role in the next chapter. 

We have listed the rank for the groups of classical type but not the excep
tional ones since for those the rank is contained in the Tits' classification. 

For classification matters we recommend Tits [119] supplemented by Borel 
[12]. The definitive classification in this paper, from the point of view of alge
braic groups, includes not only real groups but also groups over p-adic fields, 
number fields, and finite fields. Knapp [83], Helgason [56], Onishchik and Vin
berg [121], and Satake [108] are also very useful. 

Example 31.4. Consider SL(2, ~)jSO(2) and SU(2)jSO(2). Unlike the general 
case of SL(n, ~)jSO(n) and SU(n)jSO(n), these two symmetric spaces have 
complex structures. Specifically, SL(2,~) acts transitively on the Poincare 
upper half-plane .fj = {z = x + iy I x, Y E ~,y > O} by linear fractional 
transformations: 

SL(2,~) 3 (~ ~) : z f-----t :::! . 
The stabilizer of the point i E .fj is SO(2), so we may identify .fj with 
SL(2,~)jSO(2). Equally, let !)t be the Riemann sphere C U {oo}, which is 
the same as the complex projective line ]pll(C). The group SU(2) acts transi
tively on !)t, also by linear fractional transformations: 

( a b) az + b 
SU(2) 3 b- - : z f-----t b - , - a - z+a 

Again, the stabilizer of i is SO(2), so we may identify SU(2)jSO(2) with !)to 

Both.fj and !)t are naturally complex manifolds, and the action of SL(2,~) 
or SU(2) consists of holomorphic mappings. They are examples of Hermitian 
symmetric spaces, which we now define. A Hermitian manifold is the complex 
analog of a Riemannian manifold. A Hermitian manifold is a complex manifold 
on which there is given a (smoothly varying) positive definite Hermitian inner 
product on each tangent space (which has a complex structure because the 
space is a complex manifold). The real part of this positive definite Hermitian 
inner product is a positive definite symmetric bilinear form, so a Hermitian 
manifold becomes a Riemannian manifold. A real-valued symmetric bilinear 
form B on a complex vector space V is the real part of a positive definite 
Hermitian form H if and only if it satisfies 
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B(iX, iY) = B(X, Y), 

for if this is true it is easy to check that 

H(X, Y) = HB(X, Y) - iB(iX, Y)) 

is the unique positive definite Hermitian form with real part H. From this 
remark, a complex manifold is Hermitian by our definition if and only if it is 
Hermitian by the definition in Helgason [56]. 

A symmetric space X is called Hermitian if it is a Hermitian manifold that 
is homogeneous with respect to a group of holomorphic Hermitian isometries 
that is connected and contains the geodesic-reversing reflection around each 
point. Thus, if X = G/K, the group G consists of holomorphic mappings, 
and if g(x) = y for x, y E X, 9 E X, then 9 induces an isometry between the 
tangent spaces at x and y. 

The irreducible Hermitian symmetric spaces can easily be recognized by 
the following criterion. 

Proposition 31.3. Let X = G / K and Xc = G c/ K be a pair of irreducible 
symmetric spaces in duality. If one is a Hermitian symmetric space then they 
both are. This will be true if and only if the center of K is a one-dimensional 
central torus Z. In this case, the rank of Gc equals the rank of K. 

In a nutshell, if K has a one-dimensional central torus, then there exists a 
homomorphism of 'lI' into the center of K. The image of'lI' induces a group of 
isometries of X fixing the base point Xo E X corresponding to the coset of 
K. The content of the proposition is that X may be given the structure of 
a complex manifold in such a way that the maps on the tangent space at Xo 
induced by this family of isometries correspond to multiplication by 'lI', which 
is regarded as a subgroup of ex. 

Proof. See Helgason [56], Theorem 6.1 and Proposition 6.2, or Wolf [131]' 
Corollary 8.7.10, for the first statement. The latter reference has two other 
very interesting conditions for the space to be symmetric. The fact that Gc 

and K are of equal rank is contained in Helgason [56] in the first paragraph 
of "Proof of Theorem 7.1 (ii), algebraic part" on p. 383. D 

A particularly important family of Hermitian symmetric spaces are the 
Siegel upper half-spaces Sjn, also known as Siegel spaces which generalize the 
Poincare upper half-plane Sj = Sj1. We will discuss this family of examples in 
considerable detail since many features of the general case are already present 
in this example and are perhaps best understood with an example in mind. 

In this chapter, if F is a field (always lR or q, the symplectic group is 

Sp(2n, F) = {g E GL(2n, F) I 9 Jtg = J}, 
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Write 9 = (~ ~), where A, B, C, and D are n x n blocks. Multiplying out 

the condition 9 J t 9 = J gives the conditions 

A· tB = B. tA, 
A· tD-B· tc = I, 

C.tD =D.tC, 
D· tA - C· tB = I. (31.5) 

The condition 9 J t 9 = J may be expressed as (gJ)(f gJ) = -I, so gJ and t gJ 
are negative inverses of each other. From this, we see that tg is also symplectic, 
and so (31.5) applied to tg gives the further relations 

tA·C=tC·A, 
tA·D-tC·B=I, 

tB·D=tD·B, 
tD .A- tB·C = I. (31.6) 

If A+iB E U(n), where the matrices A and B are real, then A·t A + B . t B = I 
and A·t B = B·t A. Thus, if we take D = A and C = -B, then (31.5) is 
satisfied. Thus 

(31.7) 

maps U(n) into Sp(2n,1l) and is easily checked to be a homomorphism. 
If W is a Hermitian matrix, we write W > 0 if W is positive definite. 
If n c llr is any connected open set, we can form the tube domain over 

n. This is the set of all elements of Cr whose imaginary parts are in n. Let 
.nn be the tube domain over Pn(ll). Thus .nn is the space of all symmetric 
complex matrices Z = X + iY where X and Y are real symmetric matrices 
such that Y > O. 

Proposition 31.4. If Z E.nn and 9 = (~~) E Sp(2n,1l), then CZ + D 

is invertible. Define 

g(Z) = (AZ+B)(CZ+D)-l. (31.8) 

Theng(Z) E .nn, and (31.8) defines an action ofSp(2n,1l) on.nn. The action 
is transitive, and the stabilizer of iIn E .nn is the image of U(n) under the 
embedding (31. 7). If W is the imaginary part of g(Z) then 

(31.9) 

Proof. Using (31.6), one easily checks that 

where Y is the imaginary part of Z. From this it follows that CZ + D is 
invertible since if it had a nonzero nullvector v, then we would have tvYv = 0, 
which is impossible since Y > O. 

Therefore we may make the definition (31.8). To check that g(Z) is sym
metric, the identity g(Z) = tg(Z) is equivalent to 
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which is easily confirmed using (31.5) and (31.6). 
Next we show that the imaginary part W of g(Z) is positive definite. 

Indeed W equals ~(g(Z) - g(Z)). Using the fact that g(Z) is symmetric and 
(31.10), this is 

~((AZ + B)(GZ + D)-l - (ZtG + tD)-l(ZtA + tB)). 

Simplifying this gives (31.9). From this it is clear that W is Hermitian and that 
W > O. It is of course real, though that is less clear from this expression. Since 
it is real and positive definite Hermitian, it is a positive definite symmetric 
matrix. 

It is easy to check that g (g' (Z)) = (gg') (Z), so this is a group action. To 
show that this action is transitive, we note that if Z = X + iY E 5Jn, then 

(I -X) I E Sp(2n, JR) , 

and this matrix takes Z to iY. Now if hE GL(n, JR), then 

(g tg -1 ) E Sp(2n, JR), 

and this matrix takes iY to iY', where Y' = gytg. Since Y > 0, we may 
choose g so that Y' = I. This shows that any element in 5Jn may be moved 
to i1n, and the action is transitive. 

To check that U(n) is the stabilizer of i1n is quite easy, and we leave it to 
the reader. D 

Example 31.5. By Proposition 31.4, we can identify 5Jn with Sp(2n,JR)jU(n). 
The fact that it is a Hermitian symmetric space is in accord with Proposi
tion 31.3, since U(n) has a central torus. In the notation of Proposition 31.1, 
if G = Sp(2n,JR) and K = U(n) are embedded via (31.7), then the compact 
group Gc is Sp(2n), where as usual Sp(2n) denotes Sp(2n, C) n U(2n). 

We will investigate the relationship between Examples 31.1 and 31.5 using 
a fundamental map, the Cayley transform. For clarity, we introduce this first 
in the more familiar context of the Poincare upper half-plane (Example 31.4), 
which is a special case of Example 31.5. 

We observe that the action of Gc = SU(2) on the compact dual Xc = 
SU(2)jSO(2) can be extended to an action of Gc = SL(2, C). Indeed, if we 
identify Xc with the Riemann sphere 9l, then the action of SU(2) was by 
linear fractional transformations and so is the extension to SL(2, C). 

As a consequence, we have an action of G = SL(2, JR) on Xc since G c Gc 
and Gc acts on Xc. This is just the action by linear fractional transformations 
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on 9\ = C U { 00 }. There are three orbits: S), the projective real line jp'1 (~) = 
~ U {oo}, and the lower half-plane fJ. 

The Cayley transform is the element c E SU(2) given by 

1 (1 -i) 
c=V2i 1 i ' so -1 1 ( i i) 

c = V2i -1 1 . (31.11) 

Interpreted as a transformation of 9\, the Cayley transform takes S) to the 
unit disk 

Indeed, if z E S), then 

1)={wEC llwl<l}. 

z-i 
c(z) = -+., z z 

and since z is closer to i than to -i, this lies in 1). The effect of the Cayley 
transform is shown in Figure 31.1. 

i a 

Fig. 31.1. The Cayley transform. 

The significance of the Cayley transform is that it relates a bounded sym
metric domain 1) to an unbounded one, S). We will use both S) and 1) together 
when thinking about the boundary of the noncompact symmetric space em
bedded in its compact dual. 

Since SL(2, JR) acts on S), the group c SL(2, JR) c-1 acts on c(S)) = 1). This 
group is 

SU(l, 1) = { (~ ~) IIal2 -lbl2 = 1} . 
The Cayley transform is generally applicable to Hermitian symmetric 

spaces. It was shown by Cartan and Harish-Chandra that Hermitian sym
metric spaces could be realized on bounded domains in Cn . Piatetski-Shapiro 
[101] gave unbounded realizations. Koninyi and Wolf [87], [88] gave a com
pletely general theory relating bounded symmetric domains to unbounded 
ones by means of the Cayley transform. 
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Now let us consider the Cayley transform for SJn. Let G = Sp(2n, JR.), 
K = U(n), Ge = Sp(2n), and Ge = Sp(2n, C). Let 

They are elements of Sp(2n). We will see that the scenario uncovered for 
SL(2, JR.) extends to the symplectic group. 

Our first goal is to show that SJn can be embedded in its compact dual, 
a fact already noted when n = 1. The first step is to interpret Gel K as an 
analog of the Riemann sphere 9t, a space on which the actions of both groups 
G and Ge may be realized as linear fractional transformations. Specifically, 
we will construct a space 9tn that contains a dense open subspace 9t~ that 
can be naturally identified with the vector space of all complex symmetric 
matrices. What we want is for Ge to act on 9tn, and if 9 E Ge, with both 
Z, g(Z) E 9t~, then g(Z) is expressed in terms of Z by (31.8). 

Toward the goal of constructing 9tn , let 

p={(h th- l ) (I;) !hEGL(n,C),xEMatn(C),x=tx }. 
(31.12) 

This group is called the Siegel pambolic subgroup of Sp(2n, C). (The term 
pambolic subgroup will be formally defined in Chapter 33.) We will define 9tn 

to be the quotient Gc/ P. Let us consider how an element of this space can 
(usually) be regarded as a complex symmetric matrix, and the action of Ge 
is by linear fractional transformations as in (31.8). 

Proposition 31.5. We have PGe = Sp(2n, C) and P n Ge = cK c-1 . 

Proof. Indeed, P contains a Borel subgroup, the group B of matrices (31.12) 
with 9 upper triangular, so PGe = Sp(2n, C) follows from the Iwasawa de
composition (Theorem 29.3). The group K is U(n) embedded via (31.7), and 
it is easy to check that 

(31.13) 

It is clear that eKe-1 ~ P n Sp(2n). To prove the converse inclusion, it is 
straightforward to check that any unitary matrix in P is actually of the form 
(31.13), and so PnGe ~ eKe-I. D 

We define 9tn = Gc/P. We define 9t~ to be the set of cosets gP, where 

9 = (~~) E Sp(2n,C) and det(C) is nonsingular. 

Lemma 31.3. Suppose that 

I (AI BI) 
9 = C' D' , 
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are elements of Gc. Then gP = g' P if and only if there exists a matrix h E 
GL(n, q such that Ah = A' and Ch = C'. If C is invertible, then AC-l is a 
complex symmetric matrix. If this is true, a necessary and sufficient condition 
for gP = g'P is that C' is also invertible and that AC-l = A'(C,)-l. 

Proof. Most of this is safely left to the reader. We only point out the reason 
that AC-l is symmetric. By (31.6), the matrix tCA is symmetric, so tc- l . 

tCA· C- l = AC-l is also. 0 

Let Rn be the vector space of n x n complex symmetric matrices. By the 
Lemma 31.3, the map a : Rn --+ 9l~ defined by 

is a bijection, and we can write 

if and only if AC- l = Z. 

Proposition 31.6. If a(Z) and g(a(Z)) are both in 9l~, where 9 = (~ ~) 
is an element of Sp(2n, q, then C Z + D is invertible and 

g(a(Z)) = a((AZ + B)(CZ + D)-l). 

Proof. We have 

( A B) (Z -I) (AZ + B -A) g(a(Z)) = C DIP = CZ + D -C P. 

Since we are assuming this is in 9l~, the matrix C Z + D is invertible by 
Lemma 31.3, and this equals a((AZ + B)(CZ + D)-l). 0 

In view of Proposition 31.6 we will identify Rn with its image in 9l~. Thus, 
elements of 9l~ become for us complex symmetric matrices, and the action of 
Sp(2n, q is by linear fractional transformations. 

We can also identify 9ln with the compact symmetric space G c/ K by 
means of the composition of bijections 

The first map is induced by conjugation by c E Gc . The second map is in
duced by the inclusion Gc --+ Gc and is bijective by Proposition 31.5, so we 
may regard the embedding of JJn into 9ln as an embedding of a noncompact 
symmetric space into its compact dual. 
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So far, the picture is extremely similar to the case where n = 1. We 
now come to an important difference. In the case of SL(2, IR), the topological 
boundary of Sj (or 1)) in 9l was just a circle consisting of a single orbit of 
SL(2, IR) or even its maximal compact subgroup SO(2). 

When n ~ 2, however, the boundary consists of a finite number of orbits, 
each of which is the union of smaller pieces called boundary components. 
Each boundary component is a copy of a Siegel space of lower dimension. 
The boundary components are infinite in number, but each is a copy of one 
of a finite number of standard ones. Since the structure of the boundary is 
suddenly interesting when n ~ 2, we will take a closer look at it. For more 
information about boundary components, which are important in the theory 
of automorphic forms and the algebraic geometry of arithmetic quotients such 
as Sp(2n, Z)\Sjn, see Ash, Mumford, Rapoport, and Tai [5], Baily [6], Baily 
and Borel [7], and Satake [106], [108]. 

The first step is to map Sjn into a bounded region. Writing Z = X + iY, 
where X and Yare real symmetric matrices, Z E Sjn if and only if Y > o. So Z 
is on the boundary if Y is positive semidefinite yet has 0 as an eigenvalue. The 
multiplicity of 0 as an eigenvalue separates the boundary into several pieces 
that are separate orbits of G. (These are not the boundary components, which 
we will meet presently.) 

If we embed Sjn into 9ln , a portion of the border is at "infinity"; that is, it 
is in 9ln - 9l~. We propose to examine the border by applying c, which maps 
Sjn into a region whose closure is wholly contained in 9ln . 

Proposition 31. 7. The image of Sjn under c is 

1)n = {W E 9l~ I J - WW > a}. 

The group c Sp(2n, IR) c-1 , acting on 1)n by linear fractional transformations, 
consists of all symplectic matrices of the form 

(31.14) 

(Note that, since W is symmetric, J - WW is Hermitian.) 

Proof. The condition on W to be in c(Sj) is that the imaginary part of 

c-1(W) = -i(W - I)(W + I)-I 

be positive definite. This imaginary part is 

Y = -H(W - I)(W + I)-I + (W - I)(W + I)-I) = 

-H(W - I)(W + I)-I + (W + I)-l(W - I)), 

where we have used the fact that both Wand (W - J) (W + I) -1 are symmetric 
to rewrite the second term. This will be positive definite if and only if (W + 
J) Y (W + J) is positive definite. This equals 
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-H(W +I)(W - I) + (W - I)(W +I)) = 1- Ww. 

Since Sp(2n, JR) maps SJn into itself, c Sp(2n, JR) c- 1 maps ::Dn = c(SJn) 
into itself. We have only to justify the claim that this group consists of the 

matrices of form (31.14). For 9 = (~ ~) E Sp(2n, q to have the property 

that c-1 gc is real, we need c-1 gc = c-1 gc, so 

--1 (A B) (A B) --1 
CC CD = CD cc , 

--1 _ G (0 In) cc - V -z In 0 . 

This implies that C = Band D = A. o 

Proposition 31.8. (i) The closure of::D n is contained within 9l~. The bound
ary of::D n consists of all complex symmetric matrices W such that I - WW 
is positive semidefinite but such that det(I - WW) = o. 
(ii) If Wand W' are points of the closure of::Dn in 9ln that are congruent 
modulo cG c-1, then the ranks of 1- WW and I - W'W' are equal. 
(iii) Let W be in the closure of ::Dn , and let r be the rank of I - WW. Then 
there exists g E c G c-1 such that g(W) has the form 

Wr E ::D n - r . (31.15) 

Proof. The diagonal entries in WW are the squares of the lengths of the rows 
of the symmetric matrix W. If I - WW is positive definite, these must be less 
than 1. So ::Dn is a bounded domain within the set 9l~ of symmetric complex 
matrices. The rest of (i) is also clear. 

For (ii), if 9 E c G c-I, then by Proposition 31. 7 the matrix g has the form 
(31.14). Using the fact that both Wand W' are symmetric, we have 

1- W'W = 1- (WtB + tA)-I(WtA + tB)(AW + B)(BW + A)-I. 

Both Wand W' are in 9l~, so by Proposition 31.6 the matrix BW + A is 
invertible. Therefore, the rank of I - W'W' is the same as the rank of 

(WtB + tA)(I - W'W')(BW + A) = 
(WtB + tA)(BW + A) - (WtA + tB)(AW + B). 

Using the relations (31.6), this equals I - WW. 
To prove (iii), note first that if u E U(n) c cGc-1, then 

cGc-1 :7 (u u) : W t----+ uWtu. 

Taking u to be a scalar, we may assume that -1 is not an eigenvalue of W. 
Then W +1 is nonsingular so Z = c-1W = -i(W -I)(W +I)-1 E 9l~. Since 
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Z is in the closure of f), it follows that Z = X + iY, where X and Yare real 
symmetric and Y is positive semidefinite. There exists an orthogonal matrix 
k such that D = kYk- 1 is diagonal with nonnegative eigenvalues. Now 

"((Z) = iD, 

Thus, denoting W' = qc- 1 W, 

W' = c(iD) = (D - I)(D + I)-I. 

Like D, the matrix W' is diagonal, and its diagonal entries equal to 1 corre
spond to the diagonal entries of D equal to O. These correspond to diagonal 
entries of I - W'W' equal to 0, so the diagonal matrices D and 1- W'W' 
have the same rank. But by (ii), the ranks of I - WW and 1- W'W' are 
equal, so the rank of D is r. Clearly, W' has the special form (31.15). 0 

Now let us fix r < n and consider 

By Proposition 31. 7, the subgroup of c G c-1 of the form 

is isomorphic to Sp(2r, IR), and ~r is homogeneous with respect to this sub
group. Thus ~r is a copy of the lower-dimensional Siegel space 1)r embedded 
into the boundary of ~n. 

Any subset of the boundary that is congruent to a ~r by an element of 
cGc-1 is called a boundary component. There are infinitely many boundary 
components, but each of them resembles one of these standard ones. The 
closure of a boundary component is a union of lower-dimensional boundary 
components. 

Now let us consider the union of the zero-dimensional boundary compo
nents, that is, the set of all elements equivalent to ~o = {In}. By Proposi
tion 31.8, it is clear that this set is characterized by the vanishing of 1-WW. 
In other words, this is the set En (IR). 

If D is a bounded convex domain in rer , homgeneous under a group G 
of holomorphic mappings, the Bergman-Shilov boundary of D is the unique 
minimal closed subset B ofthe topological boundary aD such that a function 
holomorphic on D and continuous on its closure will take its maximum (in 
absolute value). See Koninyi and Wolf [88] for further information, including 
the fact that a bounded symmetric domain must have such a boundary. 
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Theorem 31.4. The domain ~n has [nOR) as its Bergman-Shilov boundary. 

Proof. Let f be a holomorphic function on ~n that is continuous on its closure. 
We will show that f takes its maximum on the set [nOR). This is sufficient 
because G acts transitively on [nOR), so the set [nOR) cannot be replaced by 
any strictly smaller subspace with the same maximizing property. 

Suppose x E ~n maximizes If I· Let ~ be the boundary component con
taining x, so ~ is congruent to some ~r' If r > 0, then noting that the 
restriction of f to ~ is a holomorphic function there, the maximum modulus 
principle implies that f is constant on ~ and hence If I takes the same maxi
mum value on the boundary of~, which intersects [nOR). 0 

We now see that both the dual symmetric spaces Pn(lR) and [n(lR) ap
pear in connection with nn. The construction of nn involved building a tube 
domain over the cone PnOR), while the dual [nOR) appeared as the Bergman
Shilov boundary. (Since P~(lR) and [n(lR)O are in duality, it is natural to 
extend the notion of duality to the reducible symmetric spaces Pn(lR) and 
[n(lR) and to say that these are in duality.) 

This scenario repeats itself: there are four infinite families and one isolated 
example of Hermitian symmetric spaces that appear as tube domains over 
cones. In each case, the space can be mapped to a bounded symmetric domain 
by a Cayley transform, and the compact dual of the cone appears as the 
Bergman-Shilov boundary of the cone. These statements follow from the work 
of Koecher, Vinberg, and Piatetski-Shapiro [101], culminating in Koninyi and 
Wolf [87], [88]. 

Let us describe this setup in a bit more detail. Let V be a real vector space 
with an inner product ( , ). A cone C c V is a convex open set consisting of a 
union of rays through the origin but not containing any line. The dual cone to 
C is {x E VI(x,y) > 0 for all y E C}. IfC is its own dual, it is naturally called 
self-dual. It is called homogeneous if it admits a transitive automorphism 
group. 

A homogeneous self-dual cone is a symmetric space. It is not irreducible 
since it is invariant under similitudes (that is, transformations x r-----+ AX where 
A E lRX). The orbit of a typical point under the commutator subgroup of the 
group of automorphisms of the cone sits inside the cone, inscribed like a 
hyperboloid, though this description is a little misleading since it may be the 
constant locus of an invariant of degree> 2. For example, P~(lR) is the locus 
of det(x) = 1, and det is a homogeneous polynomial of degree n. 

Homogeneous self-dual cones were investigated and applied to symmetric 
domains by Koecher, Vinberg, and others. A Jordan algebra over a field F 
is a nonassociative algebra over F whose multiplication is commutative and 
satisfies the weakened associative law (ab)a2 = a(ba2 ). The basic principle is 
that if C c V is a self-dual convex cone, then V can be given the structure of 
a Jordan algebra in such a way that C becomes the set of squares in V. 



31 Symmetric Spaces 231 

In addition to Satake [109J Chapter I Section 8, see Ash, Mumford, 
Rapoport, and Tai [5], Chapter II, for good explanations, including a dis
cussion of the boundary components of a self-dual cone. 

Example 31.6. Let D = lR, C, or lHl. Let d = 1,2 or 4 be the real dimension 
of D. Let .:In(D) be the set of Hermitian matrices in Matn(D), which is a 
Jordan algebra. Let Pn(D) be the set of positive definite elements. It is a self
dual cone of dimension n + (d/2)n(n - 1). It is a reducible symmetric space, 
but the elements of 9 E Pn(D) such that multiplication by 9 as an lR-linear 
transformation of Matn(D) has determinant 1 is an irreducible symmetric 
space P~(D) of dimension n+ (d/2)n(n-l) -1. The dual £~(D) is a compact 
Hermitian symmetric space. 

Example 31.7. The set defined by the inequality Xo > .J x~ + ... + x; in lRn+1 

is a self-dual cone, which we will denote P(n, 1). The group of automorphisms 
is the group of similitudes for the quadratic form x~ - x~ - ... - x~. The derived 
group is SO(n, 1), and its homogeneous space PO(n, 1) can be identified with 
the orbit of (1,0,· .. ,0), which is the locus of the hyperboloid x~ - x~ - ... -
x~ = 1. The following special cases are worth noting: P(2, 1) ~ P2(lR) can be 
identified with the Poincare upper half-plane, PO(3, 1) can be identified with 
P2(C), and PO(5, 1) can be identified with P2(1l). 

Example 31.8. The octonions or Cayley numbers are a nonassociative algebra 
((J) over lR of degree 8. The construction of Example 31.6 applied to D = ((J) does 
not produce a Jordan algebra if n > 3. If n ~ 3, then .:In (((J)) is a Jordan algebra 
containing a self-dual cone Pn(((J)). But P2 (((J)) is the same as P(9, 1). Only the 
27-dimensional exceptional Jordan algebra .:13 (((J)), discovered in 1947 by A. A. 
Albert, produces a new cone P3(((J)). It contains an irreducible symmetric space 
of co dimension 1, P3'(((J)), which is the locus of a cubic invariant. Let £3'(((J)) 
denote the compact dual. The Cartan classification of these 26-dimensional 
symmetric spaces is EIV. 

The nonassociative algebras ((J) and .:I3(((J)) are crucial in the construction 
of the exceptional groups and Lie algebras. See Jacobson [72], Onishchik and 
Vinberg [121] and Schafer [110] for Lie algebra constructions. 

The tube domain .f)(C) over a self-dual cone C, consisting of all X + iY E 
C ® V, is a Hermitian symmetric space. These examples are extremely similar 
to the case of the Siegel space. For example, we can embed .f)(C) in its compact 
dual ~(C), which contains ~O(C) = C ® Vasa dense open set. A Cayley 
transform c : ~(C) --t ~(C) takes .f)(C) into a bounded symmetric domain 
:D(C), whose closure is contained in ~O(C). The Bergman-Shilov boundary 
can be identified with the compact dual of the (reducible) symmetric space 
C, and its preimage under c consists of X + iY E C ® V with Y = 0, that is, 
with the vector space V. 

Freudenthal [41 J observed a phenomenon involving some symmetric spaces 
known as the magic square. Freudenthal envisioned a series of geometries over 
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the algebras JR, C, 1HI, and ((J), and found a remarkable symmetry, which we will 
present momentarily. A good recent paper on the magic square, very much 
in the geometric spirit of Freudenthal's original approach, is Landsberg and 
Manivel [89]. Onishchik and Vinberg [121] is also very useful in approaching 
the magic square. 

Let us denote 9t(C) as 9tn(D) if C = Pn(D). We associate with this C 
three groups Gn(D), G~(D), and G~(D) such that G~(D) :J G~(D) :J Gn(D) 
and such that G"(D)jG~(D) = 9tn(D), while G~(D)jGn(D) = En(D). Thus 
Gn(JR) = SO(n) and G~(JR) = GL(n,JR), while G~(JR) = Sp(2n,JR). 

These groups are tabulated in Figure 31.2 together with the noncompact 
duals that produce tube domains. Note that the symmetric spaces U(n) x 
U(n)jU(n) = U(n) and GL(2n, C)jU(n) = P3 (C) of the center column are 
of Types II and IV, respectively. The "magic" consists of the fact that the 
square is symmetric. 

D lR C 1HI lR C 1HI 
Gn(D) SO(n) U(n) Sp(2n) - - -
G~(D) U(n) U(n) x U(n) U(2n) GL(n, lR) GL(n,q GL(n,lH!) 
G~(D) Sp(2n) U(2n) SO(4n) Sp(2n, lR) GU(n,n) SO(4n)* 

Fig. 31.2. The 3 x 3 square. Left: compact forms. Right: noncompact forms. 

We have the following numerology: 

dim G~(D) + 2 dimG(D) = 3 dimG~(D). (31.16) 

Indeed, dim G~(D) - dim G~(D) is the dimension of the tube domain, and 
this is twice the dimension dim G'(D) - dim Gn(D) of the cone. 

Although in presenting the 3 x 3 square - valid for all n - in Figure 31.2 
it seems best to take the full unitary groups in the second rows and columns, 
this does not work so well for the 4 x 4 magic square. Let us therefore note that 
we can also use modified groups that we call Hn(D) C H~(D) C H~, which 
are the derived groups of the Gn(D). We must modify (31.16) accordingly: 

dim H"(D) + 2 dim H(D) = 3dimH~(D) + 3. (31.17) 

See Figure 31.3 for the resulting "reduced" 3 x 3 magic square. 
If n = 3, the reduced 3 x 3 square can be extended, resulting in Freuden

thal's magic square, which we consider next. It will be noted that in Cartan's 
list (Table 31.1) some of the symmetric spaces have an SU(2) factor in K. 
Since SU(2) is the multiplicative group of quaternions of norm 1, these spaces 
have a quaternionic structure analogous to the complex structure shown by 
Hermitian symmetric spaces, where K contains a U(l) factor (Proposition 
31.3). See Wolf [130]. Of the exceptional types, EII, ElV, ElX, Fl, and G 
are quaternionic. Observe that in each case the dimension is a multiple of 4. 
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D lR C IHl lR C IHl 
Hn(D) SO(n) SU(n) Sp(2n) 1n(n -1) n~ -1 n(2n + 1) 
H~(D) SU(n) SU(n) x SU(n) SU(2n) n~ -1 2n'" - 2 4n'" -1 
H::'(D) Sp(2n) SU(2n) SO(4n) n(2n + 1) 4n" -1 2n(4n -1) 

Fig. 31.3. Left: the reduced 3 x 3 square. Right: dimensions. 

Using some of these quaternionic symmetric spaces it is possible to extend 
the magic square in the special case where n = 3 by a fourth group H~'(D) 
such that H~(D) x SU(2) is the maximal compact subgroup of the relevant 
noncompact form. It is also possible to add a fourth column when n = 3 due 
to existence of the exceptional Jordan algebra and P3(O). 

The magic square then looks like Figure 31.4. In addition to (31.17), there 
is a similar relation, 

dim H"'(D) + 2 dim H'(D) = 3dimH~(D) + 5, (31.18) 

which suggests that the quaternionic symmetric spaces - they are FI, Ell, 
EVI, and EIX in Cartan's classification - should be thought of as "quater
nionic tube domains" over the corresponding Hermitian symmetric spaces. 

D lR C IHl (()) lR C IHl (()) 

H3(D) SO(3) SU(3) Sp(6) F4 3 8 21 52 
H~(D) SU(3) SU(3) x SU(3) SU(6) E6 8 16 35 78 
H!{(D) Sp(6) SU(6) SO(12) E7 21 35 66 133 
Hf{'(D) F4 E6 E7 Es 52 78 133 248 

Fig. 31.4. Left: the magic square. Right: dimensions. 

EXERCISES 

In the exercises, we look at the complex unit ball, which is a Hermitian symmetric 
space that is not a tube domain. For these spaces, Piatetski-Shapiro [101] gave 
unbounded realizations that are called Siegel domains of Type II. (Siegel domains 
of Type I are tube domains over self-dual cones.) 

Exercise 31.1. The group G = SU(n, 1) consists of solutions to 

t- (In ) = (In ) 
9 -1 g -1' gEGL(n+1,C). 

Let 
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be the complex unit ball. Write 

A E Matn(C),b E MatnXl(C),C E Matl,n(C),d E e. 

If w E Bn, show that cw + d is invertible. (This is a 1 x 1 matrix, so it can be 
regarded as a complex number.) Define 

g(w) = (Aw+b)(cw+d)-l. (31.19) 

Show that g(w) E Bn and that this defines an action of SU(n, 1) on Bn. 

Exercise 31.2. Let ?in E en be the bounded domain 

Show that there are holomorphic maps c:?in --+ Bn and c-1 : Bn --+?in that are 
inverses of each other and are given by 

Note: If we extend the action (31.19) to allow 9 E GL(n + 1, C), these "Cayley 
transforms" are represented by the matrices 

( 
1/V2i -i/V2i) 

c = In-l , ( i/V2i i/V2i) 
c-1 = -1/V2i In-l 1/V2i . 1/V2i i/V2i 

Exercise 31.3. Show that c-1SU(n, l)c = SU~, where SU~ is the group of all 9 E 
GL(n, C) satisfying geg-1 = {, where 

Show that SU~ contains the noncompact "Heisenberg" unipotent subgroup 

{(
I ib ~IW+ia) } 

H= I n - 1 ~ IbEMatn,l(C),aE~. 

Let us write 
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According to (31.19), a typical element of H should act by 

Zl f----t Zl + ib( + ~ Ibl 2 + ia, 

( f----t ( + b. 

Check directly that H is invariant under such a transformation. Also show that SU ~ 
contains the group 

Describe the action of this group. Show that the subgroup of SUe generated by H 
and M is transitive on lln, and deduce that the action of SU(n, 1) on Bn is also 
transitive. 

Exercise 31.4. Observe that the subgroup K = S(U(n) x U(l)) of SU(n, 1) acts 
transitively on the topological boundary of Bn , and explain why this shows that the 
Bergman-Shilov boundary is the whole topological boundary. Contrast this with the 
case of ::On. 

Exercise 31.5. Emulate the construction of 9ln and 9l~ to show that the compact 
dual of Bn has a dense open subset that can be identified with en in such a way that 
Gc = GL(n + 1, q acts by (31.19). Show that Bn can be embedded in its compact 
dual, just as ::On is in the case of the symplectic group. 
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Relative Root Systems 

In this chapter, we will consider root systems and Weyl groups associated with 
a Lie group G. We will assume that G satisfies the assumptions in Hypothe
sis 31.1 of the last chapter. Thus, Gis semisimple and comes with a compact 
dual Ge . In Chapter 19, we associated with Ge a root system and Weyl group. 
That root system and Weyl group we will call the absolute root system if> 
and Weyl group W. We will introduce another root system if>rel, called the 
relative or restricted root system, and a Weyl group Wrel called the relative 
Weyl group. The relation between the two root systems will be discussed. The 
structures that we will find give Iwasawa and Bruhat decompositions in this 
context. 

As we saw in Theorem 31.3, every semisimple Lie group admits a Car
tan decomposition, and Hypothesis 31.1 will be satisfied. The assumption of 
semisimplicity can be relaxed - it is sufficient for G to be reductive, though in 
this book we only define the term "reductive" when G is a complex analytic 
group. A more significant generalization of the results of this chapter is that 
relative and absolute root systems and Weyl groups can be defined whenever 
G is a reductive algebraic group defined over a field F. If F is algebraically 
closed, these coincide. If F = JR, they coincide with the structures defined in 
this chapter. But reductive groups over p-adic fields, number fields, or finite 
fields have many applications, and this reason alone is enough to prefer an 
approach based on algebraic groups. For this, see Borel [12] as well as Borel 
and Tits [13], Tits [119] (and other papers in the same volume), and Satake 
[108]. 

Consider, for example, the group G = SL(r, JH[), whose construction we 
recall. The group GL(r, JH[) is the group of units of the central simple algebra 
Matr(JH[) over JR. We have C 0 JH[ ~ Mat2 (C) as C-algebras. Consequently 
C 0 Matr (JH[) ~ Mat2r (C). The reduced norm v : Matr (JH[) ---+ JR is a map 
determined by the commutativity of the diagram 
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Matr(lHI) • Mat2r(CC) 

1" 
jd~ 

~ • c 

(See Exercise 32.1.) The restriction of the reduced norm to GL(r, lHI) is a 
homomorphism v: GL(r,lHI) -----t ~x whose kernel is the group SL(r,lHI). It is 
a real form of SL(2r,~), or of the compact group Gc = SU(2r), and we may 
associate with it the Weyl group and root system W and ifJ of SU(2r) of type 
A2r- l . This is the absolute root system. On the other hand, there is also a 
relative or restricted root system and Weyl group, which we now describe. 

Let K be the group of 9 E SL(r, lHI) such that 9 tg = I, where the bar 
denotes the conjugation map of lHI. By Exercise 5.7, K is a compact group 
isomorphic to Sp(2r). The Cartan involution () of Hypothesis 31.1 is the map 
9 I---t tg-I. 

We will denote by ~~ the multiplicative group of the positive real numbers. 
Let A ~ (~~t be the subgroup 

The centralizer of A consists of the group 

The group M = Ca(A) n K consists of all elements with Itil = 1. The group 
of norm 1 elements in lHI x is isomorphic to SU(2) by Exercise 5.7 with n = 1. 
Thus M is isomorphic to SU(2t. 

On the other hand, the normalizer of Na(A) consists of all monomial 
quaternion matrices. The quotient Wrel = Na(A)/Ca(A) is of type Ar - I . The 
"restricted roots" are "rational characters" of the group A, of the form aij = 
tit;!, with i =1= j. We can identify g = Lie(G) with Matn(lHI), in which case 
the subspace of g that transforms by aij consists of all elements of g having 
zeros everywhere except in the i, j position. In contrast with the absolute 
root system, where the eigenspace Xl> of a root is always one-dimensional (see 
Proposition 19.5), these eigenspaces are all four-dimensional. 

We see from this example that the group SL(n, lHI) looks like SL(n, ~), but 
the root eigenspaces are "fattened up." The role of the torus T in Chapter 19 
will be played by the group Ca(A), which may be thought of as a "fattened 
up" and non-Abelian replacement for the torus. 

We turn to the general case and to the proofs. 
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Proposition 32.1. Assume that the assumptions of Hypothesis 31.1 are sat
isfied. Then the map 

(Z, k) 1----+ exp(Z)k 

is a diffeomorphism p x K ~ G. 

(32.1) 

Proof. Choosing a faithful representation err, V) of the compact group Ge , we 
may embed Ge into GL(V). We may find a positive definite invariant inner 
product on V and, on choosing an orthonormal basis, we may embed Ge into 
U(n), where n = dim(V). The Lie algebra glC is then embedded into g[(n, IC) 
in such a way that e ~ u( n) and p is contained in the space Sf) of n x n 
Hermitian matrices. We now recall from Theorem 13.4 and Proposition 13.6 
that the formula (32.1) defines a diffeomorphism Sf) x U(n) ~ GL(n, IC). It 
follows that it gives a diffeomorphism of p x K onto its image. It also follows 
that (32.1) has nonzero differential everywhere, and as p x K and G have the 
same dimension, we get an open mapping p x K ~ G. On the other hand, 
p x K is closed in Sf) x U(n), so the image of (32.1) is closed as well as open 
in G. Since G is connected, it follows that (32.1) is surjective. D 

If a is an Abelian Lie subalgebra of g such that a C p, we say a is an Abelian 
subspace of p. This expression is used instead of "Abelian subalgebra" since 
p itself is not a Lie subalgebra of g. We will see later in Theorem 32.3 that a 
maximal Abelian subspace a of p is unique up to conjugation. 

Proposition 32.2. Assume that the assumptions of Hypothesis 31.1 are sat
isfied. Let a be a maximal Abelian subspace of p. Then A = exp( a) is a closed 
Lie subgroup of G, and a is its Lie algebra. There exists a (}-stable maximal 
torus T of Ge such that A is contained in the complexification TIC regarded as 
a subgroup of GIC • If r = dim( a), then A ~ (]R~ t . Moreover, Ae = exp( ia) is 
a compact torus contained in T. We have T = AeTM, where TM = (TnK)o. 

Proof. By Proposition 15.2, A is an Abelian group. By Proposition 32.1, the 
restriction of exp to p is a diffeomorphism onto its image, which is closed in G, 
and since a is closed in p it follows that exp( a) is closed and isomorphic as a 
Lie group to the vector space a ~ ]RT. Exponentiating, the group A ~ (]R~t. 

Let Ae = exp(ia) C Ge. By Proposition 15.2, it is an Abelian subgroup. 
We will show that it is closed. If it is not, consider its topological closure 
Ae. This is a closed connected Abelian subgroup of the compact group Ge 

and hence a torus by Theorem 15.2. Since {} induces -1 on p, it induces the 
automorphism g 1----+ g-l on Ae and hence on Ae. Therefore, the Lie algebra of 
Ae is contained in the -1 eigenspace ip of {} in Lie( G e). Since ia is a maximal 
Abelian subspace of ip, it follows that ia is the Lie algebra ofAe , and therefore 
Ae = exp(ia) = Ae. 

Now let T be a maximal {}-stable torus of Ge containing Ae. We will show 
that T is a maximal torus of Ge. Let T' :2 T be a maximal torus. Let t' and 
t be the respective Lie algebras of T' and T. Suppose that H E t'. If YEt, 
then [Y, 0 H] = rOy, H] = -[Y, H] = 0 since t is {}-stable and Y, HE t', which 
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is Abelian. Thus, both Hand 9 H are in the centralizer of t. Now we can write 
H = H1 + H2, where H1 = ~(H + 9 H) and H2 = !(H - 9 H). Note that the 
torus 8i, which is the closure of {exp(tHi) It E 1R}, is () stable - indeed () is 
trivial on 8 1 and induces the automorphism x t---+ x-1 on 82 . Also 8i ~ T' 
centralizes T. Consequently, T8i is a (}-stable torus and, by maximality of T, 
8i ~ T. It follows that Hi E t, and so H E t. We have proven that t' = t and 
so T = T' is a maximal torus. 

It remains to be shown that T = AcTM. It is sufficient to show that the Lie 
algebra of T decomposes as in EB tM, where tM is the Lie algebra of TM . Since 
() stabilizes T, it induces an endomorphism of order 2 of t = Lie(T). The +1 
eigenspace is tM = tnt since the + 1 eigenspace of () on gc is t. On the other 
hand, the -1 eigenspace of () on t contains in and is contained in ip, which is 
the -1 eigenspace of () on gc' Since n is a maximal Abelian subspace of p, it 
follows that the -1 eigenspace of () on t is exactly in, so t = in EB tM' 0 

Lemma 32.1. Let Z E GL(n, q be a Hermitian matrix. If 9 E GL(n, q 
commutes with exp(Z), then 9 commutes with Z. 

Proof. Let A1, ... ,Ah be the distinct eigenvalues of Z. Let us choose a basis 
with respect to which Z has the matrix 

Then exp(Z) has the same form with Ai replaced by exp(Ai). Since the Ai are 
distinct real numbers, the exp(Ai) are also distinct, and it follows that 9 has 
the form 

where gi is an ri x ri block. Thus 9 commutes with Z. o 

Proposition 32.3. In the context of Proposition 32.2, let M = Ga(A) n K. 
Then Ga(A) = MA and M n A = {I}, so Ga(A) is the direct product of M 
and A. The group TM is a maximal torus of M. 

The compact group M is called the anisotropic kernel. 

Proof. Since M ~ K and A ~ exp(p), and since by Proposition 32.1 K n 
exp(p) = {I}, we have M n A = {I}. We will show that Ga(A) = MA. Let 
gEM. By Proposition 32.1, we may write 9 = exp(Z)k, where Z E P and 
k E K. If a E A, then a commutes with exp(Z)k. We will show that any a E A 
commutes with exp(Z) and with k individually. From this we will deduce that 
exp(Z) E A and k E M. 
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By Theorem 4.2, Ge has a faithful complex representation Ge ---7 GL(V). 
We extend this to a representation of Gc and 9c. Giving V aGe-invariant 
inner product and choosing an orthonormal basis, Ge is realized as a group of 
unitary matrices. Therefore ge is realized as a Lie algebra of skew-Hermitian 
matrices, and since ip ~ ge, the vector space p consists of Hermitian matrices. 

We note that O(Z) = -Z, O(a) = a-I, and O(k) = k. Thus if we 
apply the automorphism 0 to the identity aexp(Z)k = exp(Z)ka, we get 
a-I exp( -Z)k = exp( -Z)ka-1 • Since this is true for all a E A, both exp( -Z)k 

and exp(Z)k are in Ga(A). It follows that exp(2Z) = (exp(Z)k) (exp( -Z)kr1 

is in Ga(A). Since exp(2Z) commutes with A, by Lemma 32.1, Z commutes 
with the elements of A (in our matrix realization) and hence ad(Z)a = O. 
Because a is a maximal Abelian subspace of p, it follows that Z E a. Also, 
k centralizes A since exp(Z)k and exp(Z) both do, and so exp(Z) E A and 
kEM. 

It is clear that TM = (T n K)O is contained in Ga(A) and K, so TM is a 
torus in M. Let T5w be a maximal torus of M containing TM. Then AeT5w is 
a connected Abelian subgroup of Ga(A) containing T = AeTM, and since T 
is a maximal torus of Ge we have AeT5w = T. Therefore T5w c T. It is also 
contained in K and connected. This proves that TM = T5w is a maximal torus 
ofM. D 

We say that a quasicharacter of A ~ (lR~ Y is a rational character if it can 
be extended to a complex analytic character of Ac = exp(ac). We will denote 
by X*(A) the group of rational characters of A. We recall from Chapter 15 
that X*(Ae) is the group of all characters of the compact torus Ae. 

Proposition 32.4. Every rational character of A has the form 

(32.2) 

The groups X*(A) and X*(Ae) are isomorphic: extending a rational character 
of A to a complex analytic character of Ac and then restricting it to Ae gives 
every character of Ae exactly once. 

Proof. Obviously (32.2) is a rational character. Extending any rational char
acter of A to an analytic character of Ac and then restricting it to Ae gives 
a homomorphism X*(A) ---7 X*(Ae), and since the characters of X*(Ae) are 
classified by Proposition 15.4, we see that every rational character has the 
form (32.2) and that the homomorphism X*(A) ---7 X*(Ae) is an isomor
phism. D 

Since the compact tori T and Ae satisfy T ::J Ae, we may restrict characters 
of T to Ae. Some characters may restrict trivially. In any case, if a E X* (T) 
restricts to (3 E X*(A) = X*(Ae), we write al{3. Assuming that a and hence 
{3 are not the trivial character, as in Chapter 19 we will denote by X{3 the 
(3-eigenspace of Ton gc. We will also denote by x~el the a-eigenspace of Ae 
on gc. Since X*(Ae) = X*(A), we may write 
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x~el = {X E {Ie I Ad(a)X = a(a)X for all a E A}. 

We will see by examples that X~l may be more than one-dimensional. How
ever, X{3 is one-dimensional by Proposition 19.5, and we may obviously write 

X:;:l = EB X{3. 
{3 E X·(T) 

{3la 

Let ifJ be the set of (3 E X* (T) such that X{3 =I- 0, and let ifJrel be the set of 
a E X*(A) such that X~l =I- O. 

If (3 E X*(T), let d(3 : t ---+ C be the differential of (3. Thus 

d(3(H) = :l(etH ) It=o' HE t. 

As in Chapter 19, the linear form d(3 is pure imaginary on the Lie algebra 
tM EEl ia of the compact torus T. This means that d(3 is real on a and purely 
imaginary on tM. 

If a E ifJrel, the a-eigenspace x~el can be characterized by either the con
dition (for X E X~l) 

Ad(a)X = a(a)X, aE A, 

or 
[H, X] = da(H) X, HE a. (32.3) 

Let c : {Ie ---+ {Ie denote the conjugation with respect to {I. Thus, if 
Z E {Ie is written as X + iY, where X, Y E {I, then c(Z) = X - iY so 
{I = {Z E {Ie I c(Z) = Z}. Let m be the Lie algebra of M. Thus, the Lie 
algebra of Ga(A) = M A is m EEl a. It is the O-eigenspace of A on {I, so 

{Ie = C(m EEl a) EEl EB Xa (32.4) 
aE~rel 

is the decomposition into eigenspaces. 

Proposition 32.5. (i) In the context of Proposition 32.2, if a E ifJrel, then 
X~l n {I spans X~l. 
(ii) If 0 =I- X E ~el n {I, then O(X) E X~~ n {I and [X,O(X)] =I- O. 
(iii) The space x~el n {I is invariant under Ad(MA). 
(iv) If a, a' E !Prel, and if Xa E X~l, X a, E X~l, then 

[X X] { C(m EEl a) if a' = -a, 
a, a' E ., 

Xa+a ' if a + a E !Prel, 

while [Xa,Xa,] = 0 if a' =I- -a and a + a' ¢ ifJ. 

This is in contrast with the situation in Chapter 19, where the spaces Xa did 
not intersect the Lie algebra of the compact Lie group. 
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Proof. We show that we may find a basis Xl,'" ,Xh of the complex vector 
space x~el such that Xi E g. Suppose that Xl,'" ,Xh are a maximal linearly 
independent subset of x~el such that Xi E g. If they do not span x~el, let 
o -=1= Z E x~el be found that is not in their span. Then c( Z) E x~el since 
applying c to (32.3) gives the same condition, with Z replaced by c(Z). Now 

Hz + c(Z)), iI (Z - c( Z)) , 

are in g, and at least one of them is not in the span of XI,' .. ,Xi since Z is not. 
We may add this to the linearly independent set XI,'" ,Xh, contradicting 
the assumed maximality. This proves (i). 

For (ii), let us show that () maps X~l to X~~. Indeed, if X E x~el, then for 
a E A we have Ad(a)X = a(a)Xa. Since ()(a) = a-I, replacing a by its inverse 
and applying (), it follows that Ad(a)O(X) = a(a- l ) ()(X). Since the group law 
in X*(A) is written additively, (-a)(a) = a(a- l ). Therefore ()(X) EX-a' 

Since () and c commute, if X E g, then ()(X) E g. 
The last point we need to check for (ii) is that if 0 -=1= X E x~el n g, then 

[X, ()(X)] -=1= O. Since Ad : Gc --+ GL(gc) is a real representation of a compact 
group, there exists a positive definite symmetric bilinear form B on gc that is 
Gc-invariant. We extend B to a symmetric ((>bilinear form B : gc x gc --+ C 
by linearity. We note that Z = X + ()(X) E t since ()(Z) = Z and Z E g. 
In particular Z E gc. It cannot vanish since X and ()(X) lie in Xa and X_a, 
which have a trivial intersection. Therefore B(Z, Z) -=1= O. Choose H E a such 
that da(H) -=1= O. We have 

B(X + ()(X), [H, X - ()(X)]) = B(Z, da(H)Z) -=1= O. 

On the other hand, by (10.1) this equals 

-BOX + ()(X), X - ()(X)],H) = 2B([X, ()(X)], H). 

Therefore [X, ()(X)] -=1= O. 
For (ii), we will prove that X~l is invariant under Gc(A), which contains 

M. Since 9 is obviously an Ad-invariant real subspace of gc it will follow that 
x~el n 9 is Ad(M)-invariant. Since Gc(A) is connected by Theorem 16.6, it 
is sufficient to show that x~el is invariant under ad(Z) when Z is in the Lie 
algebra centralizer of a. Thus, if HE a we have [H, Z] = O. Now if X E X~l 
we have 

[H, [Z,X]] = [[H, Z],X] + [Z, [H,X]] = [Z,da(H)X] = da(H)[Z, X]. 

Therefore Ad(Z)X = [Z,X] E x~el. 
Part (iv) is entirely similar to Proposition 19.3 (ii), and we leave it to the 

reader. 0 

The roots in if> can now be divided into two classes. First, there are those 
that restrict nontrivially to A and hence correspond to roots in if>rel. On the 
other hand, some roots do restrict trivially, and we will show that these cor
respond to roots of the compact Lie group M. Let m = Lie(M). 
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Proposition 32.6. Suppose that f3 E P. If the restriction of f3 to A is trivial, 
then Xf3 is contained in the complexijication of m and f3 is a root of the compact 
group M with respect to TM. 

Proof. We show that Xf3 is O-stable. Let X E Xf3. Then 

[H, X] = df3(H)X, HE t. (32.5) 

We must show that O(X) has the same property. Applying 0 to (32.5) gives 

[O(H),O(X)] = df3(H) O(X), HE t. 

If HE tM, then O(H) = H and we have (32.5) with O(X) replacing X. On the 
other hand, if HE in we have O(H) = -H, but by assumption df3(H) = 0, so 
we have (32.5) with O(X) replacing X in this case, too. Since t = tM EB in, we 
have proved that Xf3 is O-stable. 

If a E A and X E Xf3, then Ad(a)X is trivial, so a commutes with the 
one-parameter subgroup t f-----+ exp(tX) , and therefore exp(tX) is contained 
in the centralizer of A in Gc. This means that exp(tX) is contained in the 
complexification of the Lie algebra of CG(A), which by Proposition 32.3 is 
q m EB n). Since 0 is + 1 on m and -1 on n, and since we have proved that Xf3 
is O-stable, we have X E em. D 

Now let V = IR 0 X*(T), VM = IR 0 X*(TM), and Vre! = IR 0 X*(A) = 
IR 0 X*(Ac). Since T = TMAc by Proposition 32.2, we have V = VM EB Vre!. 

In particular, we have a short exact sequence 

° --+ VM --+ V --+ Vre! --+ 0. (32.6) 

Let PM be the root system of M with respect to TM. The content of Propo
sition 32.6 is that the roots of Gc with respect to T that restrict trivially to 
A are roots of M with respect to TM. 

We choose on V an inner product that is invariant under the absolute Weyl 
group NGJT)/T. This induces an inner product on Vre! and, if a is a root, 
there is a reflection So. : Vre! --+ Vre! given by (19.1). 

Proposition 32.7. In the context of Proposition 32.2, let a E Pre!' Let Aa C 

A be the kernel of a, let Go. C G be its centmlizer, and let go. C g be the 
Lie algebm of Ga. There exist Xa E Xa n g such that if X-a = -O(Xa) and 
Ha = [Xa, X-a], then da(Ha) = 2. We have 

(32.7) 

There exists a Lie group homomorphism ia : SL(2, 1R) --+ Go. such that the 
differential dia : s[(2, 1R) --+ go. maps 

(1 -1) f-----+ Ha, (~ ~) f-----+ X a, (~~) f-----+ X-a. (32.8) 

The Lie group homomorphism ia extends to a complex analytic homomor
phism SL(2, C) --+ Grc. 
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Proof. Choose 0 I- Xa. E Xa.. By Proposition 32.5, we may choose Xa. E £I, and 
denoting X_a. = -(}(Xa ) we have X_a. E X_a. n £I and Ha. = [Xa., X-a.] I- o. 
We claim that Ha. E a. Observe that Ha. E £I since Xa. and X_a. are in £I, and 
applying () to Ha. gives [X-a.,Xa.] = -Ha.. Therefore Ha. E p. Now if HE a 
we have 

[H, Ha.] = [[H, Xa.], X-a.] + [Xa., [H, X-a.]] = 

[do:(H)Xa., X-a.] + [Xa., -do:(H)X_a.] = O. 

Since a is a maximal Abelian subspace of 1', this means that Ha. Ea. 
Now iHa. E iI', Z = Xa. - X_a. E t, and Y = i(Xa. + X_a.) E ip are all 

elements of £Ie = t EB ip. We have 

and 
[Y,Z] = 2iHa.. 

Now do:(Ha.) I- O. Indeed, if do:(Ha.) = 0, then ad(Z)2y = 0 while ad(Z)Y I-
0, contradicting Lemma 19.1, since Z E t. After replacing Xa. by a positive 
multiple, we may assume that do:(H) = 2. 

Now at least we have a Lie algebra homomorphism 5((2, JR) --+ £I with the 
effect (32.8), and we have to show that it is the differential of a Lie group 
homomorphism SL(2, JR) --+ G. We begin by constructing the corresponding 
map SU(2) --+ Ge. Note that iHa., Y, and Z are all elements of £Ie, and so 
we have a homomorphism 5u(2) --+ t that maps 

By Theorem 14.2, there exists a homomorphism SU(2) --+ Ge . Since SL(2, q 
is the analytic complexification of SU(2), and Ge is the analytic complexifi
cation of Ge , this extends to a complex analytic homomorphism SL(2, q --+ 
Ge. The restriction to SL(2, JR) is the sought-after embedding. 

Lastly, we note that Xa. and X_a. centralize Aa. since [H, X±a.] = 0 for H 
in the kernel aa. of do: : a --+ JR, which is the Lie algebra of Aa.. Thus, the 
Lie algebra they generate is contained in £la., and its exponential is contained 
in Ga.. 0 

Theorem 32.1. In the context of Proposition 32.7, the set <Prel of restricted 
roots is a root system. If 0: E <Prel, there exists Wa. E K that normalizes A and 
that induces on X*(A) the reflection Sa.. 

Proof. Let 

We note Wa. E K. Indeed, it is the exponential of 
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since 

exp (t ( -1 1)) = C~~~~~~) ~~~~~n . 
Now Wa centralizes Aa by Proposition 32.7. Also 

in SL(2,~), and applying ia gives Ad(wa)Ha = -Ha. Since a is spanned by 
the codimension 1 subspace aa and the vector Ha, it follows that (in its action 
on Vrel) Wa has order 2 and eigenvalue -1 with multiplicity 1. It therefore 
induces the reflection Sa in its action on Vrel. 

Now the proof that <Prel is a root system follows the structure of the proof 
of Theorem 19.2. The existence of the simple reflection Wa in the Weyl group 
implies that Sa preserves the set <P. 

For the proof that if a and (3 are in <P then 2 (a, (3) / (a, a) E Z, we adapt 
the proof of Proposition 19.8. If A E X*(Ac), we will denote (in this proof 
only) by X>. the A-eigenspace of Ac in the adjoint representation. We normally 
use this notation only if A =1= 0 is a root. If A = 0, then X>. is the complexified 
Lie algebra of Gc(A); that is, C(m EB a). Let 

W = EBXi3+ka ~ Xc· 
kEZ 

We claim that W is invariant under ia (SL(2, IC)). To prove this, it is sufficient 
to show that it is invariant under dia (.5((2, IC)), which is generated by Xa and 
X_a, since these are the images under ia of a pair of generators of 5[(2, C) by 
(32.8). These are the images of dia and ia, respectively. From (32.7), we see 
that ad(Xa)X,,! E X"!+2a and ad(X_a)X,,! E X"!-2a, proving that ia(SL(2, IC)) 
is invariant. In particular, W is invariant under Wa E SL(2, IC). Since ad( wa) 
induces Sa on VreJ, it follows that the set {(3 + kalk E Z} is invariant under 
Sa and, by (19.1), this implies that 2 (a, (3) / (a,a) E Z. 0 

The group Wrel = Nc(A)/Gc(A) is the relative Weyl group. In Theo
rem 32.1 we constructed simple reflections showing that Wrel contains the 
abstract Weyl group associated with the root system <Prel. An analog of The
orem 25.1 is true - Wrel is generated by the reflections and hence coincides 
with the abstract Weyl group. We note that by Theorem 32.1 the generators 
of Wrel can be taken in K, so we may write Wrel = NK(A)/GK(A). 

Although we have proved that <Prel is a root system, we have not proved 
that it is reduced. In fact, it may not be - we will give examples where the type 
of <Prel is BGq and is not reduced! In Chapter 21, except for Proposition 21.17, 
it was assumed that the root system was reduced. Proposition 21.17 contains 
all we need about nonreduced root systems. 
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The relationship between the three root systems 1Jj, IJjM, and IJjrel can be 
expressed in a "short exact sequence of root systems," 

o ----+ IJj M ----+ IJj ----+ IJj rei ----+ 0, (32.9) 

embedded in the short exact sequence (32.6) of Euclidean spaces. Of course, 
this is intended symbolically rather than literally. What we mean by this 
"short exact sequence" is that, in accord with Proposition 32.6, each root of 
M can be extended to a unique root of Gc ; that the roots in IJj that are not 
thus extended from M are precisely those that restrict to a nonzero root in 
IJjrel; and that every root in IJjrel is a restricted root. 

Proposition 32.8. If 0 E IJjtel is a simple positive root, then there exists a 
(3 E 1Jj+ such that (3 is a simple positive root and (310. Moreover, if (3 E 1Jj+ is 
a simple positive root whose restriction to A is nonzero, then its restriction is 
a simple root of IJjtel. 

Proof. Find a root 'Y E IJj whose restriction to A is o. Since we have chosen the 
root systems compatibly, 'Y is a positive root. We write it as a sum of positive 
roots: 'Y = E (3i. Each of these restricts either trivially or to a relative root in 
IJjtejl and we can write 0 as the sum of the nonzero restrictions of (3i, which are 
positive roots. Because 0 is simple, exactly one restricted (3i can be nonzero, 
and taking (3 to be this (3i, we have (310. 

The last statement is clear. 0 

We see that the restriction map induces a surjective mapping from the set 
of simple roots in IJj that have nonzero restrictions to the simple roots in IJjrel. 

The last question that needs to be answered is when two simple roots of IJj 

can have the same nonzero restriction to IJjrel. 

Proposition 32.9. Let (3 E 1Jj+. Then -()((3) E 1Jj+. The roots (3 and -()((3) 
have the same restriction to A. If (3 is a simple positive root, then so is -()((3) , 
and if 0 is a simple root of IJjrel and (3, (3' are simple roots of IJjrel both restrict
ing to 0, then either (3' = (3 or (3' = -()((3). 

Proof. The fact that (3 and -()((3) have the same restriction follows from 
Proposition 32.5 (ii). It follows immediately that -()((3) is a positive root 
in 1Jj. The map (3 f---t -()((3) permutes the positive roots, is additive, and 
therefore preserves the simple positive roots. 

Suppose that 0 is a simple root of IJjrel and (3, (3' are simple roots of IJjrel 

both restricting to o. Since (3 - (3' has trivial restriction to Ac, it is O-invariant. 
Rewrite (3 - (3' = 0((3 - (3') as (3 + ( - 0((3)) = (3' + (0(-(3')). This expresses 
the sum of two simple positive roots as the sum of another two simple positive 
roots. Since the simple positive roots are linearly independent by Proposition 
21.17, it follows that either (3' = (3 or (3' = -()((3). 0 
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The symmetry (3 f-----t -(}((3) of the Weyl group is reflected by a symmetry 
of the Dynkin diagram. It may be shown that if Gc is simply-connected, this 
symmetry corresponds to an outer automorphism of Ge. Only the Dynkin 
diagrams of types An, Dn, and E6 admit nontrivial symmetries, so unless the 
absolute root system is one of these types, (3 = -(}((3). 

The relationship between the three root systems in the "short exact se
quence" (32.9) may be elucidated by the "Satake diagram," which we will 
now discuss. Tables of Satake diagrams may be found in Table VI on p. 532 
of Helgason [56], p. 124 of Satake [108], or in Table 4 on p. 229 of Onishchik 
and Vinberg [121]. The diagrams in Tits [119] look a little different from the 
Satake diagram but contain the same information. 

In addition to the Satake diagrams we will work out, a few different ex
amples are explained in Goodman and Wallach [47]. 

Knapp [83] contains a different classification based on tori (Cartan sub
groups) that (in contrast with our "maximally split" torus T), are maximally 
anisotropic, that is, are split as little as possible. Knapp also discusses the re
lationships between different tori by Cayley transforms. In this classification 
the Satake diagrams are replaced by "Vogan diagrams." 

In the Satake diagram, one starts with the Dynkin diagram of .p. We 
recall that the nodes of the Dynkin diagram correspond to simple roots of Gc • 

Those corresponding to roots that restrict trivially to A are colored dark. 
By Proposition 32.6, these correspond to the simple roots of the anisotropic 
kernel M, and indeed one may read the Dynkin diagram of M from the Satake 
diagram simply by taking the colored roots. 

In addition to coloring some of the roots, the Satake diagram records the 
effect of the symmetry (3 f-----t -(}((3) of the Dynkin diagram. In the "exact 
sequence" (32.9), corresponding nodes are mapped to the same node in the 
Dynkin diagram of .prel. We will discuss this point later, but for examples of 
diagrams with nontrivial symmetries see Figures 32.3 (right) and 32.5. 

As a first example of a Satake diagram, consider SL(3, !HI). The Satake 
diagram is ~. The symmetry (3 f-----t -(}((3) is trivial. From this Satake 
diagram, we can read off the Dynkin diagram of M ~ SU(2) x SU(2) x SU(2) 
by erasing the uncolored dots to obtain the disconnected diagram. • • 
of type Al x Al X AI. 

On the other hand, in this example, the relative root system is of type A2 • 

We can visualize the "short exact sequence of root systems" as in Figure 32.1, 
where we have indicated the destination of each simple root in the inclusion 
.pM ---* .p and the destinations of those simple roots in .p that restrict non
trivially in the relative root system. 

As a second example, let F = JR., and let us consider the group G = 

SO(n, 1). In this example, we will see that G has real rank 1 and that the 
relative root system of G is of type AI. Groups of real rank 1 are in many 
ways the simplest groups. Their symmetric spaces are direct generalizations 
of the Poincare upper half-plane, and the symmetric space of SO(n, 1) is of-
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-------+ 

• -------+ 

-------+ 

· -------. 

o --_ .. q)M---+" q) --_I q)rel---+" 0 
Al X Al X Al A5 A2 

Fig. 32.1. The "short exact sequence of root systems" for SL(3,H). 

ten referred to as hyperbolic n-space. (It is n-dimensional.) We have seen in 
Example 31.7 that this symmetric space can be realized as a hyperboloid. 

We will see, consistent with our description of 8L( n, 18I) as a "fattened up" 
version of 8L(n,lR), that 80(n, l) can be seen as a "fattened up" version of 
80(2,1). 

We originally defined G = 80(n, 1) to be the set of 9 E GL(n + 1, lR) such 
that gJtg = J, where J = J1 and 

However, we could just as easily take J = J2 and 

since this symmetric matrix also has eigenvalues 1 with multiplicity nand -1 
with multiplicity -1. Thus, if 

u = (1/../2 I n - 1 -1/../2) , 
1/../2 1/../2 

then u E O(n + 1) and uJI tu = h. It follows that if gJl tg = J1, then h = 
ugu-1 satisfies h J2 th = h. The two orthogonal groups are thus equivalent, 
and we will take J = h in the definition of O( n, 1). Then we see that the Lie 
algebra of G is 
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{GJy ~:) IT~-'T}. 
Here a is a 1 x 1 block, x is 1 x (n - 1), y is (n - 1) xl, and T is (n - 1) x (n - 1) . 
The middle block is just the Lie algebra of SO(n -1), which is the anisotropic 
kernel. The relative Weyl group has order 2, and is generated by J2 • The 
Satake diagram is shown in Figure 32.2 for the two cases n = 9 and n = 10. 

80(11,1) (Type DlI) 80(10,1) (Type BlI) 

Fig. 32.2. Satake diagrams for the rank 1 groups SO(n, 1). 

A number of rank 1 groups, such as SO(n, 1) can be found in Cartan's list. 
Notably, among the exceptional groups, we find Type F I I. Most of these can 
be thought of as "fattened up" versions of SL(2, JR) or SO(2, 1), as in the two 
cases above. Some rank 1 groups have relative root system of type BCl . 

At the other extreme, let us consider the groups SO(n, n) and SO(n + 
1, n - 1). The group SO (n, n) is split. This means that the anisotropic kernel 
is trivial and that the absolute and relative root systems P and Prel coincide. 
We can take G = {g E GL(2n, JR) I 9 Pg = J}, where 

We leave the details of this case to the reader. The Satake diagram is shown 
in Figure 32.3 when n = 6. 

1 
80(6,6) (Type DI, split) 80(7,5) (Type DI, quasisplit) 

Fig. 32.3. Split and quasisplit even orthogonal groups. 

A more interesting case is SO(n + 1, n - 1). This group is quasisplit. This 
means that the anisotropic kernel M is Abelian. Since M contains no roots, 
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there are no colored roots in the Dynkin diagram of a quasisplit group. A split 
group is quasisplit, but not conversely, as this example shows. This group 
is not split since the relative root systems ifJ and ifJrel differ. We can take 
G = {g E GL(2n, 1R) I gJtg = J} where now 

/ 1 1\ 

1 

J= 
1 

1 
1 

\ 1 II 

We can take A to be the group of matrices of the form 

/ tl 1\ 

tn-l 

1 
1 

tn-~l 

\ 
rl 

1 II 

For n = 5, the Lie algebra of 80(6, 4) is shown in Figure 32.4. For n = 6, the 
8atake diagram of 80(7,5) is shown in Figure 32.3. 

The circling of the X45 and X46 positions in Figure 32.4 is slightly mis
leading because, as we will now explain, these do not correspond exactly to 
roots. Indeed, each of the circled coordinates Xl2, X23, and X34 corresponds to 
a one-dimensional subspace of 9 spanning a space Xap where i = 1,2,3 are 
the first three simple roots in ifJ. In contrast, the root spaces Xa4 and Xa5 
are divided between the X45 and X46 positions. To see this, the torus T in 
Gc C Gc consists of matrices 

t= 
COS(t5) sin(t5) 

- sin(t5) COS(t5) 
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h XI4 XI5 XI6 X17 XI8 XI9 0 

X2l X24 X25 X26 X27 X28 0 -X19 

x3I X32 t3 x37 0 -X28 -X18 

X4I X42 X43 0 -X37 -X27 -x17 

X5I x52 x53 x54 0 t5 -X45 -X35 -X25 -X15 

X6I X62 X63 X64 -t5 0 -X46 -X36 -X26 -X16 

x7l X72 x73 0 -X54 -x64 -t4 -x34 -X24 -xl4 

X8I X82 0 -x73 -X53 -X63 -X43 -h -X23 -X13 

X91 0 -X82 -x72 -x52 -x62 -X42 -X32 -t2 -x12 

0 -~I-~I-~I-~I-~I-~I-~I-~I -h 

Fig. 32.4. The Lie algebra of quasisplit SO(6,4). 

with ti E R The simple roots are 

al (t) = ei(h -t2 ), a2(t) = ei (t2 -t3 ), 

and 

The eigenspaces XC"4 and XQ5 are spanned by XQ4 and XQ5 , where 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 

X Q4 = 0 0 0 0 0 -1 0 0 
0 0 0 0 0 -~ 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

and its conjugate is X Q5 • 

The involution () is transpose-inverse. In its effect on the torus T, ()(rl) 
does not change tb t2, t3, or t4 but sends t5 t----t -t5. Therefore -() inter
changes the simple roots a4 and a5, as indicated in the Satake diagram in 
Figures 32.3 and 32.4. 
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As a last example, we look next at the Lie group SU(p, q), where p > q. 
We will see that this has type BCq • Recall from Chapter 20 that the root 
system of type BCq can be realized as all elements of the form 

where ei are standard basis vectors of JRn • See Figure 20.5 for the case q = 2. 
We defined U(p, q) to be 

{g E GL(p+q,q IgJtg = J}, 

where J = JI, but (as with the group O(n, 1) discussed above) we could just 
as well take J = J2 , where now 

This has the advantage of making the group A diagonal. We can take A to be 
the group of matrices of the form 

/ tl 1\ 

tq 
I p _ q 

t 1-1 

\ rl 
'q II 

Now the Lie algebra of SU(p, q) consists of 

Considering the action of the adjoint representation, the roots tif;l appear in 

a, the roots titj and t~ appear in b, the roots tiltjl and ti2 appear in c, the 
roots ti appear in x, and the roots ti 1 appear in y. Identifying JR®X* (A) = JRn 
in such a way that the rational character ti corresponds to the standard basis 
vector ei, we see that !Prel is a root system of type BCq • The Satake diagram 
is illustrated in Figure 32.5. 

We turn now to the Iwasawa decomposition for G admitting a Cartan 
decomposition as in Hypothesis 31.1. The construction is rather similar to 
what we have already done in Chapter 29. 



SU(p,q), p> q 

Type AlII 

p = 8,q = 3 

q nodes 
,-___ A'-_-----., 

y 
q nodes 
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p - q -1 nodes 

Fig. 32.5. The Satake diagram of SU(p, q). 

Proposition 32.10. Let G, Ge , K, g, and () satisfy Hypothesis 31.1. Let M 
and A be as in Propositions 32.2 and 32.3. Let iP and iPrel be the absolute and 
relative root systems, and let iP+ and iP~1 be the positive roots with respect to 
compatible orders. Let 

n = E9 (Xa ng). 
aE~t.l 

Then n is a nilpotent Lie algebra. It is the Lie algebra of a closed subgroup 
N of G. The group N is normalized by M and by A. We may embed the 
complexification Gc of G into GL(n, q for some n in such a way that G ~ 
GL(n,lR), Ge ~ U(n), K ~ O(n), N is upper triangular, and ()(g) = tg-I. 

Proof. As part of the definition of semisimplicity, it is assumed that the 
semisimple group G has a faithful complex representation. Since we may em
bed GL( n, q in GL(2n, lR), it has a faithful real representation. We may as
sume that G ~ GL(V), where V is a real vector space. We may then assume 
that the complexification Gc ~ GL(Vc), where Vc = C® V is the complexified 
vector space. 

The proof that n is nilpotent is identical to Proposition 29.4 but uses 
Proposition 32.5 (iv) instead of Proposition 19.3 (ii). By Lie's Theorem 29.1, 
we can find an lR-basis VI,··· ,Vn of V such that each X E n is upper triangular 
with respect to this basis. It is nilpotent as a matrix by Proposition 29.5. 

Choose a Ge-invariant inner product on Vc (that is, a positive definite Her
mitian form ( , )). It induces an inner product on Vi that is, its restriction to 
V is a positive definite lR-bilinear form. Now applying Gram-Schmidt orthog
onalization to the basis VI, ... ,Vn , we may assume that they are orthonormal. 
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This does not alter the fact that n consists of upper triangular matrices. It 
follows by imitating the argument of Theorem 29.2 that N = exp(n) is a Lie 
group with Lie algebra n. The group M normalizes N because its Lie algebra 
normalizes the Lie algebra of N by Proposition 19.3 (iii), so the Lie algebra 
of N is invariant under Ad(M A). 

We have G ~ GL(n, lR) since G stabilizes V. It is also clear that Ge ~ U(n) 
since Vi are an orthonormal basis and the inner product ( , ) was chosen to 
be Ge-invariant. Since K ~ G n Ge , we have K ~ O(n). 

It remains to be shown that O(g) = tg-l for g E G. Since G is assumed to 
be connected in Hypothesis 31.1, it is sufficient to show that O(X) = _t X for 
X E g, and we may treat the cases X E t and X E P separately. If X E t, then 
X is skew-symmetric since K ~ O(n). Thus O(X) = X = _tX. On the other 
hand, if X E p, then iX E ge, and iX is skew-Hermitian because Ge ~ U(n). 
Thus X is symmetric, and O(X) = -X = _tX. D 

Since M normalizes N, we have a Lie subgroup B = MAN of G. We may 
call it the (standard) lR-Borel subgroup of G. (If G is split or quasisplit, one 
may omit the "lR-" from this designation.) Let Bo = AN. 

Theorem 32.2. (Iwasawa decomposition) With notations as above, every 
element of g E G can be factored uniquely as bk, where b E Bo and k E K, or 
as avk where a E A, v E N, and k E K. The multiplication map AxNxK ---+ 
G is a diffeomorphism. 

Proof. This is nearly identical to Theorem 29.3, and we mostly leave the proof 
to the reader. We consider only the key point that 9 = a+n+t It is sufficient 
to show that gl(: = e a + en + e t. We have tc ~ e a + e m ~ e a + e t, so it 
is sufficient to show that en + e t contains X(3 for each (3 E P. If (3 restricts 
trivially to A, then X(3 ~ em by Proposition 32.6, so we may assume that 
(3 restricts nontrivially. Let 0: be the restriction of (3. If (3 E P+, then X(3 ~ 
Xa C en. On the other hand, if (3 E P- and X E X(3, then X + O(X) E e t 
and O(X) E X_(3 ~ X-a C en. In either case, X(3 C e t + en. D 

Our next goal is to show that the maximal Abelian subspace a is unique 
up to conjugacy. First, we need an analog of Proposition 22.3 (ii). Let us say 
that H E P is regular if it is contained in a unique maximal Abelian subspace 
of p and singular if it is not regular. 

Proposition 32.11. (i) If H is regular and Z E P satisfies [H, Z] = 0, then 
Z E a. 
(ii) An element H E a is singular if and only if do:(H) = ° for some 0: E Prel. 

Proof. The element H is singular if and only if there is some Z E P - a 
such that [Z, H] = 0, for if this is the case, then H is contained in at least 
two distinct maximal Abelian subspaces, namely a and any maximal Abelian 
subspace containing the Abelian subspace lRZ + lRH. Conversely, if no such 
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Z exists, then any maximal Abelian subgroup containing H must obviously 
coincide with Cl. 

Now (i) is clear. 
We also use this criterion to prove (ii). Consider the decomposition of 

Z E P in the eigenspace decomposition (32.4): 

Z=Zo+ L Za, 
aEPrel 

We have 

0= [H, Zl = [H, Zol + L [H, Zal = L da(H)Za. 
aEPrel aEPrel 

Thus, for all a E <Prel, we have either da(H) = 0 or Za = O. So if da(H) =1= 0 
for all H then all Za = 0 and Z = Zo E C(m EB Cl). Since Z E p, this implies 
that Z E Cl, and so H is regular. On the other hand, if da = 0 for some a, 
then we can take Z = Za - O(Za) for nonzero Za E x~el n g and [Z, Hl = 0, 
Z E P - Cl. D 

Theorem 32.3. Let Cll and Cl2 be two maximal Abelian subspaces of p. Then 
there exists a k E t such that Ad(k)Cll = Cl2. 

Thus, the relative root system does not dependent in any essential way on the 
choice of Cl. The argument is similar to the proof of Theorem 16.4. 

Proof. By Proposition 32.11 (ii), Cll and Cl2 contain regular elements HI 
and H2. We will show that [Ad(k)Hl, H2l = 0 for some k E t. Choose 
an Ad-invariant inner product (, ) on g, and choose k E K to maximize 
(Ad(k)Hl,H2)' If Z E t, then since (Ad(etZ )Hl,H2) is maximal when t = 0, 
we have 

0= :t (Ad(etz)Ad(k)Hl' H2) = - ([Ad(k)Hl, z], H2) . 

By Proposition 10.2, this equals (Z, [Ad(k)Hl' H2l). Since both Ad(k)Hl and 
H2 are in p, their bracket is in t, and the vanishing of this inner product for 
all Z E t implies that [Ad(k)Hl' H2l = O. 

Now take Z = Ad(k)Hl in Proposition 32.11 (i). We see that Ad(k)Hl E 
Cl2, and since both Ad(k)Hl and H2 are regular, it follows that Ad(k)Cll = Cl2. 

D 

Theorem 32.4. With notations as above, G = K AK. 

Proof. Let g E G. Let p = gO(g)-l = gtg. We will show that p E exp(p). 
By Proposition 32.1, we can write p = exp(Z) ko, where Z E P and ko E K, 
and we want to show that ko = 1. By Proposition 32.10, we may embed Gc 
into GL(n, q in such a way that G s; GL(n, IR), Gc s; U(n), K s; O(n), 
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and O(g) = tg-l. In the matrix realization, p is a positive definite symmetric 
matrix. By the uniqueness assertion in Theorem 13.4, it follows that ko = 1 
and p = exp(Z). 

Now, by Theorem 32.3, we can find k E K such that Ad(k)Z = HEn. It 
follows that kpk-1 = a2 , where a = exp(Ad(k)H/2) EA. Now 

(a-1kg)O(a-1kg)-1 = a-1kgO(g)-lk-la = a-1kpk-1a-1 = 1. 

Therefore a-1kg E K, and it follows that g E KaK. o 

Finally, there is the Bruhat decomposition. Let B be the IR-Borel subgroup 
of G. If wE W, let W E NG(A) represent W. Clearly, the double coset BwB 
does not depend on the choice of representative w, and we denote it BwE. 

Theorem 32.5. (Bruhat decomposition) We have 

G= U BwE. 
WEWrel 

Proof. Omitted. See Helgason [56], p. 403. o 

EXERCISES 

Exercise 32.1. Show that C ® Matn(lHl) e:! Mat2n(C) as C-algebras and that the 
composition 

takes values in R 

Exercise 32.2. Compute the Satake diagrams for SO(p, q) with p ~ q for all p 
and q. 

Exercise 32.3. Prove an analog of Theorem 25.1 showing that Wrel is generated 
by the reflections constructed in Theorem 32.1. 
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Embeddings of Lie Groups 

In this chapter, we will contemplate how Lie groups embed in one another. 
Our aim is not to be systematic or even completely precise but to give the 
reader some tools for thinking about the relationships between different Lie 
groups. This Chapter is thus different in style and purpose than the others in 
this book. 

If G is a Lie group and H a subgroup, then there exists a chain of Lie 
subgroups of G, 

G = Go :) G1 :) ... :) Gn = H 

such that each Gi is maximal in Gi - 1 . Dynkin [38], [36], [37] classified the 
maximal subgroups of semisimple complex analytic groups. Thus, the lattice 
of semisimple complex analytic subgroups of such a group is known. 

Let Kl and K2 be compact connected Lie groups, and let G1 and G2 be 
their complexifications. Given an embedding Kl ---+ K 2, there is a unique 
analytic embedding G1 ---+ G2 • The converse is also true: given an analytic 
embedding G1 ---+ G2 , then Kl embeds as a compact subgroup of G2 . How
ever any compact subgroup of G2 is conjugate to a subgroup of K2 (Theorem 
31.2), so Kl is conjugate to a subgroup of K 2 . Thus, embeddings of compact 
connected Lie groups and analytic embeddings of their complexifications are 
essentially the same thing. To be definite, let us specify that in this chapter 
we are talking about analytic embeddings of complex analytic groups, with 
the understanding that the ideas will be applicable in other contexts. By a 
"torus," we therefore mean a group analytically isomorphic to (tC)n for some 
n. We will allow ourselves to be a bit sloppy in this chapter, and we will 
sometimes write O(n) when we should really write O(n, C). 

So let us start with embeddings of complex analytic Lie groups. A useful 
class of complex analytic groups that is slightly larger than the semisimple 
ones is the class of reductive complex analytic groups. A complex analytic 
group G (connected, let us assume) is called reductive if its linear analytic 
representations are completely reducible. For example, GL(n, C) is reductive, 
though it is not semisimple. 
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Examples of groups that are not reductive are parabolic subgroups. Let G 
be the complexification of the compact connected Lie group K, and let B be 
the Borel subgroup described in Theorem 29.2. A subgroup of G containing B 
is called a standard parabolic subgroup. (Any conjugate of a standard parabolic 
subgroup is called parabolic.) 

As an example of a group that is not reductive, let P C GL(n, q be the 
maximal parabolic subgroup consisting of matrices 

gI E GL(r,q,g2 E GL(s,q, r+s = n. 

In the standard representation corresponding to the inclusion P ---+ GL(n, q, 
the set of matrices whose last s entries are zero is a P-invariant subspace of 
en that has no invariant complement. Therefore, this representation is not 
completely reducible, and so P is not reductive. 

If G is the complexification of a connected compact group, then analytic 
representations of G are completely reducible by Theorem 27.1. It turns out 
that the converse is true - a reductive group is the complexification of a 
compact Lie group. We will not prove this, but it is useful to bear in mind 
that whatever we prove for complexifications of connected compact groups is 
applicable to the class of reductive complex analytic Lie groups. 

Even if we restrict ourselves to finding reductive subgroups of reductive 
Lie groups, the problem is very difficult. After all, any faithful representation 
gives an embedding of a Lie group in another. There is an important class of 
embeddings for which it is possible to give a systematic discussion. Following 
Dynkin, we call an embedding of Lie groups or Lie algebras regular if it takes 
a maximal torus into a maximal torus and roots into roots. Our first aim is 
to show how regular embeddings can be recognized using extended Dynkin 
diagrams. 

We will use orthogonal groups to illustrate some points. It is convenient 
to take the orthogonal group in the form 

OJ(n,F) = {g E GL(n, F) I gJtg = J}, 

We will take the realization OJ(n, q n U(n) ~ O(n) of the usual orthogo
nal group in Exercise 5.3 with the maximal torus T consisting of diagonal 
elements of OJ(n,q n U(n). Then, as in Exercise 27.1, OJ(n,q is the an
alytic complexification of the usual orthogonal group O(n). We can take the 
ordering of the roots so that the root eigenspaces XCI< with a E g;+ are upper 
triangular . 

We recall that the root system of type Dn is the root system for 80(2n). 
Normally, one only considers Dn when n ~ 4. The reason for this is that the 
Lie groups 80(4) and 80(6) have root systems of types Al x Al and A3 , 

respectively. To see this, consider the tie algebra of type 80(8). This consists 
of the set of all matrices of the form in Figure 33.1. 
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t l X12 X 13 XI4 XIS XI6 X17 0 

X2l t2 X26 0 -X17 

X31 X32 0 -X26 -X16 

X41 X42 X43 t4 0 -X36 -X2S -XIS 

XSI XS2 XS3 0 -t4 -X34 -X24 -XJ4 

X61 X62 0 -XS3 -X43 -t3 -X23 -X13 

X71 0 -X62 -XS2 -X42 -X32 -t2 -XJ2 

0 -X71 -X61 -X51 -X41 -X31 -X21 -tl 

Fig. 33.1. The Lie algebra of 80(8). 

The Lie algebra t of T consists of the subalgebra of diagonal matrices, 
where all Xij = 0 and the ti are purely imaginary. The 24 roots 0: are such 
that each Xo: is characterized by the nonvanishing of exactly one Xij' We 
have circled the Xo: corresponding to the four simple roots and drawn lines to 
indicate the graph of the Dynkin diagram. (Note that each Xij occurs in two 
places. We have only circled the Xij in the upper half of the diagram.) 

The middle 6 x 6 block, shaded in Figure 33.1, is the Lie algebra of 80(6), 
and the very middle 4 x 4 block, shaded dark, is the Lie algebra of 80(4). 
Looking at the simple roots, we can see the inclusions of Dynkin diagrams 
in Figure 33.2. The shadings of the nodes correspond to the shadings in Fig
ure 33.l. 

The coincidences of root systems D2 = Al X Al and D3 = A3 are worth 
explaining from another point of view. We may realize the group 80(4) con
cretely as follows. Let V = Mat2(Q. The determinant is a nondegenerate 
quadratic form on V. 8ince all nondegenerate quadratic forms are equivalent, 
the group of linear transformations of V preserving the determinant may thus 
be identified with 80(4) . We consider the group 

G = ((gl,g2) E GL(2,Q x GL(2,Q I det(gl) = det(g2)}. 

This group acts on V by 
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D2 = Ai X Al 

• 
------------- .... 

--------------~. ~' . ~- ... ...... , 
,.,.' .. ---- --_..-' 

---------------. • 
--- ---------_. 

middle 0(4) 0(6) 0(8) 

Fig. 33.2. The inclusions SO(4) -+ SO(6) -+ SO(8). 

This action preserves the determinant, so we have a homomorphism G ---+ 
0(4). There is a kernel ZLl consisting of the scalar matrices in GL(2, q em
bedded diagonally. We therefore have an injective homomorphism GjZLl ---+ 
0(4). Both groups have dimension 6, so this homomorphism is a surjection 
onto the connected component SO(4) of the identity. 

Using the fact that C is algebraically closed, the subgroup SL(2, q x 
SL(2, q of G maps surjectively onto SO(4). The kernel of the map 

SL(2, q x SL(2, q ---+ SO(4) 

has order 2, and we may identify the simply-connected group SL(2, q x 
SL(2, q as the double cover spin(4, q. Since SO(4) is a quotient of SL(2, q x 
8L(2, C), we see why its root system is of type Al x AI' 

Remark 33.1. Although we could have worked with SL(2, q x SL(2, q at the 
outset, over a field F that was not algebraically closed, it is better to use 
the realization GjZLl ~ SO(4). The reason is we might want to do the same 
thing over a field F that is not algebraically closed. In this case, the image 
of the homomorphism SL(2, F) x SL(2, F) ---+ SO(4, F) might not be all of 
SO(4). Identifying SL(2) x SL(2) with the algebraic group spin(4), this is a 
special instance of the fact that the covering map spin(n) ---+ SO(n) is not 
generally surjective on rational points over a field that is not algebraically 
closed. A surjective map may always be obtained by working with the group 
of similitudes Gspin(n), which when n = 4 is the group G. This is analogous 
to the fact that the homomorphism SL(2, F) ---+ PGL(2, F) is not surjective 
if F is algebraically closed, which is why the adjoint group PGL(2, F) of SL(2) 
is constructed as GL(2, F) modulo the center, not SL(2) modulo the center. 

We turn next to SO(6). Let W be a four-dimensional complex vector space. 
There is a homomorphism GL(W) ---+ GL(!\2W) ~ GL(6, q, namely the 
exterior square map, and there is a homomorphism 
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The latter map is symmetric since in the exterior algebra 

(Each Vi has to move past each Wj producing rs sign changes.) Hence we may 
regard /\2 as a quadratic form on GL(/\2W). The subspace preserving the 
determinant is therefore isomorphic to 80(6). The composite 

GL(W) ~GL(/\2W) ~GL(/\4W) ~ ex 

is the determinant, so the image of 8L(W) = 8L(4,q in GL(/\2W) is there
fore contained in 80(6). Both 8L(4, q and 80(6) are 15-dimensional and 
connected, so we have constructed a homomorphism onto 80(6). The kernel 
consists of {±1}, so we see that 80(6) ~ 8L(4,q/{±I}. 8ince 80(6) is a 
quotient of 8L( 4, q, we see why its root system is of type A3 • 

The maps discussed so far, involving 80(2n) with n = 2,3, and 4, are reg
ular. 80metimes (as in these examples) regular embeddings can be recognized 
by inclusions of ordinary Dynkin diagrams, but a fuller picture will emerge if 
we introduce the extended Dynkin diagram. 

Let K be a compact connected Lie group with maximal torus T. Let G be 
its complexification. Let iP, iP+, E, and other notations be as in Chapter 19. 

Proposition 33.1. Suppose in this setting that S is any set of roots such that 
if Q, (3 E S and if Q + (3 C iP, then Q + (3 E S. Then 

is a Lie subalgebra of Lie( G). 

Proof. It is immediate from Proposition 19.3 (ii) and Proposition 19.2 (ii) 
that this vector space is closed under the bracket. 0 

We will not worry too much about verifying that ~ is the Lie algebra of a 
closed Lie subgroup of G except to remark that we have some tools for this, 
such as Theorem 14.3. 

We have already introduced the Dynkin diagram in Chapter 28. We recall 
that the Dynkin diagram is obtained as a graph whose vertices are in bijection 
with E. Let us label E = {Ql,··· ,Qr}, and let Si = set;" Let O(Qi' Qj) be the 
angle between the roots Qi and Qj. Then 

2 ifO(Qi,Qj) = I' 
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The extended Dynkin diagram adjoins to the graph of the Dynkin diagram one 
more node, which corresponds to the negative root ao such that -an is the 
highest-weight vector in the adjoint representation. As in the usual Dynkin 
diagram, we connect the vertices corresponding to ai and aj only if the roots 
are not orthogonal. If they make an angle of 27r /3, we connect them with a 
single bond; if they make an angle of 67r / 4, we connect them with a double 
bond; and if they make an angle of 57r /6, we connect them with a triple bond. 

The basic paradigm is that if we remove a node from the extended Dynkin 
diagram, what remains will be the Dynkin diagram of a subgroup of G. To get 
some feeling for why this is true, let us consider an example in the exceptional 
group G2 . We may take S in Proposition 33.1 to be the set of six long roots. 
These form a root system of type A2 , and ~ is the Lie algebra of a Lie subgroup 
isomorphic to SL(3, q. Since SL(3, q is the complexification of the simply
connected compact Lie group SU(2), it follows from Theorem 14.3 that there 
is a homomorphism SL(3, q -+ G. 

• • 
o 

o o o o 

Fig. 33.3. The exceptional root ao of G2 (. = positive roots). 

The ordinary Dynkin diagram of G2 does not reflect the existence of this 
embedding. However, from Figure 33.3, we see that the roots a2 and ao can 
be taken as the simple roots of SL(3, q. The embedding SL(3, q can be un
derstood as an inclusion of the A2 (ordinary) Dynkin diagram in the extended 
G2 Dynkin diagram (Figure 33.4). 

Let us consider some more extended Dynkin diagrams. If n > 2, and if G 
is the odd orthogonal group SO(2n + 1), its root system is of type En, and its 
extended Dynkin diagram is as in Figure 33.5. We confirm this in Figure 33.6 
for 80(9) - that is, when n = 4 - by explicitly marking the simple roots 
aI, .. . ,an and the largest root ao. 
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• • A2 (ordinary Dynkin diagram) 

I 
I I 
I I I 
~ , ,. 

• < . ------. G2 (extended Dynkin diagram) 
01 02 00 

Fig. 33.4. The inclusion of 8L(3) in G2 • 

Fig. 33.5. The extended Dynkin diagram of type En. 

I 
I 

X41 I X42 
I 
I 
I 

X51 I X52 
I 
I 

X61 
I 
I X62 
I 
I 

X71 :X72 
I 

8' 0 -X72 -X62 -X52 -X42 -X32 -t2 -X12 

Fig. 33.6. The Lie algebra of 80(9). 

Next, if n ~ 5 and G = SO(2n), the root system of G is Dn , and the 
extended Dynkin diagram is as in Figure 33.7. For example if n = 5, the 
configuration of roots is as in Figure 33.S. 

We leave it to the reader to check the extended Dynkin diagrams of the 
symplectic group Sp(2n), which is of type en (Figure 33.9). 

The extended Dynkin diagram oftype An (n ~ 2) is shown in Figure 33.10. 
It has the feature that removing a node leaves the diagram connected. Be
cause of this, the paradigm of finding subgroups of a Lie group by examining 
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Fig. 33.7. The extended Dynkin diagram of type Dn. 

ti X14 XI5 XI6 XI7 XI8 XI9 0 

X2I X24 X25 X26 X27 X28 0 -X19 

I 

X3I \ X32 t3 X37 0 -X28 -X18 
\ 

X4I X42 X43 0 -X37 -X27 -X17 

X5I X52 X53 X54 t5 0 -X46 -X36 -X26 -X16 

X6I X62 X63 X64 0 -t5 -X45 -X35 -X25 -X15 

X71 :X72 X73 0 -X64 -X54 -t4 -X34 -X24 -X14 

\ 
\ 

X8I : X82 0 -X73 -X63 -X53 -X43 -t3 -X23 -X13 
I 

I e 0 -X82 -X72 -X62 -X52 -X42 -X32 -t2 -X12 

0 -X9I -X8I -X71 -X6I -X5I -X41 -X3I -X21 -t1 

Fig. 33.8. The Lie algebra of 80(10). 

Fig. 33.9. The extended Dynkin diagram of type en. 

the extended Dynkin diagram does not produce any interesting examples for 
SL(n + 1) or GL(n + 1). 

We already encountered the extended Dynkin diagram of G2 is in Fig
ure 33.4. The extended Dynkin diagrams of all the exceptional groups are 
listed in Figure 33.11. 

Our first paradigm of recognizing the embedding of a group H in G by em
bedding the ordinary Dynkin diagram of H in the extended Dynkin diagram 
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°n-2 • 
Fig. 33.10. The extended Dynkin diagram of type An. 

01 02 
oo.---~ Left: G2 , F4, E6 • 

Right: E7 , Es. 

a'I 
01 02 } 03 04 00.--- • • • • 37 00. - - -. • i • • 01 03 04 05 06 

00. 
I 
I 
I 

• • 
a'I 

35 • • 33 

a'I 
• • 00 • . ---. 

01 03 04 06 01 04 05 06 07 Os 

Fig. 33.11. Extended Dynkin diagram of the exceptional groups. 

of G predicts the embedding of 80(2n) in 80(2n+ 1) but not the embedding 
of 80(2n + 1) in 80(2n + 2). For this we need another paradigm, which we 
call root folding. 

We note that the Dynkin diagram Dn+! has a symmetry interchanging 
the vertices On and On+!. This corresponds to an outer automorphism of 
80(2n + 2), namely conjugation by 

(
In_1 IT]] ) , 

I n - 1 

which is in O(2n + 2) but not 80(2n + 2). The fixed subgroup of this outer 
automorphism stabilizes the vector Vo = t(O,··· ,0,1, -1,0,··· ,0). This vec
tor is not isotropic (that is, it does not have length zero) so the stabilizer is 
the group 80(2n + 1) fixing the 2n + I-dimensional orthogonal complement 
of Vo. In this embedding 80(2n + 1) ---+ 80(2n + 1), the short simple root 
of 80(2n + 1) is embedded into the direct sum of Xan and Xan+1 • We invite 
the reader to confirm this for the embedding of 80(9) ---+ 80(10) with the 
above matrices. We envision the Dn+! Dynkin diagram being folded into the 
Bn diagram, as in Figure 33.12. 

The Dynkin diagram of type D4 admits a rare symmetry of order 3 (Fig
ure 33.13). This is associated with a phenomenon known as triality, which we 
now discuss. 
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an-~( ~ } --~, al a2 a3 an-2 • • • • 
I I I 
I I I I an+l I I I I I I 
I I I , 

/ 
I I I , / 

I I I , / 

I I I 
, / 

/ 
I I I I I I 

+ + + + , , 
• • • • I > • al a2 a3 an-2 an-l an 

Fig. 33.12. Embedding SO(2n + 1}c.........tSO(2n + 2} as "folding." 

-----,. ,. a4 ,. 
" / \ 

I \ 
I , 
• , 

al 
a2 , 

I , I 
I 

\ I 
\ I \ , I , / ... a3 ---- ... 

Fig. 33.13. Triality. 

Referring to Figure 33.1, the groups Xo:, (i = 1,2,3,4) correspond to X12, 

X23, X34 and X35, respectively. The Lie algebra will thus have an automorphism 
r that sends X12 ---t X34 ---t X35 ---t X12 and fixes X23. Let us consider the 
effect on te, which is the subalgebra of elements t with all Xij = o. Noting 
that dal(t) = tl - t2, da2(t) = t2 - t3, da3(t) = t3 - t4, and da4(t) = t3 + t4, 
we must have 

from which we deduce that 

r(tl) = ~(tt + t2 + t3 - t4) , 

r(t2) = ~(tl + t2 - t3 + t4) , 

r(t3) = ~(tl - t2 + t3 + t4), 

r(t4) = ~(tl - t2 - t3 - t4). 

At first this is puzzling since, translated to a statement about the group, we 
have 



T 

where 

= 

t~ = Vht2t3fi1 , 

t; = Vt1f:;1t3t4 , 
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tf 
1 

tf 
2 

tf 
3 

t~ 
tf -1 

4 
t' -1 

3 
tf -1 

2 
tf -1 

1 

Due to the ambiguity of the square roots, this is not a univalent map. 
The explanation is that since SO(8) is not simply-connected, a Lie alge

bra automorphism cannot necessarily be lifted to the group. However, there 
is automatically induced an automorphism T of the simply-connected double 
cover spin(8). The center of spin(8) is (1./21.) x (Z/2Z), which has an auto
morphism of order 3 that does not preserve the kernel (of order 2) of T. If 
we divide spin(8) by its entire center (Z/2Z) x (Z/2Z), we obtain the adjoint 
group PGO(8), and the triality automorphism of spin(8) induces an automor
phism of order 3 of PGO(8). To summarize, triality is an automorphism of 
order 3 of either spin(8) or PGO(8) but not of SO(8). 

The fixed subgroup of T in either spin(8) or PGO(8) is the exceptional 
group G2 , and the inclusion of G2 in spin(8) can be understood as a folding of 
roots. The unipotent subgroup corresponding to a short simple root of G2 is 
included diagonally in the three root groups exp(Xa,J, (i = 1,3,4) of spin(8) 
as in Figure 33.14 (left). 

Triality has the following interpretation. The quadratic space V of dimen
sion 8 on which SO(8) acts can be given the structure of a nonassociative 
algebra known as the octonions or Cayley numbers. 

If h : V --+ V is any nonsingular orthogonal linear transformation, there 
exist linear transformations hand 13 such that 

h(xy) = h(x)h(Y)· 

The linear transformations hand 13 are only determined up to sign. The maps 
h f------t h and h f------t 13, though thus not well-defined as an automorphisms 
of SO(8), do lift to well-defined automorphisms of spin(8), and the resulting 
automorphism h f------t h is the triality automorphism. Triality permutes the 
three orthogonal maps h, h, and 13 cyclicly. Note that if h = h = 13, 
then h is an automorphism of the octonion ring, so the fixed group G2 is 
the automorphism group of the octonions. See Chevalley [27], p.188. As an 
alternative to Chevalley's approach, one may first prove a local form of triality 
as in Jacobson [72] and then deduce the global form. See also Schafer [110). 



268 Lie Groups 

Over an algebraically closed field, the octonion algebra is unique. Over the 
real numbers there are two forms, which correspond to the compact group 
0(8) and the split form 0(4,4). 

So far, the examples we have given of folding correspond to automorphisms 
of the group G. For an example that does not, consider the embedding of G2 

into spin(7) (Figure 33.14, right). 

Fig. 33.14. The group G2 embedded in spin(8) and spin(7). 

The two paradigms described above are sufficient to explain the embed
dings K<---tGc for the Type I examples listed in Table 31.1. 

We now turn to some embeddings of Lie groups that are important but 
do not fall into the preceding discussion. 

Suppose that Vi and lt2 are quadratic spaces (that is, vector spaces 
equipped with nondegenerate symmetric bilinear forms). Then VI EEl lt2 is 
naturally a quadratic space, so we have an embedding 0(V1 ) x 0(lt2) ---+ 
O(Vi EEl V2). The same is true if VI and V2 are symplectic (that is, equipped 
with nondegenerate skew-symmetric bilinear forms). It follows that we have 
embeddings 

O(r) x O(s) ---+ O(r + s), Sp(2r) x Sp(2s) ---+ Sp(2(r + s)). 

These embeddings can be understood as embeddings of extended Dynkin dia
grams except in the orthogonal case where r and s are both odd (Exercise 33.2. 

Also, if VI and V2 are vector spaces with bilinear forms /3i : Vi x Vi ---+ C, 
then there is a bilinear form B on VI ® V2 such that 

B(VI ® V2, v~ ® v~) = /31 (VI, V~) /32(V2, V~). 

If both /31 and /32 are either symmetric or skew-symmetric, then B is sym
metric. If one of /31 and /32 is symmetric and the other skew-symmetric, then 
B is skew-symmetric. Therefore, we have embeddings 

O(r) x O(s) ---+ O(rs), Sp(2r) x O(s) ---+ Sp(4rs). 

The second embedding is the single most important "dual reductive pair," 
which is fundamental in automorphic forms and representation theory. A dual 
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reductive pair in a Lie or algebraic group H consists of reductive subgroups 
G1 and G2 embedded in such a way that G1 is the centralizer of G2 in Hand 
conversely. If H is the symplectic group, or more properly its "metaplectic" 
double cover, then H has an important infinite-dimensional representation 
w introduced by Weil [127]. Weil showed in [128] that in many cases the 
restriction of the Weil representation to a dual reductive pair can be used to 
understand classical correspondences of automorphic forms due to Siegel. The 
importance of this phenomenon cannot be overstated. From Weil's point of 
view this phenomenon is a global one, but Howe [60] gave better foundations, 
including a local theory. This is a topic that transcends Lie theory since in 
much of the literature one will consider O(s) or Sp(2r) as algebraic groups 
defined over a p-adic field or a number field (and its adele ring). Expositions of 
pure Lie group applications may be found in Howe and Tan [64] and Goodman 
and Wallach [47]. 

The classification of dual reductive pairs in Sp(2n), described in Weil [128] 
and Howe [60], has its origins in the theory of algebras with involutions, due 
to Albert [2]. The connection between algebras with involutions and the the
ory of algebraic groups was emphasized earlier by Weil [126]. A modern and 
immensely valuable treatise on algebras with involutions and their relations 
with the theory of algebraic groups may be found in Knus, Merkurjev, Rost, 
and Tignol [84]. 

A classification of dual reductive pairs in exceptional groups is in Ruben
thaler [103]. These examples have proved interesting in the theory of auto
morphic forms since an analog of the Weil representation is available. 

As a final topic, we discuss parabolic subgroups. Just as regular subgroups 
of G can be read off from the extended Dynkin diagram, the parabolic sub
groups can be read off from the regular Dynkin diagram. Let E' c E be any 
proper subset of the set of simple roots. Then E' is the set of vertices of a 
(possibly disconnected) Dynkin diagram V' contained in that of G. There will 
be a unique parabolic subgroup P such that, for a simple root a: E E, the 
space X-a is contained in the Lie algebra of P if and only if a: E S. 

The roots X-a and xa with a: E S together with tc generate a Lie algebra 
m, which is the Lie algebra of a reductive Lie group M, and 

U= EB Xa 
a E <1>+ 

:to im 

is the Lie algebra of a unipotent subgroup U of P. (By unipotent we mean 
here that its image in any analytic representation of G consists of unipotent 
matrices.) The group P = MU. This factorization is called the Levi decompo
sition. The subgroup U of P is normal, so this decomposition is a semidirect 
product. The group M is called the Levi factor, and the group U is called the 
unipotent radical of P. 

We illustrate all this with an example from the symplectic group. We take 
G = Sp(2n) to be {g I tgJg = J}, where 
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J= 

1 

-1 
1 

-1 

This realization of the symplectic group has the advantage that the Xo: 
corresponding to positive roots a E q;+ all correspond to upper triangular 
matrices. We see from Figure 33.9 that removing a node from the Dynkin 
diagram of type Cn gives a smaller diagram, disconnected unless we take an 
end vertex, of type Ar - 1 x Cn - r . This is the Dynkin diagram of a maximal 
parabolic subgroup with Levi factor M = GL(r) x Sp(2(n-r»). The subgroup 
looks like this: 

1r * * 
12m * 

1r 

Here m = n-r. In the matrix M, the matrix g' depends on gj it is determined 
by the requirement that the given matrix be symplectic. Figure 33.15 shows 
the parabolic subgroup with Levi factor GL(3) x Sp(4) in GL(lO). Its Lie 
algebra is shaded here: the Lie algebra of M shaded dark and the Lie algebra 
of U is shaded light. 

The Levi factor M = GL(3) x Sp(4) is a proper subgroup of the larger 
group Sp(6) xSp(4), which can be read off from the extended Dynkin diagram. 
The Lie algebra of Sp(6) x Sp(4) is shaded dark in Figure 33.16. 
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tl X14 XIS XI6 Xl7 X18 Xl9 XIO 

X21 t2 X25 X26 X27 X2 X29 Xl9 

X3l X32 t3 X36 X37 X3 X28 X18 

Xn X42 X43 X47 X37 X27 X17 

XSI XS2 XS3 X54 X46 X36 X26 X16 

-1-, 
X63 X64 X65 -ts X61 :' X62 -X4S - X35 - X25 -XIS 

" 
" X71 ' : X72 , X73 X74 X64 -X54 -t4 -X34 -X24 -X14 

" 
" X8 J ,' X82 X83 X73 X63 -XS3 -X43 -t3 -X23 -X13 

" 
" 
" -XS2 -X42 -X32 - t2 - X12 X9l " X92 X82 X72 X62 

" 
" 

8'X91 X81 X71 X61 -XS1 -X41 -X31 -X2l -tl 

Fig. 33.15. A parabolic subgroup of Sp(lO) . 

tl 
I 

X 12 X13 X I 4 X I S XI6 X17 X18 X19 XI0 

" 
" X21 " t2 X23 X24 X25 X26 X27 X28 X29 XI9 
" 
" 
" 
" X31 " X32 t3 X34 X35 X36 X37 X38 X28 XI8 

" 
" 

X41 " " X42 X43 t4 X47 X37 X2 7 X17 

" 
" 
" XS I " XS2 XS3 X54 X46 X36 X26 X16 

" A\. 

X6 1 X62 X63 X64 X65 -t5 -X45 -X3S -X25 -XIS 

X 71 X72 X73 X74 X64 -XS4 -t4 -X34 -X24 - X14 

X81 X82 X83 X73 X63 -X53 -X43 - t 3 -X23 -X13 

X91 X92 X82 X72 X62 - XS2 -X42 -X32 -t2 -X12 

(9 X91 X81 X71 X6 1 -XS I -X41 -X31 -X21 -tl 

Fig. 33.16. The Sp(6) x Sp(4) subgroup of Sp(lO). 
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EXERCISES 

Exercise 33.1. Discuss each of the embeddings K<-----+Gc in Table 31.1 of Chap
ter 31 using the extended Dynkin diagram of Gc• 

Exercise 33.2. In doing the last exercise, one case you may have trouble with is the 
embedding of 8(0(P) x O(q)) into 80(p+q) when p and q are both odd. To get some 
insight, consider the embedding of 80(5) x80(5) into 80(10). (Note: 8(0(P) xO(q)) 
is the group of elements of determinant 1 in O(P) x O(q) and contains 80(p) x 80(q) 
as a subgroup of index 2. For this exercise, it does not matter whether you work 
with 80(5) x 80(5) or 8(0(5) x 0(5)).) Take the form of 80(10) in Figure 33.8. 
This stabilizes the quadratic form XiXlO + X2X9 + X3XS + X4X7 + X5X6. Consider the 
subspaces 

a 0 
b 0 
0 d 
0 e 

Vi = 
c 

V2 = f 
-c f 
0 0 
0 0 
d 9 
e h 

Observe that these five-dimensional spaces are mutually orthogonal and that the 
restriction of the quadratic form is nondegenerate, so the stabilizers of these two 
spaces are mutually centralizing copies of 80(5). Compute the Lie algebras of these 
two subgroups, and describe how the roots of 80(10) restrict to 80(5) x 80(5). 

Exercise 33.3. The group 8pin(8) has three distinct irreducible eight-dimensional 
representations, namely the standard representation of 80(8) and the two spin rep
resentations. 8how that these are permuted cyclicly by the triality automorphism. 
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Mackey Theory 

Given a subgroup H of a finite group G, and a representation 7r of H, there 
is an induced representation 7rG of G. Mackey theory is concerned with inter
twining operators between a pair of induced representations. If these represen
tations are induced from subgroups Hl and H2, the intertwining operators are 
parametrized in a computable way by double cosets. A special case is when 
one of the subgroups Hi is G itself - in these cases, Mackey theory reduces to 
Frobenius reciprocity. 

In this chapter, we will work with finite groups and with representations 
over an arbitrary ground field F. In this generality, representations may not 
be completely reducible. Before considering Mackey theory in general, we will 
give two functorial interpretations of Frobenius reciprocity that correspond 
to the two special cases where Hl = G and H2 = G. 

Let G be a finite group, F a field, and F[G] the group algebra. If 7r : G --+ 
GL(V) is an representation in an F-vector space V, then V becomes an F[G] 
module by 

L cg • 9 E F[G], 
gEG 

and, conversely, if V is an F[G]-module, then 7r : G --+ GL(V) defined by 
7r(g)v = gv is a representation. Thus, the categories of complex representations 
of G and F[G]-modules are equivalent. In either case, we may refer to V as 
a G-module. An intertwining operator for two representations is the same as 
an F[G]-module homomorphism for the corresponding F[G]-modules, and we 
call such a map a G-module homomorphism. 

If H is a subgroup of G, and if (7r, V) is a representation of H, then we 
define the induced representation (7rG , VG) as follows. The vector space VG 
consists of all maps f : G --+ V that satisfy f(hg) = 7r(h) f(g) when h E H. 
The representation 7rG : G --+ GL(VG) is by right translation 
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It is easy to see that if f E V G, then so is 1fG (g) f, and that 1fG is a repre
sentation. We will sometimes denote the representation (1fG, VG) as Ind~(1f). 

Also, if (cr, U) is a representation of G, then we can restrict cr to H to 
obtain a representation of H. We call UH the corresponding H-module. Thus, 
as sets, U and U H are equal. 

Proposition 34.1. (Frobenius reciprocity, first version) Let H be a sub
group of G and let (1f, V) be a representation of H. Let (cr, U) be a represen
tation of G. Then 

(34.1) 

In this isomorphism, J E HomG(U, VG) and j E HomH(UH, V) correspond if 
and only ifj(u) = J(u)(l) and J(u)(g) =j(cr(g)u). 

Proof. Given J E HomG(U, VG), define j(u) = J(u)(l). We show that j is in 
HomH(UH, V). Indeed, if hE H, we have 

j(cr(h)u) = J(cr(h)u) (1) = (1fG(h)J(u»)(l) 

because J: U ----+ VG is G-equivariant. This equals J(u)(l.h) = J(u)(h.1) = 
1f(h) J(u)(l) = 1f(h)j(u) because h E H and J(u) E VG. Therefore j E 

HomH(UH, V). 
Conversely, if j E HomH(UH, V) and u E U, we define J(u) : G ----+ V by 

J(u)(g) = j(cr(g)u). We claim that J(u) E VG. Indeed, if hE H, we have 

J(u)(hg) = j(cr(hg)u) = j(cr(h) cr(g)u) = 1f(h)j(cr(g)u) = 1f(h) J(u)(g) 

because j is H-equivariant. This equals 1f(h) J(u)(g), so indeed J(u) E VG. 
We claim that J: U ----+ V G is G-equivariant. Indeed, if g, x E G and u E U, 
we have 

J(cr(g)u) (x) = j(cr(x) cr(g»)(u) = j(cr(xg)u) = J(u)(xg) = (1fG(g) J(u») (x). 

Therefore J(cr(g)u) = 1fG(g)J(u) so J E HomG(U, VG). 
It is straightforward to check that J H j and j H J are inverse maps and 

so HomG(U, VG) ~ HomH(UH, V). 0 

If the ground field F = C, then we may reinterpret this statement in terms 
of characters. If 'f/ and X are the characters of U and V, respectively, and if 
XG is the character of the representation of G on VG, then by Theorem 2.5 
we may express Proposition 34.1 by the well-known character identity 

(34.2) 

Dual to (34.1) there is also a natural isomorphism 
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HomG (VG, U) ~ HomH(V, U). (34.3) 

This is slightly more difficult than Proposition 34.1, and it also involves ideas 
that we will need in our discussion of Mackey theory. We will approach this 
by means of a universal property. 

Proposition 34.2. Let H be a subgroup of G and let (7r, V) be a representa
tion of H. Ifv E V, define E(V) : G -* V by 

E(V)( ) = {7r(g)V if gEl! ' 
9 0 otherwzse. 

Then E( v) E V G , and E : V -* V G is H -equivariant. Let (CT, U) be a repre
sentation of G. If j : V -* U is any H -module homomorphism, then there 
exists a unique G-module homomorphism J : V G -* U such that j = JOE
We have 

J(f) = L CT("()j(J("(-l)). 
,EG/H 

Proof. It is easy to check that E(V) E VG and that if hE H, then 

E(7r(h)v) = 7rG (h)E(v). 

Thus E is H-equivariant. 
We prove that if f E VG, then 

f = L 7rG ("() E(J("(-l)). 
G/H 

(34.4) 

(34.5) 

(34.6) 

Using (34.5), each term on the right-hand side is independent of the choice of 
representatives "I of the cosets in G/H. Let us apply the right-hand side to 
9 E G. We get 

L E(J("(-l)) (g'Y). 
G/H 

Only one coset representative "I of G / H contributes since, by the definition 
of E, the contribution is zero unless g'Y E H. Since we have already noted 
that each term on the right-hand side of (34.6) is independent of the choice 
of "I modulo right multiplication by an element of H, we may as well choose 
'Y = g-l. We obtain E(J(g))(l) = f(g). This proves (34.6). 

Suppose now that J : V G -* U is G-equivariant and that j = JOE- Then, 
using (34.6), 

J(f) = L J(7rG ("()E(f("(-l))) = L CT("()(J 0 E) (J("(-1)) 
G/H G/H 

so J must satisfy (34.4). We leave it to the reader to check that J defined by 
(34.4) is independent of the choice of representatives "I for G / H. We check 
that it is G-equivariant. If 9 E G, we have 
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J(7rG(g)f) = :L O'("()¢(J("(-lg)). 

"IEG/H 

The variable change 'Y ---t g'Y permutes the cosets in G / H and shows that 

J(7rG(g)f) = :L O'(n)¢(J("(-I)) = O'(g)J(f), 
"IEG/H 

as required. o 

Corollary 34.1. (Frobenius reciprocity, second version) If H is a sub
group of the finite group G, and if (a, U) and (7r, V) are representations of G 
and H, respectively, then HomG(VG, U) ~ HomH(V, U), and in this isomor
phism j E HomH(V, U) corresponds to J E HomG(VG, U) if and only if they 
are related by {34.4}. 

Proof This is a direct restatement of Proposition 34.2. o 

We turn next to Mackey theory. In the following statement, Hom(V1 , V2) 
means HomF(V1 , V2), the space of all linear maps. 

Theorem 34.1. (Mackey's Theorem, geometric version) Suppose that 
G is a finite group, HI and H2 subgroups, and (7rI, VI) and (7r2' V2) represen
tations of HI and H 2, respectively. Then HomG(Vp, VF) is naturally isomor
phic to the space of all functions .1 : G ---t Hom(V1 , V2) that satisfy 

(34.7) 

In this isomorphism an intertwining operator A : ViG ---t vF corresponds to 
.1 if A(f) = .1 * f (f E ViG), where the "convolution" .1 * f is defined by 

(.1 * f)(g) = :L .1("() f(,,(-l g). (34.8) 
"lEG/HI 

Proof It is easy to check, using (34.7) and the fact that f E Vp, that (34.8) 
is independent of the choice of coset representatives 'Y for G / HI. Moreover if 
h2 E H 2, then the variable change 'Y ---t h2'Y permutes the cosets of G/H1 , 

and again using (34.7), this variable change shows that .1 * f E Vp. Thus 
f ---t .1 * f is a well-defined map Vp ---t vF, and using the fact that G 
acts on both these spaces by right translation, it is straightforward to see that 
A(f) = .1 * f defines an intertwining operator V1G ---t vF. 

To show that this map .1 r-+ A is an isomorphism of the space of .1 satisfy
ing (34.7) to HomG(ViG, VP), we make use of Corollary 34.1. We must relate 
the space of .1 satisfying (34.7) to Hom HI (VI, VF). Given A E HomHI (VI, VP) 
corresponding to A E HomG(Vp, VF) as in that corollary, define .1 : G ---t 

Hom (VI , V2) by .1(g)Vl = A(Vr)(g). The condition that A(Vl) E vF for all 
VI E VI is equivalent to 
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and the condition that>. : VI ---t Vp is H1-equivariant is equivalent to 

Of course, these two properties together are equivalent to (34.7). We see that 
Corollary 34.1 implies a linear isomorphism between the space of functions 
..1 satisfying (34.7) and the elements of HomG(VF, VP). We have only to 
show that this correspondence is given by (34.8). In (34.4), we take H = HI, 
(CT, U) = (11"~, VP), and j = >.. Then J = A and (34.4) gives us, for f E V1G , 

A(f) = L 1I"f(,),)>.(J(,),-I)). 
'YEG/Hl 

Applying this to 9 E G, 

Making the variable change'Y ---t g-I'Y, this equals (34.8). o 

Remark 34.1. Suppose that HI, H2, and (1I"i' Vi) are as in Theorem 34.1. The 
function ..1 : G ---t Hom(V1, V2 ) associated with an intertwining operator 
A : vF ---t Vp is clearly determined by its values on a set of representatives 
for the double cosets in H2\G/H1 • The simplest case is when..1 is supported 
on a single double coset H2'YHI. In this case, we say that the intertwining 
operator A is supported on H2'YHI. 

Proposition 34.3. In the setting of Theorem 34.1, let'Y E G .. Let H'Y = H2 n 
'Y H n-1• Define two representations (11" [, VI) and (11";, V2) of H'Y as follows. 
The representation 11"~ is just the restriction of 11"2 to H'Y. On the other hand, 
we define 11"[ (h) = 11"1 ('Y-1h'Y) for hE H'Y" The space of intertwining opemtors 
A : Vp ---t V2G supported on H2'YHI is isomorphic to HomH-y(1I"[,1I"n, the 
space of all 6 : VI ---t V2 such that 

60 1I"[(h) = 1I";(h) 06, hEH'Y. (34.9) 

Proof. If ..1 : G ---t Hom(Vl, V2) is associated with A as in Theorem 34.1, 
then ..1 is by assumption supported on H2'YHl, and (34.7) implies that ..1 is 
determined by 6 = ..1(')'). This is subject to a consistency condition derived 
from (34.7). If hE H'Y' then 'Yh' = h'Y, where h' = 'Y-1h'Y. We have hE H2 and 
h' E HI, so by (34.7) the map 6 : VI ---t V2 must satisfy (34.9). Conversely, 
if (34.9) is assumed, it is not hard to see that 

..1( ) _ {1I"2(h2)611"1(h1) if 9 = h2'Yhl E HnHl, hi E Hi, 
g - 0 if 9 ¢ H2'YHl, 

is a well-defined function G ---t Hom(Vl, V2) satisfying (34.7), and the corre
sponding intertwining operator A is supported on H2"{H1 • 0 
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Theorem 34.2. (Mackey's Theorem, algebraic version) In the setting 
of Theorem 34.1, let 1'b··· ,1'h be a complete set of representatives of the 
double cosets in H2 \G/ HI. With l' = 1'i, let 1f{ be as in Proposition 34.3. We 
have 

h 

dim HOmG(VIG, V2G ) = LdimHomHOYi(1fii,1fJi). (34.10) 
i=l 

Proof. If ..1 is as in Theorem 34.1, write ..1 = l:i ..1i' where 

..1.( ) = {..1(g) if g E H2'YiHl' 
~ g 0 otherwise. 

Then ..1i satisfy (34.7). Let Ai be the intertwining operator. Then Ai is sup
ported on a single double coset, and the dimension of the space of such inter
twining operators is computed in Proposition 34.3. 0 

Corollary 34.2. Assume that the ground field F is of characteristic zero. Let 
HI and H2 be subgroups of G and let (1f, V) be an irreducible representation 
of HI. Let 1'1, ... ,1'h be a complete set of representatives of the double cosets 
in H2\G/H1 • If l' E G, let H"I = H2 n1'Hn-1, and let 1f"l: H"I ---+ GL(V) 
be the representation 1f"l(g) = 1f(-y-lg1'). Then the restriction of 1fr to H2 is 
isomorphic to 

h 

EBlnd~~i (1f"li). (34.11) 
i=l 

In a word, first inducing and then restricting gives the same result as restrict
ing, then inducing. 

Proof. Since we are assuming that the characteristic of F is zero, representa
tions are completely reducible and it is enough to show that the multiplicity 
of an irreducible representation (1f2' V2) in 1fr is the same as the multiplicity 
of 1f2 in the direct sum (34.11). The multiplicity of 1f2 in 1fr is 

h 

dimHomH2(VG,"V:l) = dim HomG(VG, V;G) = LdimHomHOYi (1f"li,1fJi) 
i=l 

by F'robenius reciprocity and Theorem 34.2. One more application of F'robe
nius reciprocity shows that this equals 

h 

L dim HomH2 (IndZ~i (1f"li), 1f2). 
i=l 

o 
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Next we will reinterpret induced representations as obtained by "extension 
of scalars" as explained in Chapter 11. We must extend the setup there to 
noncommutative rings. In particular, we recall the basics of tensor products 
over noncommutative rings. Let R be a ring, not necessarily commutative, 
and let W be a right R-module and V a left R-module. If C is an Abelian 
group (written additively), a map f : W x V ---+ C is called balanced if (for 
W,Wl,W2 E Wand V,Vl>V2 E V) 

and if r E R, 

f(WI + W2, v) = f(Wl, v) + f(W2' v), 

f(w, VI + V2) = f(w, VI) + f(w, V2), 

f(wr,v) = f(w,rv). 

The tensor product W 0R V is an Abelian group with a balanced map T : 
W x V ---+ W 0 R V such that if f : W x V ---+ C is any balanced map into an 
Abelian group C, then there exists a unique homomorphism F : W 0 R V ---+ C 
of Abelian groups such that f = FoT. The balanced map T is usually denoted 
T(w,v) = w 0 v. 

Remark 34.2. The tensor product always exists and is characterized up to 
isomorphism by this universal property. If R is noncommutative, then W 0 R V 
does not generally have an R-module structure. However, in special cases it is 
a module. If A is another ring, we call W an (A, R)-bimodule if it is a left A
module and a right R-module, and if these module structures are compatible 
in the sense that if w E W, a E A, and r E R, then a(wr) = (aw)r. If W is 
an (A, R)-bimodule, then W 0R V has the structure of a left A-module with 
multiplication satisfying 

a( w 0 v) = aw 0 v, aE A. 

If R is a subring of A, then A is itself an (A, R)-bimodule. Therefore, if V is 
a left R-module, we can consider A 0R V and this is a left A-module. 

Proposition 34.4. If R is a subring of A and V is a left R-module, let V' 
be the left A-module A 0R V. We have a homomorphism i : V ---+ V' of 
R-modules defined by i(v) = 10 v. If U is any left A-module and j : V ---+ U 
is an R-module homomorphism, then there exists a unique A-module homo
morphism J : V' ---+ U such that j = J 0 i. 

Proof. Suppose that J : V' ---+ U is A-linear and satisfies j = J 0 i. Then 

J(a 0 v) = J(a(10 v)) = aJ(10 v) = aJ(i(v)) = aj(v). 

Since Viis spanned by elements of the form a 0 v, this proves that J, if it 
exists, is unique. 
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To show that J exists, note that we have a balanced map A x V --t U 
given by (a,v) --t aj(v). Hence, there exists a unique homomorphism J : 
V' = A ®R V --t U of Abelian groups such that J(a ® v) = aj(v). It is 
straightforward to see that this J is A-linear and that J 0 i = j. D 

Proposition 34.5. If R is a subring of A, U is a left A-module, and V is a 
left R-module, we have a natuml isomorphism 

(34.12) 

Proof. This is a direct generalization of Proposition 11.1 (ii). It is also es
sentially equivalent to Proposition 34.4. Indeed, composition with i : V --t 

V' = A ®R V is a map HomA(V' , U) --t HomR(V, U), and the content of 
Proposition 34.4 is that this map is bijective. D 

Proposition 34.6. Suppose that H is a subgroup of G and V is an H -module. 
Then V is a module for the group ring F[HJ, which is a subring of F[G]. We 
have an isomorphism 

as G-modules. 

Proof. Comparing Proposition 34.2 and Proposition 34.4, the G-modules V G 

and F[G] ®F[H] V satisfy the same universal property, so they are isomorphic. 
D 

Finally, if F = C, let us recall the formula for the character of the induced 
representation. If X is a class function of the subgroup H of G, let X : G --t C 
be the function 

. {X(g) if 9 E H, 
X(g) = 0 otherwise, 

and let XG : G --t C be the function 

xG(g) = L X(xgx- 1). (34.13) 
xEH\G 

We note that since X is assumed to be a class function, each term depends 
only on the coset of x in H\G. We may of course also write 

xG(g) = I~I L X(xgx- 1). 

xEG 

(34.14) 

Clearly, XG is a class function on G. 

Proposition 34.7. Let (71", V) be a complex representation of the subgroup 
H of the finite group G with chamcter x. Then the chamcter of the induced 
representation 7I"G is XG. 
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Proof. Let 1] be the character of a representation (0", U) of G. We will prove 
that the class function XG satisfies Frobenius reciprocity in its classical form 
(34.2). This suffices because XG is determined by the inner product values 
\XG , 1]). We have 

/ G) 1 '" 1 ",. -1 \x ,1] G = \GI L..J IHf L..J X(xgx ) 1](g) = 
gEG xEG 

~L_l L L 
IGI gEG IHI hEH x E G 

X(h) 1](g). 

xgx- 1 = h 

Given hE H, we can enumerate the pairs (g, x) E GxG that satisfy xgx- 1 = h 
by noting that they are the pairs (x- 1hx, x) with x E G. So the sum equals 

since 1](x-1hx) = 1](h). o 
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Characters of GL( n, C) 

In the next few chapters, we will construct the irreducible representations of 
the symmetric group in parallel with the irreducible algebraic representations 
of GL(n, C). In this chapter, we will construct some generalized characters of 
GL(n, C). The connection with the representation theory of Sk will become 
clear later. 

We recall that the character X of a finite-dimensional representation (7r, V) 
of a group G is the function X(g) = tr 7r(g). A complex representation (7r, V) of 
GL( n, C) is algebraic if the matrix coefficients of 7r(g) are polynomial functions 
in the matrix coefficients gij of 9 = (gij) E GL( n, C) and of det(g) -1. Thus, if 
we choose a basis of V, then 7r(g) becomes a matrix (7r(9)kl) with 1 ~ k,l ~ 
dim(V), and for each k, I we require that there be a polynomial Pkl with n2+1 
entries such that 

A character X is algebraic if it is the character of an algebraic representation. A 
generalized character, also called a virtual character, is the difference between 
two characters. We will sometimes call a generalized character effective if it is 
a character. If G = GL(n, C), or more generally any algebraic group, we will 
say a generalized character is algebraic if it is Xl - X2, where Xl and X2 are 
algebraic. 

If R is a ring, we will denote by Rsym[X1,··· ,xn] the ring of symmet
ric polynomials in Xl,··· ,Xn having coefficients in R. Let ek and hk E 
Zsym[Xl,··· ,xn ] be the k-th elementary and complete symmetric polynomials 
in n variables. Specifically, 
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If k > n, then ek = 0, although this is not true for hk. Our convention is that 

eo = ho = 1. 
Let E (t) be the generating function for the elementary symmetric polyno

mials: n 

E(t) = I>k tk. 
k=O 

Then 
E(t) = (1 + xlt)(l + X2t) ... (1 + xnt) (35.1) 

since expanding the right-hand side and collecting the coefficients of t k will 

give each monomial in the definition of ek exactly once. Similarly, if 

00 

H(t) = L hktk , 
k=O 

then 

n 

H(t) = II (1 + xit + x~e + ... ) = (1- xlt)-l ... (1 - xnt)-l. (35.2) 

i=O 

We see that 
H(t)E( -t) = 1. 

Equating the coefficients in this identity gives us recursive relations 

k > 0. (35.3) 

These can be used to express the h's in terms of the e's or vice versa. 

Proposition 35.1. The ring Zsym[Xl,'" , xnl is generated as a Z-algebra by 

eI,' .. ,en, and they are algebraically independent. Thus Zsym[XI,' .. ,xn] = 

Z[el,'" , en] is a polynomial ring. It is also generated by hI,'" ,hn, which 

are algebraically independent, and Zsym [Xl, ... ,Xn] = Z[hl' ... ,hn]. 

Proof. The fact that the ei generate Zsym[XI,'" ,xnl is Theorem 6.1 on p.191 

of Lang [90], and their algebraic independence is proved on p. 192 of that refer

ence. The fact that hI, ... , hn also generate follows since (35.3) can be solved 

recursively to express the ei in terms of the hi' The hi must be algebraically 

independent since if they were dependent the transcendence degree of the field 

of fractions of Zsym[XI, ... ,xn ] would be less than n, so the ei would also be 

algebraically dependent, which is a contradiction. D 

If V is a vector space, let I\kV and VkV denote the k-th exterior and 

symmetric powers. If T : V ~ W is a linear transformation, then there are 

induced linear transformations I\kT : I\kV ~ I\kW and vkT : VkV ~ 

VkW. 
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Proposition 35.2. If V is an n-dimensional vector space and T : V ---+ V 
an endomorphism, and if h, ... ,tn are its eigenvalues with multiplicities (that 
is, each eigenvalue is listed with its multiplicity as a root of the characteristic 
polynomial), then 

(35.4) 

and 
(35.5) 

Proof. First, assume that Tis diagonalizable and that Vl, ... ,Vn are its eigen
vectors, so TVi = tiVi. Then a basis of I\kV consists of the vectors 

and this is an eigenvector of 1\ kT with eigenvalue til ... t ik . Summing these 
eigenvalues gives ek(tl,··· ,tn). Thus, (35.4) is true if T is diagonalizable. 
Similarly, a basis of VkV consists of the vectors 

so (35.5) is also true if Tis diagonalizable. 
In the general case, both sides of (35.4) or (35.5) are continuous functions 

of the matrix entries of T. The left-hand side of (35.4) is continuous because 
if we refer T to a fixed basis, then tr I\k T is the sum of the (~) principal 
minors of its matrix with respect to this basis, and the right-hand side is 
continuous because it is a coefficient in the characteristic polynomial of T. 
Since the diagonalizable matrices are dense in GL(n, C), it follows that (35.4) 
is true for all T. As for (35.5), the h's are polynomial functions in the e's, as 
we see by solving (35.3) recursively, so the right-hand side of (35.5) is also 
continuous, and (35.5) is also proved. 0 

Theorem 35.1. Let f(xl,··· ,xn) be a symmetric polynomial with integer 
coefficients. Define a function 'lj;f on GL(n, C) as follows. Iftl ,··· ,tn are the 
eigenvalues of g, let 

'ljJf(g) = f(tll··· ,tn). (35.6) 

Then 'ljJ f is an algebraic generalized character of GL( n, C). 

As in Proposition 35.2, there may be repeated eigenvalues. If this is the 
case, we count each eigenvalue with the multiplicity with which it occurs as 
a root of the characteristic polynomial. 

Proof. Let us call a symmetric polynomial f constructible if 'ljJ f is a gener
alized character of GL(n, C). The generalized characters of GL(n, C) form a 
ring since the direct sum and tensor product operations on GL(n, C)-modules 
correspond to addition and multiplication of characters. Since 
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it follows that the constructible polynomials also form a ring. The ek are con
structible by Proposition 35.2 and generate Zsym [Xl, ... ,xnl by Proposition 
35.1. Thus the ring of constructible polynomials is all of Zsym[Xl,··· , xnl. 0 

In addition to the elementary and complete symmetric polynomials, we 
have the power sum symmetric polynomials 

(35.7) 

Theorem 35.2. Let G be a group, let X be a character of G, and let k be a 
nonnegative integer. Then g H x(l) is a virtual character of G. 

Proof. Let X be the character corresponding to the representation 7r : G -+ 
GL(n, <C). If'l/J is any generalized character of GL(n, <C), then 'l/J 0 7r is a gen
eralized character of G. We take 'l/J = 'l/JPk' which is a generalized character 
by Theorem 35.1. If t l , ... ,tn are the eigenvalues of T(g), then t~, ... ,t~ are 
the eigenvalues of 7r(gk). Hence 

(35.8) 

proving that X(gk) is a generalized character. o 

Proposition 35.3. (Newton) The polynomials Pk generate Qsym [Xl, ... ,xnl 
as a Q-algebra. 

Proof. We will make use of the identity 

00 ( l)k-l 
log(l+t) = L - k tk. 

k=l 

Replacing t by tXi in this identity, summing over the Xi, and using (35.1), we 
see that 

Exponentiating this identity, 

Expanding and collecting the coefficients of t k expresses ek as a polynomial 
in the p's, with rational coefficients. 0 

Let us return to the context of Theorem 35.2. Let G be a group and X the 
character of a representation 7r : G ~ GL(n, <C). As we saw in that theorem, 
the functions 9 ~ Xk(g) = X(gk) are generalized characters; indeed they are 
the functions 'l/JPk 0 7r. They are conveniently computable and therefore useful. 
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The operations X --+ Xk on the ring of generalized characters of G are called 
the Adams operations. 

Let us consider an example. Consider the polynomial 

S(Xl' ... ,xn ) = L X~Xj + 2 L XiXjXk· 

i~j i<j<k 

We find that 
p~ = LX~ + 3 LX~Xj + 6 L XiXjXk, 

i i¥j i<j<k 

so 
(35.9) 

Hence, if 7r : G --+ GL(n, C) is a representation affording the character X, 
then we have 

(35.10) 

The expression on the right-hand side is useful for calculating the values 
of this function, which we have proved is a virtual character of GL(n, C), 
provided we know the values of the character X. We will show in the next 
chapter that this function is actually a proper character. This will require 
ideas different from those than used in this chapter. 

EXERCISES 

Exercise 35.1. Express each of the sets of polynomials {ek I k ~ 5} and {Pk I k ~ 5} 
in terms of the other. 

Exercise 35.2. Here is the character table of 84 • 

1 (123) (12)(34) (12) (1234) 
Xl 1 1 1 1 1 
X2 1 1 1 -1 -1 
X3 3 0 -1 1 -1 
X4 3 0 -1 -1 1 
X5 2 -1 2 0 0 

Using (35.10), compute Ws 01r when (1r, V) is an irreducible representation with 
character Xi for each i, and decompose the resulting class function into irreducible 
characters, confirming that it is a generalized character. 
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Duality between Sk and GL( n, C) 

Let V be a complex vector space, and let (jf/ V = V ® ... ® V be the k-fold 
tensor of V. (Unadorned ® means ®<::.) We consider this to be a right module 
over the group ring qSk], where a E Sk acts by permuting the factors: 

(VI ® ... ® vk)a = VU(I) ® ... ® Vu(k)' 

It may be checked that with this definition 

«VI ® ... ® vk)a) r = (VI ® ... ® vk)(ar). 

(36.1) 

If A is C-algebra and V is an A-module, then ®k V has an A-module struc
ture; namely, a E A acts diagonally: 

a(vI ® ... ® Vk) = aVI ® ... ® aVk. 

This action commutes with the action (36.1) of the symmetric group, so it 
makes ®k V an (A, qSk))-bimodule. If p : Sk --+ GL(Np ) is a representation, 
then Np is an Sk-module, so by Remark 34.2 

(36.2) 

is a left A-module. 
If V is a complex vector space, we can take A = End(V). Embedding 

GL(V) --+ A, we obtain a representation of GL(V) parametrized by a module 
Np of Sk. This is the basic construction of Frobenius-Schur duality. 

We now give a reinterpretation of the symmetric and exterior powers, 
which were used in the proof of Theorem 35.1. Let Csym be a left qSkJ
module for the trivial representation, and let Calt be a qSkJ-module for the 
alternating character. Thus Calt is C with the Sk-module structure 

ax = c(a) x, 

for a E Sk, X E Calt , where c : Sk -+ {±1} is the alternating character. 
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Proposition 36.1. Let V be a vector space over rc. We have functorial iso
morphisms 

Here "functorial" means that if T : V --t W is a linear transformation, then 
we have a commutative diagram 

and in particular if V = W, this implies that I\kV ~ (®k V) ®qskl Calt as 

GL(V)-modules. 

Proof. The proofs ofthese isomorphisms are similar. We will prove the first. It 
is sufficient to show that the right-hand side satisfies the universal property of 
the exterior k-th power. We recall that this is the following property of I\kV. 
Given a vector space W, a k-linear map f : V x ... x V --t W is alternating 
if 

f(Vtr(IV" ,Vtr(k)) =€(a)f(vI,'" ,Vk). 

The universal property is that any such alternating map factors uniquely 
through !\kV. That is, the map (VI,'" ,Vk) ~ VI!\" '!\Vk is itself alternating, 
and given any alternating map f : V x ... x V --t W there exists a unique 
linear map F : I\kV --t W such that f(VI,'" ,Vk) = F(VI 1\ ... 1\ Vk)' We 

will show that (®k V) ®qskl C alt has the same universal property. 

We are identifying the underlying space of C aJt with C, so 1 E Calt. There 

exists a map i : V x ... x V -+ (®k V) ®qskl C aJt given by 

Let f : V x ... x V -+ U be an alternating k-linear map into a vector space 
W. We must show that there exists a unique linear map 

such that f = F 0 i. Uniqueness is clear since the image of i spans the space 

(®k V) ®qskl Calt. To prove existence, we observe first that by the universal 

property of the tensor product there exists a linear map f' : ®k V -+ W such 
that f(VI,'" ,Vk) = f'(VI ® ... ® Vk). Now consider the map 



36 Duality between Sk and GL(n, q 291 

defined by (~,t) ~ tf'(~). It follows from the fact that f is alternating that 
this map is qSkJ-balanced and consequently induces a map 

This is the map we are seeking. We see that (®k V) Q9qSk] Calt satisfies the 

same universal property as the exterior power, so it is naturally isomorphic 
to ;\kV. D 

For the rest of this chapter, fix n and let V = cn. If p: Sk --t GL(Np ) is 
any representation, then (36.2) defines a module for GL(n, C). 

Theorem 36.1. Let P : Sk --t GL(Np) be a representation. There exists a 
homogeneous symmetric polynomial Sp of degree k in n variables such that if 
'ljJp(g) is the trace of 9 E GL(n, C) on Vp, and iftl,··· ,tn are the eigenvalues 
of g, then 

(36.3) 

Proof. First let us prove this for 9 restricted to the subgroup of diagonal 
matrices. Let 6, ... ,~n be the standard basis of V. In other words, identifying 
V with Cn , let ~i = (0, ... , 1, ... ,0), where the 1 is in the i-th position. The 
vectors (~il Q9 ••• Q9 ~ik) Q9 v, where v runs through a basis of Np , and 1 ::;; 
il ::;; ... ::;; ik ::;; n span Vp. They will generally not be linearly independent, 
but there will be a linearly independent subset that forms a basis of Vp. For 9 
diagonal, if g(~i) = ti ~i' then (~il 12> ••• 12> ~ik) 12> v will be an eigenvector for 9 
in Vp with eigenvalue til· .. t ik . Thus, we see that there exists a homogeneous 
polynomial sp of degree k such that (36.3) is true for diagonal matrices g. 

To see that sp is symmetric, we have pointed out that the action of Sk on 
Q9k V commutes with the action of GL(n, C). In particular, it commutes with 
the action of the permutation matrices in GL(n, C), which form a subgroup 
isomorphic to Sn. These permute the eigenvectors (~il Q9 .•. Q9 ~ik) Q9 v of 9 
and hence their eigenvalues. Thus, the polynomial sp must be symmetric. 

Since the eigenvalues of a matrix are equal to the eigenvalues of any con
jugate, we see that (36.3) must be true for any matrix that is conjugate to a 
diagonal matrix. Since these are dense in GL(n, C), (36.3) follows for all 9 by 
continuity. D 

Proposition 36.2. Let Pi : Sk --t GL(NpJ (i = 1,··· ,h) be the irreducible 
representations of Sk and let d1 , •.• ,dh be their respective degrees. Then 

(36.4) 
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Proof. If R is a ring and M a right R-module, then 

M0RR~M. (36.5) 

(To prove this standard isomorphism, observe that m0r t--t mr and m t--t m01 
are inverse maps between the two Abelian groups.) If M is an (8, R)-bimodule, 
then this is an isomorphism of 8-modules. Consequently, 

The multiplicity of Pi in the regular representation is di , that is, q8k] c::,< 

E9 di Pi, and hence 

(36.6) 

Taking characters, we obtain (36.4). o 

Recall that we ended the last chapter by asserting that 'l/Js is a proper 
character of GL(n, q, where s is the polynomial in (35.9). We now have the 
tools to prove this. 

Let k = 3, and let Pi be the irreducible representations of degree 2 of 83 . 

We will take PI to be the trivial representation, P2 = c to be the alternating 
representation, and P3 to be the irreducible two-dimensional representation. 
If 9 E GL(n, C) has eigenvalues tl, ... ,tn, then the value at 9 of the character 
of the representation of GL( n, q on the module ®3 V is 

p~(tI, ... ,tn)=(Lti)3 =Lt~+3Lt;tj+6 L titjtk. 
i¥-j i<j<k 

The right-hand side of (36.4) consists of three terms. First, corresponding to 
PI and the symmetric cube V3 V ~ VP1 representation of G L( n, q is 

h3 = L t~ + L tTtj + L titjtk. 
i#J i<j<k 

Second, corresponding to P2 and the exterior cube 1\3V ~ VP2 representation 
of GL(n, q is 

e3 = L titjtk. 
i<j<k 

Finally, corresponding to P3, the associated module VP3 of GL(n, q affords 
the character 'l/JP3' and the associated symmetric polynomial SP3 occurs with 
coefficient d3 = 2. Thus satisfies the equation 

p~ = h3 + e3 + 2sp3 , 
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from which we easily calculate that SP3 is the polynomial in (35.9). 
The conjugacy classes of Sk are parametrized by the partitions of k. A 

partition of k is a decomposition of k into a sum of positive integers. Thus, 
the partitions of 5 are 

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. 

Note that the partitions 3 + 2 and 2 + 3 are considered equal. We may arrange 
the terms in a partition into descending order. Hence, a partition A of k may 
be more formally defined to be a sequence of nonnegative integers (A1,··· ,AI) 
such that A1 ~ A2 ~ ... ~ Al ~ 0 and L:i Ai = k. It is sometimes convenient to 
allow some of the parts Ai to be zero, in which case we identify two sequences 
if they differ only by trailing zeros. Thus (3,2,0,0) is considered to be the 
same partition as (3,2). The length or number of parts l(A) of the partition A 
is the largest i such that Ai #- 0, so the length of the partition (3,2) is two. 
We will denote by p(k) the number of partitions of k, so that p(5) = 7. 

If A is a partition of k, there is another partition, called the conjugate 
partition, which may be constructed as follows. We construct from A a diagram 
in which the i-th row is a series of Ai boxes. Thus, the diagram corresponding 
to the partition (3,2) is 

Having constructed the diagram, we transpose it, and the corresponding 
partition is the conjugate partition, denoted At. Hence, the transpose of the 
preceding diagram is 

-
and so the partition of 5 conjugate to (3,2) is (2,1,1). These types of diagrams 
are called Young diagrams or Ferrers' diagrams. 

More formally, the diagram D(A) of a partition A is the set of (i,j) E'l} 
such that 0 :::; i and 0 :::; j :::; Ai. We associate with each pair (i, j) the box in 
the i-th row and the j-th column, where the convention is that the row index 
i increases as one moves downward and the column index j increases as one 
moves to the right, so that the boxes lie in the fourth quadrant. 

Suppose that J.L = At. Then (i,j) E D(A) if and only if (j, i) E D(J.L). 
Therefore 

(36.7) 
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If G is a finite group, let X(G) be the free Abelian group generated by the 
isomorphism classes of irreducible representations. Because X(G) has a well
known ring structure, it is usually called the character ring of G, but we will 
not use the multiplication in X(G) at all. To us it is simply an additive Abelian 
group with a distinguished set of generators, namely the set of isomorphism 
classes of irreducible representations. Let Rk = X(Sk). It is a free Abelian 
group of rank equal to the number p(k) of partitions of k. Our convention is 
Ro=Z. 

Remark 36.1. As a vector space, Rk = X(Sk) is isomorphic to the space of 
generalized characters on Sk, and by abuse of language we will frequently 
identify a generalized character with its corresponding element of Rk. 

Although we do not need the ring structure on Rk itself, we will introduce 
a multiplication Rk x Rl -+ Rk+l, which makes R = ffik Rk into a graded 
ring. The multiplication in R is as follows. If (), p are representations of Sk and 
Sl, respectively, then () Q9 p is a representation of Sk x Sl, which is a subgroup 
of Sk+l. We will always use the unadorned symbol Q9 to denote Q9c. 

We let () 0 p be the representation obtained by inducing () Q9 p from Sk x Sl 
to Sk+l. This multiplication, at first defined only for genuine representations, 
extends to virtual representations by additivity, and so we get a multiplication 
Rk x Rl -+ Rk+l. It follows from the principle of transitivity of induction that 
this multiplication is associative, and since the subgroups Sk x Sl and Sl x Sk 
are conjugate in Sk+l, it is also commutative. 

Now let us introduce another graded ring. Let n be a fixed integer, and let 
Xl, ... ,Xn be indeterminates. We consider the ring 

A(n) = Zsym[Xl, ... ,xnl 

of symmetric polynomials with integer coefficients in Xl, ... , X n , graded by 
degree. By Proposition 35.1, A(n) is a polynomial ring in the symmetric poly
nomials el,· .. ,en, 

A(n) ~ Z[el,··· ,enl (36.8) 

or equally, in terms of the symmetric polynomials hi, 

A(n) ~ Z[hl,··· ,hnl. 

A(n) is a graded ring. We have A(n) = ffi Ain) , where Ain) consists of all 
homogeneous polynomials of degree k in A(n). 

Proposition 36.3. The homogeneous part Ain) is a free Abelian group of rank 
equal to the number of partitions of k into no more than n parts. 

Proof. Let A(n) be such a partition. Thus A(n) = (Al,··· ,An), where Al ;;;:: 
A2 ;;;:: ... ;;;:: An ;;;:: 0 and Li Ai = k. Let 
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where (001"'" an) runs over all distinct permutations of (AI, ... , An). Clearly, 
the m A form a Z-basis of Akn), and therefore Akn) is a free Abelian group of 
rank equal to the number of partitions of k into no more than n parts. 0 

In Theorem 36.1, we associated with each irreducible representation p of 
Sk an element sp of Akn ). Thus, there exists a homomorphism of Abelian 

groups chkn) : nk ---+ Akn) such that chkn) (p) = sp. Let ch(n) : n --+ A(n) be 

the homomorphism of graded rings that is chkn) on the homogeneous part nk 
of degree k. 

Proposition 36.4. The map ch(n) is a surjective homomorphism of graded 

rings. The map chkn) in degree k is an isomorphism if n ~ k. 

Proof. The main thing to check is that the group law 0 that was introduced 
in the ring n corresponds to multiplication of polynomials. Indeed, let () and 
p be representations of Sk and Sl, respectively. Then () ® p is an Sk x Sl
module, and by Proposition 34.6, () 0 p is the representation of Sk+l attached 
to qSk+d ®qskxszl (No ® Np). Therefore 

VOep = (®k+1V) ®qsk+zl qSk+d ® (No ® Np), 

which by (36.5) is isomorphic to 

(®k+1V) ®qskxszl (No ® Np) 
~ ((®kV) ® (®IV)) ®qskl®qszl (No ® Np) 
~ (®kV ®qskl No) ® (®IV ®qszl Np) = Vo ® Vp. 

Consequently the trace of g E GL( n, q on VOep is the product of the traces 
on Vo and Vp. It follows that for representations () and p of Sk and Sl, we have 
SOep = So sp. Hence, ch(n) is multiplicative and therefore is a homomorphism 
of graded rings. It is surjective because a set of generators - the elementary 
symmetric polynomials ei - are in the image. If n ~ k, then the ranks of nk 
and Akn ) both equal p(k), so surjectivity implies that it is an isomorphism. 0 

We will denote by ek, hk E n k the classes of the alternating representation 
and the trivial representation, respectively. It follows from Proposition 36.1 
that ch(n) (ek) = ek and ch(n) (hk) = hk. 

Proposition 36.5. n is a polynomial ring in an infinite number of genera

tors, n = Z[el, e2, e3,"'J = Z[hl' h2' h 3," .J. 
Proof. To show that the ei generate n, it is sufficient to show that the ring 
they generate contains an arbitrary element u of nk for any fixed k. Take 
n ~ k. Since el,'" ,en generate the ring A (n), there exists a polynomial f 
with integer coefficients such that f(el,'" ,en) = ch(u). Then ch(n) applied 
to f(el,'" ,en) gives ch(u), and it follows from the injectivity assertion in 
Proposition 36.4 that f(el,'" ,en) = u. 
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To see that the ei are algebraically independent, if f is a polynomial with 
integer coefficients such that f (el, ... , en) = 0, then since applying ch (n) we 
have f(el,··· , en) = 0, by Proposition 35.1 it follows that f = o. 

Identical arguments work for the h's using Proposition 35.1. 0 

The rings A(n) may be combined as follows. We have a homomorphism 

Xn+l ----* O. (36.9) 

It is easy to see that in this homomorphism ei t-t ei if i ~ n while en+1 t-t 0, 
and so in the inverse limit 

(36.10) 

there exists a unique element whose image under the projection A -+ A(n) is 
ek for all n ~ k; we naturally denote this element ek, and (36.8) implies that 

A ~ Z[ebe2,e3,···j 

is a polynomial ring in an infinite number of variables, and similarly 

A ~ Z[hb h2, h3 ,· •• j. 

In the natural grading on A, ei and hi are homogeneous of degree i. Since the 
rank of A~n) equals the number of partitions of k into no more than n parts, 
the rank of A equals the number of partitions of k. 

Proposition 36.6. We have rn 0 ch(n+1) = ch(n) as maps 'R., ----* A(n). 

Proof. It is enough to check this on e}, e2,··· since they generate n by Propo
sition 35.1. Both maps send ek ----* ek if k ~ n, and ek ----* 0 if k > n. 0 

Now turning to the inverse limit (36.10), the homomorphisms ch(n) : n -+ 
A(n) are compatible with the homomorphisms A(n+1) -+ A(n), and so there is 
induced a ring homomorphism ch : n -+ A. 

Theorem 36.2. The map ch: n ----* A is a ring isomorphism. 

Proof. This is clear from Proposition 36.4. o 

Theorem 36.3. The rings 'R., and A admit automorphisms of order 2 that 
interchange ei +------+ hi and ei +------+ hi. 

Proof. Of course, it does not matter which ring we work in. Since A ~ 
Z[el, e2, e3,· .. j, and since the ei are algebraically independent, if u}, U2,·· . 
are arbitrarily elements of A, there exists a unique ring homomorphism 
A ----* A such that ei ----* Ui. What we must show is that if we take the 
Ui = hi, then this same homomorphism maps hi ----* Ui. This follows from the 
fact that the recursive identity (35.3), from which we may solve for the e's in 
terms of the h's or conversely, is unchanged if we interchange ei +------+ hi. 0 

We will usually denote the involution of Theorem 36.3 as L 
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The Jacobi-Trudi Identity 

An important question is to characterize the symmetric polynomials that cor
respond to irreducible representations of Sk. These are called Schur polyno
mials. 

If A = (aij) and B = (bij ) are square N x N matrices, and if I, J c 
{I, 2, 3,··· ,n} are two subsets of cardinality r, where 1 ~ r ~ n, the minors 

det(aij liE I,j E J), det(bij Ii tf- I, j tf- J) , 

are called complementary. 

Proposition 37.1. Let A be a matrix of determinant 1, and let B = t A -1. 

Each minor of A equals ± the complementary minor of B. 

This is a standard fact from linear algebra. For example, if 

then 

A= (
all a12 a13 a14) 
a21 a22 a23 a24 
a31 a32 a33 a34 ' 
a41 a42 a43 a44 

bll b12 b14 
a23 = - b31 b32 b34 , 

b41 b42 b44 

It is not hard to give a rule for the sign in general, but we will not need it. 

Proof. Let us show how to prove this fact using exterior algebra. Suppose that 
A is an N x N matrix. Let V = CN. Then I\NV is one-dimensional, and we 
fix an isomorphism 'TJ : I\NV --+ C. If 1 ~ k ~ N, and if A: V --+ V is any 
linear transformation, we have a commutative diagram: 
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(AkV) x (AN-kV) 
(I\k A, I\N-k A) 

(AkV) x (AN-kV) .. 

Aj jA 

ANV 
I\N A 

ANV 

"j j" 
C 

detA 
C .. 

The vertical arrows marked A are multiplications in the exterior algebra. 
The vertical map 'TJ 0 A : (AkV) x (AN-kV) --+ C is a nondegenerate 

bilinear pairing. Indeed, let VI, . " ,V N be a basis of V chosen so that 

Then a pair of dual bases of AkV and AN-kV with respect to this pairing are 

where i l < ... < ik, jl < ... < jN-k, and the two subsets 

of {I"" ,N} are complementary. (The sign of the second basis vector will 
be (_I)d, where d = (il - 1) + (i2 - 2) + ... + (ik - k).) If det(A) = 1, 
then the bottom arrow is the identity map, and therefore we see that the map 
AN- k A: AN-kV ---+ AN-kV is the inverse of the adjoint of AkA: AkV ---+ AkV 
with respect to this dual pairing. Hence, if we use the above dual bases to 
compute matrices for these two maps, the matrix of AN -k A is the transpose 
of the inverse of the matrix of AkA. Thus, if B is the inverse of the adjoint 
of A with respect to the inner product on V for which V!"" ,VN are an 
orthonormal basis, then the matrix of AN -k B is the same as the matrix of 
Ak A. Now, with respect to the chosen dual bases, the coefficients in the matrix 
of AkA are the k x k minors of A, while the matrix coefficients of AN -k Bare 
(up to sign) the complementary (N - k) x (N - k) minors of B. Hence, these 
are equal. 0 

Proposition 37.2. Suppose that A = (AI,'" ,Ar) and /-l = (/-ll,'" ,/-ls) are 
conjugate partitions of k. Then the r + 8 numbers 

8 + i-Ai, (i = 1 ... r) , " 
8 - j + /-lj + 1, (j = 1,'" ,8), 

are 1,2,3"" ,r + 8 rearranged. 
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Another proof of this combinatorial lemma may be found in Macdonald [95], 
1.1.7. 

Proof. First note that the r + s integers all lie between 0 and r + s. Indeed, 
if 1 :( i :( r, then 

o :( s + i-Ai :( s + r 

because s is greater than or equal to the length l (J-l) = A I :;:: Ai, so S + i-Ai :;:: 
S - Ai :;:: 0, and s + i-Ai :( s + i :( s + r; and if 1 :( j :( s, then 

o :( s - j + J-lj + 1 :( s + r 

since s - j + J-lj + 1 :;:: s - j :;:: 0, and J-lj :( J-ll = l(A) :( r, so s - j + J-lj + 1 :( 
s + J-lj :( s + r. 

Thus, it is sufficient to show that there are no duplications between these 
s + r numbers. The sequence s + i-Ai is strictly increasing, so there can be 
no duplications in it, and similarly there can be no duplications among the 
s - j + J-lj + 1. We need to show that s + i -.Ai -=I- s - j + J-lj + 1 for all 1 :( i :( r, 
1 :( j :( s, that is, 

Ai + J-lj + 1 -=I- i + j. (37.1) 

There are two cases. If j :( .Ai, then by (36.7) we have also i :( J-lj, so Ai + 
J-lj + 1> .Ai + J-lj :;:: i + j. On the other hand, if j > Ai, then by (36.7), i > .Aj, 
so 

i + j :;:: Ai + J-lj + 2 > .Ai + J-lj + 1. 

In both cases, we have (37.1). o 

We will henceforth denote the multiplication in R, which was denoted in 
Chapter 36 with the symbol 0, by the usual notations for multiplication. Thus 
what was formerly denoted eo p will be denoted e p, etc. Observe that the ring 
R is commutative. 

We recall that ek and hk E Rk denote the alternating representation and 
the trivial representation of Sk, respectively. 

Proposition 37.3. We have 

hk - eIhk- 1 + e2hk-2 - '" + (-l)kek = 0 (37.2) 

if k :;:: 1. 

Proof. Choose n :;:: k so that the characteristic map ch(n) : Rk ----t A~n) is 

injective. It is then sufficient to prove that ch(n) annihilates the left-hand 
side. Since ch(n) (ei) = ei and ch(n) (hi) = hi, this follows from (35.3). 0 

Proposition 37.4. Let A = (Ab'" ,Ar) and J-l = (J-lI,'" ,J-ls) be conjugate 
partitions of k. Then 

(37.3) 
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Our convention is that if r < 0, then hr = er = o. (Also, remember that 
ho = eo = 1.) As an example, if A = (3,3,1), then I-l = At = (3,2,2), and we 
have 

h3 h4 h5 e3 e4 e5 
h2 h3 h4 = el e2 e3 . 
o ho hI eo el e2 

Later, in Proposition 37.1 we will see that the sign in (37.3) is always +. This 
could be proved now by carefully keeping track of the sign, but this is more 
trouble than it is worth because we will determine the sign in a different way. 

Proof. We may interpret (35.3) as saying that the Toeplitz matrix 

is the transpose inverse of 

conjugated by 

( 

ho hI ... hr+S_I) 
ho ... hr+s - 2 

. . . . 
ho 

(

eo 
el eo 

er+:S-1 er+s-2 J 

(37.4) 

(37.5) 

We only need to compute the minors up to sign, and conjugation by the 
latter matrix only changes the signs of these minors. Hence, it follows from 
Proposition 37.1 that each minor of (37.4) is, up to sign, the same as the 
complementary minor of (37.5). Let us choose the minor of (37.4) with columns 
8+1,··· ,8+r and rows 8+i-Ai (i = 1,··· ,r). This minor is the left-hand side 
of (37.3). By Proposition 37.2, the complementary minor of (37.5) is formed 
with columns 1, ... ,8 and rows 8 - j + I-lj + 1 (j = 1, ... ,8). After conjugating 
this matrix by 

Coo} 
we obtain the right-hand side of (37.3). o 

Suppose that A = (AI, ... ,Ar) is a partition of k. Then we will denote 
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Referring to the definition of multiplication in the ring nk, we see that eA 

and hA are the representations of Sk induced from the alternating and trivial 
representations, respectively, of the subgroup SAl x ... SAr' We will denote 
this group by SA' 

There is a partial ordering on partitions. We write A );= /-L if 

(i=1,2,3,···). 

Since nk is the character ring of Sk, it has a natural inner product, which 
we will denote ( , ). Our objective is to compute the inner product (eA, hJL). 

Proposition 37.5. Let A = (Al.··· ,Ar) and /-L = (/-Lb'" ,/-Ls) be partitions 
of k. Then 

(37.6) 

This inner product is equal to the number of r x s matrices with each coefficient 
equal to either 0 or 1 such that the sum of the i-th row is equal to Ai and the 
sum of the j -th column is equal to /-Lj. This inner product is nonzero if and 
only if /-Lt );= A. If /-Lt = A, then the inner product is 1. 

Proof. Computing the right- and left-hand sides of (37.6) both lead to the 
same calculation, as we shall see. For definiteness, we will compute the left
hand side of (37.6). Note that 

(hA' eJL) = dim Homsk (Ind~~ (1), Ind~: (c)), 

where c is the alternating character of SA, and Ind~k (c) denotes the cor-
I' 

responding induced representation of Sk. This is because eJLi E nJLi is the 
alternating character of SAi' and the multiplication in R is defined so that 
the product eJL = eJLl .•. eJLr is obtained by induction from Sw 

By Mackey's theorem, we must count the number of double cosets in 
SJL \Sk/SA that support intertwining operators. (See Remark 34.1.) Simply 
counting these double cosets is sufficient because the representations that we 
are inducing are both one-dimensional, so each space on the right-hand side 
of (34.10) is either one-dimensional (if the coset supports an intertwining op
erator) or zero-dimensional (if it doesn't). 

First, we will show that the double cosets in SJL \Sk/ SA may be parametrized 
by s x r matrices with nonnegative integer coefficients such that the sum of 
the i-th row is equal to /-Li and the sum of the j-th column is equal to Aj. 
Then we will show that the double cosets that support intertwining operators 
are precisely those that have no entry > 1. This will prove the first assertion. 

We will identify Sk with the group of k x k permutation matrices. (A 
permutation matrix is one that has only zeros and ones as entries, with ex
actly one nonzero entry in each row and column.) Then SA is the subgroup 
consisting of elements of the form 
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(

Dl 0 ... 

o D2 ••• 

· .. · . . · . . 
o 0 

where Di is a Ai x Ai permutation matrix. Let 9 E Sk represent a double coset 
in Sp, \SkISA. Let us write 9 in block form, 

(

Cll C12 ... CIT) 
C21 C22 . .. C2T 

· '. . , · . . . · . '. 

Cs1 Cs2 ... CST 

(37.7) 

where C ij is a /-li x Ai block. Let "Iij be the rank of C ij , which is the number 
of nonzero entries. Then the matrix r x s matrix ("Iij) is independent of the 
choice of representative of the double coset. It has the property that the sum 
of the i-th row is equal to /-li and the sum of the j-th column is equal to Aj. 
Moreover, it is easy to see that any such matrix arises from a double coset in 
this manner and determines the double coset uniquely. This establishes the 
correspondence between the matrices ("Iij) and the double cosets. 

Next we show that a double coset supports an intertwining operator if and 
only if each "Iij ~ 1. A double coset Sp,gSA supports an intertwining operator 
if and only if there exists a nonzero function .1 : Sk -+ C with support in 
Sp,gSA such that 

(37.8) 

for 7 ESp" 0" E SA. 
First, suppose the matrix ("Iij) is given such that for some particular i, j, 

we have "I = "Iij > 1. Then we may take as our representative of the double 
coset a matrix 9 such that 

Now there exists a transposition 0" E SA and a transposition 7 E Sp, such that 
9 = 7gO". Indeed, we may take 7 to be the transposition (12) E SAj C SA and 
0" to be the transposition (12) E Sp,i C Sw Now, by (37.8), 

Ll(g) = Ll(7gO") = -.1(g), 

so .1(g) = 0 and therefore .1 is identically zero. We see that if any "Iij > 1, then 
the corresponding double coset does not support an intertwining operator. 

On the other hand, if each "Iij ~ 1, then we will show that for 9 a repre
sentative of the corresponding double coset, g-ISp,g n SA = {I}, or 

Sp,gngSA = {g}. (37.9) 
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Indeed, suppose that T ESp, and a E SA such that T9 = 9a. Writing 

with Tp" ESp" and a A, E SA. and letting 9 be as in (37.7), we have Tp,.Gij = 
GijaAj . If Tp" i= I, then 

Tp" (Gil· .. Gir ) i= ( Gil ... Gir ) 

since the rows of the second matrix are distinct. Thus Tp,.Gij i= G ij for some i. 
Since Gij has at most one nonzero entry, it is impossible that after reordering 
the rows (which is the effect of left multiplication by Tp,J this nonzero entry 
could be restored to its original position by reordering the columns (which 
is the effect of right multiplication by ai"l). Thus Tp"Gij i= Gij implies that 

3 

Tp"Gij i= GijaAj" This contradiction proves (37.9). 
Now (37.9) shows that each element of the double coset has a unique 

representation as T9a with T ESp, and a E SA. Hence, we may define 

L1(h) = {£(T) if h = :9a with T E Sp, and a E SA' 
_ 0 otherwIse, 

and this is well-defined. Hence, such a double coset does support an intertwin
ing operator. 

Now we have asserted further that (37.6) is nonzero if and only if J-Lt >r= A 
and that if J-Lt = A, then the inner product is 1. Let us ask, therefore, for given 
A and J-L, whether we can construct a matrix ("Iij) with each "Iij = 0 or 1 such 
that the sum of the i-th row is J-Li and the sum of the j-th column is Aj. Let 
1/ = p,t. Then 

Vi = card {j I J-Lj ~ i}. 

That is, Vi is the number of rows that will accommodate up to i 1's. Now 
1/1 + V2 + ... + Vt is equal to the number of rows that will take a 1, plus the 
number of rows that will take two 1's, and so forth. Let us ask how many 1's 
we may put in the first t columns. Each nonzero entry must lie in a different 
row, so to put as many 1's as possible in the first t columns, we should put Vt 
of them in those rows that will accommodate t nonzero entries, Vt-l of them in 
those rows that will accommodate t - 1 entries, and so forth. Thus V1 + ... + Vt 

is the maximum number of 1 's we can put in the first t columns. We need to 
place Al + ... + At ones in these rows, so in order for the construction to be 
possible, what we need is 

Al + ... + At ::::;; VI + ... + Vt 

for each t, that is, for V >r= A. It is easy to see that if V = A, then the location of 
the ones in the matrix ("Iij) is forced so that in this case there exists a unique 
intertwining operator. 0 
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Corollary 37.1. If A and J.l are partitions of k, then we have J.lt );= At if and 
only if A );= J.l. 

Proof. This is equivalent to the statement that J.lt );= A if and only if At );= J.l. 
In this form, this is contained in the preceding proposition from the identity 
(37.6) together with the characterization of the nonvanishing of that inner 
product. Of course, one may also give a direct combinatorial argument. 0 

Theorem 37.1. (Jacohi-Trudi identity) Let A = (AI,'" ,Ar) and J.l = 
(J.ll, ... ,J.ls) be conjugate partitions of k. We have the identity 

(37.10) 

in'Rk. We denote this element (37.10) as 8)... It is an irreducible chamcter of 
Sk and may be chamcterized as the unique irreducible chamcter that occurs 
with positive multiplicity in both Ind~: (c) and Ind~~ (1); it occurs with multi
plicity one in each of them. The p(k) chamcters 8).. are all distinct, and are 
all the irreducible chamcters of Sk. 

Proof. Let n ~ k, so that ch(n) : 'Rk -+ Ain ) is injective. Applying ch to 
(37.10) and using (37.3), we see that the left- and right-hand sides are either 
equal or negatives of each other. We will show that the inner product of the 
left-hand side with the right-hand side of (37.10) equals 1. Since the inner 
product is positive definite, this will show that the left- and right-hand sides 
are actually equal. Moreover if L: diXi is the decomposition of (37.10) into 
irreducibles, this inner product is Ei d~, so knowing that the inner product 
is 1 will imply that 8).. is either an irreducible character, or the negative of an 
irreducible character. 

We claim that expanding the determinant on the left-hand side of (37.10) 
gives a sum of terms of the form ±h),.' where each>.' );= A and the term h).. 
occurs exactly once. Indeed, the terms in the expansion of the determinant 
are of the form 

h)..l-l+jl h)..2-1+h ... h)..r-r+jr' 

where (jl, ... ,jr) is a permutation of (1,2, . " ,r). If we arrange the indices 
Ai - i + ji into descending order as Ai, A~, ... , then Ai is greater than or equal 
to Al - 1 + jl' Moreover, jl ~ 1 so 

and similarly jl + h ~ 3 so 

and so forth. 
Similarly, expanding the right-hand side gives a sum of terms of the form 

±eIJ" where J.l' );= J.l, and the term eIJ also occurs exactly once. 



37 The Jacobi-Trudi Identity 305 

Now let us consider (hN, eJL,). By Proposition 37.5, if this is nonzero we 
have (f..t,)t >r >.'. Since A' >r A and f..t' >r f..t, which implies f..tt >r (f..t,)t by Corollary 
37.1, we have 

A = f..tt >r (f..t,)t >r A' >r A. 

Thus we must have>.' = A. It is easy to see that this implies that (jl, ... ,jr) = 
(1,2,··, ,r), so the monomial eA occurs exactly once in the expansion of 
det(hAi-i+j). A similar analysis applies to det(eJLi-i+j). 

We see that the inner product of the left- and right-hand sides of (37.10) 
equals 1, which implies everything except that SA and not -SA is an irreducible 
character of Sk. To see this, we form the inner product (sA' hJL). The same 
considerations show that this inner product is 1. Since hJL is a proper character 
(it is the character of Ind~k (1)) this implies that it is SA, and not -SA' is an 

~ 

irreducible character. 
We have just noted that SA occurs with positive multiplicity in hA' which 

is the character of the representation Ind~~ (1). Similar considerations show 

that (sA' eJL) = 1 and e A is the character of the representation Ind~k (€). By 
~ 

Proposition 37.5, (eJL' h A) = 1, so there cannot be any other representation 
that occurs with positive multiplicity in both. 

This characterization of SA shows that it cannot equal sJL for any f..t =I- A, 
so the irreducible characters SA are all distinct. Their number is p(k), which 
is also the number of conjugacy classes in Sk (that is, the total number of 
irreducible representations). We have therefore constructed all of them. 0 

Theorem 37.2. If A and f..t are conjugate partitions, and if t is the involution 
of Theorem 36.3, then ·sA = sJL and ·sA = Sw 

Proof. Since ·hA = eA and ·eA = hA' this follows from the Jacobi-Trudi 
identity. 0 

EXERCISES 

Exercise 37.1. Let A and J1. be partitions of k. Show that 

and that this inner product is equal to the number of r x s matrices with each 
coefficient a nonnegative integer such that the sum of the i-th row is equal to Ai, 
and the sum of the j-th column is equal to J1.j. 

Exercise 37.2. Give a combinatorial proof of Corollary 37.1. 

Zelevinsky [133] shows how the ring n may be given the structure of a 
graded Hopf algebra. This extra algebraic structure (actually introduced earlier by 
Geissinger) encodes all the information about the representations of Sk that comes 
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from Mackey theory. Moreover, a similar structure exists in a ring R(q) analogous 
to R, constructed from the representations of GL(k,lFq ), which we will consider in 
Chapter 49. Thus Zelevinsky is able to give a unified discussion of important aspects 
of the two theories. In the next exercises, we will establish the basic fact that 'R is 
a Hopf algebra. 

Let A be a commutative ring. A graded A-module R is an A-module R with a se
quence fRo, Rl, R2,'" } of submodules such that R = E9 R., and a homomorphism 
R ---+ 8 of graded A-modules is a homomorphism that takes R. into 8i. The tensor 
product R 08 = R 0A 8 of two graded A-modules is a graded A-module with 

(R0 8)m = E9 Rk 081• 

k+l=m 

A graded A-algebra is an A-algebra R in which Ro = A and the multiplication 
satisfies Rk . RI C Rk+I. This means that the map m : R 0 R ---+ R such that 
m(x 0 y) = xy is a homomorphism of graded A-modules. From this point of view, 
we may formulate the definition of a graded A-algebra as follows: it is a graded 
A-module R with Ro = A, and a graded A-module homomorphism m: R0R ---+ R 
such that the diagram 

R®R®R 
m®l 

R ® R __ .:.;.m=--_+~ R 

is commutative. This is a reformulation of the associative law. We also assume that 
the maps Ro 0 R. = A 0 R. ---+ R. and R. 0 Ro = R. 0 A ---+ R. induced by m are 
the canonical isomorphisms in which m(a ® r) = m(r ® a) = ar for a E A, r E Ri. 
Formulated this way, we may dualize the notion of a graded A-algebra, obtaining 
the notion of a graded A-coalgebra. Dualization in this context means formulating 
the concept diagrammatically and then reversing the arrows. Thus, in a coalgebra, 
the multiplication m : R 0 R ---+ R is replaced by a comultiplication, which is the 
homomorphism R ---+ R 0 R of graded algebras such that the diagram 

m* 

m*®l 
R®R ---.:....-..-~ R®R®R 

is commutative. We again assume that Ro = A, and we assume that the maps 
R. ---+ Ro 0 R. = A 0 Ri and R. ---+ R. 0 Ro = R. 0 A induced by m* are the 
canonical isomorphisms, mapping r E R. to 1 0 r or r 0 1. 

Exercise 37.3. Suppose that k+l = m. Let 0 denote 0z. The group 'Rk0'R1 can be 
identified with the free Abelian group identified with the irreducible representations 
of 8k x 81. (Explain.) So restriction of a representation from 8m to 8k X 81 gives a 
group homomorphism Rm ---+ 'Rk 0 R!. Combining these maps gives a map 

m*: 'Rm ---+ E9 Rk 0'Rz = ('R0R)m. 
k+!=m 
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Show that this homomorphism of graded Z-algebras makes 'R into a graded coalge
bra. 

If R and S are graded A-algebras, then we can make R ® S into a graded A
algebra in which the multiplication sends (r®s)®(r' ®s') ~ m(r®r')®m(s®s'). 
Making use of the transposition map r : 8 ® R ~ R ® 8, we can formulate this 
multiplication as the composition 

1®7®1 
(R®S)®(R®S) ~ R®R®S®S 

m®m 
------~ R®S 

Dually, if R and 8 are graded A-coalgebras, we can make R ® 8 into a graded 
A-coalgebra, in which the comultiplication is the composition 

m* ® m* 1 ® 7-1 ® 1 
R® S ~ R® R®S® S ~ (R® S) ® (R®S) 

Exercise 37.4. Let R be a graded algebra that is also a graded coalgebra. Show 
that the three statements are equivalent. 

(i) The multiplication m : R ® R ~ R is a homomorphism of coalgebras. 
(ii) The comultiplication m* : R ~ R ® R is a homomorphism of algebras. 
(iii) The following diagram is commutative: 

m* ®m* 1®7®1 
R®R ~ R®R®R®R ~ R®R®R®R 

R 
m* 

R®R 

If the equivalent conditions of Exercise 37.4 are satisfied, then R is called a Hop! 
algebm. 

Exercise 37.5. (Zelevinsky [133]) (i) Let k + l = p + q = m. Representing 
elements of the symmetric group as matrices, show that a complete set of double 
coset representatives for (8p x 8q )\8m /(8k x 8/) consists of the matrices 

(
Ia 0 0 0) o 0 0 Ie 
o 0 Id 0 ' 
o Ib 0 0 

where a + b = k, c + d = l, a + c = p, and b + d = q. 
(ii) Use (i) and Mackey theory to prove that 'R is a grade Hopf algebra over Z. 
Hint: Both parts are similar to parts of the proof of Proposition 37.5. 
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Schur Polynomials and GL(n, C) 

Now let SJL(XI,'" ,xn) be the symmetric polynomial ch(n) (sJL); we will use 
the same notation sJL for the element ch(sJL) ofthe inverse limit ring A defined 
by (36.10). These are the Schur polynomials. 

Theorem 38.1. Assume that n ;:: l(A). We have 

(38.1) 

Xl X2 ... Xn 
111 

provided that n is greater than or equal to the length of the partition k, so that 
we may denote A = (A!,'" ,An) (possibly with trailing zeros). In this case 
SA =I- O. 

It is worth recalling that the Vandermonde determinant in the denominator 
can be factored: 

Xn-l xn-l xn-l 
1 2 ... n 

Xn-2 xn-2 xn-2 1 2 ... n 

= II(xi - Xj). 

Xl X2'" Xn i<j 

111 

It is also worth noting, since it is not immediately obvious from the expression 
(38.1), that the Schur polynomial SA in n + 1 variables restricts to the Schur 
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polynomial also denoted s). under the map (36.9). This is of course clear from 
Proposition 36.6 and the fact that ch(s).) = s).. 

Proof. Let eki ) be the k-th elementary symmetric matrix in n - 1 variables 

omitting Xi. We have, using (35.1) and (35.2) and omitting one variable in 
(35.1), 

00 n 

~)-I)keki)tk = II(I- Xjt), 
k=O j#i 
00 n 

= II (1- Xit)-l, 
i=1 

and therefore 

[ f)-I)k eki )tk] [f hktk] = (1- tXi)-1 = 1 + tXi + t2x~ + .... 
k=O k=O 

Comparing the coefficients of t r in this identity, we have 
00 

2:) _1)k eki) hr-k = xi. 
k=O 

(Our convention is that eki) = hk = 0 if k < 0, and also note that eki) = 0 if 
k ~ n.) Therefore, we have 

( 

h).l h).l +1 ... h).l +n_l) (±e~121 ±e~21 ... ±e~~ll 
h).2-1 h).2 ... h).2+n-2 =fe~122 =fe~22 ... =fe~n~2 

. . . . . . . . . . . 
h). -n+l h). -n+2 . . . h). e(l) e(2) e(n) n n n 0 0 0 

(
X~l+n_l xil+n-l ... X~l+n_l) 
X).2+n- 2 x).2+n-2 X).2+n- 2 

1 2 . .. 2 

· . · . · . 
x).n x).n xAn 

1 2 n 

Denote the determinant of the second factor on the left-hand side by D. Taking 
determinants, 

(38.2) 

Hence, we have only to prove that D is equal to the denominator in (38.1), 
and this follows from (38.2) by taking A = (0, ... ,0) since s(O, ... ,0) = 1. D 
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Suppose that V and Ware vector spaces over a field of characteristic zero 
and B : V x ... x V --+ W is a symmetric k-linear map. Let Q : V --+ V be 
the function Q(v) = B(v,··· , v). The function B can be reconstructed from 
Q, and this process is called polarization. For example, if k = 2 we have 

1 
B(v, w) = "2 (Q(v + w) - Q(v) - Q(w)), 

as we may see by expanding the right-hand side and using B (v, w) = B (w, v). 

Proposition 38.1. Let U and W be vector spaces over a field of characteristic 
zero and let B : U x ... x U --+ W be a symmetric k-linear map. Let Q : 
U --+ W be the function Q(u) = B(u,··· ,u). IfuI,··· ,Uk E U, and if 
S c 1 = {I, 2,··· , k}, let Us = 2:iESUi. We have 

Proof. Expanding Q(us) = B(us,··· ,us) and using the k-linearity of B, we 
have 

Therefore 

Q(us) = L B(Uill Ui2'··· , Uik)· 
il'·· ,ikES 

Suppose that there are repetitions among the list il,··· , ik. Then there will be 
some j E 1 such that j '" {il, ... , id, and pairing those subsets containing j 
with those not containing j, we see that the sum 2:S2{il' .. ,ik}( _l)k-ISI = o. 
Hence, we need only consider those terms where {iI, ... , ik} is a permutation 
of {I, ... , k}. Remembering that B is symmetric, these terms all contribute 
equally and the result follows. 0 

Theorem 38.2. Let>. be a partition of k, and let n ~ 1(>.). Then there exists 
an irreducible representation 7f>. of GL(n, q with character X>. such that if 
g E GL(n, q has eigenvalues tl,··· , tn, then 

(38.3) 

The restriction of7f>. to U(n) is an irreducible representation ofU(n). IfJ-l =1-,\ 
is another partition of k with n ~ 1(J-l), then X>. and X/-I are distinct. 
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Proof. We know that the representation exists by applying Theorem 36.1 to 
the irreducible representation (p, Np ) of Sk with character 8>.. The problem 

is to prove the irreducibility of the module Vp = (®k V) ®qSkJ Np, whose 

character is X>. by Theorem 36.1. (As in Theorem 36.1, we are taking V = en.) 
Let B be the ring of endomorphisms of ®k V that commute with the 

action of Sk. We will show that B is spanned by the linear transformations 

9 E GL(n,C). (38.4) 

We have an isomorphism ®k End(V) ~ End ( ®k V). In this isomorphism, 

It ® ... ® Ik E ®k End(V) corresponds to the endomorphism V1 ® ... ® Vk ---t 

It(V1) ® ... ® /k(Vk). Conjugation in End (®k V) by an element of a E Sk 

in the action (36.1) on ®k V corresponds to the transformation 

It ® ... ® Ik ---t 1<r(1) ® ... ® l<r(k) 

of ®k End(V). If, E ®k End(V) commutes with this action, then, is a linear 
combination of elements of the form B(It, ... ,/k), where B : End(V) x ... x 
End(V) ---t ®k End(V) is the symmetric k-linear map 

B(It" .. ,/k) = L 1<r(1) ® ... ® l<r(k)' 
<rESk 

It follows from Proposition 38.1 that the vector space of such elements 
of ®k End(V) is spanned by those of the form Q(f) = B(f,'" ,f) with 
1 E End(V). Since GL(n, C) is dense in End(V), the elements Q(f) with 1 
invertible span the same vector space. This proves that the transformations of 
the form (38.4) span the space of transformations of ®k V commuting with 
the action of Sk. 

We temporarily restrict the action of GL(n, C) x Sk on ®k V to the com
pact subgroup U(n) x Sk. Representations of a compact group are completely 
reducible, and the irreducible representations of U(n) x Sk are of the form 
7r ® p, where 7r is an irreducible representation of U (n) and P is an irreducible 
representation of Sk. Thus, we write 

(38.5) 

where the 7ri and Pi are irreducible representations of U(n) and Sk, respec
tively. We take the 7ri to be left U(n)-modules and the Pi to be right Sk
modules. This is because the commuting actions we have defined on ®k V 
have U(n) acting on the left and Sk acting on the right. 

The subspace of ®k V corresponding to 7ri ® Pi is actually GL(n, C)
invariant. This is because it is a complex subspace invariant under the Lie 
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algebra action of u( n) and hence is invariant under the action of the complex
ified Lie algebra u(n) + iu(n) = glen, C) and therefore under its exponential, 
GL(n, C). So we may regard the decomposition (38.5) as a decomposition with 
respect to GL(n, C) x Sk. 

We claim that there are no repetitions among the isomorphism classes of 
the representations Pi of Sk that occur. This is because if Pi ~ Pj, then if we 
denote by f an intertwining map Pi ----t Pj and by T an arbitrary nonzero 
linear transformation from the space of 7ri to the space of 7rj, then T ® f is 
a map from the space of 7ri ® Pi to the space of 7rj ® Pj that commutes with 
the action of Sk. Extending it by zero on direct summands in (38.5) beside 
7ri ® Pi gives an endomorphism of ®k V that commutes with the action of Sk' 
It therefore is in the span of the endomorphisms (38.4). But this is impossible 
because those endomorphisms leave 7ri ® Pi invariant and this one does not. 
This contradiction shows that the Pi all have distinct isomorphism classes. 

It follows from this that at most one Pi can be isomorphic to the contra-

gredient representation of P)... Thus, in Vp = (®k V) ®qSkJ Np at most one 

term can survive, and that term will be isomorphic to 7ri as a GL(n, C) mod
ule for this unique i. We know that Vp is nonzero since by Theorem 38.1 the 
polynomial s).. i= 0 under our hypothesis that leA) ~ n. Thus, such a 7ri does 
exist, and it is irreducible as a U(n)-module a fortiori as a GL(n, C)-module. 

It remains to be shown that if J.L i= A, then XJL i= n. Indeed, the Schur 
polynomials sJL and s).. are distinct since the partition A can be read off from 
the numerator in (38.1). 0 

We have constructed an irreducible representation of GL(n, IC) for every 
partition A = (AI,' .. ,An) of length ~ n. 

Proposition 38.2. Suppose that n ~ leA). Let 

A' = (AI - An, A2 - An,' .. ,An-l - An, 0). 

In the ring A(n) of symmetric polynomials in n variables, we have 

s),,(XI,'" ,xn) = en(xI,'" ,xn) .. nsN(XI,'" ,xn). 

In terms of the characters of GL(n, C), we have 

neg) = det(g) .. nxN(g). 

(38.6) 

(38.7) 

Note that en (XI, ... ,xn) = Xl ... Xn. Caution: this identity is special to A(n). 
The corresponding statement is not true in A. 

Proof. It follows from (38.1) that S)"(Xl,'" ,xn) is divisible by (Xl,,·xn) .. n. 
Indeed, every entry of the first column of the matrix in the numerator is 
divisible by x~n, so we may pull x~n out of the first column, x~n out of the 
second column, and so forth, obtaining (38.6). 

If the eigenvalues of 9 are tI,'" ,tn, then en(tI,'" ,tn ) = tl'" tn = 
det(g) and (38.7) follows from (38.6) and (38.3). 0 
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Although we have constructed many irreducible characters of GL(n, IC), 
it is not true that every character is a X>.. for some partition A. We are 
missing those of the form det(g)-mx;.(g), where m > ° and XA is not di
visible by det(g)m. We may slightly expand the parametrization of the irre
ducible characters of GL(n, IC) as follows. Let A be a sequence of n integers, 
A1 ~ A2 ~ ... ~ An. (We no longer assume that the A are nonnegative; 
if An < 0, such a A is not a partition.) Then we can define a character of 
GL(n, IC) by (38.7) since even if A is not a partition, >.' is still a partition. We 
will denote this representation by 7rA, and its character by XA. 

Let us regard GL(n, IC) as an algebraic group. A function f : GL(n, IC) ----t 

C is regular if f(g) is a polynomial in the matrix entries gij and in det(g)-l. 
A representation GL(n, IC) ----t GL(m, IC) is algebraic if its matrix entries are 
polynomial functions. 

Theorem 38.3. Every finite-dimensional representation of the group U(n) 
extends uniquely to an algebraic representation of GL(n, IC). The irreducible 
complex representations ofU(n), or equivalently the irreducible algebraic com
plex representations of GL( n, IC), are precisely the 7rA parametrized by integer 
sequences A1 ~ A2 ~ ... ~ An. 

Proof. In the proof of Proposition 27.4, we introduced an algebraic group 9 
(there denoted (2) such that 9(JR) ~ U(n) and 9(1C) ~ GL(n, IC). It follows 
from Proposition 27.3 that every irreducible algebraic representation of U(n) 
extends uniquely to an algebraic representation of GL(n, IC). We have not yet 
argued that every irreducible representation of U(n) is algebraic, but we will 
prove that now. 

Let T be the diagonal torus of U(n). Let €i E X*(T) be the character 
€i(t) = ti. If 1 ~ i,j ~ n and i i= j, let aij = €i - €j. These are the roots. We 
choose the ordering in which the positive roots are 4>+ = {aijll ~ i < j ~ n}. 
Then, in the notations of Chapter 25, X* (T) n C+ consists of the characters 

We now observe that the irreducible representation with this highest-weight 
vector is 7rA since (38.1) agrees with the Weyl character formula in the form 
(25.16). 

The representations 7rA are algebraic. Indeed, if An ~ 0, then A is a parti
tion of k for some k, and the coefficients of 7rA(g) are polynomials of degree k 
in the gij. If An ~ 0, the representation is one of these multiplied by a negative 
power of the determinant and the result is still true. 

We now see that every finite-dimensional representation of U(n) extends 
to an algebraic representation of GL(n, IC). Indeed, it is enough to do this for 
irreducibles, and we have determined that the characters of the 7rA, which are 
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algebraic, exhaust the characters of irreducible representations, as enumerated 
in the Weyl character formula. 0 

Proposition 38.3. Suppose that l(A) > n. Then s>.(XI,··· ,xn ) = 0 in A(n). 

Proof. If N = l(A), then A = (AI, ... ,)\N), where AN i= 0 and N > n. Apply 
the homomorphism rN-l defined by (36.9), noting that rN-l(eN) = 0, since 
eN is divisible by XN, and rN-l consists of setting XN = O. It follows from 
(38.6) that rN-l annihilates s>.. We may apply rN-2, etc., until we reach A(n) 

and so s>. = 0 in A(n). 0 

Theorem 38.4. If A is a partition of k let P>. denote the irreducible repre
sentation of Sk affording the character s>. constructed in Theorem 37.1. If 
moreover l(A) ~ n, let 7r>. denote the irreducible representation of GL(n, C) 
constructed in Theorem 38.2. Let V = en denote the standard module of 
GL(n, C). The GL(n, C) x Sk module ®k V is isomorphic to El1>. 7r>. ® P>., 
where the sum is over partitions of k of length ~ n. 

Proof Most of this was proved in the proof of Theorem 38.2. Particularly, we 
saw there that each irreducible representation of Sk occurring in (38.5) occurs 
at most once and is paired with an irreducible representation of GL(n, C). If 
l(A) ~ n, we saw in the proof of Theorem 38.2 that P>. does occur and is paired 
with 7r>.. The one fact that was not proved there is that P>. with l(A) > n do 
not occur, and this follows from Proposition 38.3. 0 
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Schur Polynomials and Sk 

Frobenius [42] discovered that the characters of the symmetric group can be 
computed using symmetric functions. We will explain this from our point of 
view. We highly recommend Curtis [30] as an account, both historical and 
mathematical, of the work of Frobenius and Schur on representation theory. 

In this chapter we will regard the elements of Rk as class functions on Sk. 
(See Remark 36.1.) 

The conjugacy classes of Sk are parametrized by the partitions as follows. 
Let A = (Ai,' .. ,Ar) be a partition of k. Let C A be the conjugacy class con
sisting of products of disjoint cycles of lengths Ai, A2, .... Thus, if k = 7 and 
A = (3,3,1), then CA consists of the conjugates of (123)(456)(7) = (123)(456). 
We say that the partition A is the cycle type of the permutations in the con
jugacy class CA' Let ZA = ISkl/ICAI· 

The support of u E Sk is the set of x E {1, 2, 3, ... ,k} such that u(x) i=- x. 

Proposition 39.1. Let mr be the number of i such that Ai = r. Then 

k 

ZA = IT rmrmr ! . 
r=i 

(39.1) 

Proof. ZA is the order of the centralizer of a representative element 9 E CA' 
This centralizer is easily described. 

First, we consider the case where 9 contains only cycles of length r in its 
decomposition into disjoint cycles. In this case (denoting mr = m), k = rm 
and we may write 9 = Ci ... Cm, where Cm is a cycle of length r. The centralizer 
CSk(g) contains a normal subgroup N of order rm generated by Ci,'" ,Cm. 

The quotient C Sk (g) / N can be identified with Sm since it acts by conjugation 
on the m cyclic subgroups (Ci) ,'" ,(cm). Thus ICsk (g)1 = rmm! . 

In the general case where 9 has cycles of different lengths, its centralizer 
is a direct product of groups like the one just described. D 
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We showed in the previous chapter that the irreducible characters of Sk 
are also parametrized by the partitions of k - namely to a partition j.l there 
corresponds an irreducible representation sf.1" Our aim is to compute sp,(g) 
when g E CAusing symmetric functions. 

Proposition 39.2. The character values of the irreducible representations of 
Sk are rational integers. 

Proof. Using the Jacobi-Trudi identity (Theorem 37.1), SA is a sum of terms 
of the form ±hp, for various partitions j.l. Each hp, is the character induced 
from the trivial character of Sp" so it has integer values. 0 

Let PA (k ~ 1) be the conjugacy class indicator, which we define to be the 
function 

{ ZA if g E CA, 
PA(g) = 0 otherwise. 

As a special case, Pk will denote the indicator of the conjugacy class of the 
k-cycle, corresponding to the partition A = (k). The term "conjugacy class 
indicator" is justified by the following result. 

Proposition 39.3. If g E CA, then (sp"PA) = sp,(g). 

Proof. We have 

The summand is constant on CA and equals zAsp,(g) for any fixed representa
tive g. The cardinality of CA is ISkllzA and the result follows. 0 

It is clear that the PA are orthogonal. More precisely, we have 

/ ) { ZA if A = j.l, 
\PA,pp, = 0 otherwise. (39.2) 

This is clear since PA is supported on the conjugacy class CA , which has car
dinality ISk II ZA' 

We defined PA as a class function. We now show it is a generalized char
acter. 

Proposition 39.4. If A is a partition of k, then PA E Rk. 

Proof. The inner products (PA, sp,) are rational integers by Propositions 39.2 
and 39.3. By Schur orthogonality, we have PA = Lp, (PA, sp,) sp" so PA E Rk. 

o 

Proposition 39.5. If h = l(A), so A = (AI,'" , Ah) and Ah > 0, then 
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Proof. From the definitions, P>"l ... P>"h is induced from the class function j 
on the subgroup S>.. of Sk whose value on (al,'" ,ah) is 

{ >'1 ... )..h if each ai is a )..i-cycle , 
o otherwise. 

The formula (34.13) may be used to compute this induced class function. It 
is clear that P>"l ... P>"h is supported on the conjugacy class of cycle type ).., 
and so it is a constant multiple of P>... We write P>"l ... P>"h = cP>.. and use a 
trick to show that c = 1. By Proposition 39.3, since hk = 8(k) is the trivial 
character of Sk, we have (hk,P>")Sk = 1. On the other hand, by Frobenius 

reciprocity, (hk' P>"l ... P>..J Sk = (hk' f) SA' As a class function, hk is just the 
constant function on Sk equal to 1, so this inner product is 

Therefore c = 1. o 
Proposition 39.6. We have 

k 

khk = LPr h k- r· (39.3) 
r=l 

Proof. Let .A be a partition of k. Let ms be the number of )..i equal to s. We 
will prove 

(39.4) 

By Frobenius reciprocity, this inner product is (j'P>")SrXSk_r' where j is the 
function on Sr X Sk-r whose value on (a, T), with a E Sr and T E Sk-T> is 

{ 
r if a is an r-cycle, 
o otherwise. 

The value of jp>.. restricted to Sr X Sk-r will be zero on (a, T) unless a is an 
r-cycle (since j(a,T) must be nonzero) and T has cycle type )..', where )..' is 
the partition obtained from).. by removing one part oflength r (since P>.. (a, T) 
must be nonzero). The number of such pairs (a, T) is ISrl·ISk-rl divided by 
the product of the orders of the centralizers in Sr and Sk-r, respectively, of 
an r-cycle and of a permutation of cycle type )..'. That is, 

The value of jp>.. on these conjugacy classes is rz>... Therefore 

1 [ ISrl·ISk-rl 1 
(j'P>")SrXSk_r = ISrl·ISk-rl r· rmr-l(mr - 1)! TIs#r smsms! rz>.., 

which equals rmr. This proves (39.4). 
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We note that since A is a partition of k, and since A has mr cycles of length 
r, we have k = L:;;=l rmr . Therefore 

Because this is true for every A, we obtain (39.3). 

Let P>. = P>'lP>'2 ... E Ak, where Pk is defined by (35.7). 

Proposition 39.7. We have 

k 

khk = LPrhk-r. 
r=l 

Proof. We recall from (35.2) that 

00 n 

L hktk = IT (1- Xit)-l, 
k=O i=l 

which we differentiate logarithmically to obtain 

L:;oo kh t k - 1 n d 
~=~ ; k = L -d log(l- Xit)-l. 

k=O kt i=l t 

Since 
d 00 

-log(l- X·t)-l = ~ x":tr - 1 
dt t L,..t' 

r=1 

we obtain 

~ khktk-I = [~hktk 1 ~Pr t r - I . 

Equating the coefficients of t k - I , the result follows. 

Theorem 39.1. We have ch(p>.) = P>.. 

o 

(39.5) 

o 

Proof. We have P>. = P>'lP>'2 .... Hence, it is sufficient to show that ch(Pk) = 
Pk. This follows from the fact that they satisfy the same recursion formula -
compare (39.5) with (39.3) - and that ch(hk) = hk. 0 

Now we may determine the irreducible characters of Sk. 

Theorem 39.2. Express each symmetric polynomial P>. as a linear combina
tion of the sw' 

P>. = L c>.psw 
p 

Then the coefficient c>'p is the value of the irreducible character sp on elements 
of the conjugacy class Cp. 
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Proof. Since n ;;;:: k, ch : Rk ----t Ak is injective, and it follows that 

Taking the inner product of this relation with 8 Jl , we see that 

The result follows from Proposition 39.3. 

As an example, let us verify the irreducible characters of S3. We have 

s(3) = h3 = l:x~ + l:i,fj X;Xj + l:i<j<k XiXjXk, 

S(21) = l:ifj X;Xj +2l:i <j<k XiXjXk, 

and 

so 

S(111) = e(3) = l:i<j<k XiXjXk· 

P(3) = l:x~, 
P(21) = l: x~ + l:ifj X;Xj, 

P(1l1) = l: x~ + 3l:i#j X;Xj + 6l:i<j<k XiXjXk, 

P(I11) = S(3) + S(111) + 2S(21) , 

P(3) = S(3) + S(111) - S(21) , 

p(2d = S(3) - S(111) 

o 

We see that these coefficients are precisely the coefficients in the character 
table of S3: 

1 (123) (12) 

8(3) 1 1 1 
8(111) 1 1 -1 
8(21) 2 -1 0 

Before we leave the representation theory of the symmetric group, let us 
recall the involution i of Proposition 36.3 and Theorem 37.2, which inter
changes 8A with 8Jl where I-L = At is the conjugate partition. It has a concrete 
interpretation in this context. 

Lemma 39.1. Let H be a subgroup of the finite group G. Let X be a character 
of H, and let p be a one-dimensional character of G, which we may restrict 
to H. The induced character (PX)G equals PXG. 

Thus, it does not matter whether we multiply by p before or after inducing 
to G. 
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Proof. This may be proved either directly from the definition of the induced 
representation or by using (34.13). 0 

Theorem 39.3. If / is a class function on Sk, its involute • / is the result of 
multiplying / by the alternating chamcter c of Sk. 

We refrain from denoting • / as c/ because the graded ring R has a different 
multiplication. 

Proof. Let us denote by T : Rk --+ Rk the linear map that takes a class 
function / on Sk and multiplies it by c, and assemble the T in different degrees 
to a linear map of R to itself. We want to prove that T and t are the same. By 
the definition of the ek and hk' they are interchanged by T, and by Theorem 
37.2 they are interchanged by t. Since the ek generate R as a ring, the result 
will follow if we check that T is a ring homomorphism. 

Applying Lemma 39.1 with G = Sk+l, H = Sk X Sl, and p = c shows 
that multiplying the characters X and 'rJ of Sk and Sl each by c to obtain the 
characters T X and T'rJ and then inducing the character T X ® T'rJ of Sk x Sl to 
Sk+l gives the same result as inducing X ® 'rJ and multiplying it by c. This 
shows that T is a ring homomorphism. 0 

EXERCISES 

Exercise 39.1. Compute the character table of 84 using symmetric polynomials by 
the method of this chapter. 
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Random Matrix Theory 

In this chapter, we will work not with GL( n, q but with its compact sub
group U(n). As in the last chapter, we regard elements of Rk as generalized 
characters on Sk. If 1 E Rk, then f = ch(n) (f) E An) is a symmetric polyno
mial in n variables, homogeneous of weight k. Then 'ljJf : U(n) ---+ C, defined 
by (35.6), is the function on U(n) obtained by applying f to the eigenvalues 
of 9 E U(n). We will denote 'ljJf = Ch(n)(/). Thus, Ch(n) maps the additive 
group of generalized characters on Sk to the additive group of generalized 
characters on U(n). It extends by linearity to a map from the Hilbert space 
of class functions on Sk to the Hilbert space of class functions on U(n). 

Proposition 40.1. Let 1 be a class function on Sk. Write 1 = L:>. C>.S>., 
where the sum is over the partitions of k. Then 

ICh(n)(fW = L Ic>.12. 
l(>..)o;;;n 

Proof. The s>. are orthonormal by Schur orthogonality so 1/12 = L: Ic>.12. 
By Theorem 38.2, Ch (n) (s >.) are distinct irreducible characters when>. runs 
through the partitions of k with length ~ n, while, by Proposition 38.3, 
Ch(n)(s>.) = 0 if l(>') > n. Therefore, we may write 

Ch(n) (I) = L c>. Ch(n) (s>.), 

l(>')~n 

and the Ch(n)(s>.) in this decomposition are orthonormal by Schur orthogo

nalityon U(n). Thus ICh(n)(f)12 = L:l(>.)~n Ic>.12. 0 

Theorem 40.1. The map Ch(n) is a contraction if n < k and an isometry if 
n ~ k. In other words, if 1 is a class function on Sk, 

with equality when n ~ k. 
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Proof. This follows immediately from Proposition 40.1 since if n ;;:: k every 
partition of k has length ~ n. 0 

Theorem 40.1 is the basis of a powerful method of transferring computa
tions from the unitary group to the symmetric group. We will explain a strik
ing example of Diaconis and Shahshahani [33], who showed by this method 
that the traces of large random unitary matrices are normally distributed. 

A measure is called a probability measure if its total volume is 1. Suppose 
that X and Y are topological spaces and that X is endowed with a Borel 
probability measure dJLx. Let f : X ---+ Y be a continuous function. We can 
push the measure dJLX forward to probability measure dJLy on Y, defined by 

[ ¢(y) dJLY(Y) = L ¢(J(x)) dJLx(x) 

for measurable functions on Y. Concretely, this measure gives the distribution 
of the values f(x) when x E X is a random variable. 

For example, the trace of a Haar random unitary matrix 9 E U(n) is 
distributed with a measure dJLn on C satisfying 

1 ¢(tr(g)) dg = [ ¢(z) dJLn(z). 
U(n) lc 

(40.1) 

We say that a sequence Vn of Borel probability measures on a space X 
converges weakly to a measure v if Ix ¢(x) dvn(x) ---+ Ix ¢(x) dv(x) for all 
bounded continuous functions ¢ on X. We will see that the measures JLn 
converge weakly as n ---+ 00 to a fixed Gaussian measure 

1 (2 2) dJL(Z) = -e- x +y dx /\ dy, 
7r 

Z = x+iy. (40.2) 

Let us consider how surprising this is! As n varies, the number of eigen
values increases and one might expect the standard deviation of the traces to 
increase with n. This is what would happen were the eigenvalues of a random 
symmetric matrix uncorrelated. That it converges to a fixed Gaussian mea
sure means that the eigenvalues of a random unitary matrix are quite evenly 
distributed around the circle. 

Intuitively, the eigenvalues "repel" and tend not to lie too close together. 
This is reflected in the property of the trace - that its distribution does not 
spread out as n is increased. This can be regarded as a reflection of (18.3). 
Because of the factor Iti - tj 12 , matrices with close eigenvalues have small 
Haar measure in U(n). Dyson [39] gave the following analogy. Consider the 
eigenvalues of a Haar random matrix distributed on the unit circle to be like 
the distribution of charged particles in a Coulomb gas. At a certain tempera
ture (T = ~), this model gives the right distribution. The exercises introduce 
Dyson's "pair correlation" function that quantifies the tendency of the eigen
values to repel at close ranges. Figure 40.1 shows the probability density 
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R (1 0) = n2 _ sin2 (nO/2) (40.3) 
2 , sin2(O/2) 

that there are eigenvalues at both eit and ei(t+O) as a function of 0 (for n = 10). 
(Consult the exercises for the definition of Rm and a proof that R2 is given 
by (40.3).) We can see from this figure that the probability is small when 0 is 
small, but is essentially independent of 0 if 0 is moderate. 

Fig. 40.1. The pair correlation R2(1, ei9 ) when n = 10. 

Weak convergence requires that for any continuous bounded function on 
C we have 

lim ( ¢(z) dp,n(z) = ( ¢(z) dp,(z) , 
n-tooJc Jc 

or in other words 

lim 1 ¢(tr(g))dg= ( ¢(x+iy)dp,(z). (40.4) 
n-too U(n) Jc 

Remarkably, if ¢(z) is a polynomial in z and z, this identity is exactly true 
for sufficiently large n, depending only on the degree of the polynomial! Of 
course, a polynomial is not a bounded continuous function, but we will deduce 
weak convergence from this fact about polynomial functions. 

Proposition 40.2. Let k, 1 ~ O. Then 

( tr(g)k tr{g)l dg = 0 if k ::f: l, 
JU(n) 

while 
( Itr(g)12k dg ~ k! , 

JU(n) 

with equality when n ~ k. 
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Proof. If k "# l, then the variable change 9 -7 eiO 9 multiplies the left-hand 
side by ei(k-l)O "# 1 for () in general position, so the integral vanishes in this 
case. 

Assume that k = l. We show that 

1 Itr(g) 12k dg = k! 
U(n) 

(40.5) 

provided k ~ n. Note that if V = en is the standard module for U(n), then 
tr(g)k is the trace of g acting on ®k V as in (38.4). As in (36.6), we may 
decompose 

k 

Q9V = EBd)Y", 
A 

where dA is the degree of the irreducible representation of Sk with character 
SA' and VA is an irreducible module of U(n) by Theorem 38.2. The L2-norm 
of f(g) = tr(g)k can be computed by Proposition 40.1, and we have 

Of course, the sum of the squares of the degrees of the irreducible represen
tations of Sk is ISkl = k!, and (40.5) is proved. 

If k > n, then the same method can be used to evaluate the trace, and we 
obtain 2::A d~, where now the sum is restricted to partitions of length ~ n. 
This is < k! . 0 

Theorem 40.2. Suppose that ¢>(z) is a polynomial in z and z of degree ~ 2n. 
Then 

1 ¢>(tr(g)) dg = 1 ¢>(z) d/-L(z) , 
U(n) C 

(40.6) 

where d/-L is the measure (40.2). 

Proof. It is sufficient to prove this if ¢>( z) = zkzl. If deg( ¢» ~ 2n, then k + 1 ~ 
2n so either k "# 1 or both k, 1 ~ n, and in either case Proposition 40.2 implies 
that the left-hand side equals 0 if k"# 1 and k! if k = l. What we must therefore 
show is 

r k-l d ( ) = {k! if k = l, lc z z /-L z 0 if k "# l. 

The measure d/-L(z) is rotationally symmetric, and if k "# l, then replacing z 
by eiO z multiplies the left-hand side by eiO(k-l), so the integral is zero in that 
case. Assume therefore that ¢>(x + iy) = Izl2k. Then using polar coordinates 
(so z = x + iy = reiO ) the integral equals 



40 Random Matrix Theory 325 

~ 121f 100 r2k e-2r r dr de = 2100 
r2k+1 e-2r dr = r(k + 1) = k! 

and the theorem is proved. o 

This establishes (40.4) when ¢ is a polynomial - indeed the sequence be
comes stationary for large n. However, it does not establish weak convergence. 
To this end, we will study the Fourier transforms of the measures J-ln and J-l. 

The Fourier transform of a probability measure v on ]RN is called its char
acteristic function. Concretely, 

Theorem 40.3. Let VI, V2, V3, . .. and v be probability measures on ]RN. Sup
pose that the characteristic functions iIi(YI,··· ,YN) ---+ V(YI,··· ,YN) point
wise for all (YI, ... ,YN) E ]RN. Then the measures Vi converge weakly to v. 

Proof omitted. A proof may be found in Billingsley [10], Theorem 26.3 (when 
N = 1) and Section 28 (for general N). The precise statement we need is on 
p. 383 before Theorem 29.4. 0 

In the case at hand, we wish to compare probability measures on C = ]R2, 

and it will be most convenient to define the Fourier transform as a function 
of w = u + iv E C. Let 

and similarly for the jln. 

Proposition 40.3. The functions jln converge uniformly on compact subsets 
ofC to jl. 

Proof. The function jl is easily computed. As the Fourier transform of a Gaus
sian distribution, jl is also Gaussian and in fact jl(w) = e-1wI2 . We write this 
as a power series: 

jl(w) = F(lwl), 

The radius of convergence of this power series is 00. 

We have 
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ff ~!~; [1 zkzld/tn(z)] wkw1. 
k=O 1=0 c 

The interchange of the summation and the integration is justified since the 
measure d/tn is compactly supported, and the series is uniformly convergent 
when z is restricted to a compact set. By Proposition 40.2 and the definition 
(40.1) of /tn, the integral inside brackets vanishes unless k = I, and we may 
write 

By Proposition 40.2 the coefficients ak,n satisfy 0 :::;; ak,n :::;; 1 with equality 
when k > n. We have 

00 ( l)k 00 2k 
""' - 2k ""' r IF(r) - Fn(r)1 = L)I- ak,n)~r :::;; L.J kl' 
k=n k=n 

which converges to 0 uniformly as n --t 00 when r is restricted to a compact 
set. 0 

Corollary 40.1. The measures J.tn converge weakly to J.t. 

Proof. This follows immediately from the criterion of Theorem 40.3. 0 

Since we have not proved Theorem 40.3, let us point out that we can 
immediately prove (40.4) for a fairly big set of test functions ¢>. For example, 
if ¢> is the Fourier transform of an integrable function '¢ with compact support, 
we can write 

[ ¢>(tr(g))dg= [¢>(z)dJ.tn(z) = [,¢(W)fJ,n(w)dUl\dv, 
lU(n) lc lc 

w = u+iv, 

by the Plancherel formula and, since we have proved that fJ,n --t J.t uniformly 
on compact sets (40.4) is clear for such ¢>. 

Diaconis and Shahshahani [33J proved a much stronger statement to the 
effect that the quantities 

where 9 is a Haar random element of U(n), are distributed like the moments 
of r independent Gaussian random variables. Strikingly, what the proof re
quires is the full representation theory of the symmetric group in the form of 
Theorem 39.1! 
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Proposition 40.4. We have 

(40.7) 

with equality provided k1 + 2k2 + ... + rkr ~ n. 

Proof. Let k = k1 + 2k2 + ... + rkr, and let), be the partition of k containing 
k1 entries equal to 1, k2 entries equal to 2, and so forth. By Theorem 39.1, we 
have Ch(n) (P>.) = 1/Jp>.. This is the function 

9 f--t tr(g )kl tr(g2)k2 ••• tr(gr)kr 

since P>. = P>'l ... P>'r' and applying P>.; to the eigenvalues of 9 gives tr(g>';). 
The left-hand side of (40.7) is thus the L2 norm of Ch(n), and if k ~ n, 

then by Theorem 40.1 we may compute this L2 norm in Sk. It equals 

by (39.2). This is the right-hand side of (40.7). If k > n, the proof is identical 
except that Theorem 40.1 only gives an inequality in (40.7). 0 

Theorem 40.4. (Diaconis and Shahshahani) The joint probability distri
bution of the (tr(g), tr(g2), ... ,tr(gr)) near (Zb··· ,zr) E Cr is a measure 
weakly converging to 

IT ~7re-1rlzjI2/j dXj 1\ dYj. 
j=1 J 

(40.8) 

Thus, the distributions of tr(g) , tr(g2), ... ,tr(gr) are as a sequence of in
dependent random variables in Gaussian distributions. 

Proof. Indeed, this follows along the lines of Corollary 40.1 using the fact that 
the moments of the measure (40.8) 

agree with (40.7). o 

Let us end with some general remarks about random matrix theory. By an 
ensemble we mean a topological space whose elements are matrices, given a 
probability measure. Random matrix theory is concerned with the statistical 
distribution of the eigenvalues of the matrices in the ensemble, particularly 
local statistical facts such as the spacing of these eigenvalues. 

The original focus of random matrix theory was not on unitary matrices 
but on random Hermitian matrices. The reason for this had to do with the 
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origin of the theory in nuclear physics. In quantum mechanics, an observable 
quantity such as energy or angular momentum is associated with a Hermitian 
operator acting on a Hilbert space whose elements correspond to possible 
states of a physical system. An eigenvector corresponds to a state in which the 
observable has a definite value, which equals the eigenvalue of the operator on 
that eigenvector. The Hermitian operator corresponding to the energy level 
of the physical system (a typical observable) is called the Hamiltonian. A 
Hamiltonian operator is typically positive definite. 

It was observed by Wigner and his collaborators that although the spectra 
of atomic nuclei (emitting or absorbing neutrons) were hopeless to calculate 
from first principles, the spacing of the eigenvalues still obeyed statistical laws 
that could be studied. To this end, random Hermitian operators were studied, 
first by Wigner, Gaudin, Mehta and Dyson. The book of Mehta [97] is a good 
guide to this subject and this physics-inspired literature. 

Although the Hilbert space in which the Hermitian operator corresponding 
to an observable acts is infinite-dimensional, one may truncate the operator, 
replacing the Hilbert space with a finite-dimensional invariant subspace. The 
operator is then realized as a Hermitian matrix. 

To study the local properties of the eigenvalues, one seeks to give the real 
vector space of Hermitian matrices a probability measure which is invariant 
under the action of the unitary group by conjugation, since one is interested in 
the eigenvalues, and these are preserved under conjugation. The usual way is 
to assume that the matrix entries are independent random variables with nor
mal (i.e. Gaussian) distributions. This probability space is called the Gaussian 
Unitary Ensemble (GUE). Two other ensembles were also studied, intended 
to model physical systems with time reversal symmetry. There are two types 
of symmetry, depending on whether reversing the direction of time multiplies 
the operator by ±1. The ensemble modeling systems whose Hamilton is un
changed under time-reversal consists of real symmetric matrices and is called 
the Gaussian Orthogonal Ensemble (GOE). The ensemble modeling systems 
whose Hamiltonian is antisymmetric under time-reversal can be represented 
by quaternionic Hermitian matrices and is called the Gaussian Symplectic En
semble (GSE). See Dyson [39] and Mehta [97] for further information about 
this point. 

The space of positive definite Hermitian matrices is an open subset of the 
space of all Hermitian matrices, and this space is isomorphic to the Type 
N symmetric space GL(n, C)jU(n), under the map which associates with 
the coset gU(n) in the symmetric space the Hermitian matrix g t g. Simi
larly the positive-definite parts of the GOE and GSE are GL(n,lR.)jO(n) and 
GL( n, lffi) jSp(2n) with associated probability measures. 

Dyson [39] shifted focus from the Gaussian ensembles to the circular en
sembles that are the compact duals of the symmetric spaces GL(n, C)jU(n), 
GL(n,lR.)jO(n) and GL(n,lffi)jSp(2n). For example, by Theorem 31.1, the 
dual of GL(n, C)jU(n) is just U(n). Haar measure makes this symmetric space 
into the Circular Unitary Ensemble (CUE). The ensemble is called circular 
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because the eigenvalues of a unitary matrix lie on the unit circle instead of the 
real line. It is the CUE that we have studied in this chapter. Note that in the 
GUE, we cannot use Haar measure to make GL(n, C)jU(n) into a measure 
space, since we want a probability measure on each ensemble, but the non
compact group GL(n, C) has infinite volume. This is an important advantage 
of the CUE over the GUE. 

The insight which allowed Dyson to replace the Gaussian ensembles by 
their circular analogs was that as far as the local statistics of random matrices 
are concerned - for examples, with matters of spacing of eigenvalues - the 
circular ensembles are faithful mirrors of the Gaussian ones. 

The Circular Orthogonal and Symplectic Ensembles (COE and CSE) are 
similarly the measure spaces U(n)jO(n) and U(2n)jSp(2n) with their unique 
invariant probability measures. 

In recent years, random matrix theory has found a new field of applicability 
in the study of the zeros of the Riemann zeta function and similar arithmetic 
data. The observation that the distribution of the zeros of the Riemann zeta 
function should have a local distribution similar to that of the eigenvalues of 
a random Hermitian matrix in the GUE originated in a conversation between 
Dyson and Montgomery, and was confirmed numerically by Odlyzko. See Katz 
and Sarnak [75] and Conrey [29] for surveys of this field, and Keating and 
Snaith [77] for a typical paper from the extensive literature. The paper of 
Keating and Snaith is important because it marked a paradigm shift away 
from the study of the spacing of the zeros of «(s) to the distribution of the 
values of «(! + it), which are, in the new paradigm, related to the values of 
the characteristic polynomial of a random matrix. 

EXERCISES 

Let m ~ n. The m-level correlation function of Dyson [39] for unitary statistics 
is a function Rm on ']['m defined by the requirement that if f is a test function on 
']['m (piecewise continuous, let us say) then 

where the sum is over all distinct m-tuples (iI,··· ,im) of distinct integers between 
1 and n, and tt,··· ,tn are the eigenvalues of g. Intuitively, this function gives the 
probability density that tI,··· , tn are the eigenvalues of 9 E U(n). 

The purpose of the exercises is to prove (and generalize) Dyson's formula 

(40.10) 

where 

sn((}) = sin(9/2} ~ " { 
sin(n9/2} ·f (} ...t 0 

n If (} = o. 
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As a special case, when m = 2, the graph of the "pair correlation" R2(1, ei9 ) may 
be found in Figure 40.1. This shows graphically the repulsion of the zeros - as we 
can see, the probability of two zeros being close together is small, but for moderate 
distances there is no correlation. 

Exercise 40.1. If m = n, prove that 

Rn(tl,· .. ,tn) = det(A . t ..4), ( ~ !~ ::: :F~) 
A=. .. . . . . 

1 tn ... t;::-l 
(Since n = m, the matrix A is square and we have det(A . t..4) = 1 det(A) 12. Reduce 
to the case where the test function f is symmetric. Then use the Weyl integration 
formula.) 

Exercise 40.2. Show that 

Exercise 40.3. Prove that when m ~ n we have 

R".(tl,··· ,tm) = det(A· t ..4), A= (

1 h t~_l) 
1 t2 t;-l 
. .. 
i tm ... t~:""l 

Observe that if m < n, then A is not square, so we may no longer factor the 
determinant. Deduce Dyson's formula (40.10). 

Exercise 40.4. (Bump, Diaconis and Keller [20]) Generalize Dyson's formula 
as follows. Let A be a partition oflength ~ n. The measure Ix>. (g) 12 dg is a probability 
measure, and we may define an m-Ievel correlation function for it exactly as in (40.9). 
Denote this as R".,>.. Prove that 

t -Rm,>.(tl,··· ,tn) = det(A· A), 

tl>.n+n_l) 
t;>.n+n-l 

. . 
t->'n+n-l 

m 
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Minors of Toeplitz Matrices 

Let J(t) = 2:~=-oo dntn be a Laurent series representing a function J : 1I' ---+ 
c: on the unit circle. We consider the Toeplitz matrix 

Tn-1(f) = (d~l ~ ... t:) . 
dl~n d2~n . . . do 

Szego [116] considered the asymptotics of Dn- 1 (f) = det (Tn- 1 (f)) as n ---+ 
00. He proved, under certain assumptions, that if 

then 

Dn- 1 (f) cv exp ( nco + ~ kCkC_k) . (41.1 ) 

In other words, the ratio is asymptotically 1 as n ---+ 00. See Bottcher and 
Silbermann [14] for the history of this problem and applications of Szego's 
Theorem. 

A generalization of Szego's Theorem was given by Bump and Diaconis 
[19], who found that the asymptotics of minors of Toeplitz matrices had a 
similar formula. Very strikingly, the irreducible characters of the symmetric 
group appear in the formula. 

One may form a minor of a Toeplitz matrix by either striking some rows 
and columns or by shifting some rows and columns. For example, if we strike 
the second row and first column of T4 (f) , we get 

(£:£ ~ ;i). 
d_ 3 d_ 2 d_ 1 do 
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This is the same result as we would get by simply shifting the indices in T3 (f); 
that is, it is the determinant det(d>'i-i+jh";;i,j";;4 where A is the partition (1). 
The most general Toeplitz minor has the form det(d>'i-/Lri+j), where A and 
J-l are partitions. The asymptotic formula of Bump and Diaconis holds A and 
J-l fixed and lets n --+ 00. 

The formula with J-l omitted (that is, for det(d>'i-i+j)) is somewhat simpler 
to state than the formula, involving Laguerre polynomials, with both A and 
J-l. We will content ourselves with the special case where J-l is trivial. 

We will take the opportunity in the proof of Theorem 41.1 to correct a 
minor error in [19J. The statement before (3.4) of [19J that " ... the only terms 
that survive have ak = f3k" is only correct for terms of degree::::; n. We thank 
Barry Simon for pointing this out. 

If A is a partition, let X>. denote the character of U(n) defined in Chap
ter 38. 

We will use the notation like that at the end of Chapter 25, which we 
review next. Although we hark back to Chapter 25 for our notation, the only 
"deep" fact that we need from Part II of this book is the Weyl integration 
formula. For example, the Weyl character formula in the form that we need 
it is identical to the combination of (38.1) and (38.3). The proof of Theorem 
41.1 in [19J, based on the Jacobi-Trudi and Cauchy identities, did not make 
use of the Weyl integration formula, so even this aspect of the proof can be 
made independent of Part II. 

Let T be the diagonal torus in U(n). We will identify X*(T) ~ zn by 
mapping the character (25.14) to (kb ... ,kn ). If X E X*(T) we will use the 
"multiplicative" notation eX for X so as to be able to form linear combinations 
of characters yet still write X* (T) additively. The Weyl group W can be 
identified with the symmetric group Sn acting on X* (T) = zn by permuting 
the characters. Let e be the free Abelian group on X*(T). (This differs slightly 
from the use of e at the end of Chapter 25.) 

Elements of e are naturally functions on T. Since each conjugacy class of 
U(n) has a representative in T, and two elements of T are conjugate in G if 
and only if they are equivalent by W, class functions on G are the same as 
W-invariant functions on W. In particular, a W-invariant element of £ may 
be regarded as a function on the group. We write the Weyl character formula 
in the form (25.16) with 8 = (n - 1, n - 2,· .. ,1,0) as in (25.15). 

If A and J-l are partitions of length ::::; n, let 

D~'!l(f) = det(d>'i_/Lj-i+j)· 

It is easy to see that this is a minor in a larger Toeplitz matrix. 

Theorem 41.1. (Heine, Szego, Bump, Diaconis) Let f E L1('1[') be given, 
with f(t) = L:~=-oo dntn. Let A and J-l be partitions of length::::; n. Define a 
function ~n,f on U(n) by ~n,f(g) = II~=1 f(ti ), where ti are the eigenvalues 
of g E U(n). Then 
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D~'!l (I) = 1 iPn,J(g) n(g) XJL(g) dg. 
U(n) 

If >. and J.L are trivial, this is the classical Heine-Szego identity. Historically, 
a "Hermitian" precursor of this formula may be found in Heine's 1878 treatise 
on spherical functions, but the "unitary" version seems due to Szego. The 
following proof of the general case is different from that given by Bump and 
Diaconis, who deduced this formula from the Jacobi-Trudi identity. 

Proof. By the Weyl integration formula in the form (25.17), and the Weyl 
character formula in the form (25.16), we have 

1 iPn,f (g)n (g)XJL(g) dg = 
U(n) 

~! [ iPn,f(t) (I: (_l)I(W)eW(JLH») ( I: (_l)I(W')e-W'(AH») dt = 
iT wEW w'EW 

~! [iPn,J(t) ( I: (_l)I(W)+I(W')eW(JLH)-W'(AH») dt. 
iT w,w'EW 

Interchanging the order of summation and integration, replacing w by w'w, 
and then making the variable change t f---t w't, we get 

~! I: [I: [iPn,f(t) ( _l)I(W)eW(JLH)-A-O) dtj. 
w'EW wEW iT 

Each w' contributes equally, and we may simply drop the summation over w' 
and the lin! to get 

I: 1 iPn,f(t) (_l)I(W)eW(JLH)-A-O) dt. 
wEW T 

Now, as a function on T, the weight eW(JLH)-A-O has the effect 

Thus, the integral is 

I: (_l)l(w) IT [ (t dktf) trW(i)-W(i)-Ai+i dt = 

wEW i=l iT -00 

n 

I: (_l)l(w) IT d-}1W(i)+w(i)+Ai-i' 
wEW i=l 

Since the Weyl group is Sn and (-1 )l( w) is the sign character, by the definition 
of the determinant, this is the determinant D~'!l (I). 0 
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As we already mentioned, we will only consider here the special case where 
Jk is (0,··· ,0). We refer to [19] for the general case. If Jk is trivial, then Theorem 
41.1 reduces to the formula 

where 

D~_l(j) = 1 CPn,J(g) XA(g) dg, 
U(n) 

D~_l(j) = det(dAi - i+j ). 

Theorem 41.2. (Szego, Bump, Diaconis) Let 

where we assume that 

and 

(41.2) 

Let A be a partition of m. Let SA : 8k --t Z be the irreducible character 
associated with A. If ~ E 8 m , let 1'k(~) denote the number of k-cycles in the 
decomposition of ~ into a product of disjoint cycles, and define 

00 

11(j,~) = II (kCk)'Yk(t;). 
k=l 

(The product is actually finite.) Then 

Proof. Our assumption that L ICkl < 00 implies that 

1 exp (2: ICklltr(l)l) dg < 00, 
U(n) 

which is enough to justify all of the following manipulations. (We will use the 
assumption that L Ikckl2 < 00 later.) 

First, take A to be trivial, so that m = O. This special case is Szego's 
original theorem. By (41.2), 

Dn- 1 (j) = J exp (2: Ck tr(l)) dg = J II exp (Ck tr(l)) dg. 
U(n) k U(n) k 

We can pull out the factor exp(nco) since tr(l) = n, substitute the series 
expansion for the exponential function, and group together the contributions 
for k and -k. We get 



41 Minors of Toeplitz Matrices 335 

enco [ II [f: c~~ tr(gk)ak] [f: ~"~tr(gk/k] dg = 
JU(n) k ak=O ak· a,,=O 13k. 

enco L L [ (II ;~ tr(gk)ak) (II ~k~tr(gk)(3,,) dg, 
(a,,) «(3,,) JU(n) k k· k 13k. 

where the sum is now over all sequences (ak) and (13k) of nonnegative integers. 
The integrand is multiplied by ei9(L: kak-L:k(3k) when we multiply 9 by ei9 . 
This means that the integral is zero unless L: kak = L: k13k. Assuming this, we 
look more closely at these terms. By Theorem 39.1, in notation introduced in 
Chapter 40, the function 9 I----t Ilk tr(gk)ak is Ch(n) (Pv), where v is a partition 
of r = L: kak = L: k13k with ak = ak(v) parts of size k, and similarly we will 
denote by a the partition of r with 13k parts of size k. This point was discussed 
in the last chapter in connection with (40.7). We therefore obtain 

00 

D~-l(f) = enco L C(r,n), 
r=O 

where 

C(r,n) = ~ (II;:!~~)(Ch(n)(pv)'Ch(n)(PIT))' 
v, IT partitIOns of r k 

Now consider the terms with r ~ n. When r ~ n, by Theorem 40.1, the 
characteristic map from 'Rr to the space of class functions in L2(G) is an 
isometry, and if v = v', then by (39.2) we have 

/ Ch(n) ( ) Ch(n)()) = ( ) = {zv if v = a, 
\ P v , PIT U(n) PV'PIT Sr 0 otherwise. 

(This is the same fact we used in the proof of Proposition 40.4.) Thus, when 
r ~ n, we have C(r, n) = C(r) where, using the explicit form (39.1) of Zv, we 
have 

Now 

so as n ~ 00, the series L:r C (r, n) stabilizes to the series L:r C (r) that 
converges to the right-hand side of (41.1). 
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To prove (41.1), we must bound the tails of the series I:r C(r, n). It is 
enough to show that there exists an absolutely convergent series I:r JD(r)J < 
00 such that JC(r, n)J ::;; JD(r)J. First, let us consider the case where Ck = C-k. 

In this case, we may take D(r) = C(r). The absolute convergence of the 
series I: JD(r)J follows from our assumption that I: JkJJCkJ2 < 00 and the 
Cauchy-Schwarz inequality. In this case, 

2 

C(r,n) = L (IIC~~)Ch(n)(pv) 
v a partition of r k ak· 

where, as before, ak = ak(v) is the number of parts of size k of the partition 
v and the inner product is taken in U(n). Invoking the fact from Theorem 
40.1 that the Ch(n) is a contraction, this is bounded by 

2 

( ca. k
) 

C(r,n) = L II ~ Pv 
ak· 

v a partition of r k 

where now the inner product is taken in STl and of course this is C(r). If 
we do not assume Ck = C-k, we may use the Cauchy-Schwarz inequality and 
bound C(r, n) by 

L (II ~~) Ch(n)(pv) . L (II ~k~) Ch(n)(Pa) . 
v a partition of r k a a partition of r k k· 

Each norm is dominated by the corresponding norm in Rk and, proceeding as 
before, we obtain the same bound with Ck replaced by max(JckJ, JC-kJ). 

Now (41.1) is proved, which is the special case with A trivial. We turn now 
to the general case. 

We will make use of the identity 

p a partition of m 

in the ring of class functions on Sm, where for each J-l, ~p is a representative 
of the conjugacy class Cp of cycle type J-l. This is clear since z;/pp is the 
characteristic function of Cp , so this function has the correct value at every 
group element. Applying the characteristic map in the ring of class functions 
on U(n), we have 

x).. = 
p a partition of 7n 

For each J-l, let ')'k(~p) be the number of cycles of length k in the decomposition 
of ~p into a product of disjoint cycles. By Theorem 39.1, we may write this 
identity 
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XA = L Z;l S).. (~Jl) IT tr(gk)"lk(e,,). 

Jl a partition of m k 

Now, proceeding as before from (41.2), we see that D~_l(j) equals 

Jl a partition of m 

Since Sm contains m!/z).. elements of cycle type f.L and s).. has the same value 
s)..(~Jl) on all of them, we may write this as 

As in the previous case, the contribution vanishes unless E kCXk = E kfA + m, 
and we assume this. We get 

where now 

C(r,n,~) = 

L L 
(Ok) ((3k) 

2: kOk = r + m 2: k(3k = r 

If r :( n, then (as before) the contribution is zero unless CXk = 13k + ')'k. In this 
case, 

and using this value, we see that when r :( n we have C(r, n, 0 = C(r, ~), 
where 

C(r,~) = 11(j,~) 

The series is 
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~ C(r,~) = L1(j,~) exp ( nco + ~ kCkC_k) , 

so the result will follow as before if we can show that lC(r,n,~)1 < ID(r,~)1 
where E ID(r,~)1 < 00. The method is the same as before, based on the fact 
that the characteristic map is a contraction, and we leave it to the reader. 0 

EXERCISES 

Exercise 41.1. (Bump, Diaconis and Keller [20)) (i) If f is a continuous 
function on '][', show that there is a well-defined continuous function Uj : U(n) --+ 
U(n) such that if ti E '][' and h E U(n), we have 

(ii) If 9 is an n x n matrix, with n ~ m, let Em(g) denote the sum of the (,';',) 
principal m x m minors of g. Thus, if n = 4, then E2(g) is 

1 
g11 9121 + 1 g11 9131 + 1 g11 9141 + 1 g22 9231 + 1 g22 9241 + 1 g33 9341· 
g21 g22 g31 g33 g41 g44 g32 g33 g42 g44 g43 g44 

Prove that if f(t) = L, dktk, then 

r Em (Uj (g)) XA(g) XI'(g) dg = Em(T:::....A1), 
iU(n) 

where T:::""\ is the n x n matrix whose i,j-th entry is dAi-l'r i+j. (Hint: Deduce 
this from the special case m = n.) 
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Branching Formulae and Tableaux 

If G :::) H are groups, a branching rule is an explicit description of how 
representations of G decompose into irreducibles when restricted to H. By 
Frobenius reciprocity, this is equivalent to asking how representations of H 
decompose into irreducibles on induction to G. In this chapter, we will obtain 
the branching rule for the symmetric groups. 

Suppose that A is a partition of k and that J.L is a partition of 1 with k ~ l. 
We write A ~ J.L or A :2 J.L if the diagram of A is contained in the diagram of 
J.L. Concretely this means that Ai ~ J.Li for all i. If A 1= J.L, we write A C J.L or 
J.L:::) A. 

We will denote by PA the irreducible representation of Sk parametrized by 
A. We follow the notation of the last chapter in regarding elements of Rk as 
generalized characters of Sk. Thus SA is the character of the representation PA' 

Proposition 42.1. Let A be a partition of k, and let J.L be a partition of k-1. 
Then 

{ I if A:::) J.L, 
sse = ( A, I-' 1) 0 otherwise. 

Proof. Applying ch, it is sufficient to show that 

We work in A(n) for any sufficiently large nj of course n = k is sufficient. Let 
Ll denote the denominator in (38.1), and let 

M= (42.1) 

Xl-'l +n-1 Xl-'l +n-1 Xl-'l +n-1 
1 2 ... n 

By (38.1), we have BI-' = MiLl and e1 = EXi' so 
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n n 

.:::le1sl" = L Xi M = L 
i=1 i=1 

We claim that this equals 

n 

L 
j=1 

xI"n 
1 

XI"l +n-l 
n 

XI"n- j +j+l . . . I"n-j+j+l 
" Xn 

XI"l+n-l 
n 

(42.2) 

(42.3) 

In (42.2), we have increased the exponent in exactly one column of M by one 
and then summed over columns; in (42.3), we have increased the exponent 
in exactly one row of M by one and then summed over rows. In either case, 
expanding the determinants and summing over i or j gives the result of first 
expanding M and then in each resulting monomial increasing the exponent of 
exactly one Xi by one. These are the same set of terms, so (42.2) and (42.3) 
are equal. 

In (42.3), not all terms may be nonzero. Two consecutive rows will be the 
same if /-In-j + j + 1 = /-In-j+l + j + 1, that is, if /-In-j = /-In-j+1' In this case, 
the determinant is zero. Discarding these terms, (42.3) is the sum of all s).. as 
A runs through those partitions of k that contain /-l. 0 

Theorem 42.1. Let A be a partition of k and let /-l be a partition of k - 1. 
The following are equivalent. 
(i) The representation P).. occurs in the representation of Sk induced from the 
representation SI" of Sk-l c Sk; in this case it occurs with multiplicity one. 
(ii) The representation PI" occurs in the representation of Sk restricted from 
the representation S).. of Sk => Sk-l; in this case it occurs with multiplicity 
one. 
(iii) The partition /-l C A. 

Proof. Statements (i) and (ii) are equivalent by Frobenius reciprocity. Noting 
that SI is the trivial group, we have Sk-l = Sk-l X SI. By definition, SI"el 

is the character of Sk induced from the character sI" 0 el of Sk-l x SI. With 
this in mind, this Theorem is just a paraphrase of Proposition 42.1. 0 

A representation is multiplicity-free if in its decomposition into irre
ducibles, no irreducible occurs with multiplicity greater than 1. 

Corollary 42.1. If p is an irreducible representation of Sk-l, then the rep
resentation of Sk induced from p is multiplicity-free; and if T is an irre
ducible representation of Sk then the representation of Sk-l restricted from T 

is multiplicity-free. 
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Proof. This is an immediate consequence of the theorem. D 

Let A be a partition of k. By a standard (Young) tableau of shape A, we 
mean a labeling of the diagram of A by the integers 1 through k in such a 
way that entries increase in each row and column. As we explained earlier, 
we represent the diagram of a partition by a series of boxes. This is more 
convenient than a set of dots since we can then represent a tableau by putting 
numbers in the boxes to indicate the labeling. 

For example, the standard tableaux of shape (3,2) are: 

ITIillJ 
[I[IJ 

[I[ill] 
[I[IJ 

ITIiliJ 
~ 

[iliTIJ 
[I[IJ 

[I[illJ 
0IJ 

The following theorem makes use of the following chain of groups: 

These have the remarkable property that the restriction of each irreducible 
representation of Si to Si-l is multiplicity-free and the branching rule is ex
plicitly known. Although this is a rare phenomenon, there are a couple of 
other important cases: 

U(n) => U(n - 1) => ... => U(l), 

and 
O(n) => O(n - 1) => ... => 0(2). 

Theorem 42.2. If A is a partition of k, the degree of the irreducible represen
tation P>. of Sk associated with), is equal to the number of standard tableaux 
of shape A. 

Proof. Removing the top box (labeled k) from a tableau of shape A results 
in another tableau, of shape f-t (say), where f-t C A. Thus, the set of tableaux 
of shape A is in bijection with the set of tableaux of shape f-t, where f-t runs 
through the partitions of k - 1 contained in A. 

The restriction of P).. to Sk-l is the direct sum of the irreducible repre
sentations Pit' where f-t runs through the partitions of k - 1 contained in A, 
and by induction the degree of each such Pit equals the number of tableaux of 
shape f-t. The result follows. D 

There are a number of important matters regarding tableaux that we will 
discuss only briefly. Fulton [44] and Stanley [115] have extensive discussions 
of tableaux, but for a definitive short treatment we recommend Knuth [85] 
as a good place to start. First, there is the Robinson-Schensted correspon
dence, a bijection between pairs of standard tableaux of the same shape and 
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permutations. In many places, it is possible to substitute combinatorial ar
guments based on the Robinson-Schensted correspondence or an important 
generalization of it due to Knuth. 

A very famous formula, due to Frame, Robinson, and Thrall, for the num
ber of tableaux of shape A - that is, the degree of Pk - is the hook length 
formula . It is the fastest way in practice to compute this dimension. For a 
variety of proofs see Fulton [44], Knuth [85], Macdonald [95], Manivel [96], 
Sagan [105] (with anecdote), and Stanley [115]. 

For each box B in the diagram of A, the hook at B consists of B, all 
boxes to the right and below. The hook length is the length of the hook. For 
example, Figure 42.1 shows a hook for the partition A = (5,5,4,3,3) of 20. 
This hook has length 5. 

Theorem 42.3. (Hook length formula) Let A be a partition of k. The 
number of standard tableaux of shape A equals k! divided by the product of the 
lengths of the hooks. 

For the example, we have indicated the lengths of the hooks in Figure 42.l. 
By the hook length formula, we see that the number of tableaux of shape >. is 

20! 
-9 -. 8-·-7-· -4 -. 2-·-8-·-7-· 6-· 3-·-1-· -6 -. 5-·-4-· -1-. 4-.-3-. -2-. 3-.-2-.-1 = 34,641,750, 

and this is the degree of the irreducible representation P).. of 8 20 . 

Proof. A proof (suggested by Goodman and Wallach [47]) is sketched in the 
exercises. D 

9 7 4 2 

7 6 3 1 

B 6 5 4 1 

4 3 2 

3 2 1 

Fig. 42.1. The hook length formula for .x = (5,5,4,3,3). 

Proposition 42.1 is a special case of Pieri's formula, which we explain and 
prove. First, we give a bit of background on the Littlewood-Richardson rule, 
of which Pieri's formula is itself a special case. 

The multiplicative structure of the ring R ~ A is of intense interest. If >. 
and J.1 are partitions of rand k, respectively, then we can decompose 
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where the sum is over partitions 1/ of r + k. The coefficients c~lt are called 
the Littlewood-Richardson coefficients. They are integers since the Sv are a 
Z-basis of the free Abelian group nrH. 

Applying ch(n), we may also write 

as a decomposition of Schur polynomials, or XAXlt = l: c~ltXv in terms of the 
irreducible characters of U(n) parametrized by A, /-l, and 1/. Using the fact 
that the SA are orthonormal, we have also 

Proposition 42.2. The coefficients c~lt are nonnegative integers. 

Proof. We have two ways of seeing this based on two concrete interpretations 
of the Schur functions as characters of representations. 

On the one hand, working in n, we note that SASlt is the character of 
SrH induced from the character SA 0slt of Sk X Sr. In its decomposition into 
irreducibles, the coefficient of Sv is c~lt. Because it is the multiplicity of an 
irreducible character in a character, it is nonnegative. 

Alternatively, on the other hand, working in A(n) for n ~ r+k, the coeffi
cients c~lt have the following interpretation. Let 7fA and 7f l' be the irreducible 
representations of U(n) parametrized by A and /-l, respectively, and if XA and 
XI' are their characters, then for g E U(n) the value n(g) = SA(tl,··· ,tn ), 

where the ti are the eigenvalues of g. The product XAXJL of these characters 
is the character 7fA 0 7f1t , and the Littlewood-Richardson coefficients c~lt are 
the multiplicities into its decomposition into irreducibles. They are therefore 
nonnegative. D 

Given that the Littlewood-Richardson coefficients are nonnegative inte
gers, a natural question is to ask for a combinatorial interpretation. Can c~lt 
be realized as the cardinality of some set? The answer is yes, and this in
terpretation is known as the Littlewood-Richardson rule. We refer to Fulton 
[44], Stanley [115], or Macdonald [95] for a full discussion of the Littlewood
Richardson rule. 

Even just to state the Littlewood-Richardson rule in full generality is 
slightly complex, and we will content ourselves with a particularly impor
tant special case. This is where A = (r) or A = (1,··· ,1), so SA = hr or er. 
This simple and useful case of the Littlewood-Richardson rule is called Pieri's 
formula. We will now state and prove it. 

If /-l C A are partitions, we call the pair (/-l, A) a skew partition and denote 
it ). \/-l. Its diagram is the set-theoretic difference between the diagrams of ). 
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and f-l. We call the skew partition A \f-l a vertical strip if its diagram does not 
contain more than one box in any given row. It is called a horizontal strip if 
its diagram does not contain more than one box in any given column. 

For example, if f-l = (3,3), then the partitions A of 8 such that A \f-l is a 
vertical strip are (4,4), (4,3, 1), and (3,3,1,1) . The diagrams of these skew 
partitions are the shaded regions in Figure 42.2. 

I 

-

Fig. 42.2. Vertical strips. 

Theorem 42.4. (Pieri's formula) Let f-l be a partition of k, and let r ~ O. 
Then sJ1.er is the sum of the SA as A runs through the partitions of k + r 
containing f-l such that A \f-l is a vertical strip. Also, sJ1.hr is the sum of the SA 
as A runs through the partitions of k + r such that A \f-l is a vertical strip. 

Proof. Since by Theorem 36.3 and Theorem 37.2 applying the involution L 

interchanges er and hr and also interchanges S J1. and SA' the second statement 
follows from the first, which we prove. 

The proof that sJ1.er is the sum of the SA as A runs through the partitions 
of k + r containing f-l such that A \f-l is a vertical strip is actually identical 
to the proof of Proposition 42 .1. Choose n ~ k + r and, applying ch, it is 
sufficient to prove the corresponding result for Schur polynomials. 

With notations as in that proof, we see that L1er sJ1. equals the sum of 
(;) terms, each of which is obtained by multiplying M, defined by (42.1) , 
by a monomial Xii ' " Xir , where i1 < ... < ir. Multiplying M by Xii'" Xir 
amounts to increasing the exponent of Xir in the ir-th column by one. Thus, 
we get L1er sJ1. if we take M, increase the exponents in r columns each by one, 
and then add the resulting (;) determinants. 

We claim that this gives the same result as taking M, increasing the expo
nents in r rows each by one, and then adding the resulting (;) determinants. 
Indeed, either way, we get the result of taking each monomial occurring in the 
expansion of the determinant M, increasing the exponents of exactly r of the 
Xi each by one, and adding all resulting terms. 

Thus ersJ1. equals the sum of all terms (38.1) where (A1,'" , An) is obtained 
from (f-ll,'" ,f-ln) by increasing exactly r of the f-li by one. Some of these 
terms may not be partitions, in which case the determinant in the numerator 
of (38.1) will be zero since it will have repeated rows. The terms that remain 
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will be the partitions of k + r of length such that A \p, is a vertical strip. (These 
partitions all have length ~ n because we chose n large enough. Thus ers/l- is 
the sum of s>. for these A, as required. 0 

EXERCISES 

Exercise 42.1. Since the hk generate the ring R, knowing how to multiply them 
gives complete information about the multiplication in R. Thus, Pieri's formula 
contains full information about the Littlewood-Richardson coefficients. This exercise 
gives a concrete illustration. Using Pieri's formula (or the J acobi-Trudi identity), 
check that 

Use this to show that 

8(21)8(21) = 8(42) + 8(411) + 8(33) + 28(321) + 8(3111) + 8(222) + 8(2211)' 

Exercise 42.2. Let A be a partition of k into at most n parts. Prove that the 
number of standard tableaux of shape A is 

r tr(g)kx>,(g)dg. 
JU(n) 

(Hints: Use Theorems 42.2 and 38.4.) 

Exercise 42.3. Let (k1 ,'" ,kr) be a sequence of integers whose sum is k. The 
multinomial coefficient if all ki ) 0 is 

( k ) _ { kl!~:kr! if all ki ) 0, 
k1, ... ,kr - 0 otherwise. 

(i) Show that this multinomial coefficient is the coefficient of t~l ... t~r in the 
expansion of (I:~=1 ti)k. 

(ii) Prove that if A is a partition of k into at most n parts, then the number of 
standard tableaux of shape A is 

L (_l)l(w) ( k ) 
A1 - 1 + w(l), A2 - 2 + w(2),.·. ,An - n + w(n) . 

wESn 

For example, let A = (3,2) = (3,2) and k = 5. The sum is 

the number of standard tableaux with shape A. (Hint: Adapt the proof of Theorem 
41.1.) 
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Exercise 42.4. (Frobenius) Let). be a partition of k into at most n parts. Let 
j), = ). + 0, where 0 = (n - 1, n - 2" .. , 1,0). Show that the number of standard 
tableaux of shape ). is 

Hint: Show that 

11 j),i! "( l)l(w) ( k ) 
k! w~n j),1-n+w(1),j),2- n + w(2),"',j),n-n+w(n) 

is a polynomial of degree ~n(n-1) in j),1,'" , j),n, and that it vanishes when j),i = j),j. 

Exercise 42.5. Prove the hook length formula. 
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The Cauchy Identity 

Suppose that a1, ... ,an and 131, ... ,13m are two sets of variables. The Cauchy 
identity asserts that 

n m 

II II (1- ai13j)-1 = L s>.(a1,··· ,an) S>.(131,··· ,13m), (43.1) 
i=1j=1 >. 

where the sum is over all partitions ,\ (of all k). The series is absolutely 
convergent if alliail, l13il < 1. It can also be regarded as an equality of formal 
power series. This identity is well-known and useful. 

We will prove the Cauchy identity in this chapter, using ideas that reveal 
an underlying reason why the identity is true. The Cauchy identity will lead 
us to compare the ring of matrix coefficients of U(n) with the coordinate 
ring of the affine algebraic group GL(n, C). From this point of view, (43.1) is 
extremely conceptual in its meaning. A central role is played in this discussion 
by the action of GL(n) x GL(m) on Matnxm(tC). This action is discussed in 
the very insightful and recommended exposition of Howe [63], which has many 
connections with the themes of this and other chapters in this book. 

We will give an alternative proof in the exercises. The alternative proof is 
shorter but (we feel) less insightful. Other purely algebraic proofs can easily be 
found in the literature: for example, in Macdonald [95], Section 1.4 (page 67) 
or Stanley [115], Theorem 7.12.1 (page 322). The proof in Stanley is a direct 
application of the Robinson-Schensted-Knuth correspondence. The Cauchy 
identity is a point of very direct connection between representation theory 
and combinatorics. 

To motivate the discussion, we prove first a statement about finite groups. 

Proposition 43.1. Let G be a finite group. Consider the action of G x G on 
qG] by left and right translation: (g, h) : ~ ---t g~h-1. The module qG] lS 
then isomorphic to 
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where 7ri runs through the irreducible representations of G, and 7ri denotes the 
contragredient representation of 7ri. If..1 = {(g, g) I 9 E G} is the image of G 
in G x G under the diagonal embedding, this representation is isomorphic to 
the representation of G x G induced from the trivial representation of ..1. 

Proof. We show first that the representation of G x G on qG] is induced from 
the trivial representation of G. Indeed, the space VJI of this induced repre
sentation consists of all functions f : G x G -+ C such that f ( (g, g) (x, y)) = 
f(x, y), and the action of G x G on these functions is by right translation: 
(II(g, h)f) (x, y) = f(xg, yh). This is simply the definition of the induced 
representation. 

If f is such a function, let F (g) = f (1, g). Then 

f(g, h) = f( (g, g)(l, g-lh)) = F(g-l h), 

so there is a bijection between V JI and the space W of all functions F : G -+ 
C. In the second representation, the action is (g, h)F(x) = (g, h)f(l, x) = 
f(g, xh) = F(g-lXh). We can identify a function F : G -+ C in W with an 
element of qG], namely the element L.gEG F(g)g. Here G x G acts on both 
qG] and on W by left and right translation, and it is easy to see that this 
identification is G x G-equivariant. We have proved that, as a G x G-module, 
qG] is isomorphic to the representation of G x G induced from the trivial 
character of ..1. 

We may now determine the decomposition of qG] into irreducibles of 
G x G by Frobenius reciprocity. Every irreducible representation of G x G 
has the form 7r Q9 T, where (7r, V7r ) and (T, Vr ) are irreducible representations 
of G. Its multiplicity in the representation of G x G induced from the trivial 
representation is the dimension of 

An element of Hom,1(7r Q9 7, 1) is a linear functional A : V7r Q9 Vr -+ C that 
satisfies 

A(7r(g)v ® 7(g)V/) = A(v ® v'). 

Of course, we may write A(v Q9 v') = B(V,V'), where B : V7r x Vr -+ C is 
a bilinear form satisfying B(7r(g)V,7(g)V/) = B(v, v'). Such a form satisfies 
B( 7r(g )v, 7(g )v' ) = B( V, v'). Such a form exists if and only if 7r and 7 are 
contragredient, and if it does exist it is unique. The statement follows. 0 

This result extends to compact groups. A suitable replacement for the 
group algebra is needed. We recall that a matrix coefficient of a finite
dimensional representation of a compact group G is a function of the form 
9 J---t L (7r(g)v) , where (7r, V) is a finite-dimensional representation of G, not 
necessarily irreducible, v E V, and L : V -+ C is a linear functional. 
The matrix coefficients form a C-algebra (Proposition 2.3). It is of course 
infinite-dimensional if G is not a finite group. If (7r, V) is an irreducible 
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representation, we say that a matrix coefficient is a matrix coefficient of 
(7r, V) if it can be written as a finite sum E~l Li(7r(g)Vi) with Vi E V and 
Li E Home (V, C). We note that although such a function can be written in 
the form L' (7r' (g)v') , where (7r', V') is a different representation of G, v' E V', 
and L' E Home (V', C), we cannot in general take (7r', V') = (7r, V). 

Proposition 43.2. Let G be a compact group. Let M be the ring of matrix 
coefficients of G. The group G x G acts on M by left and right translation. 
Specifically, there is a representation II : G x G ----+ End(M) such that 

II(g, h)f(x) = f(h-lxg), g, h E G, f E M, x E G. 

Let 7ri (i E I) be the irreducible representations of G, and let iti denote the 
contragredient representation of 7ri. Let Mi be the finite-dimensional vector 
space of matrix coefficients of 7ri· Then M = EBi Mi and Mi ~ 7ri ® iti 
as G x G-modules, where M and Mi are given the G x G-module structure 
induced from the representation II. Therefore M ~ EBi 7ri ® iti . 

Proof. The space of matrix coefficients is closed under left and right trans
lation (Theorem 2.1), so the representation II exists. Let Vi be the space on 
which 7ri acts. By Schur orthogonality (Theorem 2.3), the spaces Mi are or
thogonal subspaces of L2(G). Every element of M can be written as a finite 
sum of matrix coefficients of irreducible representations, so M = EBi Mi as 
an algebraic direct sum. Moreover, by Proposition 2.10, the space Mi affords 
a representation isomorphic to 7ri ® iti , and the result is proved. 0 

Proposition 43.3. Let (7r, V) be an irreducible finite-dimensional algebraic 
representation of GL(n, C). Let 7r' be the representation of GL(n, C) on the 
same space such that 7r'(g) = 7r(tg-l). Then 7r' ~ it, the contragredient repre
sentation of 7r. 

Proof. We recall from Theorem 38.3 that the irreducible algebraic representa
tions of GL(n, C) correspond bijectively with the irreducible representations 
of U (n), so it is sufficient to prove that 7r' and it are equivalent as represen
tations of U(n). The key point is that every element of 9 E U(n) is conjugate 
to its transpose. To see this, we note that hgh- l = d is diagonal, for some 
hE U(n) by the spectral theorem. Taking transposes, d = td is conjugate to 
t g, so 9 is conjugate to t g. 

If X is the character 7r and X is the character of it, then X(g) = X(g) = 
X(g-l) for 9 E U(n) (Proposition 2.6). Since 9 and tg are conjugate, we have 
X(g-l) = X(tg-l), so X agrees with the character of 7r', implying that 7r' and 
it are equivalent representations. 0 

If A = (Al' ... ,An), where Al ~ ... ~ An, let MA be the space of matrix 
coefficients of the representation 7rA of U(n) parametrized by A as in Theo
rem 38.3. 
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Proposition 43.4. Let G = U(n). Let M be the space of matrix coefficients 
of G, and let JI' : G x G ---+ End(M) be the action JI'(g, h)f(x) = f(thxg). 
Giving M and MA the G x G-module structure corresponding to the repre
sentation JI', we have MA ~ 1rA ® 1rA. Therefore 

(43.2) 

as G x G-modules, where 1rA runs through the irreducible representations of 
G. 

Proof. This follows on Propositions 43.2 and 43.3. Compose the action of 
G x G in Proposition 43.2 with the outer automorphism g ---+ tg-l on one of 
the two components. D 

Having reached this point, the right-hand side of (43.2) is starting to re
semble the right-hand side of (43.1). Assuming that n = m, if we apply the 
character of 1rA ®1rA to the conjugacy class of (g, h) E U(n) x U(n), where g has 
eigenvalues (Xl,'" , xn) and h has eigenvalues (Yb'" , Yn), then we obtain 
one term of the series (43.1). (Of course, for such values, since IXil = IYil = 1, 
the series (43.1) does not converge.) 

We make note of one substantial difference between (43.1) and (43.2). In 
(43.2), all sequences A with Al ~ A2 ~ ... ~ An appear, while in (43.1) only 
partitions - those A with An ~ 0 - are present. 

To proceed further, we will interpret the ring M of matrix coefficients of 
U(n) as regular functions on the affine variety GL(n, C). We review a bit of 
algebraic geometry, taking the point of view that since we are working over 
an algebraically closed field C we may identify an affine complex variety with 
its set of complex points. 

The regular functions on an affine variety form a ring, the coordinate ring 
or affine ring of the variety. If X is an affine variety with coordinate ring 
A, and if 0 -=I f E A, then the principal open set XI = {x E Xlf(x) -=I O} 
has a natural interpretation as an affine variety. To see this, one embeds 
XI ---+ X xA\ where Al is the affine line, by mapping x E XI to (x, f(x)-l). 
The image of X f under this embedding is 

{(x,y) E X x All f(x)y -1 = O}. 

This is a closed subset of X x Al in both the complex or Zariski topologies, 
and it is by means of this mapping of X I onto a Zariski closed set that we 
regard XI itself as an affine variety. The coordinate ring of XI is A(j-l]. 

As an example, GL(n) is a principal open set in Matn, and for this reason 
it is an affine variety. If 1 ~ i, j ~ n, let Xij be the function on GL( n, C) 
whose value on a matrix g = (gij) is gij' Each function Xij extends uniquely 
to Matn(C). The coordinate ring of Matn(C) is the ring qXll,'" , xnn] of 
polynomials in n2 indeterminates, and the coordinate ring of GL( n, C) is the 
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ring C[Xll,··· ,Xnn ' det -1]. We will denote by EO and E, respectively, the 
coordinate rings of Matn(C) and GL(n, C). 

Let MO be the sum of the M A , where A is a partition (that is, where 
An ~ 0). 

Theorem 43.1. Every matrix coefficient ofU(n) is the restriction of a unique 
regular function on GL( n, C). Thus M may be identified with the coordinate 
ring of GL(n, C). The subspace MO of M is a subring corresponding to the 
coordinate ring of Matn(C). 

Proof. Let us show that polynomial functions on GL(n, C) are determined by 
their restrictions to U(n). Suppose that f : GL(n, C) --+ C is a polynomial 
function that vanishes on U(n). Let X, Y E u(n). The function f (exp(X +tY)) 
vanishes for real values of t since if t E JR, then exp(X + tY) E U(n). Since f 
is a polynomial, and exp: g[(n,C) --+ GL(n,C) is analytic, f( exp(X +tY)) 
is analytic as a function of t and it therefore vanishes for all t, in particular 
f(exp(X +iY)) = O. Now g[(n, C) = u(n)+iu(n), so this shows that f vanishes 
in a neighborhood of the identity. Since it is a polynomial, it is therefore zero. 

We saw in Theorem 38.3 that the irreducible representations of U(n) are 
restrictions of algebraic representations of GL(n, C), so their matrix coeffi
cients are regular. This means that we have an embedding of M into the 
coordinate ring of GL(n, C). We have to show that every regular function f 
on GL(n,C) is a matrix coefficient of U(n). 

Let us first prove this when f is regular on Matn (C). Thus f is a polynomial 
in the Xij not involving det- 1 , and we will show that f E M. We may as well 
assume that f is homogeneous of degree k. Then f is a matrix coefficient by 
the criterion of Theorem 2.1: a function whose left and right translates span a 
finite-dimensional vector space is a matrix coefficient. Translating on the left 
or right produces another homogeneous polynomial of degree k, so the left 
and right translates are contained in a finite-dimensional vector space and are 
therefore matrix coefficients. 

But we will prove a bit more. Still assuming that f is a homogeneous 
polynomial of degree k in the Xij (not involving det -1), we will show that 
f E Mk, where 

A a partition of k 
I(A) ::;; n 

and in fact Mk consists of the restrictions to U (n) of homogeneous polynomi
als of degree k. By Theorem 38.4, ®k V ~ EIh dA7fA as a GL(n, C)-module, 
where the sum is over partitions of k of length ~ k, and dA is the degree of the 
irreducible representation of Sk indexed by A. Since ®k V contains exactly the 
representations whose matrix coefficients make up Mk, we infer that Mk is 
spanned by functions L ( (g 0· . ·0 g)~), where ~ E ®k V and L is a linear func-

tional on ®k V. We may as well take ~ = x10·· ·0Xk and L = L10··· 0Lk, 
where Lk E Homc(V,C). Then L((g 0··· 0 g)~) = I1Li(gxi) is a product 
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of matrix coefficients of the standard representation on V. Such a function 
is a homogeneous polynomial of degree k in the Xij, and every homogeneous 
polynomial of degree k is a linear combination of polynomials of this type. 
This proves the identification of Mk with the homogeneous polynomials of 
degree k and the identification of MO = E9 Mk with the coordinate ring of 
MatnUC). 

If f is an arbitrary polynomial in the Xij and det-l, then the function 
detN (g) f(g) will be a polynomial in the Xij not involving det- 1 for sufficiently 
large N. Thus, by what we have already proved, g H detN (g) f(g) is a matrix 
coefficient of U(n) for sufficiently large N. Writing this as a sum of matrix 
coefficients for irreducible representations and noting that when detN (g1f(g) 
is a matrix coefficient for 7r, we see that f is a matrix coefficient for det - ®7r. 

This proves the identification of the coordinate ring of GL(n, C) with M. D 

Theorem 43.2. Let G = GL( n, C). Let EO be the ring of polynomials on 
Matn(C), and let IIo G x G -----+ End(EO ) be the action IIO(g, h)f(x) = 
f(tgxh). Then 

IIO ~ L 7r,\ ® 7r,\ (43.3) 
,\ 

as G x G-representations, where>. runs through all partitions of length :s; n. 

Proof. We have switched the two components (g, h) E G x G from their lo
cations in Proposition 43.4. The reason that the representation there was 
written II'(g, h)f(x) = f(thxg) instead of f(tgxh) was that we preferred the 
summand MA to correspond to the factor 7rA ® 7rA rather than to its contra
gredient. There is no reference to M,\ in this statement, so we switch them 
to their more natural locations. 

Let E :) EO be the coordinate ring of GL(n, C). The decomposition of E 
over U(n) x U(n) is then given by Proposition 43.4. For the subring EO, the 
term 7r,\ ® 7r,\ only occurs when the matrix coefficients of 7r,\ are polynomials 
not involving det- 1, and by Theorem 43.1 this happens precisely when>. is 
a partition. This proves (43.7) as a decomposition over U(n) x U(n), and it 
follows that it is valid over GL(n, C). D 

If V is a vector space, the exterior and symmetric algebras 

00 00 

are naturally modules for GL(V). 

Remark 43.1. The symmetric algebra over the dual space V* can be identified 
with the ring of polynomial functions on V. Indeed, we have a symmetric k
linear mapping from V* x .. , x V* -----+ Pk , where Pk is the vector space 
of homogeneous polynomials on V of degree k; this map takes (vi,'" ,v;J 
to the polynomial function mapping x -----+ vi(x) ... vk(x). The induced map 
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VkV* ---+ Pk is an isomorphism, and putting these maps together, we obtain 
an isomorphism of graded rings of V V* with the ring of polynomial functions 
on V. 

If p : G ---+ GL(V) is a representation, then V V and /\ V become modules 
for G and we may ask for their decomposition into irreducible representations 
of V. For some representations p, this question will have a simple answer, 
and for others the answer will be complex. The very simplest case is where 
G = GL(V). In this case, each VkV is itself irreducible, and each ;\kV is either 
irreducible (if k < dim(V)) or zero. 

We can encode the solution to this question with generating functions 

(Xl (Xl 

P: (g; t) = L tr (gl Vk V) tk, P;(g; t) = L tr (g;\k V) tk. 
k=O k=O 

Proposition 43.5. Suppose that p : G ---+ GL(V) is a representation and 
1'1, ... ,1'd are the eigenvalues of p(g). Then 

(43.4) 

Proof. The traces of p(g) on VkVand ;\kV are 

and 

so this is a restatement of (35.1) and (35.2). D 

We see that for all g, P: (g, t) is convergent if t < max(!1'il- 1) and has 
meromorphic continuation in t, while P;(g, t) is a polynomial in t of degree 
equal to the dimension of V. We will denote P;:(g) = P;:(g, 1) and P{;(g) = 
P{;(g, 1). Then we can write (43.4) in the less redundant form 

( 43.5) 

Theorem 43.3. (Cauchy) Suppose a1,'" ,an and 131,'" ,13m are complex 
numbers of absolute value < 1. Then 

n m 

II II (1- ai13j)-l = L s>.(a1,··· ,an) S>.(131,··· ,13m). (43.6) 
i=l j=l >. 

The sum is over all partitions A. 

Proof. First, assume that n = m. We consider the action of GL(n, C) x 
GL(n, C) on the dual complex vector space Matn((C)* in which (g, h) E 
GL(n, C) x GL(n, C) maps v* E Matn(C)* to the functional X ---+ v*(tgXh). 
Denoting this representation p, if 9 and h have eigenvalues a1," . ,an and 
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(31, ... , (3n, then the eigenvalues of p(g) are the ai(3j. Indeed, we may check 
this when 9 is diagonal, in which case the coordinate functions Xij are eigen
vectors. Therefore P;: (g, t) = TI~=l TI7=1 (1 - ai(3j )-1. 

On the other hand, the symmetric algebra over Matn(q* is the ring of 
polynomial functions on this ring, whose decomposition is given by Theorem 
43.2. Thus, if t is sufficiently small, 

If lail, l(3jl < 1, then the left-hand side is holomorphic inside It I ~ 1, so the 
radius of convergence is at least 1, and taking t = 1 the result is proved when 
n=m. 

If n > m, we may specialize (3m+!,· .. , (3n ---+ O. Setting one parameter 
to zero takes a Schur polynomial s>. in n variables to the corresponding Schur 
polynomial in n - 1 variables by Proposition 36.6, and the left-hand side of 
(43.6) is similarly well-behaved. 0 

We can now generalize Theorem 43.2 to give a correspondence between 
GL(n) and GL(m) when nand m are possibly distinct. In the following the
orem, representations of both GL(n, q and GL(m, q occur. To distinguish 
the two, we will modify the notation introduced before Theorem 38.3 as fol
lows. If A is a partition (of any k) of length ~ n, or more generally an integer 
sequence A = (A!, ... , An) with A1 ~ A2 ~ ... , we will denote by 1f>. the rep
resentation of GL(n, q parametrized by A. On the other hand, if JL is a par
tition of length ~ m, or more generally an integer sequence JL = (JL1, •.• , JLm) 
with JL1 ~ JL2 ~ .•. , we will denote by 1f~ the representation of GL( m, q 
parametrized by JL. 

Theorem 43.4. Let G = GL(n,q and G' = GL(m,q. Let EO be the ring 
of polynomials on the space Matnxm(C) of n x m complex matrices. Let IIO : 
G X G' ---+ End(E) be the action IIO(g, h)f(x) = f(tgxh). If A is a partition, 
let 1f>. and 1f~ denote the irreducible representations of G and G', respectively, 
parametrized by the partition A. Then 

EO ~ L 1f>. ® 1f~ 
>. 

(43.7) 

as G x G' -modules, where A runs through all partitions, and EO is regarded 
as a G x G' -module by means of the representation IIo . 

The terms where the length A is greater than n or m are zero and may be 
discarded. 

Proof. This follows immediately from Proposition 43.5 and Theorem 43.3. In 
Proposition 43.5, take G to be GL(n, q x GL(m, q and take the represen
tation to be IIo. The eigenvalues are the ai(3j, and the symmetric algebra 
decomposition is therefore given by Theorem 43.3. 0 
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There is a dual Cauchy identity. 

Theorem 43.5. Suppose aI, ... ,an and (31, ... ,(3m are complex numbers of 
absolute value < 1. Then 

n m 

(43.8) 

Note that now each partition A is paired with its conjugate partition At. This 
may be regarded as a decomposition of the exterior algebra on Matn (C) * . 

Proof. Let al,··· ,an be fixed complex numbers, and let A(m) be the ring 
of symmetric polynomials in (31, ... ,(3m with integer coefficients. We recall 
from Theorems 36.3 and 37.2 that A has an involution L that interchanges s>.. 
and s)...'. We have to be careful how we use L because it does not induce an 
involution of A(m). Indeed, it is possible that in A(m) one of s>.. and s)...' is zero 
and the other is not, so no involution exists that simply interchanges them. 

We write the Cauchy identity in the form 

IT [fa~hk((3l' ... ,(3m)] = Ls>..(al, ... ,an)s>..((31,··· ,bm). 
i=l k=O >.. 

This is true for all m, and therefore we may write 

where the hk on the left and the second occurrence of s>.. on the right are 
regarded as elements of the ring A, which is the inverse limit (36.10), and ai 

and s>..(al,··· ,an) are regarded as complex numbers. To this identity we may 
apply L and obtain 

and now we specialize from A to A(m) and obtain (43.8). o 
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EXERCISES 

Exercise 43.1. Give two proofs that (in the notations of Chapter 39) 

where the sum on the right is over all partitions. For the first proof, working in Rk, 
prove that 

>. a partition of k 

by describing these two class functions on Sk explicitly; then apply ch and use 
Theorem 39.1. For the second proof, show that 

II (1 - O:it)-l = L Z>.P>.(O:l,··· ,00n)tl>'1 
>. 

by writing the left-hand side as 

expanding and making use of (39.1). 

Exercise 43.2. Prove Cauchy's identity as follows. 

(43.9) 

(i) Let V be a vector space over a field F and B : VxV ---+ F be a nondegenerate 
bilinear form. Let Xl, ... ,Xn be a basis of V, and let xi, ... ,x~ be the dual basis, 
so B(Xi' xj) = Oij (Kronecker 0). Show first that 1:i Xi 0xi E V 0 V is independent 
of the choice of basis Xi. 

(ii) Take F = IQ and V = 1Q0Rk in (i), and show that 1:>. 8>. 0 8>. = 1: Z-lp >. 0 
P>., where the sum is over partitions>. of k. Apply the characteristic map and obtain 
the identity 

L s>. (0:1, ... ,O:n) S>. (,81, ... ,,8m) = L Z -lp >. (0:1, ... ,O:n) P>. (,81, ... ,,8m). 
>. >. 

(iii) Observe from the definition of the power sum polynomials that 

P>.(O:l,··· ,O:n)P>.(,81,··· ,,8m) = P>.(0:1,81,··· ,001,8m, 0:2,81,'" ,00n,8m), 

where on the right-hand side the argument includes all nm values O:i,8j. Use (43.9) 
to deduce Cauchy's formula. 

Exercise 43.3. Let 0:1,'" ,O:m be given with 100il < 1. Let f(t) = 11(1 - to:i)-1. 
Consider ~n,f in Theorem 41.1. From the Cauchy identity, if 9 E U(n) has eigenval
ues t1,'" ,tn, write 

i,j 

Apply Theorem 41.1 and get a proof of the Jacobi-Trudi identity. What can you do 
with the dual Cauchy identity? 
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Unitary Branching Rules 

Let Al ~ ... ~ An and J.Ll ~ ... ~ J.Ln-l be integer sequences. As in Theorem 
38.3, they parametrize irreducible algebraic representations of GL(n, q and 
GL(n - 1, q, as we have seen in Theorem 38.3. We embed GL(n - 1, q ----t 

GL(n,q by 

(44.1) 

It is natural to ask when the restriction of 7l',X to GL( n-1, q contains 71' w Since 
algebraic representations of GL(n, q correspond precisely to representations 
of its maximal compact subgroup, this is equivalent to asking for the branching 
rule from U(n) to U(n - 1). 

This question has a simple and beautiful answer in Theorem 44.1 below. 
We say that the integer sequences A = (At,· .. ,An) and J.L = (J.Lt, ... ,J.Ln-l) 
interlace if 

Al ;;::: J.Ll ;;::: A2 ~ J.L2 ~ ... ~ J.Ln-l ~ An. 

Proposition 44.1. Suppose that An and J.Ln-l are nonnegative, so the integer 
sequences A and J.L are partitions. Then A and J.L interlace if and only if A ~ J.L 
and the skew partition A \J.L is a horizontal strip. 

This is obvious if one draws a diagram. 

Proof. Assume that A ~ J.L and A \J.L is a horizontal strip. Then Aj ~ J.Lj because 
A ~ J.L. We must show that J.Lj ~ Aj+!. If it is not, Aj ~ Aj+l > J.Lj, which 
implies that the diagram of A \J.L contains two entries in the J.Lj + 1 column, 
namely in the j and j + 1 rows, which is a contradiction since A \J.L was assumed 
to be a horizontal strip. We have proved that A and J.L interlace. The converse 
is similar. 0 

In the following theorem, representations of both GL(n, q and GL(n -
1, q occur. To distinguish the two, we will modify the notation introduced 
before Theorem 38.3 as follows. If A is a partition (of any k) of length ~ n, or 
more generally an integer sequence A = (AI,'" ,An) with ),1 ;;::: ),2 ~ ... ,we 
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will denote by 1f).. the representation of GL(n, <C) parametrized by A. On the 
other hand, if J.L is a partition of length ~ n - 1, or more generally an integer 
sequence J.L = (J.L1,··· ,J.Ln-1) with J.L1 ~ J.L2 ~ ... , we will denote by 1f~ the 
representation of GL(n - 1, <C) parametrized by J.L. 

Theorem 44.1. Let A = (A1,··· ,An) and J.L = (J.L1,··· ,J.Ln-1) be integer se
quences with A1 ~ A2 ~ ... and J.L1 ~ J.L2 ~ ... . Then the restriction of 1f).. 

to GL(n - 1, <C) contains a copy of 1f~ if and only if A and J.L interlace. The 
restriction of 1f).. is multiplicity-free. 

Proof. Let us prove this first when A and J.L are partitions. Let U = Matn(<C). 
Let GL(n, <C) x GL(n, <C) act on the ring EO of polynomials on Matn(<C) by the 
action IIO(g, h)f(x) = f(tgxh). As explained in Remark 43.1, we may identify 
EO with the symmetric algebra over U*, and the homogeneous polynomials 
of degree k are then identified with Vk U 2 • Then, by Theorem 43.2, as G x G
modules, 

(44.2) 
).. a partition of k 

We write U = U1tf!U2 , where U1 = MatnX (n-1)(<C) and U2 = MatnX1 (<C) ~ 
en. In this decomposition, we are splitting a square matrix u E U into a 
rectangular matrix U1 E U1 consisting of its first n - 1 columns and its last 
column U2 E U2 thus: 

The decomposition U1 ® U2 is preserved by GL(n, <C) x GL(n - 1, <C), where 
GL(n -1,<C) is embedded in GL(n,<C) via (44.1). In the action on the sym
metric algebra, with 9 E GL(n, <C) and g' E GL(n - 1, <C) the action is 

nO(g,g)f(u) ~ f ( (0) ([]) (~)). (44.3) 

Since U* ~ Ui tf! U2, the symmetric algebra decomposes as 

VU* = (Vu;) 0 (VU;) , 

a tensor product of graded rings. In other words, 

k 

vku* = EB v1u; ® Vk-1U;. ( 44.4) 
1=0 

By Remark 43.1, we can identify V1Ui as a GL(n, <C) xGL(n-1, <C)-module 
with the space of homogeneous polynomials of degree l on U1 . By Theorem 
43.4, it has the decomposition 
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J1-a partition of I 

where we are denoting by 7rJ1- and 7r~ the representations of GL(n, q and 
GL(n - 1, q, respectively, parametrized by J-L. 

By Remark 43.1, the space V k - 1U2 can be identified with the space of 
all homogeneous polynomials of degree k - 1, and in the action of GL(n, q 
on this space, 9 E GL( n, q takes a polynomial f to the polynomial u f---7 

f(t g . u). This representation is the k -l-th symmetric power of the standard 
representation, 7r(k-l), corresponding to the partition (k -I) of k -I. On the 
other hand, GL(n - 1) acts trivially on V k - 1U2 since in (44.3) the matrix g' 
does not "see" U2. Thus, in (44.4) we have 

J1- a partition of I 

EB (7rJ1- (9 7r(k-l)) (9 7r~. 
J1- a partition of I 

The decomposition of the GL(n, q module 7rJ1- (97r(k-l) is known by Pieri's 
formula. By Theorem 42.4, 7r>. occurs in 7r J1- (9 7r(k-l) if and only if A \J-L is a 
vertical strip, which by Proposition 44.1 means that A and J-L must interlace. 
Therefore 

J1- a partition of I 
>. a partition of k 

J1-, >. interlace 

Comparing this with (44.2), we see that 7r~ occurs in the restriction of 7r>. if 
and only if A and J-L interlace, so the theorem is proved if A and J-L are partitions. 

In the general case, let r be a large positive integer. By Proposition 
38.2, detT (97r>. ~ 7r)..', where >.' = (A1 + r, A2 + r, ... ,An + r), and simi
larly detT (97r~ ~ 7r> where J-L' = (J-L1 + r,··· J-Ln-1 + r). Now 7r~' occurs in the 
restriction of 7r>., if and only if 7r~ occurs in the restriction of 7r>., and>.' is 
interlaced with J-L' if and only if A is interlaced with J-L. We may choose r large 
enough that J-L and A are partitions, in which case we are already done. 0 

We can now give a combinatorial formula for the degree of the irreducible 
representation 7r>. of GL(n, q, where A = (A1' ... ,An) and A1 ~ ... ~ An. A 
Gelfand- Tsetlin pattern of degree n consists of n decreasing integer sequences 
of lengths n, n -1, ... ,1 such that each adjacent pair interlaces. For example, 
if the top row is 3, 2, 1, there are eight possible Gelfand-Tsetlin patterns: 

321 
3 2 

3 

321 
3 2 

2 

321 
3 1 

3 
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3 2 1 3 2 1 3 2 1 
3 1 3 1 2 2 

2 1 2 

3 2 1 3 2 1 
2 1 and 2 1 

2 1 

Theorem 44.2. The degree of the irreducible representation?f>. of GL( n, q 
equals the number of Gelfand-Tsetlin patterns whose top row is A. 

Thus dim (?f(3,2,1)) = 8. 

Proof. The proof is identical in structure to Theorem 42.2. The Gelfand
Tsetlin patterns of shape A can be counted by noting that striking the top 
row gives a Gelfand-Tsetlin pattern whose top row is a partition J-l of length 
n - 1 that interlaces with A. By induction, the number of such patterns is 
equal to the dimension of ?f~, and the result now follows from the branching 
rule of Theorem 44.1. D 

Branching rules for the orthogonal and symplectic groups are discussed 
in Goodman and Wallach [47], Chapter 8. King [78] is a useful survey of 
branching rules for classical groups. 



45 

The Involution Model for Sk 

Let 0"1 = 1, 0"2 = (12), 0"3 = (12)(34), ... be the conjugacy classes of involu
tions in Sk. It was shown by Klyachko and by Inglis, Richardson, and Saxl [67] 
that it is possible to specify a set of characters 'lh, '¢2, '¢3, . .. of degree 1 of 
the centralizers of 0"1, 0"2, 0"3, • •• such that the direct sum of the induced rep
resentations of the '¢i contains every irreducible representation exactly once. 
In the next chapter, we will see that translating this fact and related ones to 
the unitary group gives classical facts about symmetric and exterior algebra 
decompositions due to Littlewood [93]. 

If (1r, V) is a self-contragredient irreducible complex representation of a 
compact group G, we may classify 1r as orthogonal (real) or symplectic (quater
nionic). We will now explain this classification due to F'robenius and Schur 
[43]. We recall that the contragredient representation to (1r, V) is the represen
tation ir : G --+ GL(V*) on the dual space V* of V defined by ir(g) = 1r(g-1)*, 
which is the adjoint of 1r(g-1). Its character is the complex conjugate of the 
character of 1r. 

Proposition 45.1. The irreducible complex representation 1r is self-contra
gredient if and only if there exists a nondegenerate bilinear form B : V x V --+ 
C such that 

B(1r(g)v,1r(g)w) = B(v,w). (45.1) 

The form B is unique up to a scalar multiple. We have B(w, v) = fB(v, w), 
where f = ±l. 

Proof. To emphasize the symmetry between V and V*, let us write the 
dual pairing V x V* --+ C in the symmetrical form L(v) = [v,L]. The 
contragredient representation thus satisfies [1r(g )v, L] = [v, ir(g-1 )L], or 
[1r(g)v, ir(g)L] = [v, L]. Any bilinear form B : V x V --+ C is of the form 
B(v, w) = [v, >.(w)], where>. : V --+ V* is a linear isomorphism. It is clear 
that (45.1) is satisfied if and only if >. intertwines 1r and ir. 

Since 1r and ir are irreducible, Schur's Lemma implies that >., if it exists, 
is unique up to a scalar multiple, and the same conclusion follows for B. Now 
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( v, w) f-t B ( w, v) has the same property as B, and so B (w, v) = fB ( v, w) for 
some constant f. Applying this identity twice, f2 B(v, w) = B(v, w) so f = ±l. 

o 

If (7r, V) is self-contragredient, let f7r be the constant f in Proposition 
45.1; otherwise let f7r = O. If f7r = 1, then we say that 7r is orthogonal or 
real; if f7r = -1, we say that 7r is symplectic or quaternionic. We call f7r the 
F'robenius-Schur number of 7r. 

Theorem 45.1. (Frobenius and Schur) Let (7r, V) be an irreducible rep
resentation of the compact group G. Then 

f7r = L X(g2) dg. 

Proof. We have P2 = h2 - e2 in A(n). Indeed, P2(Xl,'" ,xn ) equals 

By (35.8) and Proposition 35.2, this means that 

X(g2) = tr( V2 7r(g)) - tr( 1\2 7r(g)). 

We see that f7r is 

Thus, what we need to know is that V27r(g) contains the trivial representation 
if and only if f7r = 1, while 1\27r(g) contains the trivial representation if and 
only if f7r = -l. 

If V27r(g) contains the trivial representation, let ~ E v2V be a V27r(g)
fixed vector. Let ( , ) be a G-invariant inner product on V. There is induced 
a G-invariant Hermitian inner product on V2V such that (Vl V V2, Wl V W2) = 
(Vb V2) (Wl' W2), and we may define a symmetric bilinear form on V by 
B(v,w) = (vVw,~). Thus f7r = l. 

Conversely, if f7r = 1, let B be a symmetric invariant bilinear form. By 
the universal property of the symmetric square, there exists a linear form 
L: v2V --+ C such that B(v,w) = L(v V w), and hence a vector ~ E V2V 
such that B(v, w) = (v V w, ~), which is a V27r(g)-fixed vector. 

The case where f7r = -1 is identical using the exterior square. 0 

Proposition 45.2. Let (7r, V) be an irreducible complex representation of the 
compact group G. Then 7r is the complexijication of a real representation if 
and only if f7r = 1. If this is true, 7r( G) is conjugate to a subgroup of the 
orthogonal group O(n). 
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Proof. First, suppose that 7r : G ----+ GL(V) is the complexification of a real 
representation. This means that there exists a real vector space Va and a 
homomorphism 7ro : G ----+ GL(Va) such that V ~ C I8)1R Va as G-modules. 
Every compact subgroup of GL(Vo) ~ GL(n,IR) is conjugate to a subgroup 
of O(n). Indeed, if (( , )) is a positive definite symmetric bilinear form on Va, 
then averaging it gives another positive definite symmetric bilinear form 

Bo(v,w) = fa ((7ro(g)v,7ro(g)w))dg 

that is G-invariant. Choosing a basis of Va that is orthonormal with respect 
to this basis, the matrices of 7ro(g) will all be orthogonal. Extending Bo by 
linearity to a symmetric bilinear form on V, which we identify with C 18) Va, 
gives a symmetric bilinear form showing that 4011" = l. 

Conversely, if 4011" = 1, there exists a G-invariant symmetric bilinear form B 
on V. We will make use of both B and a G-invariant inner product ( , ) on V. 
They differ in that B is linear in the second variable, while the inner product 
is conjugate linear. If w E V, consider the linear functional v f-t B(v, w). 
Every linear functional is the inner product with a unique element of V, so 
there exists -X(w) E V such that B(v,w) = (v ,-X(w)). The map -X: V ----+ V 
is IR-linear but not C-linear; in fact, it is complex antilinear. Let Va = {v E 

V I-X(v) = v}. It is a real vector space. We may write every element v E Vasa 
sum v = u+iw, whereu,w EVa, takingu = Hv+-X(v)) andw = ~(v--X(v)). 
This decomposition is unique since -X(v) = u-iw, and we may solve for u and 
w. Therefore V = Va EB iVa and V is the complexification of Va. Since B and 
H are both G-invariant, it is easy to see that -X 07r(g) = 7r(g) 0 -X, so 7r leaves 
Va-invariant and induces a real representation on it whose complexification 
is 7r. 0 

Theorem 45.2. Let G be a finite group. Let /-L : G ----+ C be the sum of the 
irreducible characters of G. 
(i) Suppose that 4011" = 1 for every irreducible representation 7r. Then, for any 
g E G, /-L(g) is the number of solutions to the equation x2 = 9 in G. 
(ii) Suppose that /-L(I) is the number of solutions to the equation x2 = 1. Then 
4011" = 1 for all irreducible representations 7r. 

Proof. If 7r is an irreducible representation of G, let X1l" be its character. We 
will show 

(45.2) 
irreducible 11" 

Indeed, by Theorem 45.1, the left-hand side equals 

Lx(g) I~I L X(x2 ) = L [I~I LX(g) X(X2 )j . 
x xEG xEG X 

Let C be the conjugacy class of g. By Schur orthogonality, the expression in 
brackets equals 1/101 if x 2 is conjugate to 9 and zero otherwise. Each element 
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of the conjugacy class will have the same number of square roots, so counting 
the number of solutions to X2 '" g (where'" denotes conjugation) and then 
dividing by IGI gives the number of solutions to x2 = g. This proves (45.2). 

Now (45.2) clearly implies (i). It also implies (ii) because, taking g = 1, 
each coefficient X'It"(1) is a positive integer, so 

irreducible 'It" irreducible 'It" 

is only possible if all €'It" are equal to 1. D 

Let K be a field and F a subfield. Let V be a K-vector space. If 7r : G ~ 
GL(V) is a representation of a group Gover K, we say that 7r is defined over 
F if there exists an F-vector space Va and a representation 7ro : G ~ GL(Va) 
over F such that 7r is isomorphic to the representation of G on the K-vector 
space K ®F Vo. The dimension over K of V must clearly equal the dimension 
of Vo as an F-vector space. 

Theorem 45.3. Every irreducible representation of Sk is defined over Q. 

Proof. The construction of Theorem 37.1 contained no reference to the ground 
field and works just as well over Q. Specifically, our formulation of Mackey 
theory was valid over an arbitrary field, so if A and J.L are conjugate partitions, 
the computation of Proposition 37.5 shows that there is a unique intertwining 
operator Ind~~ (c:) ~ Ind~: (1), where we are now considering representations 
over Q. The image of this intertwining operator is a rational representation 
whose complexification is the representation p).. of Sk parametrized by A. 0 

In this chapter, we will call an element x EGan involution if x2 = 1. 
Thus, the identity element is considered an involution by this definition. If 
G = Sk, then by Theorem 45.3 every irreducible representation is defined 
over Q, a fortiori over JR, and so by Theorem 45.2 we have €'It" = 1 for all 
irreducible representations 7r. Therefore, the number of involutions is equal to 
the sum of the degrees of the irreducible characters, and moreover the sum of 
the irreducible characters evaluated at g E Sk equals the number of solutions 
to x2 = g. In particular, it is a nonnegative integer. 

It is possible to prove that the sum of the degrees of the irreducible repre
sentations of G is equal to the number of involutions when G = Sk using the 
Robinson-Schensted correspondence (see Knuth [85], Section 5.1.4, or Stanley 
[115], Corollary 7.13.9). Indeed, both numbers are equal to the number of 
standard tableaux. 

Let G be a group (such as Sk) having the property that all €'It" = 1, so 
the number of involutions of G is the sum of the degrees of the irreducible 
representations. Let Xl, ... ,Xh be representatives of the conjugacy classes of 
involutions. The cardinality of a conjugacy class X is the index of its centralizer 
GG(x), so ~]G : GG(Xi)] is the number of involutions of G. Since this is the 
sum of the degrees of the irreducible characters of G, it becomes a natural 
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question to ask whether we may specify characters '¢i of degree 1 of GC(Xi) 
such that the direct sum of the induced characters ,¢f contains each irreducible 
character exactly once. If so, these data comprise an involution model for G. 
Involution models do not always exist, even if all f'/r = 1. 

A complete set of representatives of the conjugacy classes of Sk are 1, (12), 
(12)(34), .... To describe their centralizers, we first begin with the involution 
(12)(34)(56)··· (2r - 1, 2r) E S2r' Its centralizer, as described in Proposition 
39.1, has order 2rr!. It has a normal subgroup of order 2r generated by the 
transpositions (12), (34), ... , and the quotient is isomorphic to Sr. We denote 
this group B 2r . It is isomorphic to the Weyl group of Cartan type B r. 

Now consider the centralizer in Sk of (12)(34) ... (2r - 1, 2r) where 2r < 
k. It is contained in S2r X Sk-2r, where the second Sk-2r acts on {2r + 
1,2r + 2, ... ,k} and equals B2r X Sk-2r' The theorem of Klyachko, Inglis, 
Richardson, and Saxl is that we may specify characters of these groups whose 
inductions to Sk contain every irreducible character exactly once. There are 
two ways of doing this: we may put the alternating character on Sk-2k and the 
trivial character on B2n or conversely we may put the alternating character 
(restricted from S2r) on B2r and the trivial character on S k-2r. 

Let W2r be the character of S2r induced from the trivial character of B 2r . 

Proposition 45.3. The restriction of W2r to S2r-1 is isomorphic to the char
acter of S2r-1 induced from the character W2r-2 to S2r-l. 

Proof. First, let us show that B2r \S2r/ S2r-1 consists of a single double coset. 
Indeed, S2r acts transitively on X = {1, 2, ... ,2r}, and the stabilizer of 2r is 
S2r-l. Therefore, we can identify S2r/S2r-1 with X and B 2r\S2r/S2r-1 with 
B 2r \X. Since B 2r acts transitively on X, the claim is proved. 

Thus we can compute the restriction of W2r to S2r-1 by Corollary 34.2 to 
Theorem 34.2, taking HI = B2n H2 = S2r-l, G = S2n 7r = 1, with 'Y = 1 the 
only double coset representative. We see that the restriction of W2r = Ind~t (1) 
is the same as the induction of 1 from H'Y = B2r n S2r-1 = B 2r- 2 to H 2. 
Inducing in stages first from B 2r- 2 to S2r-2 and then to S2r-l, this is the 
same as the character of S2r-1 induced from W2r-2. 0 

We are preparing to compute W2r. The key observation of Inglis, Richard
son, and Saxl is that Proposition 45.3, plus purely combinatorial considera
tions, contains enough information to do this. 

We call a partition A = (At, A2, ... ) even if every Ai is an even integer. 
If A is a partition, let RiA = (AI, A2,'" ,Ai-I, Ai + 1, Ai+I,"') be the 

result of incrementing the i-th part. In applying this raising operator, we 
must always check that the resulting sequence is a partition. For this, we 
need either i = 1 or Ai < Ai-I' Similarly, we have the lowering operator 
LiA = (AI, A2,'" ,Ai-I, Ai - 1, Ai+I,"'), which is a partition if Ai > Ai+I. 

Lemma 45.1. Every partition of 2r - 1 having exactly one odd part is con
tained in a unique even partition of 2r. 
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Proof. Let JL be a partition of 2r - 1 having exactly one odd part JLi. The 
unique even partition of 2r containing JL is RiJL. Note that this is a partition 
since i = 1 or JLi < JLi-1. (We cannot have JLi and JLi-1 both equal since one 
is odd and the other even.) 0 

Proposition 45.4. Let S be a set of partitions of 2r. Assume that: 
(i) every partition of 2r - 1 contained in an element of S has exactly one odd 
part; 
(ii) every partition of 2r -1 with exactly one odd part is contained in a unique 
element of S; and 
(iii) the trivial partition (2r) E S. 
Then S consists of the set So of even partitions of 2r. 

Proof. First, we show that S contains So. Assume on the contrary that A E So 
is not in S. We assume that the counterexample A is minimal with respect to 
the partial order, so if >.' E So with>.' -< A, then A' E S. Let i = l(A). We 
note that i > 1 since if i = 1, then A is the unique partition of 2r of length 
1, namely (2r), which is impossible since A ~ S while (2r) E S by assumption 
(iii) . 

Let JL = LiA. It is a partition since we are decrementing the last nonzero 
part of A. It has a unique odd part JLi, so by (ii) there is a unique T E S such 
that JL C T. Evidently, T = RjJL for some j. Let us consider what j can be. 

We show first that j cannot be > i. If it were, we would have j = i + 1 
because i is the length of JL and A. Now assuming T = Ri+1JL = Ri+1LiA, we 
can obtain a contradiction as follows. We have Ti-1 = Ai-1 ;:;:: Ai > Ai -1 = Ti, 
so v = Li- 1 T is a partition. It has three odd parts, namely vi-1, Vi and Vi+1. 
This contradicts (i) for VeT E S. 

Also j cannot equal i. If it did, we would have T = RiLiA = A, a contra
diction since T E S while A ~ S. 

Therefore j < i. Let a = RjLiT = R;L; A. Note that a is a partition. 
Indeed, either j = 1 or else Tj -I Tj-1 since one is odd and the other one 
is even, and we are therefore permitted to apply R j . Furthermore, Ti -I Ti+1 
since one is odd and the other one even, so we are permitted to apply L i . 

Since A is even, a is even, and since j < i, a -< A. By our induction 
hypothesis, this implies that a E S. Now let () = LiT = Lja. This is easily seen 
to be a partition with exactly one odd part (namely () j ), and it is contained 
in two distinct elements of S, namely T and a. This contradicts (ii). 

This contradiction shows that S ::) So. We can now show that S = So. 
Otherwise, S contains So and some other partition A ~ So. Let JL be any 
partition of 2r - 1 contained in A. Then JL has exactly one odd part by (i), so 
by Lemma 45.1 it is contained in some element A' E So C S. Since A ~ So, A 
and>.' are distinct elements of S both containing JL, contradicting (ii). D 

Theorem 45.4. The character W2r of S2r is multiplicity-free. It is the sum of 
all irreducible characters 8>.. with A an even partition of 2r. 
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Proof. By induction, we may assume that this is true for S2r-2. The restriction 
of W2r to S2r-l is the same as the character induced from W2r-2 by Proposi
tion 45.3. Using the branching rule for the symmetric groups, its irreducible 
constituents consist of all sp" where fL is a partition of S2r-l containing an 
even partition of 2r - 2, and clearly this is the set of partitions of 2r -1 having 
exactly one odd part. There are no repetitions. 

We see immediately that W2r is multiplicity-free since its restriction to 
S2r-l is multiplicity-free. Let S be the set of partitions A of 2r such that 
S A is contained in W2r. Again using the branching rule for symmetric groups, 
we see that this set satisfies conditions (i) and (ii) of Proposition 45.4 and 
condition (iii) is clear by Frobenius reciprocity. The result now follows from 
Proposition 45.4. D 

We may now show that Sk has an involution model. The centralizer of the 
involution (12)(34)··· (2r - 1, r) is B2r X Sk-2r. 

Theorem 45.5. (Klyachko, Inglis, Richardson and Saxl) Every irre
ducible character of Sk occurs with multiplicity 1 in the sum 

EB Ind~~rxsk_2r (10.9 c:), 
2r~k 

where c: is the alternating character of Sk-2r. 

Proof. We will show that Ind~~rxsk_2r (10.9 c:) is the sum of the SA as A runs 
through the partitions of k having exactly k-2r odd parts. Indeed, it is obvious 
that if A is a partition of k, there is a unique even partition fL such that A :J fL 
and A \fL is a vertical strip; the partition fL is obtained by decrementing each 
odd part of A. Since W2r is the sum of all SA where A is a partition of 2r into 
even parts, it follows from Pieri's formula that the character W2rek-2r is the 
sum of all SA where A is a partition of k having exactly k - 2r odd parts. 

We note that the number of odd parts of any partition A of k is congruent 
to k modulo 2 because k = ~ Ai' The result follows by summing over r. D 

EXERCISES 

The first exercise generalizes Theorem 45.1 of Frobenius and Schur. Suppose that 
G is a compact group and () : G -----t G an involution (that is, an automorphism 
satisfying (}2 = 1). Let (7r, V) be an irreducible representation of G. If 7r ~ 07r, where 
07r : V -----t V is the "twisted" representation 07r(g) = 7r(Og), then by an obvious 
variant of Proposition 45.1 there exists a symmetric bilinear form B : V x V -----t C 
such that 

BO(7r(g)v,7r(Og)w) = Bo(v,w). (45.3) 

In this case, the twisted Frobenius-Schur number EO (7r) is defined to be the constant 
equal to ±1 such that 

B(v, w) = EO(7r)B(w, v). 
If 7r ~ 07r we define to (7r) = O. The goal is to prove the following theorem. 
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Theorem (Kawanaka and Matsuyama [76]) Let G be a compact group and () an 
involution of G. Let (1T, V) be an irreducible representation with character X. Then 

( 45.4) 

Exercise 45.1. Assuming the hypotheses of the stated theorem, define a group H 
that is the semidirect product of G by a cyclic group (t) generated by an element t 
of order 2 such that tgC 1 = IJ 9 for 9 E G. Thus, the index [G : H] = 2. The idea 
is to use Theorem 45.1 for the group H to obtain the theorem of Kawanaka and 
Matsuyama for G. Proceed as follows. 

Case 1: Assume that 1T ~ 1J 1T. In this case, show that there exists an endomor
phism T : V ---+ V such that T 0 1T(g) = 1T(O g) 0 T and T2 = Iv. Extend 1T to a 
representation 1TH of H such that 1TH(t) = T. Let BIJ : V x V ---+ C satisfy (45.3). 
Then B(v, w) = BIJ(v, Tw) satisfies (45.1), as does B(Tv, Tw) = BIJ(Tv, w). Thus, 
there exists a constant 8 such that B(Tv,Tw) = 8B(v,w). Show that 82 = 1 and 
that 

(45.5) 

Apply Theorem 45.1 to the representation 1TH, bearing in mind that the Haar mea
sure on H restricted to G is only half the Haar measure on G because both measures 
are normalized to have total volume 1. This gives 

(45.6) 

Now observe that if 1TH is self-contragredient, then the nondegenerate form that it 
stabilizes must be a multiple of B. Deduce that if 8 = 1 then 1TH is self-contragredient 
and €(1TH) = €(1T), while if 8 = -1, then €(1TH) = O. In either case reconcile, (45.5) 
and (45.6) to prove (45.4). 

Case 2: Assume that 1T ~ 1J 1T. In this case, show that the induced representation 
Ind~(1T) is irreducible and call it 1TH. Show that 

Show using direct constructions with bilinear forms on V and VH that if either €(1T) 
or I'IJ(1T) is nonzero, then 1TH is self-contragredient, while if 1TH is self-contragredient, 
then exactly one of 1'( 1T) or I'IJ (1T) is nonzero, and whichever one is nonzero equals 
€(1TH). 

Exercise 45.2. Let G be a finite group and let () be an involution. Let fJ, : G ---+ C 
be the sum of the irreducible characters of G. If fJ,(1) equals the number of solutions 
to the equation x·1J x = 1, then show that 1'0 (1T) = 1 for all irreducible representations 
1T. If this is true, show that fJ,(g) equals the number of solutions to x . IJ X = 9 for all 
9 E G. 

For example, if G = GL(n,lFq), it was shown independently by Gow [48] and 
Klyachko [80] that the conclusions to Exercise 45.2 are satisfied when G = GL(n, lFq) 
and () is the automorphism 9 ~ t 9 -1. 

For the next group of exercises, the group B2k is a Coxeter group with generators 
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(13)(24), (35)(46), ,(2k - 3, 2k - 1)(2k - 2, 2k) 

and (2k - 1,2k). It is thus a Weyl group of Cartan type Bk with order k!2k. It 
has a linear character 6k having value -1 on these "simple reflections." This is the 
character (_l)l(w) of Proposition 21.12. Let TJ2k = Ind~~~ (6k) be the character of 
S2k induced from this linear character of B2k. The goal of this exercise will be to 
prove analogs of Theorem 45.4 and the other results of this chapter for TJ2k. 

Exercise 45.3. Prove the analog of Proposition 45.3. That is, show that inducing 
the restriction of TJ2r to S2r-l is isomorphic to the character of S2r-l induced from 
the character TJ2r-2 to S2r-l. 

Let S2k be the set of characters 8>. of S2k where A is a partition of 2k such that if 
p, is the conjugate partition, then P,i = Ai + 1 for all i such that Ai ;;;:: i. For example, 
the partition A = (5,5,4,3,3,2) has conjugate (6,6,5,3,2), and the hypothesis is 
satisfied. Visually, this assumption means that the diagram of A can be assembled 
from two congruent pieces, as in Figure 45.1. We will describe these as the "top 
piece" and the "bottom piece," respectively. 

I I 
Top Piece 

1 r 
Bottom 
Piece 

r 
Fig. 45.1. The diagram of a partition of class S2k when k = 11. 

Let 12k+l be the set of partitions of 2k + 1 whose diagram contains an element of 
S2k. 

Exercise 45.4. Prove that if A E 12k+!, then there are unique partitions p, E S2k 
and II E S2k+2 such that the diagram of A contains the diagram of p, and is contained 
in the diagram of II. (Hint: The diagrams of the skew partitions A - p, and II - A, 
each consisting of a single node, must be corresponding nodes of the top piece and 
bottom piece.) 

Exercise 45.5. Let E be a set of partitions of 2k + 2. Assume that every partition 
A of 2k + 1 is contained in an element of E if and only if A E 12k+!, in which case it 
is contained in a unique element of E. Show that E = S2k+2. (This is an analog of 
Proposition 45.4. It is not necessary to assume any condition corresponding to (iii) 
of the proposition.) 

Exercise 45.6. Show that TJ2k is multiplicity-free and that the representations oc
curring in it are precisely the 8>. with A E S2k. 
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Some Symmetric Algebras 

The results of the last chapter can be translated into statements about the 
representation theory of U(n). For example, we will see that every irreducible 
representation of U(n) occurs exactly once in the decomposition of the sym
metric algebra of V EEl 1\2V, where V = Cn is the standard module of U(n). 
The results of this chapter are also proved in Goodman and Wallach [47], 
Littlewood [93], and Macdonald [95]. 

Proposition 46.1. Let V = Cn be regarded as a GL(n, C)-module in the 
usual way. Then 

Vk(V2V) ~ ( ® V) ®qS2kJ W2k 

as GL(n, C)-modules. It is the direct sum of the 11). as>. runs through all even 
partitions of k. 

Proof. Let us note that it is sufficient to prove that 

V'(V'Y) '" ( ® Y) ®C[B,.J ernv'" (46.1) 

as GL(n, C)-modules. Indeed, assuming this, the right-hand side is isomorphic 
to 

( ( ®2k V) ®qS2kJ C[S2kJ) ®qB2kJ Ctrivial ~ 
(®2k V) ®qS2kJ (C[S2kJ ®C[B2kJ Ctrivial) ~ (®2k V) ®qS2kJ W2k. 

To prove (46.1), we will use the universal properties of the symmetric 
power and tensor products to construct inverse maps 

V'(V'Y) +--+ ( ® Y ) ®C[B,.J Ctrivlal, 
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where Ctrivial is C regarded as a QB2k]-module with the trivial action of B 2k . 

Here B2k C S2k acts on ®k Von the right by the action (36.1). 
First, we note that the map 

commutes with the right action of B 2k. It is 2k-linear and hence induces a 
map 

2k 
a: Q9 V ---+ V k (V2V), 

and a(~a) = a(~) for a E B2k. Thus, the map 

(@ V) X C',i",," ---> V'(V'V), 

is QB2k]-balanced and there is an induced map 

(~, t) H ta(~), 

(®2k V) ®qB2kl Ctrivial ---+ Vk(V2V), 

(VI ® ... ® V2k) ® t H t(VI V V2) V··· V (V2k-1 V V2k). 

As for the other direction, we first note that for V3, V4, ... ,V2k fixed, using 
the fact that ®qB2klis B2k-balanced, the map 

is symmetric and bilinear, so there is induced a map 

J.LV3,V4," ,V2k : V2V ---+ (®2k V) ®qB2kl Ctrivial, 

J.Lv3,,,,,v4(VI V V2) = (VI ® V2 ® V3 ® ... ® V2k) ® 1. 

Now with 6 E V2V and V5,'" ,V2k fixed, the map 

is symmetric and bilinear, so there is induced a map 

l/~,V5,'" ,V2k : V2V ---+ (®2k V) ®qB2kl Ctrivial, 

l/~,V5,,,,,V2k(V3 VV4) = J.Lv3,V4"",V2k(6)· 

With V5, ... ,V2k fixed, denote by 

J.Lv5,'" ,V2k : V2V x V2V ---+ ( ~ V ) ®qB2kl Ctrivial 
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the map JLv5, ... ,V2k(6,6) = V~1,V5, ... ,V2k(6). Continuing in this way, we even

tually construct a k-linear map JL : V2V x· .. V2 V ----+ (®2k V) ®qB2kJ Ctrivial 

such that 

Using the fact that ®qB2kJis B2k-balanced, the map JL is symmetric and hence 

induces a map Vk(V2V) ----+ (®2k V) ®C[B2kJ Ctrivial that is the inverse of 

the map previously constructed. We have now proved (46.1). 0 

Theorem 46.1. Let V = cn be regarded as a GL(n, C)-module in the usual 
way. Then 

A an even permutation of 2k 

Proof. This follows from Proposition 46.1, Theorem 38.4, and the explicit 
decomposition of Theorem 45.4. 0 

Theorem 46.2. (D. E. Littlewood) Let al,' .. ,an be complex numbers, 
lai I < 1. Then 

(46.2) 

The sum is over even partitions. 

Proof. This follows on applying (43.5) to the symmetric square representation 
by using Proposition 43.5 and the explicit decomposition of Theorem 46.1. 0 

Theorem 46.3. (D. E. Littlewood) Let al," . ,an be complex numbers, 
lail < 1. Then 

= :~:::>A(al"" , an). 
A 

The sum is over all partitions. 

Proof. The coefficient of t k in 

[ II (1 + tai)] [ II (1 - t2aiaj)-1] = 
l~i~n l~i~j~n 

[L: ektk] [ L: sAer ] 
k A an even partition of 2r 
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is 

>.. an even partition of 2r 

This is the image of ek-2rW2r under the characteristic map, and it equals the 
sum of the s>.. for all partitions of k by Theorem 45.5. Taking t = 1, the result 
follows. 0 

A polynomial character of GL(n, q is one whose matrix coefficients are 
polynomials in the coordinates functions gij not involving det -1. As we know, 
they are exactly the characters of 7r>.. where A = (AI,'" ,An) is a partition. 
We may express Theorem 46.3 as saying that every polynomial character of 
GL(n, q occurs exactly once in the algebra (/\ V) 0 V(V2 V), which is the 
tensor product of the exterior algebra over V with the symmetric algebra over 
the exterior square representation. 

There are dual forms of these results. Let W2k = Ind~~: (c) be the character 
of S2k obtained by inducing the alternating character c from B2k . 

Proposition 46.2. The character W2k is the sum of the s>.., where A runs 
through all the partitions of k such that the conjugate partition At is even. 

Proof. This may be deduced from Theorem 45.4 as follows. Applying this with 
G = S2k, H = B 2k, and p = c, we see that W2k is the same as W2k multiplied 
by the character c. By Theorem 39.3, this is LW2k , and by Theorems 45.4, and 
37.2, this is the sum of the s>.. with At even. 0 

Theorem 46.4. Let V = en be regarded as a GL(n, q-module in the usual 
way. Then 

Vk(/\2V) ~ ( 0 V) 0qS2k] W2k 

as GL(n, q-modules. It is the direct sum of the 7r>.. as A runs through all 
conjugates of even partitions of k. 

Proof. Similar to Theorem 46.1. o 

Theorem 46.5. (D. E. Littlewood) Let all' .. ,an be complex numbers, 
lail < 1. Then 

(46.3) 

The sum is over even partitions. 

Proof. Similar to Theorem 46.2. o 
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Theorem 46.6. (D. E. Littlewood) Let al,··· , an be complex numbers, 
lail < 1. Then 

The sum is over all partitions. 

= Ls>.(al,··· ,an). 
>. 

Proof. Similar to Theorem 46.3, and actually equivalent to Theorem 46.3 
using the identity (1 + ai)(l - a;)-l = (1 - ai)-l. D 

EXERCISES 

Exercise 46.1. Let TJ2k be the character of S2k from the exercises of the last chapter, 
and let S2k be the set of partitions of 2k defined there. Show that 

and deduce that 

Prove also that 

I\k(1\2V) ~ EB 'Tr>.. 

>' ES2k 

I\k(V2V) ~ EB 'Tr>.. 

t>' ES2k 

Exercise 46.2. Prove the identities 

II (l+ai a j) = L L 8>.(a1,··· ,an), 
1(;i<j(;n k >'ES2k 

II (l+ai a j)=L L s>.(a1,···,an ). 

1(;i(;j(;n k t>' ES2k 

Explain why, in contrast with (46.2) and (46.3) there are only finitely many nonzero 
terms on the right-hand side in these identities. 
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Gelfand Pairs 

We recall that a representation 0 of a compact group G is called multiplicity
free if in its decomposition into irreducibles, 

(47.1) 

each irreducible representation 7ri occurs with multiplicity di = 0 or 1. A 
common situation that we have seen already several times is for a group 
G => H to have the~roperty that for some representation T of H the induced 
representation IndH(T) is multiplicity-free. 

Of course, we have only defined induced representations when Hand G are 
finite. Assuming Hand G are finite, saying that Ind~(T) is multiplicity-free 
means that each irreducible representation 7r of G, when restricted to H, can 
contain at most one copy of T, and formulated this way, the statement makes 
sense even if Hand G are infinite. 

The most striking examples we have seen are when H = Sk-l and G = Sk 

and when H = U(n - 1) and G = U(n). In these examples every irreducible 
representation T of H has this "multiplicity one" property. Such examples are 
fairly rare. A far more common circumstance is for a single representation 
T of H to have the multiplicity one property. For example, we showed in 
Theorem 45.4 that inducing the trivial representation from the group B2k of 
S2k produces a multiplicity-free representation. However, this would not be 
true for some other irreducible representations. 

Proposition 47.1. Suppose 0 is a representation of a finite group G. A neces
sary and sufficient condition that 0 be multiplicity-free is that the ring Enda (0) 
be commutative. 

Proof. In the decomposition (47.1), we have Enda(O) = EBMatdi(C). This is 
commutative if and only if all di ~ 1. 0 
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Let G be a group, finite for the time being, and H a subgroup. Then (G, H) 
is called a Gelfand pair if the representation of G induced by the trivial repre
sentation of H is multiplicity-free. We also refer to H as a Gelfand subgroup. 
More generally, if 7r is an irreducible representation of H, then (G, H, 7r) is 
called a Gelfand triple if 7rG is multiplicity-free. See Gross [50] for a lively 
discussion of Gelfand pairs. 

From Proposition 47.1, Gelfand pairs are characterized by the commuta
tivity of the endomorphism ring of an induced representation. To study it, we 
make use of Mackey theory. 

Proposition 47.2. Let G be a finite group, and let Hb H2, H3 be subgroups. 
Let (7ri' Vi) be complex representations of Hl, H2, and H3 and let Ll : 
vF ~ Vp and L2 : Vp ~ Vp be intertwining opemtors. Let Lll : 
G ~ Hom(Vb V2) and Ll2 : G ~ Hom(V2, V3) correspond to Ll and L2 
as in Theorem 34.1. Then Ll2 * Lll : G ~ Hom(V1 , lt3) corresponds to 
L2 0 Ll : vF ~ Vp, where the convolution is 

Ll2 * Lll(g) = L Ll2(Y'Y-1 ) 0 Lll(r). 
-yEH2 \G 

Proof. Note that, using (34.7), the summand Ll2(Y'Y- 1 )Lll(r) does not depend 
on the choice of representative 'Y E H2\G. The result is easily checked. 0 

Theorem 47.1. Let H be a subgroup of the finite group G, and let (7r, V) be 
a representation of H. Then (G,H,7r) is a Gelfand triple if and only if the 
convolution algebm 1£ of junctions Ll : G ~ Endc (V) satisfying 

is commutative. 

We call a convolution ring 1£ of this type a Hecke algebm. 

Proof. By Proposition 47.2, this condition is equivalent to the commutativity 
of the endomorphism ring EndG(VG), so this follows from Proposition 47.1. 

o 

In this chapter, an involution of a group G is a map t : G -+ G of order 2 
that is anticommutative: 

~(glg2) = ~g2 ~gl' 

Similarly, an involution of a ring R is an additive map of order 2 that is 
anticommutative for the ring multiplication. 

A common method of proving that such a ring is commutative is to exhibit 
an involution and then show that this involution reduces to the identity map. 

Theorem 47.2. Let H be a subgroup of the finite group G, and suppose that 
G admits an involution fixing H such that every double coset of H is invariant: 
HgH = H~gH. Then H is a Gelfand subgroup. 
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Proof. The ring 1£ of Theorem 47.1 is just the convolution ring of H-bi
invariant functions on G. We have an involution on this ring: 

It is easy to check that 

On the other hand, each ..1 is constant on each double coset, and these are 
invariant under t by hypothesis, so t is the identity map. This proves that 1£ 
is commutative, so (G, H) is a Gelfand pair. 0 

Let 8n denote the symmetric group. We can embed 8n x 8m -+ 8n+m by 
letting 8n act on the first n elements of the set {I, 2, 3,· .. ,n+m} and letting 
8m act on the last m elements. 

Proposition 47.3. The subgroup 8n x 8m is a Gelfand subgroup of 8n+m . 

We already know this: the representation of 8n+m induced from the trivial 
character of 8n x 8m is the product in the ring R of h n by hm . By Pieri's 
formula, one computes, assuming without loss of generality that n > m, 

m 

hnhm = L 8(n+m-k,k)· 
k=O 

Thus, the induced representation is multiplicity-free. We prove this again to 
illustrate Theorem 47.2. 

Proof. Let H = 8n x 8m and G = 8n+m . We take the involution t in Theorem 
47.2 to be the inverse map g ---+ g-l. We must check that each double coset 
is t-stable. 

It will be convenient to represent elements of 8n+m by permutation ma
trices. We will show that each double coset H gH has a representative of the 
form 

(~ OnO_r ~ In~r) 
o 0 I m - n+r 0 . 
o In-r 0 On-r 

(47.2) 

Here In and On are the n x n identity and zero matrices, and the remaining 
o matrices are rectangular blocks. 

We start with g in block form, 

where A, B, C and D are subpermutation matrices - that is, matrices with 
only 1 's and O's, and with at most one nonzero entry in each row and column. 
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Here A is n x nand D is m x m. Let r be the rank of A. Then clearly Band 
C both must have rank n - r, and so D has rank m - n + r. 

Multiplying A on the left by an element of 8n , we may arrange its rows so 
that its nonzero entries lie in the first r rows. Then multiplying on the right by 
an element of 8n , we may put these in the upper left-hand corner. Similarly, 
we may arrange that D has its nonzero entries in the upper left-hand corner. 
Now the form of the matrix is 

(
Tr 0 0 0) o On-r 0 Un- r 
o 0 Vm - n+r 0 ' 
o W n- r 0 On-r 

where the sizes of the square blocks are indicated by subscripts. The matrices 
T, U, V, and W are permutation matrices (invertible). Left multiplication by 
element of 8r x 8n- r x 8m- n+r x 8n- r can now replace these four matrices 
by identity matrices. This proves that (47.2) is a complete set of double coset 
representatives. 

Since these double coset representatives are all invariant under the invo
lution, by Theorem 47.2 it follows that 8n x 8m is a Gelfand subgroup. D 

Proposition 47.4. Suppose that (G,H,'l/J) is a Gelfand triple, and let (71", V) 
be an irreducible representation of G. Then there exists at most one space M 
of functions on G satisfying 

M(hg) = 'l/J(h)M(g), (h E H), (47.3) 

such that M is closed under right translation and such that the representation 
of G on M by right translation is isomorphic to 71". 

The space M is called a model of 71", meaning a concrete realization of the 
representation in a space of functions on G. 

Proof. This is just Frobenius reciprocity. The space of functions satisfy
ing (47.3) is Ind~('l/J), so M, if it exists, is the image of an element of 
Homa (V, Ind~( 'l/J)). This is one-dimensional since the induced representation 
is assumed multiplicity-free. D 

We turn now to Gelfand pairs in compact groups. We will obtain a result 
similar to Theorem 47.1 by a different method. 

Let C(G) be the space of continuous functions on the compact group G. It 
is a ring (without unit) under convolution. If ¢ E C (G), and if (71", V) is a finite
dimensional representation, let 71"( ¢) : V --+ V denote the endomorphism 

7I"(¢) V = fa ¢(g) 71" (g) vdg. 

One checks easily that if ¢, 'l/J E C(G), then 
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7r(cP * 'ljJ) = 7r(cP) 07r('ljJ). 

Let H be a closed subgroup of G. Let 1£ be the subring of C(G) consisting 
of functions that are both left- and right-invariant under H. If (7r, V) is a 
representation of G, let VH denote the space of H-fixed vectors. 

Theorem 47.3. Let H be a closed subgroup of the compact group G. Let 1£ 
be the subring of C(G) consisting of functions that are both left- and right
invariant under H. If1£ is commutative, then VH is at most one-dimensional 
for every irreducible representation (7r, V) of G. 

In this case, extending the definition from the case of finite groups, we say 
(G, H) is a Gelfand pair or that H is a Gelfand subgroup of G. 

Proof. Let ~,1] E V H • For 9 E G, let 

cP("T/(g) = (7r(g)~,1]), 

where ( , ) is an invariant inner product on V (Proposition 2.1). It is easy to 
see that cP("T/ E 1£. We will prove that 

( 47.4) 

Indeed, taking the inner product of the left-hand side with an arbitrary vector 
o E V, Schur orthogonality (Theorem 2.4) gives 

(7r(cP("T/)v,O) = IG (7r(g) v, 0) (7r(g)~, 1])dg = 

di~(V) (v,~) (1],0) , 

and since this is true for every 0, we have (47.4). 
Now we show that the image of 7r(cPT/,(,*cP("T/) is C1]. Indeed, applying (47.4) 

twice, we see that 

7r( cPT/,(, * ¢("T/) v = 7r( cPT/,(,) 0 7r( cP("T/) v = dim(V)2 (v,~) (1], 1]) ~. 

The image of this is contained in the linear span of 1], and taking v = ~ shows 
that the map is nonzero. Since 1£ is assumed commutative, this also equals 
7r(cP("T/ * cPT/,(,). Hence, its image is also equal to C~, and so we see that ~ and 
1] both belong to the same one-dimensional subspace of V. 0 

To give an example where we can verify the hypotheses of Theorem 47.3, 
let G = SO(n + 1), and let H = SO(n), which we embed into the upper 
left-hand corner of G: 

g~(g ~). 
We also embed K = SO(2) into the lower right-hand corner: 

(47.5) 
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Proposition 47.5. With G = 80(n + 1), H = 80(n), and K = 80(2) em
bedded as explained above, every double coset in H\ G / H has a representative 
in K. 

Proof. Let g E G. Write the last column of g in the form 

bv1 

bV2 

where b2 + a2 = 1 and v has length 1. Complete v to an orthogonal matrix 
hE H. Then it is simple to check that the last column of h-1g is 

o 

o 
b 
a 

so with k the matrix in (47.5), the last column of k-1h-1g is 

(47.6) 

This implies that k-1h-1g E O(n), so g and k lie in the same double coset. 0 

Theorem 47.4. The subgroup 80(n) of 80(n + 1) is a Gelfand subgroup. 

Proof. With G = 80(n + 1), H = 80(n), and K = 80(2) embedded as 
explained above, we exhibit an involution of G, namely 

(In ) t (In ) 
gN -1 g -1· 

This involution maps H to itself and is the identity on matrices in 0(2). 
Hence, the involution of 1£ that it induces is the identity, and 1£ is therefore 
commutative. 0 

Now let us think a bit about what this means in concrete terms. The 
quotient G / H may be identified with the sphere sn. Indeed, thinking of sn 
as the unit sphere in ]Rn+l, G acts transitively and H is the stabilizer of a 
point in sn. 

Consequently, we have an action of G on L2(sn), and this may be thought 
of as the representation induced from the trivial representation of O(n). 
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Theorem 47.5. Let (7r, V) be an irreducible representation ofO(n+l). Then 
there exists at most one subspace of L2(sn) that is invariant under the action 
of O( n + 1) and affords a representation isomorphic to 7r. 

This gives us a concrete model for at least some representations of O( n + 1). 

Proof. Let ¢ : V -+ L2(sn) be an intertwining operator. It is sufficient to 
show that ¢ is uniquely determined up to a constant multiple. The O(n + 1)
equivariance of ¢ amounts to the formula 

¢(7r(g)v){x) = ¢(V)(g-lX) (47.7) 

for 9 E O(n + 1), v E V, and x E sn. 
Let (.,.) be an invariant Hermitian form on V. This form is nondegenerate, 

so every linear functional on V is of the form v -+ (v, TJ) for some vector TJ. In 
particular, with ~o E sn as in (47.6), there exists a vector TJ E V such that 

¢( v )(~o) = (v, TJ) . 

By (47.7), we have 

¢(v)(7r(g)~o) = (7r(g-l)V,TJ) = (v,7r(g)TJ). 

This makes it clear that ¢ is determined by TJ, and it also shows that TJ is O(n)
invariant since ~o E sn is O(n)-fixed. Since the space of O(n)-fixed vectors is 
at most one-dimensional, the theorem is proved. D 

Proposition 47.6. If 9 E U(n), then there exist kl and k2 E O(n) such that 
klgk2 is diagonal. 

Proof. Let x = gtg. This is a unitary symmetric matrix. By Proposition 31.2, 
there exists kl E O(n) such that klxkll is diagonal. It is unitary, so its 
diagonal entries have absolute value 1. Taking their square roots, we find 
a unitary diagonal matrix d such that klxkll = ~. This means that 
(d-lklg)t(d-lklg) = 1, so ki l = d-lklg is orthogonal and klgk2 = d. D 

Theorem 47.6. The group O(n) is a Gelfand subgroup of U(n). 

Proof. Let G = U(n) and H = O(n), and let 1l be the ring of Theorem 47.3. 
The transpose involution of G preserves H and thus induces an involution 
of 1l. By Proposition 47.6, every double coset in H\G/H has a diagonal 
representative, so this involution is the identity map, and it follows that 1l is 
commutative. Therefore H is a Gelfand subgroup. D 
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EXERCISES 

Exercise 47.1. Let G be any compact group. Let H = G x G, and embed G into 
H diagonally, that is, by the map 9 ~ (g,g). Use the involution method to prove 
that G is a Gelfand subgroup of H. (Compare Propositions 43.1 and 43.2.) 

Exercise 47.2. Use the involution method to show that O(n) is a Gelfand subgroup 
of U(n). 

Exercise 47.3. Show that every irreducible representation of 0(3) has an 0(2)
fixed vector, and deduce that L2(82) is the (Hilbert space) direct sum of all irre
ducible representations of 0(3), each with multiplicity one. 

Exercise 47.4. (Gelfand and Graev) Let G = GL(n,lFq) and let N be the sub
group of upper triangular unipotent matrices. Let 't/J : lFq --+ ex be a nontrivial 
additive character. Define a character 't/JN of N by 

,m [1 x;' =;::: =~: 1 ~ ~(",d x" + . . h.-... ). 
The object of this exercise is to show that Ind~ ('t/JN) is multiplicity-free. This 
Gelfand-Gmev representation is important because it contains most irreducible rep
resentations of the group; those it contains are therefore called generic. We will 
denote by if! the root system of GL(n,lFq) and by if!+ the positive roots aij such 
that i < j. Let E be the simple positive roots ai,i+l. 

(i) Show that every double coset in N\GjN has a representative m that is a 
monomial matrix. In the notation of Chapter 30, this means that m E N(T), where 
T is the group of diagonal matrices. (Make use of the Bruhat decomposition.) Let 
wE W = N(T)jT be the corresponding Weyl group element. 

(ii) Suppose that the double coset of NwN supports an intertwining operator 
Ind('t/JN) --+ Ind('t/JN). (See Remark 34.1.) Show that if a E E and w(a) E if!+, then 
w(a) E E. (Otherwise, choose x in the unipotent subgroup corresponding to the 
root a such that mx = ym with 't/JN(X) i= 1 and 't/JN(Y) = 1, and applying Ll as in 
Theorem 34.1, obtain a contradiction.) 

(iii) Deduce from (ii) that there exist integers nl,··· ,nr such that E ni = n 
such that 

where Mi is an ni X ni diagonal matrix. 
(iv) Again make use of the assumption that NwN supports an intertwining 

operator to show that Mi is a scalar matrix. 
(v) Define an involution t of G by 
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Note that N and its character 'lj;N are invariant under L. Interpret (iv) as showing 
that every double coset that supports an intertwining operator Ind( 'lj;N) ---+ Ind( 'lj;N) 
has a representative that is invariant under L, and deduce that Endc(Ind('Ij;N)) is 
commutative and that Ind( 'lj;N) is multiplicity-free. 
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Heeke Algebras 

In this chapter, we will study a certain "Hecke algebra" 1-lk(q) that, as we 
will see, is a deformation of <C[Sk]' The ring 1-lk(q) can actually be defined if 
q is any complex number, but if q is a prime power, it has a representation
theoretic interpretation. We will see that it is the endomorphism ring of the 
representation of G = GL(k,lFq), where lFq is the finite field with q elements, 
induced from the trivial representation of the Borel subgroup B of upper 
triangular matrices in G. The fact that it is a deformation of <C[Sk] amounts 
to a parametrization of a certain set of irreducible representations of G - the 
so-called unipotent ones - by partitions. 

The ring 1-lk(q) was introduced by Iwahori [69], where the main results 
of this section may be found. I will refrain from describing this ring as the 
"Iwahori-Hecke algebra," as some call it, since the term "Iwahori-Hecke alge
bra" is frequently used by workers in automorphic forms to describe another 
ring, the affine Heeke algebra, which we will next briefly describe. (The liter
ature is about evenly divided on whether the term "Iwahori-Hecke algebra" 
refers to 1-lk(q) or to the affine Hecke algebra.) 

If instead of G = GL(k, lFq) we take G = GL(k, Qp), where Qp is the p
adic field, and we take B to be the Iwahori subgroup consisting of elements 
g of K = GL(k, Zp) that are upper triangular modulo p, then one obtains 
the affine Heeke algebra, which is is similar to 1-lk(q) but infinite-dimensional. 
It was introduced by Iwahori and Matsumoto [71]. The role of the Bruhat 
decomposition in the proofs requires a generalization of the Tits' system de
scribed in Iwahori [70]. This Hecke algebra contains a copy of 1-lk(p). On the 
other hand, it also contains the ring of K-bi-invariant functions, the so-called 
spherical Heeke algebra (Satake [107], Tamagawa [117]). The spherical Hecke 
algebra is commutative since K is a Gelfand subgroup of G. The spherical 
Hecke algebra is (when k = 2) essentially the portion corresponding to the 
prime p of the original Hecke algebra introduced by Hecke [55] to explain 
the appearance of Euler products as the L-series of automorphic forms. See 
Howe [62] and Rogawski [102] for the representation theory of the affine Hecke 
algebra. 
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Since we will show that the ring 1h(q) is a deformation of qSk], and 
that its representation theory is the same as the representation theory of 
the symmetric group, one might therefore ask whether the Frobenius-Schur 
duality between the representations of Sk and U(n), which has been a great 
theme for us, can be extended to representations of this Hecke algebra. The 
answer is affirmative. The role of U(n) is played by a "quantum group," which 
is not actually a group at all but a Hopf algebra. Frobenius-Schur duality in 
this quantum context is due to Jimbo [73] and is summarized in Chari and 
Pressley [25], Section 10.2. 

The algebra 1ik(q) has appeared in a variety of different contexts in mathe
matics, such as in the construction by Jones [74] of a polynomial knot invariant 
or the study by Diaconis and Ram [32] of the Metropolis algorithm. 

Let F be a field. Let G = GL(k, F) and, as in Chapter 30, let B be the 
Borel subgroup of upper triangular matrices in G. A subgroup P containing 
B is called a standard parabolic subgroup. (More generally, any conjugate of a 
standard parabolic subgroup is called parabolic.) 

Let kI ,··· ,kr be positive integers such that I:i k i = k. Then Sk has a sub
group isomorphic to Sk1 x ... X Skr in which the first Sk 1 acts on {I,··· ,kl }, 
the second Sk2 acts on {kl + 1,··· ,kl + k2 }, and so forth. Let E denote the 
set of k - 1 transpositions {(I, 2), (2, 3),··· ,(k - 1, k)}. 

Lemma 48.1. Let J be any subset of E. Then there exist integers kI ,··· ,kr 
such that the subgroup of Sk generated by J is Sk 1 X ... X Sk r • 

Proof. If J contains (1,2), (2,3),· .. ,(kI -1, kl ), then the subgroup they gen
erate is the symmetric group Sk 1 acting on {I, ... ,kI}. Taking kl as large as 
possible, assume that J omits (kl' kl + 1). Taking k2 as large as possible such 
that J contains (kl + 1, kl + 2), ... ,(kl + k2 - 1, kl + k2), the subgroup they 
generate is the symmetric group Sk2 acting on {k1 + 1,··· ,kl + k2 }, and so 
forth. Thus J contains generators of each factor in Sk 1 x ... X Sk r and does 
not contain any element that is not in this product, so this is the group it 
generates. 0 

The notations from Chapter 30 will also be followed. Let T be the maximal 
torus of diagonal elements in G, N the normalizer of T, and W = NIT the 
Weyl group. Moreover, if> will be the set of all roots, if>+ the positive roots, and 
E the simple positive roots. Concretely, elements of if> are the k2 - k rational 
characters of T of the form 

where 1 ~ i,j ~ n, if>+ consists of {aij Ii < j}, and E = {ai,HI}. Identifying 
W with Sk, the set E in Lemma 48.1 is then the set of simple reflections. 
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Let J be any subset of E. Let WJ be the subgroup of W generated by the 
Sa with 0: E E. Then, by Lemma 48.1, we have (for suitable ki ) 

(48.1) 

Let N J be the preimage of WJ in N under the canonical projection to W. Let 
PJ be the group generated by Band N J. Then 

{ (

Cll CI2 ... CIr)} o C22 ··· C2r 
PJ = . .. , . .. . .. 

o 0··· Crr 
( 48.2) 

where each Cij is a ki x kj block. The group PJ is a semidirect product 
PJ = MJUJ = UJMJ, where M J is characterized by the condition that 
Cij = 0 unless i = j, and the normal subgroup UJ is characterized by the con
dition that each Cii is a scalar multiple of the identity matrix in GL(ki ). The 
groups PJ with J a proper subset of E are called the standard parabolic sub
groups, and more generally any subgroup conjugate to a PJ is called parabolic. 
The subgroup UJ is the unipotent radical of PJ (that is, its maximal normal 
unipotent subgroup), and M J is called the standard Levi subgroup of PJ . 

Evidently, 
(48.3) 

Any subgroup conjugate in PJ to M J (which is not normal) would also be 
called a Levi subgroup. 

As in Chapter 30, we note that a double coset BwB, or more generally 
P1wPJ with I, J c E, does not depend on the choice wEN of representative 
for an element w E W, and we will use the notation BwB = C(w) or P1wPJ 
for this double coset. Let B J = MJnB. This is the standard "Borel subgroup" 
of M J . 

Proposition 48.1. (i) Let J ~ E. Then 

M J = U BJwBJ (disjoint). 
wEWJ 

(ii) Let I, J ~ E. Then, if wE W, we have 

(48.4) 

(iii) The canonical map w f----t P1wPJ from W ----+ P1\C/PJ induces a bijec
tion 

Proof. For (i), we have (48.3) for suitable ki . Now BJ is the direct product of 
the Borel subgroups of these GL(ki,F), and WJ is the direct product (48.1). 
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Part (i) follows directly from the Bruhat decomposition for GL(k, F) as proved 
in Chapter 30. 

As for (ii), since BWI C PI and WJB C PJ, we have BWIwWJB C 

PIwPJ. To prove the opposite inclusion, we first note that 

(48.5) 

Indeed, any element of WJ can be written as Sl··· Sr, where Si = sai' with 
Qi E J. Using Axiom TS3 from Chapter 30, we have 

and, by induction on r, both sets on the right are contained in BwWJB. This 
proves (48.5). A similar argument shows that 

(48.6) 

Now, using (i), 

PIWPJ = UIMIWMJUJ C UIBIWIBIWBJWJBJUJ C BWIBwBWJB. 

Applying (48.5) and (48.6), we obtain BWIWWJB ;2 PIWPJ, whence (48.4). 
As for (iii), since by the Bruhat decomposition w f---t BwB is a bijec

tion W ---t B\G/B, (48.4) implies that w ---t PIwPJ induces a bijection 
WI\W/WJ ---t PI\G/PJ. D 

To proceed further, we will assume that F = IF' q is a finite field. We recall 
from Chapter 36 that Rk denotes the free Abelian group generated by the 
isomorphism classes of irreducible representations of the symmetric group Sk, 
or, as we sometimes prefer, the additive group of generalized characters. It can 
be identified with the character ring of Sk. However, we do not need its ring 
structure, only its additive structure and its inner product, in which the dis
tinct isomorphism classes of irreducible representations form an orthonormal 
basis. 

Similarly, let Rk(q) be the free Abelian group generated by the isomor
phism classes of irreducible representations of GL( n, IF' q) or equivalently the 
additive group of generalized characters. Like Rk, we can make Rk(q) into 
the k-homogeneous part of a graded ring, a point we will take up in the next 
chapter. 

Proposition 48.2. Let H be a group, and let M1 and M2 be subgroups of H. 
Then in the chamcter ring of H, the inner product of the chamcters induced 
from the trivial chamcters of M1 and M2, respectively, is equal to the number 
of double cosets in M1 \H/M2. 

Proof. By the geometric form of Mackey's Theorem (Theorem 34.1), the space 
of intertwining maps from IndZ-1 (1) to IndZ-2 (1) is isomorphic to the space 
of functions L1 : H ---t Hom(C,q ~ C that satisfy L1(m2hmd = L1(h) for 
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mi E Mi' Of course, a function has this property if and only if it is constant 
on double cosets, so the dimension of the space of such functions is equal to 
the number of double cosets. On the other hand, the dimension of the space 
of intertwining operators equals the inner product in the character ring by 
(2.8). 0 

Theorem 48.1. There is a unique isometry of Rk into Rk(q) in which for 
each subset I of E the representation Ind~I (1) maps to the representation 

Ind~I(l). This mapping takes irreducible representations to irreducible repre
sentations. 

Proof. If I ~ E, let XI denote the character of Sk induced from the trivial 
character of WI, and let XI(q) denote the character of G induced from the 
trivial character of PI. 

We note that the representations XI of Rk span Rk. Indeed, by the def
inition of the multiplication in R, inducing the trivial representation from 
Ski x ... X Sk r to Sk, where E k i = k, gives the representation denoted 

which is XI. Expanding the right-hand side of (37.10) expresses each 8>. as a 
linear combination of such representations, and by Theorem 37.1 the 8>. span 
R k ; hence so do the XI. 

We would like to define a map Rk ----+ Rk(q) by 

L nIXI f-----+ L nIXI(q), (48.7) 
I I 

where the sum is over subsets of E. We need to verify that this is well-defined 
and an isometry. 

By Proposition 48.1, if I, J ~ E, the cardinality of WI\W/WJ equals the 
cardinality of PI \ G / P J. By Proposition 48.2, it follows that 

(48.8) 

Now, if E nIXI(q) = 0, we have 

\ LnIXI'LnIXI) = LnlnJ(XI,XJ)Sk = 
I I Sk I,J 

L nlnJ (XI(q), XJ(q))GL(k,lFq ) = \L nIXI(q), L nIXI(q)) = 0, 
I,J I I GL(k,lFq ) 

so E nIXI = 0. Therefore (48.7) is well-defined, and (48.8) shows that it is 
an isometry. 

It remains to be shown that irreducible characters go to irreducible char
acters. Indeed, if X is an irreducible character of W = Sk, and if X is the 
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corresponding character of G = GL(k,lF'q), then (X,X) = (X, X) = 1, so either 
X or -X is an irreducible character, and it is sufficient to show that X occurs 
with positive multiplicity in some proper character of G. Indeed, X = SA for 
some partition >., and by (37.10) this means that X appears with multiplicity 
one in the character induced from the trivial character of SA' Consequently, 
X occurs with multiplicity one in Ind~I(l), where I is any subset of E such 
that WI ~ SA' This completes the proof. 0 

If >. is a partition, let sA(q), hk(q), and ek(q) denote the images of the 
characters SA, hk' and ek, respectively, of Sk under the isomorphism of The
orem 48.1. Thus hk(q) is the trivial character. The character ek(q) is called 
the Steinberg character of GL(k,lF'q). The characters sA(q) are the unipotent 
characters of GL(k, IF'q). This is not a proper definition of the term unipotent 
character because the construction as we have described it depends on the 
fact that the unipotent characters are precisely those that occur in Ind~(l). 
This is true for G = GL(n,lF') but not (for example) for Sp(4,lF'q). See Deligne 
and Lusztig [31] and Carter [22] for unipotent characters of finite groups of 
Lie type and Vogan [122] for an extended meditation on unipotent represen
tations. 

Proposition 48.3. As a virtual representation, the alternating character ek 
of Sk admits the following expression: 

ek = L (-l)IJIInd~t(l). 
Jc;,E 

Proof. We recall that ek = SA, where>. is the partition (1" .. ,1) of K. The 
right-hand side of (37.10) gives 

hI h2 h3 ... hk 
1 hI h2 ... hk-l 
o 1 hI'" hk-2 

o 0 0 ... hI 

Expanding this gives a sum of exactly 2k - 1 monomials in the hi, which are 
in one-to-one correspondence with the subsets J of E. Indeed, let J be given, 
and let kI, k2, k3 ,'" be as in Lemma 48.1. Then there is a monomial that 
has IJI l's taken from below the diagonal; namely, if ai,HI E E, then there 
is a 1 taken from the i + 1, i position, and there is an hkl taken from the 
1, kl position, an hk2 taken from the kl + 1, kl + k2 position, and so forth. 
This monomial equals (-1)IJlhklhk2"" which is (_l)IJI times the character 
induced from the trivial representation of WJ = Skl X Sk2 X •..• 0 

Theorem 48.2. As a virtual representation, the Steinberg representation 
ek(q) ofGL(k,lFq ) admits the following expression: 
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ek(q) = L (-I)lJllnd~)I). 
Jr:;,E 

Proof. This follows immediately from Proposition 48.3 on applying the map
ping of Theorem 48.1. 0 

For our next considerations, there is no reason that F needs to be finite, 
so we return to the case where G = GL(k, F) of a general field F. We will 
denote by U the group of upper triangular unipotent matrices in GL(k, F). 

Proposition 48.4. Suppose that S is any subset of (p such that if a E S, then 
-a ~ S, and if a, (3 E S and a + (3 E (P, then a + (3 E S. Let Us be the set 
of 9 = (gij) in GL(k, F) such that gii = 1, and if i =I- j, then gij = 0 unless 
aij E S. Then Us is a group. 

Proof. Let S be the set of (i,j) such that the root aij E S. Translating the 
hypothesis on S into a statement about S, if (i,j) E S we have i < j, and 

if both (i,j) and (j, k) are in S, then i =I- k and (i, k) E S. (48.9) 

From this it is easy to see that if 9 and h are in Us, then so are g-1 and 
gh. 0 

As a particular case, if w E W, then S = (P+ n w(P- satisfies the hypothesis 
of Proposition 48.4, and we denote 

U.p+nw.p- = U;;;. 

Similarly, S = (P+ n w(P+ meets this hypothesis, and we denote 

U<p+nw<P+ = U;};. 

Finally, let U be the group of all upper triangular unipotent matrices in G, 
which was denoted N in Chapter 30. 

Let 1 (w) denote the length of the Weyl group element, which (as in Chap
ter 21) is the smallest k such that w can be written as a product of k simple 
reflections. 

Proposition 48.5. Let F = IFq be finite, and let wE W. We have 

IU'; I = ql(w). 

Proof. By Propositions 21.2 and 21.5, the cardinality of S = (P+ n w-1(p- is 
lew), so this follows from the definition of Us. 0 

Proposition 48.6. Let w E W. The multiplication map U;}; x U;;; ----+ U is 
bijective. 
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Proof. We will prove this if F is finite, the only case we need. In this case 
U;}; n U;; = {I} by definition since the sets 4>+ n w4>- and 4>+ n w4>+ are 
d· .. t Th ·f + - + - ·th ± U± th (+)-1 + -( -)-1 ISJom._ us, 1 U1 UJ = U2 U2 WI Ui E . W : ~n U2 U1 = U2 U I ~ 

U;}; n U W so ut = U2 • Therefore, the multIphcatIOn map U;}; x U;; --+ U IS 
injective. To see that it is surjective, note that 

so the order of U;}; x U;; is qlq;+1 = lUI, and the surjectivity is now clear. D 

We are interested in the size ofthe double coset BwB. In geometric terms, 
G / B can be identified with the space of F -rational points of a projective 
algebraic variety, and the closure of BwB / B is an algebraic subvariety in 
which BwB / B is an open subset; the dimension of this "Schubert cell" turns 
out to be l(w). 

If F = lFq, an equally good measure of the size of BwB is its cardinality. 
It can of course be decomposed into right cosets of B, and its cardinality will 
be the order of B times the cardinality of the quotient BwB / B. 

Proposition 48.7. Let F = lFq be finite, and let w E W. The order of 
BwB/B isql(w). 

Proof. We will show that U- t--+ u-wB is a bijection U;; --+ BwB/B. The 
result then follows from Proposition 48.5. 

Note that every right coset in BwB / B is of the form bwB for some b E B. 
Using Proposition 48.6, we may write b E B uniquely in the form u-u+t 
with u± E U;:; and t E T. Now w-1u+tw = w-1U+W.W- I tw E B because 
w-1u+w E U and w-1tw E T. Therefore bwB = u-wB. 

It is now clear that the map u- t--+ u-wB is surjective. We must show that 
it is injective; in other words, if u1 wB = u2" wB for ui E U;;, then u1 = u2" . 
Indeed, if u- = (u1)-lu2" then w-1u-w E B from the equality of the double 
cosets. On the other hand, w-1u-w is lower triangular by the definition of U;;. 
It is both upper triangular and lower triangular, and unipotent, so u- = l. 

D 

With k and q fixed, let 'Ii be the convolution ring of B-bi-invariant func
tions on G. The dimension of 'Ii equals the cardinality of B\ G / B, which is 
IWI = k! by the Bruhat decomposition. A basis of 'Ii consists of the func
tions ¢w (w E W), where ¢w is the characteristic function of the double coset 
C(w) = BwB. We normalize the convolution as follows: 

(h * h)(g) = I~I L h(x)h(x-lg) = I~I L h(gx)h(x-1). 

xEG xEG 

With this normalization, the characteristic function h of B serves as a unit 
in the ring. 

The ring 'Ii is a normed ring with the Ll norm. That is, we have 
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1ft * 121 ~ Iftl·lhl, 

where 
1 

If I = IBT L If(x)l· 
xEG 

There is also an augmentation map, that is, a C-algebra homomorphism 
€ : 1l --t C given by 

1 
€(f) = IBI L f(x). 

xEG 

By Proposition 48.7, we have 

(48.10) 

Proposition 48.8. Let w, w' E W such that l(ww') = l(w) + l(w'). Then 

¢ww' = ¢w¢w" 

Proof. By Proposition 30.1, we have C(ww') = C(w) C(w'). Therefore ¢w *¢w' 
is supported in C(ww') and is hence a constant multiple of ¢ww" Writing 
¢w * ¢w' = c¢ww', applying the augmentation €, and using (48.10), we see 
that c = 1. 0 

Proposition 48.9. Let sEW be a simple reflection. Then 

¢s * ¢s = q¢l + (q - 1 )¢s' 

Proof. By (30.2), we have C(s) C(s) ~ C(l) UC(s). Therefore, there exist con
stants >. and J.t such that ¢s * ¢s = >'¢l + J.t¢s' Evaluating both sides at the 
identity gives>. = q. Now applying the augmentation and using the special 
cases €(¢s) = q, €(ft) = 1 of (48.10), we have q2 = >'·1 + J.t. q = q + J.tq, so 
J.t=q-1. 0 

Let q be a nonzero element of a field containing C, and let R = qq, q-l]. 
Thus q might be a complex number, in which case the ring R = C or it might 
be transcendental over C, in which case the ring R will be the ring of Laurent 
polynomials over C. 

We will define a ring 1lk(q) as an algebra over R. Specifically, 1lk(q) is the 
free qq]-algebra on generators fs",. (i = 1"" ,k -1) subject to the relations . 

if Ii - jl > 1. 

(48.11) 

(48.12) 

(48.13) 

We note that fs", is invertible, with inverse q-l fai + q-l -1, by (48.11). 
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Although 1-lk(q) is thus defined as an abstract ring, its structure reflects 
that of the Weyl group W of GL(k), which, as we have seen, is a Coxeter 
group. We recall what this means. Let SOl' ••• ,SOk_l be the simple reflections 
of W. By Theorem 28.1, the group W has a presentation with generators SOi 

and relations 

S~i = 1, 

SOi SOi+l SOi = SOHl SOi SOHl , 1:::;; i :::;; k - 2 , 

SOiSOj = SOjSOi if Ii - jl > 1. 

Of course, since S~i = 1, the relation SOi SOHl SOi = SOi+l SOi SOHI is just 
another way of writing (SOi saH J 3 = 1. 

Proposition 48.10. If q = 1, the Hecke ring 1-lk(1) is isomorphic to the 
group ring of Sk. 

Proof. This is clear from Theorem 28.1 since if q = 1 the defining relations of 
the ring 1-lk(1) coincide with the Coxeter relations presenting Sk. 0 

If w E W is arbitrary, we want to associate an element fw of 1-lk(q) extend
ing the definition of the generators. The next result will make this possible. 
(Of course, f w is already defined if w is a simple reflection.) 

Proposition 48.11. Suppose that w E W with l(w) = r, and suppose that 
w = Sl ... Sr = s~ ... s~ are distinct decompositions of minimal length into 
simple reflections. Then 

fSI * ... * fSr = fs~ * ... * fs~. (48.14) 

Proof. Let B be the braid group generated by U Oi parametrized by the simple 
roots ai, with n( U Oi , U Oj ) equal to the order (2 or 3) of so; SOj. Let Si = s(3; 
and s~ = S"(i with f3i, "Ii E E, and let Ui = uo ;, u~ = u(3; be the corresponding 
elements of B. By Proposition 28.1, we have 

U1 .•• U r = u~ ... u~ . (48.15) 

Since the f 0; satisfy the braid relations, there is a homomorphism of B into 
the group of invertible elements of 1-lk(q) such that uO; f---7 fOi. Applying this 
homomorphism to (48.15), we obtain (48.14). 0 

If w E W, let w = Sl ... Sr be a decomposition of w into r = l(w) simple 
reflections, and define 

fw = fSI * ... * fs r· 

According to Proposition 48.11, this fw is well-defined. 

Theorem 48.3. (Iwahori) The fw form a basis of1-lk(q) as a free R-module. 
Thus, the rank of1-lk(q) is IWI· 
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Proof. First, assume that q is transcendental, so that R is the ring of Laurent 
polynomials in q. We will deduce the corresponding statement when q E C at 
the end. 

Let us check that 
L Rfw = 1h(q). (48.16) 

wEW 

It is sufficient to show that this R-submodule is closed under right multiplica
tion by generators fs of W with s a simple reflection. If l(ws) = l(w) + 1, then 
fwfs = fws· On the other hand, if l(ws) = l(w) -1, then writing w' = ws we 
have fwfs = fW'Sfs = fW' j';, which by (48.11) is a linear combination of fW' 
and fW,fs = fw' 

It remains to be shown that the sum (48.16) is direct. If not, there will be 
some Laurent polynomials cw(q), not all zero, such that 

w 

There exists a rational prime p such that cw (p) are not all zero. Let 1l be 
the convolution ring of B-bi-invariant functions on GL(k,lFp). It follows from 
Propositions 48.8 and 48.9 that (48.11), (48.12), and (48.13) are all satisfied 
by the standard generators of 1l, so we have a homomorphism 1lk(q) ---+ 
1l mapping each f w to the corresponding generator ¢w of 1l and mapping 
q f---t p. The images of the fw are linearly independent in 1l, yet since the 
cw(p) are not all zero, we obtain a relation of linear independence. This is a 
contradiction. 

The result is proved if q is transcendental. If 0 =I- qo E C, then there 
is a homomorphism R ---+ C, and a compatible homomorphism 1lk(q) ---+ 
1lk(qO), in which q f---t qo. What we must show is that the R-basis elements 
fw remain linearly independent when projected to 1lk(qO)' To prove this, we 
note that in 1lk(q) we have 

fwfw i = L aw,wl,w,,(q, q-l)fw'" 
w"EW 

where aw,w',w" is a polynomial in q and q-l. We may construct ring ilk(qa) 
over C with basis elements lw indexed by Wand specialized ring structure 
constants aw,wl,w,,(qO,qO-l). The associative law in 1lk(q) boils down to a 
polynomial identity that remains true in this new ring, so this ring exists. 
Clearly, the identities (48.11), (48.12), and (48.13) are true in the new ring, 
so there exists a homomorphism 1lk(qO) ---+ ilk(qo) mapping the fw to the 
lw. Since the lw are linearly independent, so are the fw in 1lk(qO)' 0 

Let us return to the case where q is a prime power. 

Theorem 48.4. Let q be a prime power. Then the Hecke algebra 1lk(q) is 
isomorphic to the convolution ring of B-bi-invariant functions on GL(k,lFq), 
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where B is the Borel subgroup of upper triangular matrices in GL( n, IF' q). In 
this isomorphism, the standard basis element fw (w E W) corresponds to the 
characteristic function of the double coset BwB. 

Proof. It follows from Propositions 48.8 and 48.9 that (48.11), (48.12), and 
(48.13) are all satisfied by the elements cPw in the ring H of B-bi-invariant 
functions on GL(n,lF'q), so there exists a homomorphism Hk(q) ----+ H such 
that f w f-----t cPw. Since the {f w} are a basis of Hk (q) and the cPw are a basis 
of H, this ring homomorphism is an isomorphism. D 

EXERCISES 

Exercise 48.1. Show that any subgroup of GL(n, F) containing B is of the form 
(48.2). 

Exercise 48.2. For G = GL(3), describe u;i; and U;;; explicitly for each of the six 
Weyl group elements. 

Exercise 48.3. Let G be a finite group and H a subgroup. Let 1£ be the "Hecke 
algebra" of H bi-invariant functions, with multiplication being the convolution prod
uct normalized by 

(h * 12)(g) = I~I L h(x)12(x-1g). 
xEG 

If (71", V) is an irreducible representation of G, let VH be the subspace of H-fixed 
vectors. Then VH becomes a module over 1£ with the action 

f . v = IHI- 1 L f(g)7I"(g)v. (48.17) 
gEG 

f· v = IHI- 1 ~9EG f(g)7I"(g)v. Show that V H , if nonzero, is irreducible as an 1£

module. (Hint: If W is a nonzero invariant subspace of V H , and v E V H , then since 
V is irreducible, we have h . w = v for some function h on G, where h . w is defined 
as in (48.17) even though h !/.1£. Show that f . w = v, where f = c * h * c and c is 
the characteristic function of H. Observe that f E 1£ and conclude that VH = W.) 

Exercise 48.4. In the setting of Exercise 48.3, show that (71", V) >------+ VH is a bi
jection between the isomorphism classes of irreducible representations of G with 
VH =I 0 and isomorphism classes of irreducible 1£-modules. 

Exercise 48.5. Show that if (71", V) is an irreducible representation of G = GL( k, IF' q) 
with character SA (q), then the degree of the corresponding representation of 1£k (q) 
is the degree of the irreducible character SA of Sk. (Thus, the degree dA of SA is the 
dimension of VB.) Show that dA is the multiplicity of SA(q) in Ind~(l). 

Exercise 48.6. Assume that q is a prime. Prove that 

1£k(q) ~ 
A a partition of k 
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Exercise 48.7. Prove that the degree of the irreducible character 8.>.(q) ofGL(k, IFq) 
is a polynomial in q whose value when q = 1 is the degree d.>. of the irreducible 
character 8.>. of 8k. 

Exercise 48.8. An element of GL( k, IF q) is called semisimple if it is diagonalizable 
over the algebraic closure of IFq. A semisimple element is called regular if its eigen
values are distinct. If .>. is a partition of k, let c.>. be a regular semisimple element of 
GL(k,IFq) such that 

and such that the eigenvalues of Ci generate IF q'>'i' Of course, c.>. isn't completely 
determined by this description. Such a c.>. will exist (for k fixed) if q is sufficiently 
large. Show that, if k = 2, then the unipotent characters of GL(2,IFq) have the 
following values: 

C(l1) C(2) 

8(11) 1 1 

8(2) 1 -1 

Note that this is the character table of 82. More generally, prove that in the notation 
of Chapter 39, the value of the character 8,.(q) on the conjugacy class c.>. of GL(k, C) 
equals the value of the character 8,. on the conjugacy class C.>. of 8k. 
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The Philosophy of Cusp Forms 

There are four theories that deserve to be studied in parallel. These are: 

• the representation theory of symmetric groups Ski 
• the representation theory of G L ( k, IF q ); 

• the representation theory of GL(k, F) where F is a local field; 
• the theory of automorphic forms on GL(k). 

In this description, a local field is ~, C, or a field such as the p-adic field 
Qp that is complete with respect to a non-Archimedean valuation. Roughly 
speaking, each successive theory can be thought of as an elaboration of its 
predecessor. Both similarities and differences are important. We list some 
parallels between the four theories in Table 49.l. 

The plan of this chapter is to discuss all four theories in general terms, 
giving proofs only for the second stage in this tower of theories, the represen
tation theory of GL( n, IF q). (The first stage is already adequately covered.) 
Although the third and fourth stages are outside the scope of this book, our 
goal is to prepare the reader for their study by exposing the parallels with the 
finite field case. 

There is one important way in which these four theories are similar: there 
are certain representations that are the "atoms" from which all other repre
sentations are built and a "constructive process" from which the other repre
sentations are built. Depending on the context, the "atomic" representations 
are called cuspidal or discrete series representations. The constructive process 
is parabolic induction or Eisenstein series. The constructive process usually 
(but not always) produces an irreducible representation. 

Harish-Chandra [52] used the term "philosophy of cusp forms" to describe 
this parallel, which will be the subject ofthis chapter. One may substitute any 
reductive group for GL( k) and most of what we have to say will be applicable. 
But GL( k) is enough to fix the ideas. 

In order to explain the philosophy of cusp forms, we will briefly summarize 
the theory of Eisenstein series before discussing (in a more serious way) a 
part of the representation theory of GL(k) over a finite field. The reader 
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only interested in the latter may skip the paragraphs on automorphic forms. 
When we discuss automorphic forms, we will prove nothing and state exactly 
what seems relevant in order to see the parallel. For GL{k,lFq), we prove 
more, but mainly what we think is essential to see the parallel. Our treatment 
is greatly influenced by Howe [61] and Zelevinsky [133]. To go deeper into 
the representation theory of the finite groups of Lie type, Carter [22] is an 
exceedingly useful reference. 

For the symmetric groups, there is only one "atom" - the trivial represen
tation of 81. The constructive process is ordinary induction from 8k x 81 to 
8k+l , which was the multiplication 0 in the ring R introduced in Chapter 36. 
The element that we have identified as atomic was called hI there. It does not 
generate the ring R. However, h~ is the regular representation (or character) 
of 8k , and it contains every irreducible representation. To construct every 
irreducible representation of 8k from this single irreducible representation of 
81, the constructive process embodied in the multiplicative structure of the 
ring R must be supplemented by a further procedure. This is the extraction 
of an irreducible from a bigger representation h~ that includes it. This ex
traction amounts to finding a description for the "Hecke algebra" that is the 
endomorphism ring of h~. This "Hecke algebra" is isomorphic to the group 
ring of 8k . 

For the groups GL{k,lFq), let us construct a graded ring R{q) analogous 
to the ring R in Chapter 36. The homogeneous part Rk{q) will be the free 
Abelian group on the set of isomorphism classes of irreducible representations 
of GL{k,lFq), which may be identified with the character ring of this group, 
except that the multiplicative structure of the character ring is not used; see 
Remark 36.1. Instead, there is a multiplication Rk{q) x Rl{q) --+ Rk+l{q), 
called parabolic induction. Consider the maximal parabolic subgroup P = MU 
of GL{k + l,lFq), where 

M ~ GL{k,lFq) x GL{l,lFq) = {( gl g2) Igl E GL{k,lFq), g2 E GL{l,lFq)} 

and 

U = { (h 7z) I X E Matkxl(lFq)}. 

The group P is a semidirect product, since U is normal, and the composition 

M --+ P --+ P/U 

is an isomorphism. So given a representation (11"1, Vd of GL(k, IFq) and a rep
resentation (11"2, V2) of GL(l, IFq), one may regard the representation 11"1011"2 of 
M as a representation of P jU ~ M and pull it back to a representation of P in 
which U acts trivially. Inducing from P to GL{k+l,lFq) gives a representation 
that we will denote 11"1 011"2. By the definition of the induced representation, it 
acts by right translation on the space VI 0 V2 of all functions f : G --+ VI 0 V2 

such that 
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f ( (91 :2) h) = (1f1(g1) Q9 1f2(g2))f(g). 

With this multiplication, R(q) = ffi Rk(q) is a graded ring (Exercise 49.1). 
Inspired by ideas of Philip Hall, Green [49] defined the ring R(q) and used 
it systematically by in his description of the irreducible representations of 
GL(k, IFq). Like R, it can be given the structure of a Hopf algebra. See Zelevin
sky [133] and Exercise 49.5. 

If, imitating the construction with the symmetric group, we start with the 
trivial representation h1(q) of GL(I,IFq) and consider all irreducible repre
sentations of GL(k,IFq) that occur in h1(q)k, we get exactly the unipotent 
representations (that is, the Sk(q) of Chapter 48), and this is the content of 
Theorem 48.1. To get all representations, we need more than this. There is 
a unique smallest set of irreducible representations of the GL( k, IF q) - the 
cuspidal ones - such that we can find every irreducible representation as a 
constituent of some representation that is a 0 product of cuspidal ones. We 
will give more precise statements later in this chapter. 

At the third stage in the tower of theories, the most important represen
tations are infinite-dimensional, and analysis is important as well as algebra 
in their understanding. The representation theory of algebraic groups over a 
local field F is divided into the case where F is Archimedean - that is, F = ~ 
or C - and where F is non-Archimedean. 

If F is archimedean, then an algebraic group over F is a Lie group, more 
precisely a complex analytic group when F = C. The most important fea
ture in the representation theory of reductive Lie groups is the Langlands 
classification expressing every irreducible representation as a quotient of one 
that is parabolically induced from discrete series representations. Usually the 
parabolically induced representation is itself irreducible and there is no need 
to pass to a quotient. See Knapp [81], Theorem 14.92 on p. 616 for the Lang
lands classification. Knapp [81] and Wallach [123] are comprehensive accounts 
of the representation theory of noncompact reductive Lie groups. 

For reductive p-adic groups - that is, reductive algebraic groups over a non
Archimedean local field - the situation is similar and in some ways simpler. 
The most important discrete series representations are the supercuspidals. 
There is again a Langlands classification expressing every irreducible represen
tation as a quotient of one parabolically induced from discrete series. Surveys 
of the representation theory of p-adic groups can be found in Cartier [23] and 
Moeglin [99]. Two useful longer articles with foundational material are Cassel
man [24] and Bernstein and Zelevinsky [9]. The most important foundational 
paper is Bernstein and Zelevinsky [8]. Chapter 4 of Bump [18] emphasizes 
GL(2) but is still useful. 

The fourth of the four theories in the tower is the theory of automorphic 
forms. In developing this theory, Selberg and Langlands realized that certain 
automorphic forms were basic, and these are called cusp forms. The definitive 
reference for the Selberg-Langlands theory is Moeglin and Waldspurger [100]. 
Let us consider the basic setup. 
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Table 49.1. The Philosophy of Cusp Forms. 

Class of groups Atoms 
Synthetic Analytic Unexpected 
process process symmetry 

Sk hl induction restriction (trivial) 

GL(k,lFq) 
cuspidal parabolic unipotent R(q) is 

representations induction invariants commutative 

GL(k,F) parabolic 
Jacquet Intertwining 

discrete series functors integrals 
F local induction 

ru,l in [8] such as (49.2) 
GL(k, A) automorphic 

Eisenstein constant functional 
A = adele ring cuspidal 

series terms equations 
of global F representations 

Let G = GL(k, JR.). Let r be a discrete subgroup of G such that r\G 
has finite volume such as GL(k, Z). An automorphic lorm on G with respect 
to r is a smooth complex-valued function I on G that is K-finite, Z-finite, 
of moderate growth and automorphic, and has unitary central character. We 
define these terms now. 

The group G acts on functions by right translation: p(g) I (h) = I (hg). 
The group K is the maximal compact subgroup O(n), and I is K-jinite if the 
space of functions p(K)1 with K E K spans a finite-dimensional vector space. 

The Lie algebra 9 of G also acts by right translation: if X E g, then 

(Xf)(g) = !/(getX ) It=o· 
As a consequence, the universal enveloping algebra U(g) acts on smooth func
tions. Let Z be its center. This is a ring of differential operators on G that 
are invariant under both right and left translation (Exercise 10.2). For exam
ple, it contains the Casimir element constructed in Theorem 10.2 (from the 
trace bilinear form B on g)j in this incarnation, the Casimir element is the 
Laplace-Beltrami operator. The function I is called Z-jinite if the image of I 
under Z is a finite-dimensional vector space. 

Embed G into 2k2-dimensional Euclidean space Matk(JR.) E9 Matk(JR.) = 
JR.2k2 by 

9 t---+ (g, g-1). 

Let 1111 denote the Euclidean norm in JR.2k2 restricted to G. The function I is 
said to be of moderate growth if I(g) < GllgllN for suitable G and N. 

The function I is called automorphic with respect to r if Ibg) = I(g) 
for all 'Y E r. 

We will consider functions I such that for some character w of JR.~ we have 
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for all z E JR~. The character w is the central character. It is fixed throughout 
the discussion and is assumed unitary; that is, Iw(z)1 = 1. 

Let V be a vector space on which K and g both act. The actions are as
sumed to be compatible in the sense that both induce the same representation 
of Lie(K). We ask that V decomposes into a direct sum of finite-dimensional 
irreducible subspaces under K. Then V is called a (g, K)-module. If every 
irreducible representation of K appears with only finite multiplicity, then we 
say that V is admissible. For example, let (7f, H) be an irreducible unitary 
representation of G on a Hilbert space H, and let V be the space of K-finite 
vectors in H. It is a dense subspace and is closed under actions of both g 
and K, so it is a (g, K)-module. The (g, K)-modules form a category that can 
be studied by purely algebraic methods, which captures the essence of the 
representations. 

The space A(F\G) of automorphic forms is not closed under p because 
K-finiteness is not preserved by peg) unless 9 E K. Still, both K and g 
preserve the space A(F\G). A subspace that is invariant under these actions 
and irreducible in the obvious sense is called an automorphic representation. 
It is a (g, K)-module. 

Given an automorphic form I on G = GL(k,JR) with respect to F = 
GL(k, Z), if k = r + t we can consider the constant term along the parabolic 
subgroup P with Levi factor GL(r) x GL(t). This is the function 

LatrxtC'l)\Matrxt(JR) I ( ( I ;) (91 92) ) dX 

for (gt, g2) E GL(r, JR) x GL(t, JR). If the constant term of I along every maxi
mal parabolic subgroup vanishes then I is called a cusp form. An automorphic 
representation is called automorphic cuspidal if its elements are cusp forms. 

Let L2(F\G,w) be the space of measurable functions on 9 that are auto
morphic and have central character w and such that 

f II(g)12 dg < 00. 
Jrz\G 

The integral is well-defined modulo Z because w is assumed to be unitary. 
Cusp forms are always square-integrable - an automorphic cuspidal represen
tation embeds as a direct summand in L2(F\G, w). In particular, it is unitary. 

There is a construction that is dual to the constant term in the Selberg
Langlands theory, namely the construction of Eisenstein series. Let (7ft, VI) 
and (7f2' V2 ) be automorphic cuspidal representations ofGL(r, JR) and GL(t, JR), 
where r + t = k. Let P = MU be the maximal parabolic subgroup with Levi 
factor M = GL(r,JR) x GL(t,JR). The modular quasicharacter 8p : P ---+ JR~ 
is 

8p (91 *) = I det(gl)1f 
g2 I det(g2) Ir 

by Exercise 1.2. The space of the (g, K)-module of the induced representation 
Ind(7fl ® 7f2 ® 81» of G consists of K-finite functions Is : G ----t C such that 
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any element f; of the (£I, K)-submodule of Coo (G) generated by fs satisfies 
the condition that 

is independent of X and equals O~+1/2 times a finite linear combination of 
functions of the form l1(gl)12(g2), where Ii E Vi. Due to the extra factor 
O~2, this induction is called normalized induction, and it has the property 
that if s is purely imaginary (so that 71"1 ® 71"2 ® oj, is unitary), then the 
induced representation is unitary. 

Then, for re( s) sufficiently large and for fs E lnd( 71"1 ® 71"2 ® oj,), the series 

E(g,fs, s) = 
P(Z)\GL(k,Z) 

is absolutely convergent. Here P(Z) is the group of integer matrices in P with 
determinant ±l. 

Unlike cusp forms, the Eisenstein series are not square-integrable. Never
theless, they are needed for the spectral decomposition of GL(k, Z)\GL(k, 1R). 
This is analogous to the fact that the characters x f------t e2'11"iax of IR are not 
square-integrable, but as eigenfunctions of the Laplacian, a self-adjoint op
erator, they are needed for its spectral theory and comprise its continuous 
spectrum. The spectral problem for GL(k, Z)\GL(k, 1R) has both a discrete 
spectrum (comprised of the cusp forms and residues of Eisenstein series) and 
a continuous spectrum. The Eisenstein series (analytically continued in sand 
restricted to the unitary principal series) are needed for the analysis of the 
continuous spectrum. 

For the purpose of analytic continuation, we call a family of functions 
fs E lnd( 71"1 ® 71"2 ® oj,) a standard section if the restriction of the functions fs 
to K is independent of s. 

Theorem 49.1. (Selberg, Langlands) Let r + t = k. Let P and Q be the 
parabolic subgroups of GL(k) with Levi factors GL(r) x GL(t) and GL(t) x 
GL(r), respectively. Suppose that fs E lnd(7I"1 ® 71"2 ® oj,) is a standard sec
tion. Then E(g, fs, s) has merom orphic continuation to all s. There exists an 
intertwining operator 

such that the functional equation 

E(g,fs,s) =E(g,M(s)fs,-s) (49.1) 

is true. 

The intertwining operator M(s) is given by an integral formula 
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M(s)f(g) = r f ((1 -It) (I ;) g) dX. (49.2) 
lMattxrCJR) r 

This integral may be shown to be convergent if re( s) > ~. For other values 
of s, it has analytic continuation. This integral emerges when one looks at 
the constant term of the Eisenstein series with respect to Q. We will not 
explain this further but mention it because these intertwining integmls are 
extremely important and will reappear in the finite field case in the proof of 
Proposition 49.3. 

The two constructions - constant term and Eisenstein series - have paral
lels in the representation theory of GL(k, F), where F is a local field including 
F = JR., C, or a p-adic field. These constructions are functors between repre
sentations of GL(k, F) and those of the Levi factor of any parabolic subgroup. 
They are the Jacquet functors in one direction and parabolic induction in the 
other. (We will not define the Jacquet Functors, but they are the functors rU,l 
in Bernstein and Zelevinsky [8].) Moreover, these constructions also descend 
to the case of representation theory of GL( n, IF q), which we look at next. 

An irreducible representation (7f, V) of GL( k, IF q) is called cuspidal if there 
are no fixed vectors for the unipotent radical of any (standard) parabolic sub
group. If P :;2 Q are parabolic subgroups and Up and UQ are their unipotent 
radicals, then Up ~ UQ, and it follows that a representation is cuspidal if 
and only if it has no fixed vectors for the unipotent radical of any (standard) 
maximal parabolic subgroup; these are the subgroups of the form 

r+t = k. (49.3) 

Proposition 49.1. Let (7f, V) be a cuspidal representation ofGL(k,lFq). IfU 
is the unipotent mdical of a standard maximal pambolic subgroup ojGL(k, IFq) 
and if TJ : V ~ C is any linear functional such that TJ ( 7f( u) v) = TJ( v) for all 
u E U and all v E V, then TJ is zero. 

This means that the contragredient of a cuspidal representation is cuspidal. 

Proof. Choose an invariant inner product (, ) on V. There exists a vector 
y E V such that TJ(v) = (v,y). Then 

(v,7f(u)y) = \7f(u)-lv,y) = TJ(7f(U)-l v) = TJ(v) = (v,y) 

for all u E U and v E V, so 7f(u)y = y. Since 7f is cuspidal, y = 0, whence 
TJ = O. D 

Proposition 49.2. Every irreducible representation (7f, V) of GL( k, IF q) is a 
constituent in some representation 7f1 0 ••• 07fm with the 7fi cuspidal. 



404 Lie Groups 

Proof. If 7r is cuspidal, then we may take m = 1 and 7rl = 7r. There is nothing 
to prove in this case. 

If 7r is not cuspidal, then there exists a decomposition k = r + t such 
that the space V U of U-fixed vectors is nonzero, where U is the group 
(49.3). Let P = MU be the parabolic subgroup with Levi factor M = 
GL(r,lFq) x GL(t,lFq) and unipotent radical U. Then V G is an M-module 
since M normalizes U. Let p Q9 T be an irreducible constituent of M, where p 
and T are representations of GL(r,lFq) and GL(t,lFq). By induction, we may 
embed pinto 7rl 0 ... 0 7rh and a into 7rh+l 0 ... 07rm for some cuspidals 7ri' 
Thus, we get a nonzero M-module homomorphism 

By Frobenius reciprocity (Exercise 49.2), there is thus a nonzero GL(k,lFq)
module homomorphism 

Since 7r is irreducible, this is an embedding. o 

The notion of a cuspidal representation can be extended to Levi factors of 
parabolic subgroups. Let A = (AI,' .. ,AT)' where the Ai are positive integers 
whose sum is k. We do not assume Ai ~ Ai+l. Such a decomposition we call 
an ordered partition of k. Let 

g22 ... * 
{ (

gIl * ... *) } 
PA ~ ••• g~ I gi' E GL().i,F,) . 

This parabolic subgroup has Levi factor 

and unipotent radical UA characterized by gii = f Ai . Any irreducible represen
tation 7rA of MA is of the form Q97ri, where 7ri is a representation of GL(Ai' IF q). 
We say that 7r is cuspidal if each of the 7ri is cuspidal. 

Let Bk be the standard Borel subgroup of GL(k, IF q), consisting of upper 
triangular matrices, and let BA = I1 B Ai . We regard this as the Borel subgroup 
of MA. A standard parabolic subgroup of MA is a proper subgroup Q containing 
B A• Such a subgroup has the form I1 Qi, where each Qi is either GL(Ai' IFq) or 
a parabolic subgroup of GL(Ai' IFq) and at least one Qi is proper. The parabolic 
subgroup is maximal if exactly one Qi is a proper subgroup of GL(Ai' IF q) and 
that Qi is a maximal parabolic subgroup of GL(Ai, IFq). A parabolic subgroup 
of MA has a Levi subgroup and a unipotent radical; if Q is a maximal parabolic 
subgroup of M A , then the unipotent radical of Q is the unipotent radical of 
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the unique Qi that is a proper subgroup of GL(Ai,lFq), and it follows that 
7r = ®7ri is cuspidal if and only if it has no fixed vector with respect to the 
unipotent radical of any maximal parabolic subgroup of M>... 

Parabolic induction is as we have already described it for maximal parabolic 
subgroups. The group P>.. = M>..U>.. is a semidirect product with the subgroup 
U>.. normal, and so the composition 

is an isomorphism, where the first map is inclusion and the second projection. 
This means that the representation 7r>.. of M>.. may be regarded as a represen
tation of P>.. in which U>.. acts trivially. Then 7r1 0 •• ·0 7r r is the representation 
induced from P>... 

Theorem 49.2. The multiplication in R(q) is commutative. 

Proof. We will frame our proof in terms of characters rather than repre
sentations, so in this proof elements of Rk ( q) are generalized characters of 
GL(k,lFq). 

We make use of the involution [,: GL(k,lFq) ---+ GL(k,lFq) defined by 

£ t -1 9 = Wk· 9 . Wk, 

Let r + t = k. The involution takes the standard parabolic subgroup P with 
Levi factor M = GL(r,lFq) x GL(t,lFq) to the standard parabolic subgroup £p 
with Levi factor £M = GL(t,lFq) x GL(r,lFq). It induces the map M ---+ £M 
given by 

gl E GL(r, lFq), g2 E GL(t,lFq), 

where £gl = Wr · tgl1 . Wr and £g2 = Wt· tg21 . Wt. Now since every element of 
GL( n, IF q) is conjugate to its transpose, if I-" is the character of an irreducible 
representation of GL(n,lFq) with n = k, r, or t, we have I-"(£g) = I-"(g). Let 1-"1 
and 1-"2 be the characters ofrepresentations of GL(r,lFq) and GL(t,lFq). Com
posing the character il2 ® ill of £ M with [, : M ---+ £ M and then parabolically 
inducing from P to GL(k,lFq) will give the same result as parabolically induc
ing the character directly from £ P and then composing with t. The first way 
gives 1-"1 01-"2, and the second gives the conjugate of il2 0 ill (that is, 1-"2 0 I-"d, 
and so these are equal. 0 

Unfortunately, the method of proof in Theorem 49.2 is rather limited. 
We next prove a strictly weaker result by a different method based on an 
analog of the intertwining integrals (49.2). These intertwining integrals are 
very powerful tools in the representation theory of Lie and p-adic groups, and 
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they are closely connected with the constant terms of the Eisenstein series 
and with the functional equations. It is for this reason that we give a second, 
longer proof of a weaker statement. 

Proposition 49.3. Let (7rl' VI) and (7r2' V2 ) be representations of GL(r, lFq) 
and GL( t, IF q). Then there exists a nonzero intertwining map between the rep
resentations 7rl 0 7r2 and 7r2 0 7rl . 

Proof. Let f E VI 0 V2. Thus f : G ----+ VI @ V2 satisfies 

gl E GL(r,lFq ),g2 E GL(t,lFq). 

(49.4) 
Now define M f : G ----+ % @ VI by 

M f (h) = T L f (( -IT) (I X) h) 
XEMatrxt(IFq ) It I' 

where T : VI @ V2 ----+ % @ VI is defined by T(VI @V2) = V2 @Vl. Let us show 
that M f E V2 0 VI. A change of variables X f------+ X - Y in the definition of 
M f shows that 

Mf (( IT r) h) = Mf(h). 

Also, if gl E GL(r,lFq) and g2 E GL(t,lFq), we have 

Making the variable change X f------+ g2Xgl1 and then using (49.4) and the fact 
that TO (7rl(gl) @ 7r2(g2)) = (7r2(g2) @7rl(gl)) 0 T shows that 

Mf (( g2 gJ h) = (7r2(g2) @7rl(gl))Mf(h). 

Thus Mf E V2 0 VI. 
The map M is an intertwining operator since G acts on both the spaces of 

7rl 0 7r2 and 7r2 0 7rl by right translation, and f f------+ M f obviously commutes 
with right translation. We must show that it is nonzero. Choose a nonzero 
vector ~ E VI @ V2. Define 

f (A B) = {(7r1(A) @ 7r2(D))~ if C = 0, 
CD ° otherwise, 

where A, B, C and D are blocks, A being r x rand D being txt, etc. It is 
clear that f E VI 0 V2 • Now 
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and the term is zero unless X = 0, so this equals T(~) =I- O. This proves that 
the intertwining operator M is nonzero. D 

Returning momentarily to automorphic forms, the fllnctional equation 
(49.1) extends to Eisenstein series in several complex variables attached to 
cusp forms for general parabolic subgroups. We will not try to formulate a 
precise theorem, but suffice it to say that if 7ri are automorphic cuspidal rep
resentations of GL(Ai'ffi.) and s = (Sl,'" ,sr) E e, and if ds : P>..(ffi.) ~ re 
is the quasi character 

d. C' ". gJ ~ 1 detCq')I" .. ·1 del (g,) I", 

then there is a representation Ind(7r1 0··· 07rr 0 ds) of GL(k,ffi.) induced 
parabolically from the representation 7r1 0 ... 07rr 0 ds of M>... One may form 
an Eisenstein series by a series that is absolutely convergent if re( Si - S j) are 
sufficiently large and that has meromorphic continuation to all Si. There are 
functional equations that permute the constituents I det lSi 07ri. 

If some of the 7ri are equal, the Eisenstein series will have poles. The polar 
divisor maps out the places where the representations Ind(7r1 0···0 7rr 0 ds) 
are reducible. Restricting ourselves to the subspace of rer where ~ Si = 0, 
the following picture emerges. If all of the 7ri are equal, then the polar divisor 
will consist of r(r - 1) hyperplanes in parallel pairs. There will be r! points 
where r -1 hyperplanes meet in pairs. These are the points where the induced 
representation Ind( 7r1 0 ... 0 7r r 0 ds ) is maximally reducible. Regarding the 
reducibility of representations, we will see that there are both similarities and 
dissimilarities with the finite field case. 

Returning to the case of a finite field, we will denote by T the subgroup 
of diagonal matrices in GL(k,IF'q). If a is a root, we will denote by Un the 
one-dimensional unipotent of GL(k, IF' q) corresponding to a. Thus, if a = aij 

in the notation (30.6), then Xn consists of the matrices of the form 1 + tEij , 

where Eij has a 1 in the i, j-th position and zeros elsewhere. 
If A = (A1," . ,Ar) is an ordered partition of k, 7ri are representations of 

G L ( Ai, IF' q ), and 7r >.. = 7r 1 0 ... 0 7r r is the corresponding representation of M>.., 
we will use Ind(7r>..) as an alternative notation for 7r1 0 .•. 0 7rr . 

Theorem 49.3. (Harish-Chandra) Suppose that A = (A1,'" ,Ar) and I-" = 
(1-"1> •.. ,I-"t) are ordered partitions of k, and let 7r>.. = 07ri and 7r~ = 07rj be 
cuspidal representations of M>.. and MI-" respectively. Then 

dim HomGL(k,lFq ) (Ind(7r>..), Ind(7r~)) 

is zero unless r = t. Ifr = t, it is the number of permutations (Y of {I, 2"" ,r} 
such that AO"( i) = I-"i and 7r 0"( i) ~ 7ri· 
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See also Harish-Chandra [52], Howe [61] and Springer [114]. 

Proof. Let Vi be the space of 7ri and let Vi' be the space of 11"~, so 11">. acts on 
V = 0 Vi and 11" p. acts on V' = 0 Vf. By Mackey's Theorem in the geometric 
form of Theorem 34.1, the dimension of this space of intertwining operators is 
the dimension of the space of functions Ll : GL(k,lFq) ---+ Homc(V, V') such 
that for pEP>. and p' E Pp. we have 

Ll(p' gp) = 1I"~(P') Ll(g) 1I">.(P). 

Of course, Ll is determined by its values on a set of coset representatives 
for Pp. \G/ P>., and by Proposition 48.1, these may be taken to be a set of 
representatives of Wp. \ W /Wp., where if T is the maximal torus of diagonal 
elements ofGL(k,lFq), then W = N(T)/T, while W>. = NMJT)/T and Wp. = 
NMp.(T)/T. Thus Wp", is isomorphic to S>'l x··· X S>'r and Wp. is isomorphic 
to SP.l x ... X Sp.t. 

In the terminology of Remark 34.1, let us ask under what circumstances 
the double coset Pp.wP>. can support an intertwining operator. We assume 
that Ll(w) -10. 

We will show that wM>.w-1 ;2 Mw We first note that Mp. n WBkW-1 is a 
(not necessarily standard) Borel subgroup of Mw This is because it contains 
T, and if a is any root of Mp., then exactly one of Ua or U-a is contained in 
Mp.nwBkW-l (Exercise 49.3). Now Mp.nwp>.w-1 contains Mp.nwBkW-l and 
hence is either Mp. or a (not necessarily standard) parabolic subgroup of Mw 
We will show that it must be all of Mp.nwp>.w-1 since otherwise its unipotent 
radical is Mp. n wU>.w-1. Now, if u E Mp. n wU>.w-1, then w-1uw E U>., so 

Ll(w) = Ll(u-1 . W· w-1uw) = 1I"~(U-l) 0 Ll(w). (49.5) 

This means that any element of the image of Ll( w) is invariant under 11" p. (u) and 
hence zero by the cuspidality of 1I"w We are assuming that Ll(w) is nonzero, so 
this contradiction shows that Mp. = Mp.nwp>.w-1. Thus Mp. ~ wP>.w-1. This 
actually implies that Mp. ~ wM>.w-1 because if a is any root of Mp., then 
P>. contains both w-1Uaw and w-1U_aw, which implies that M>. contains 
w-1Uaw, so Ua ~ wM>.w-1. Therefore wM>.w-1 ;2 Mw 

Next let us show that wM>.w-1 ~ Mw As in the previous case, M>. n 
w-1 PP.w contains the (not necessarily standard) Borel subgroup M>.nw-1 Bp.w 
of M>., so either it is all of M>. or a parabolic subgroup of M>.. If it is a parabolic 
subgroup, its unipotent radical is M>. n w-1Up.w. If u E M>. n w-1Up'w, then 
by (49.5) we have 

Ll(w) = Ll(wuw-1 . W· u-1) = Ll(w) 01l">.(u-1). 

By Proposition 49.1, this implies that Ll(w) = 0; this contradiction implies 
that M>. = M>. n w-1 PP.w, and reasoning as before gives M>. ~ w-1 Mp.w. 

Combining the two inclusions, we have proved that if the double coset 
Pp.wP>. supports an intertwining operator, then Mp. = wM>.w-1. This means 
r = t. 
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Now, since the representative W is only determined modulo left and right 
multiplication by Mit and M>." respectively, we may assume that W takes 
positive roots of M>., to positive roots of Mit" Thus, a representative of w is a 
"block permutation matrix" of the form 

Wll ... Wlr 

W= 

Wtl ... Wtr 

where each Wij is a J-li x Aj block, and either Wij = 0 or J-li = Aj and Wij is an 
identity matrix of this size, and there is exactly one nonzero Wij in each row 
and column. Let (J be the permutation of {I, 2, ... ,r} such that Wi,,,.(i) is not 
zero. Thus A".(i) = J-li, and if gj E GL(Aj, Fq), then we can write 

W (gl '. ) = (g"'(l) '. ) W. 

gr g".(r) 

Thus 

Ll(w)o7r>., ( 
gl 

so 

Since the representations 7r and 7r' of M>., and Mit are irreducible, Schur's 
Lemma implies that Ll( w) is determined up to a scalar multiple, and moreOver 
7r~ ~ 7r".(i) as a representation of GL(J-li,Fq) = GL(A".(i),Fq). 

We see that the double cosets that can support an intertwining operator 
are in bijection with the permutations of {I, 2, ... ,r} such that A"'(i) = J-li 
and 7r 0-( i) ~ 7r~ and that the dimension of the space of intertwining operators 
that are supported on a single such coset is 1. The theorem follows. 0 

This theorem has some important consequences. 

Theorem 49.4. Suppose that A = (AI,'" ,Ar) is an ordered partition of k, 
and let 7r>., = Q97ri be a cuspidal representation of M>.,. Suppose that no 7ri ~ 7rj. 
Then 7rl 0 ... 0 7r r is irreducible. Its isomorphism class is unchanged if the Ai 
and 7ri are permuted. If (J-ll,'" ,J-lt) is another ordered partition of k, and 
7r~ = 7ri o ... 0 7r~ is a cuspidal representation of Mit, with the 7r~ also distinct, 
then 7rl 0 ... 0 7rr ~ 7ri o ... 0 7r~ if and only if r = t and there is a permutation 
(J of {l, ... ,r} such that J-li = A".(i) and 7r~ ~ 7ro-(i)' 
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Remark 49.1. This is the usual case. If q is large, the probability that there is 
a repetition among a list of randomly chosen cuspidal representations is small. 

Remark 49.2. The statement that the isomorphism class is unchanged ifthe Ai 
and 'Tr i are permuted is the analog of the functional equations of the Eisenstein 
series. 

Proof. By Theorem 49.3, the dimension of the space of intertwining operators 
of Ind( 'TrA) to itself is one, and it follows that this space is irreducible. The 
last statement is also clear from Theorem 49.3. D 

Suppose now that l is a divisor of k and that k = It. Let 'Tro be a cuspidal 
representation of GL(l, lFq). Let us denote by 'Trot the representation 'TroO· . ·O'Tro 
(t copies). We call any irreducible constituent of 'Trot a 'Tro-monatomic irre
ducible representation. As a special case, if 'Tro is the trivial representation 
of GL(I,lFq), this is the Hecke algebra identified in Iwahori's Theorem 48.3. 
There, we saw that the endomorphism ring of 'Trot was the Hecke algebra llt (q), 
a deformation of the group algebra of the symmetric group St, and thereby 
obtained a parametrization of its irreducible constituents by the irreducible 
representations of St or by partitions of t. The following result generalizes 
Theorem 48.3. 

Theorem 49.5. (Howlett and Lehrer) Let'Tro be a cuspidal representation 
ofGL(l,lFq ). Then the endomorphism ring End('Trot) is naturally isomorphic 
to llt (ql). 

Proof. We leave this to the reader (Exercise 49.6). Proofs may be found in 
Howlett and Lehrer [65) and Howe [61). D 

Corollary 49.1. There exists a natural bijection between the set of partitions 
A of t and the irreducible constituents O"A(lI-} of 'Trot. The multiplicity of O"A(71") 

in 'Trot equals the degree of the irreducible character SA of the symmetric group 
St parametrized by A. 

Proof. The multiplicity of O"A(71") in 'Trot equals the multiplicity of the corre
sponding module of llt (ql). By Exercise 48.5, this is the degree of SA. D 

Although we will not make use of the multiplicative structure that is con
tained in this theorem of Howlett and Lehrer, we may at least see immediately 
that 

dim (End( 'Trgt)) = t! , (49.6) 

by Theorem 49.3, taking J.L = A and all 'Tri, 'Tr~ to be 'Tro. This is enough for the 
following result. 

Theorem 49.6. Let (AI.· .. ,Ar) be an ordered partition of k, and let Ai = 
liti. Let'Tri be a cuspidal representation of GL(li' lFq), with no tWO'Tri isomor
phic. Let (}i be a 'Tri-monatomic irreducible representation of GL(Ai' lFq ). Let 
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(h, = ®(}i· Then Ind((}>.) is irreducible, and every irreducible representation 
of GL(k, IFq ) is of this type. If (J.lI,··· ,J.lt) is another ordered partition of k, 
and ()~ be a family of monatomic representations of GL(J.li, IFq ) with respect to 
another set of distinct cuspidals, and let ()~ = ®()~. Then Ind((}>.) ~ Ind((}~) 
if and only if r = t, and there exists a permutation a of {I, ... ,r} such that 
J.li = \"(i) and ()~ ~ (}u(i). 

Proof. We note the following general principle: X is a character of any group, 
and if X = ~ diXi is a decomposition into subrepresentations such that 

then the Xi are irreducible and mutually nonisomorphic. Indeed, we have 

Ld~ = (X,X) = Ld~ (Xi,Xi) + Ldidj (Xi,Xj)· 
iij 

All the inner products (Xi,Xi) ~ 1 and all the (Xi,Xj) ~ 0, so this implies 
that the (Xi,Xi) = 1 and all the (Xi,Xj) = O. 

Decompose each 7r~ti into a direct sum ~j dij(}ij of distinct irreducibles 
(}ij with multiplicities dij . The representation (}i is among the (}ij. We have 

7r~tl 0 ••• 0 7r~tr = L··· L(dIj1 ... drjJ (}Ijl 0 ••• 0 (}rjr. 
it jr 

The dimension of the endomorphism ring of this module is computed by The
orem 49.3. The number of permutations of the advertised type is tIl··· trl 
because each permutation must map the di copies of 7ri among themselves. 

On the other hand, by (49.6), we have 

~ ... ~(dI· ···d· )2=tI'···t' L...J L...J J1 rJr . r· 

also. By the "general principle" stated at the beginning of this proof, it fol
lows that the representations (}1i1 0 •.• 0 (}rjr are irreducible and mutually 
nonisomorphic. 

Next we show that every irreducible representation 7r is ofthe form Ind((}>.). 
If 7r is cuspidal, then 7r is monatomic, and so we can just take r = h = 1, 
(}I = 7rI. We assume that 7r is not cuspidal. Then by Proposition 49.2 we 
may embed 7r into 7rI 0 •.• 0 7rm for some cuspidal representations 7ri. By 
Proposition 49.4, we may order these so that isomorphic 7ri are adjacent, so 
7r is embedded in a representation of the form 7r~t1 0 ... 0 7r~tr, where 7ri are 
nonisomorphic cuspidal representations. We have determined the irreducible 
constituents of such a representation, and they are of the form Ind((}>.), where 
(}i is 7ri-monatomic. Hence 7r is of this form. 

We leave the final uniqueness assertion for the reader to deduce from The-
orem 49.3. 0 
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The great paper of Green [49] constructs all the irreducible representations 
of GL(k,Fq). Systematic use is made of the ring R(q). However, Green does 
not start with the cuspidal representations. Instead, Green takes as his ba
sic building blocks certain generalized characters that are "lifts" of modular 
characters, described in the following theorem. 

Theorem 49.7. (Green) Let G be a finite group, and let p: G --t GL(k,Fq) 
be a representation. Let f E Z[Xl'''' ,Xk ] be a symmetric polynomial with 
integer coefficients. Let () : IF'~ --t ex be any character. Let X : G --t e be 
the function 

x(g) = f(()(ad,··· ,()(ak)). 

Then () is a generalized character. 

Proof. First, we reduce to the following case: () : IF'~ --t ex is injective 
and f (Xl, . .. ,X k) = L Xi' If this case is known, then by replacing p by 
its exterior powers we get the same result for the elementary symmetric 
polynomials, and hence for all symmetric polynomials. Then we can take 
f(Xl, ... ,Xk ) = L Xi, effectively replacing () by ()T. We may choose r to 
match any given character on a finite field containing all eigenvalues of all g, 
obtaining the result in full generality. 

We recall that if 1 is a prime, a group is l-elementary if it is the direct 
product of a cyclic group and an l-group. According to Brauer's characteriza
tion of characters (Theorem 8.4 (a) on p. 127 of Isaacs [68]), a class function 
is a generalized character if and only if its restriction to every l-elementary 
subgroup H (for alll) is a generalized character. Thus, we may assume that 
G is l-elementary. If p is the characteristic of F q' whether l = p or not, we may 
write G = P x Q where P is a p-group and p t IQI. The restriction of X to Q 
is a character by Isaacs, [68], Theorem 15.13 on p. 268. The result will follow 
if we show that X(gpq) = X(q) for gp E P, q E Q. Since gp and q commute, 
using the Jordan canonical form, we may find a basis for the representation 
space of p over IF'q such that p(q) is diagonal and p(gp) is upper triangular. 
Because the order of gp is a power of p, its diagonal entries are 1 's, so q and 
gpq have the same eigenvalues, whence X(gpq) = X(q). D 

Since the proof of this theorem of Green is purely character-theoretic, it 
does not directly produce irreducible representations. And the characters that 
it produces are not irreducible. (We will look more closely at them later.) How
ever, Green's generalized characters have two important advantages. First, 
their values are easily described. By contrast, the values of cuspidal repre
sentations are easily described on the semisimple conjugacy classes, but at 
other classes require knowledge of "degeneracy rules" which we will not de
scribe. Second, Green's generalized character can be extended to a generalized 
character of GL( n, F qr) for any r, a property that ordinary characters do not 
have. 

Still, the cuspidal characters have a satisfactory direct description, which 
we turn to next. Choosing a basis for F qk as a k-dimensional vector space 
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over IFq and letting IF Xk act by multiplication gives an embedding IF\ ---+ q q 

GL(k,IFq). Call the image of this embedding T(k). More generally, if A = 

(Al' ... ,Ar) is a partition of k, then T).. is the group IF;>'l x ... x IF;>'r embed
ded in GL( k, IF q) the same way. We will call any T).. - or any conjugate of such 
a group - a torus. An element of GL(k,IFq) is called semisimple if it is diago
nalizable over the algebraic closure of IF q. This is equivalent to assuming that 
it is contained in some torus. It is called regular semisimple if its eigenvalues 
are distinct. This is equivalent to assuming that it is contained in a unique 
torus. 

There is a very precise duality between the conjugacy classes of GL(k, IFq) 
and its irreducible representations. Some aspects of this duality are shown in 
Table 49.2. In each case, there is an exact numerical equivalence. For example, 
the number of unipotent conjugacy classes is the number of partitions of k, and 
this is also the number of unipotent representations, as we saw in Theorem 
48.1. Again, the number of cuspidal representations equals the number of 
regular semisimple conjugacy classes whose eigenvalues generate IF qk. We will 
prove this in Theorem 49.8. 

Table 49.2. The duality between conjugacy classes and representations. 

Class Type Representation Type 

central conjugacy classes I-dimensional representations 
regular semisimple induced from 
conjugacy classes distinct cuspidals 

regular semisimple 
conjugacy classes whose cuspidal representations 
eigenvalues generate IF qk 

unipotent 
unipotent representations 

conjugacy classes 
conjugacy classes whose 

characteristic polynomial monatomic representations 
is a power of an irreducible 

To formalize this duality, and to exploit it in order to count the irreducible 
cuspidal representations, we will divide the conjugacy classes of GL( k, IF q) into 
"types." Roughly, two conjugacy classes have the same type if their rational 
canonical forms have the same shape. For example, GL(2,IFq) has four distinct 
types of conjugacy classes. They are 

{(a a)}' 
{ ( -vHq v 1 vq ) } , 



414 Lie Groups 

where the last consists of the conjugacy classes of matrices whose eigenvalues 
are v and vq , where v E IF q2 -IF q. In the duality, these four types of conjugacy 
classes correspond to the four types of irreducible representations: the q + 1-
dimensional principal series, induced from a pair of distinct characters of 
GL(I); the one-dimensional representations X 0 det, where X is a character 
of IF;; the q-dimensional representations obtained by tensoring the Steinberg 
representation with a one-dimensional character; and the q - I-dimensional 
cuspidal representations. 

Let f(X) = X d + ad_1Xd-1 + ... + ao be a monic irreducible polynomial 
over IF q of degree d. Let 

0 1 0 0 
0 0 1 0 

U(f) = 
0 0 0 1 

-aD -a1 -a2 ... -ad-1 

be the rational canonical form. Let 

U(f) Id 0 0 
o U(f) Id 

o o U(f) 

o U(f) 

an array of r x r blocks, each of size d x d. If A = (A1,··· ,At) is a partition 
of r, so that A1 ? ... ? At are nonnegative integers with IAI = L:i Ai = r, let 

Then every conjugacy class of GL(k, IF q) has a representative of the form 

(49.7) 

where the fi are distinct monic irreducible polynomials, and each Ai 
(AL A~, ... ) is a partition. The conjugacy class is unchanged if the fi and 
Ai are permuted, but otherwise, they are uniquely determined. 

Thus the conjugacy class is determined by the following data: a pair of 
sequences r1,··· ,rm and db··· ,dm of integers, and for each 1 :::; i :::; m 
a partition Ai of ri and a monic irreducible polynomial fi E lFq[X] of de
gree di , such that no fi = fj if i -I- j. The data ({rd, {di}, {Ai}, {Ii}) and 
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({r~}, {da, {(A')i}, {fI}) parametrize the same conjugacy class if and only if 
they both have the same length m and there exists a permutation a E Sm 
such that r~ = ra(i), d~ = da(i), (A')i = Aa(i) and fI = fa(i)' 

We say two conjugacy classes are of the same type if the parametrizing 
data have the same length m and there exists a permutation a E Sm such 
that r~ = ra(i) , d~ = da(i) , (A')i = Aa(i). (The fi and J[ are allowed to differ.) 
The set of types of conjugacy classes depends on k, but is independent of q 
(though if q is too small, some types might be empty). 

Lemma 49.1. Let {Nl' N 2,···} be a sequence of numbers, and for each Nk 
let Xk be a set of cardinality Nk (Xk disjoint). Let Ek be the following set. 
An element of Ek consists of a 4-tuple ({rd, {dd, {Ai}, {Xi}), where {ri} = 
{rl' ... ,r m} and {dd = {db' .. ,dm } are sequences of positive integers, such 
that L. ridi = k, together with a sequence {Ai} of partitions of ri and an 
element Xi E X di , such that no Xi are equal. Define an equivalence relation '" 
on Ek in which two elements are considered equivalent if they can be obtained 
by permuting the data, that is, if a E Sm then 

Let Mk be the number of equivalence classes. Then the sequence of numbers 
Nk is determined by the sequence of numbers M k . 

Proof. By induction on k, we may assume that the cardinalities N l ,'" ,Nk- l 
are determined by the Mk. Let M~ be the cardinality of the set of equivalence 
classes of ({ri}, {dd, {Ai}, {Xi}) E Ek in which no Xi E X k. Clearly M~ de
pends only on the cardinalities N l ,'" ,Nk-l of the sets Xl,'" ,Xk- l from 
which the Xi are to be drawn, so (by induction) it is determined by the Mi. 
Now we claim that Nk = Mk - M~. Indeed, if given ({ri}, {di }, {Ai}, {Xi}) E 
Ek of length m, if any Xi E X k, then since 2:::1 ridi = k, we must have 
m = 1, rl = 1, dl = k, and the number of such elements is exactly N k . 0 

Theorem 49.8. The number of cuspidal representations of GL(k, lFq) equals 
the number of irreducible monic polynomials of degree k over IF q' 

Proof. We can apply the lemma with X k either the set of cuspidal represen
tations of Sk or with the set of monic irreducible polynomials of degree k over 
IF q. We will show that in the first case, Mk is the number of irreducible repre
sentations of GL(k, IF q), while in the second, Mk is the number of conjugacy 
classes. Since these are equal, the result follows. 

If X k is the set of cuspidal representations of GL(k,lFq), from each el
ement ({ri},{di},{Ai},{xd) E Ek we can build an irreducible representa
tion of GL(k,lFq) as follows. First, since Xi is a cuspidal representation of 
GL(di,lFq) we can build the xi-monatomic representations of GL(diri,lFq) by 
decomposing x~ri. By Corollary 49.1, the irreducible constituents of x~ri are 
parametrized by partitions of ri, so Xi and Ai parametrize an xi-monatomic 
representation Hi of GL(ridi,lFq). Let H = HI 0 ••• 0 Hm. By Theorem 49.4, 
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every irreducible representation of GL(k,lFq) is constructed uniquely (up to 
permutation of the 1l"i) in this way. 

On the other, take Xk to be the set of monic irreducible polynomials 
of degree k over lFq. We have explained above how the conjugacy classes of 
GL(k,lFq) are parametrized by such data. D 

Deligne and Lusztig [31] gave a parametrization of characters of any re
ductive group over a finite field by characters of tori. Carter [22] is a ba
sic reference for Deligne-Lusztig characters. Many important formulae, such 
as a generalization of Mackey theory to cohomologically induced represen
tations and an extension of Green's "degeneracy rules," are obtained. This 
theory is very satisfactory but the construction requires l-adic cohomology. 
For GL(k,lFq), the parametrization of irreducible characters by characters of 
tori can be described without resorting to such deep methods. The key point 
is the parametrization of the cuspidal characters by characters of T( k) ~ IF qk . 
Combining this with parabolic induction gives the parametrization of more 
general characters by characters of other tori. 

Thus let 0 : T(k) ~ lFqk ----t ex be a character such that the orbit of 0 
under Gal(lFqk/lFq) has cardinality k. The number of Gal(lFqk/lFq)-orbits of 
such characters is 

~ Lit (~) qd, 
din 

(49.8) 

where It is the Mobius function - the same as the number of semisimple 
conjugacy classes. Then exists a cuspidal character Uk = Uk,8 of GL(k,lFq) 

whose value on a regular semisimple conjugacy class 9 is zero unless 9 conju
gate to an element of T(k), that is, unless the eigenvalues of 9 are the roots 

a, a q,··· , a qk- 1 of an irreducible monic polynomial of degree k in lFq[X], so 
that lFqk = lFq[a]. In this case, 

k-l 
Uk(g) = (_l)k-l LO(aq\ 

j=O 

By Theorem 49.8, the number of Uk,8 is the total number of cuspidal repre
sentations, so this is a complete list. 

We will first construct Uk under the assumption that 0, regarded as a 
character of lF X

k , can be extended to a character 0 : iF~ ----t ex that is 
injective. This 1s assumption is too restrictive, and we will later relax it. We 
will also postpone showing that that Uk is independent of the extension of 0 
to iF~. Eventually we will settle these points completely in the special case 
where k is a prime. 

Let 
k 

Xk(g) = L O(ai)' (49.9) 
i=l 
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where (}i are the eigenvalues of 9 E GL(k,lFq). By Green's Theorem, Xk is a 
generalized character. 

Proposition 49.4. Assume that () can be extended to a character () : iF: ----t 

ex that is injective. Then the inner product (Xk, Xk) = k. 

Proof. We will first prove that this is true for q sufficiently large, then show 
that it is true for all q. The idea of the proof is to show that as a function 
of q, the inner product is k + O(q-l). Since it is an integer, it must equal k 
when q is sufficiently large. 

The number of elements of G = GL(k,lFq) is qk2 + O(qk2-1). This is clear 

since G is the complement of the determinant locus in Matk(lFq) ~ lFf. The 

set Greg of regular semisimple elements also has order qk2 + O(qk2-1) since it 
is the complement of the discriminant locus. Since IXk(g)1 ~ k for all g, 

(xk,n)=I~1 L: IXk(gW+O(q-l). 
gEGreg 

Because every regular element is contained in a unique conjugate of some T>., 
which has exactly [G : NG(T>.)] such conjugates, this equals 

1 
-IGI L: [G: NG(T>.)] L: In(g)12 + O(q-l) = 

>. a partition of k gETleg 

I~I L:[G: NG(T>.)] L: In(g)12 + O(q-l), 
>. gET;.. 

the last step using the fact that the complement of the Treg in T>. is of codi
mension one. We note that the restriction of Xk to T>. is the sum of k distinct 
characters, so 

L: In(g)12 = kIT>.I· 
gET;.. 

Thus the inner product is 

We have 

k x I~I L:[G: NG(T>.)] IT>. I + O(q-l). 
>. 

I~I ~[G: NG(T>.)]lT>'1 = I~I ~[G: NG(T>.)]lTregl + O(q-l) 

= 1~IIGregl + O(q-l) = 1 + O(q-l). 

The result is now proved for q sufficiently large. 
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To prove the result for all q, we will show that the inner product (n, Xk) 
is a polynomial in q. This will follow if we can show that if S is the subset of G 
consisting of the union of conjugacy classes of a single type, then [G: Gc(g)] 
is constant for g E Sand 

L IXk(g)1 2 (49.10) 
gES 

is a polynomial in q. We note that for each type, the index of the centralizer 
of (49.7) is the same for all such matrices, and that this index is polynomial 
in q. Thus it is sufficient to show that the sum over the representatives (49.7) 
is a polynomial in q. Moreover, the value of Xk is unchanged if every instance 
of a Ur(f) is replaced with r blocks of U(f), so we may restrict ourselves 
to semisimple conjugacy classes in confirming this. Thus if k = 2: diri, we 
consider the sum (49.10), where the sum is over all matrices 

where fi are distinct irreducible polynomials, each of size di , and U(r)(f) is 
the sum of r blocks of U(f). It is useful to conjugate these matrices so that 
they are all elements of the same torus T).. for some A. The set S is then a 
subset of T).. characterized by exclusion from certain (non-maximal) subtori. 

Let us look at an example. Suppose that A = (2,2,2) and k = 6. Then 
S consists of elements of T).., which may be regarded as (IF q2) x of the form 
(ex, (3, 1'), where ex, (3 and I' are distinct elements of IF;2 -IF;. Now if we sum 
(49.10) over all of T).. we get a polynomial in q, namely 6(q2 - 1)3. On the 
other hand, we must subtract from this three contributions when one of ex, (3 
and I' is in IF;. These are subtori of the form T(2,2,1). We must also subtract 
three contributions from subgroups of the form T(2,2) in which two of ex, (3 and 
I' are equal. Then we must add back contributions with have been subtracted 
twice, etc. 

In general, the set S will consist of the set T).. minus subtori T 1, ... ,TN. If I 
is a subset of {I, ... ,N} let T1 = niE1 Ti . We now use the inclusion-exclusion 
principle in the form 

L In(g)12 = L IXk(g)1 2 + L (_1)111 L IXk(gW· 
gES 0#J<:;;{1,··· ,N} gET[ 

Each of the sums on the right is easily seen to be a polynomial in q, and so is 
(49.10). D 

Theorem 49.9. Assume that () is an injective character () : IF; --+ ex. For 
each k there exists a cuspidal ak = ak,() ofGL(k, IF q) such that if g is a regular 
semisimple element ofGL(k,lFq) whose eigenvalues are the Galois conjugates 
of 1/ E IF~ such that IF qk = IF q(v), then 
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k-l 

CTk,()(g) = (_1)k-l L:O(vqi ). (49.11) 
i=O 

If1k denotes the trivial character ofGL(k,lFq), then 

n 

Xn = L:( -1)k-1CTk 0 1n-k· 
k=l 

Note that CTk 0 1n-k is an irreducible character of GL(n, lFq) by Theorem 49.4. 
So this gives the expression of Xn in terms of irreducibles. 

Proof. By induction, we assume the existence of CTk and the decomposition of 
Xk as stated for k < n, and we deduce them for k = n. 

We will show first that 

(49.12) 

Let P = MU be the standard parabolic subgroup with Levi factor M = 
GL(k, lFq) x GL(n-k,lFq) and unipotent radical U. If mE M and u E U, then 
as matrices in GL( n, IF q), m and mu have the same characteristic polynomials, 
so Xn(mu) = Xn(m). Thus in the notation of Exercise 49.2 (ii), with X = Xn, 
we have Xu = X restricted to M. Therefore 

Let 

m = (ml m2) E M, 

Clearly Xn(m) = Xk(ml) + Xn-k(m2). Now using the induction hypothesis, 
Xn-k does not contain the trivial character of GL(n - k,lFq) hence it is or
thogonal to 1n-k on GL(n - k,lFq); so we can ignore Xn-k(m2). Thus 

(Xn, CTk 0 1n-k)a = (n, CTk)GL(k,lFq )· 

By the induction hypothesis, Xk contains CTk with multiplicity (_1)k-1, and 
so (49.12) is proved. 

Now CTk 0 1n -l is an irreducible representation of GL(n,lFq), by Theorem 
49.4, and so we have exhibited n - 1 irreducible characters, each of which 
occurs in Xn with multiplicity ±l. Since (Xn, Xn) = n, there must be one 
remaining irreducible character CTn such that 

n-l 

Xn = L:( -1)k-1CTk 0 1n-k ± CTn· 
k=l 

(49.13) 

We show now that CTn must be cuspidal. It is sufficient to show that if U 
is the unipotent radical of the standard parabolic subgroup with Levi factor 
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M = GL(k,IFq)xGL(n-k,IFq), andifml E GL(k,IFq) andm2 E GL(n-k,IFq) 
then 

since by Exercise 49.2 (ii), this will show that the representation affording the 
character an has no U-invariants, the definition of cuspidality. The summand 
on the left-hand side is independent of u, and by the definition of Xn the 
left-hand side is just Xk(ml) + Xn-k(m2). By Exercise 49.4, the right-hand 
side can also be evaluated. Using (49.11), which we have assumed inductively 
for aT with r < n, the terms r = k and r = n - k contribute Xk(md and 
Xn-k(m2) and all other terms are zero. 

To evaluate the sign in (49.13), we compare the values at the identity to 
get the relation 

where 

is the Gaussian binomial coefficient, which is the index of the parabolic sub
group with Levi factor GL(k) x GL(n - k). Substituting q = 0 in this identity 
shows that the missing sign must be (_l)n-l. 

If g is a a regular element of T(k) then the value of ak on a regular element 
of T(k) is now given by (49.11) since if k < n then ak 0 1n -k vanishes on g, 
which is not conjugate to any element of the parabolic subgroup from which 
ak 0 1n-k is induced. 0 

See Exercise 49.10 for an example showing that the cuspidal characters 
that we have constructed are not enough because of our assumption that 
() is injective. Without attempting a completely general result, we will now 
give a variation of Theorem 49.9 that is sufficient to construct all cuspidal 
representations of GL(k, IF q) when k is prime. 

Proposition 49.5. Let () : lF~ ---+ ex be a character. Assume that the re
striction of () to IF~ is trivial, but that for any 0 < d ~ k, the restriction of 

() to IF X
d does not factor through the norm map IF X

d ---+ IFqXr for any proper q q 
divisor r of d. Then 

(Xk, Xk) = k + 1. 

Proof. The proof is similar to Proposition 49.4. It is sufficient to show this for 
sufficiently large q. As in that proposition, the sum is 
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We note that [Nc(TA) : TAl = ZA, defined in (39.1). With our assumptions if 
the partition .x contains r parts of size 1, the restriction of Xk to TA consists 
of r copies of the trivial character, and k - r copies of other characters, all 
distinct. (Exercise 49.9.) The inner product of Xk with itself on TA is thus 
k - r + r2. The sum is thus 

We can interpret this as a sum over the symmetric group. If a E Sk, let r(a) 
be the number of fixed points of a. In the conjugacy class of shape .x, there 
are k!/ZA elements, and so 

1 1 L -(k + r2 - r) = k' L (k + r(a)2 - r(a)). 
A ZA . UESk 

Now r(a) = h(k-l,l) = S(k-l,l) + hk in the notation of Chapter 39. Here, of 
course, hk = S(k) is the trivial character of Sk and S(k-l,l) is an irreducible 
character of degree k-l. We note that r( a? -r( a) is the value of the character 

2 h' s(k-l,l) + S(k-l,l), so t e sum IS 

where the inner product is now over the symmetric group. Clearly (hk' h k) = 1 
and \S(k-l,l), hk) = O. Since the character S(k-l,l) is real and hk is the 
constant function equal to 1, 

and the result follows. o 

Theorem 49.10. Suppose that n is a prime, and let () : IF;n --+ ex be a 

character that does not factor through the norm map IF;n --+ IF;r for any 
proper divisor r of n. Then there exists a cuspidal character an,fJ of GL( n, IF q) 
such that if g is a regular semisimple element with eigenvalues 1/, I/q, .•. E IF qn 

then 
n-l 

an,fJ(g) = (-It-1 L ()(I/ qi ). (49.14) 
i=O 

This gives a complete list of the cuspidal characters of IF qn . 

The assumption that n is prime is unnecessary. 
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Proof. By Exercise 49.12, we can extend e to a character of 1F q without enlarg
ing the kernel. Thus the kernel of e is contained in IF;n and does not contain 
the kernel of any norm map IF;n ---t IF;r for any proper divisor r of n. There 
are now two cases. 

If X is nontrivial on IF;, then we may proceed as in Theorem 49.9. We are 
not in the case of that theorem, since we have not assumed that the kernel of 
e is trivial, and we do not guarantee that the sequence of cuspidals ak that 
we construct can be extended to all k. However, if d ~ k, our assumptions 
guarantee that the restriction of e to lF Xd does not factor through the norm 

q 
map to IF qr for any proper divisor of d, since the kernel of e is contained in 
IF qn, whose intersection with IF qd is just IF q since n is prime and d < n. In 
particular, the kernel of e cannot contain the kernel of N : IF;d ---t IF;r. We 

get (Xk, Xk) = k for k ~ n, and proceeding as in Theorem 49.9 we get a 
sequence of cuspidal representations ak of GL(k, IF q) with k ~ n such that 

k 

Xk = ~) -ly-1ar olk-r· 

r=l 

If e is trivial on IF;, it is still true that the restriction of e to IF qd does 
not factor through the norm map to IF qr for any proper divisor of d whenever 
k ~ n. So (Xk, Xk) = k + 1 by Theorem 49.5. Now, we can proceed as before, 
except that a1 = It, so a1 0 lk-1 is not irreducible - it is the sum of two 
irreducible representations S(k-1,1) (q) and S(k) (q) of GL(k, lFq), in the notation 
of Chapter 48. Of course, S(k) (q) is the same as lk in the notation we have been 
using. The rest of the argument goes through as in Theorem 49.9. In particular 
the inner product formula (Xk, Xk) = k + 1 together with fact that 11 olk-1 

accounts for two representations in the decomposition of Xk guarantees that 
ak, defined to be Xk - L:r<k ( -1 Y a r 0 lk-r is irreducible. 

The cuspidal characters we have constructed are linearly independent by 
(49.14). They are equal in number to the total number of cuspidal represen
tations, and so we have constructed all of them. 0 

Let us consider next representations of reductive groups over local fields. 
The problem is to parametrize irreducible representations of Lie and p-adic 
groups such as GL(k, F), where F = JR, C or a non-Archimedean local field. 

The parametrization of irreducible representations by characters of tori, 
which we have already seen for finite fields, extends to representations of Lie 
and p-adic groups such as GL(k, F), where F = JR, C or a non-Archimedean 
local field. If T is a maximal torus of G = GL(k,F), then the characters 
of T parametrize certain representations of G. As we will explain, not all 
admissible representations can be parametrized by characters of tori, though 
(as we will explain) in some sense most are so parametrized. Moreover if we 
expand the parametrization we can get a bijection. This is the local Langlands 
correspondence, which we will now discuss (though without formulating a 
precise statement). 
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In this context, a torus is the group of rational points of an algebraic group 
that, over the algebraic closure of F, is isomorphic to a product of r copies of 
the multiplicative group Gm • (See Chapter 27.) The torus is called anisotropic 
if it has no subtori isomorphic to Gm over F. If F = JR, an anisotropic torus 
is compact. For example, SL(2, JR) contains two conjugacy classes of maximal 
tori, the diagonal torus, and the compact torus SO(2). Over the complex 
numbers, the group SO(2, q is conjugate by the Cayley transform to the 
diagonal subgroup, since if a2 + b2 = 1, then 

c ( a b) c-1 = (a + bi .) , 
-b a a - bz 

1 (1 i ) 
c =.J2i 1 -i . 

Thus SO(2) is an anisotropic torus. If G is semisimple, then G has an 
anisotropic maximal torus if and only if its maximal compact subgroup K 
has the same rank as G. An examination of Table 31.1 shows that this is 
sometimes true and sometimes not. For example, by Proposition 31.3, this 
will be the case if GIK is a Hermitian symmetric space. The group SO(n, 1) 
has anisotropic maximal tori if n is even, but not if n is odd. SL(k, JR) does 
only if k = 2. 

If F is a local field and ElF is an extension of degree k, then, as in the 
case of a finite field, we may embed EX --+ GL(k, F), and the norm one 
elements will be an anisotropic torus of SL(k, F). From this point of view, we 
see why SL(2, JR) is the only special linear group over JR that has an anisotropic 
maximal torus - the algebraic closure C of JR is too small. 

Let G be a locally compact group and Z its center. Let (11", V) be an 
irreducible unitary representation of G. By Schur's Lemma, 1I"(z) acts by a 
scalar w(z) of absolute value 1 for z E Z. Let L2(G,w) be the space of all 
functions f on G such that f(zg) = w(z)f(g) and 

r If(g)12 dg < 00. 

la/z 

The group G acts on L2(G,w) by right translation. The representation 11" is 
said to be in the discrete series if it can be embedded as a direct summand 
in L2 (G, w). If G is a reductive group Over a local field, the irreducible rep
resentations of G can be built up from discrete series representations of Levi 
factors of parabolic subgroups by parabolic induction. 

Let F be a local field, and let ElF be a finite extension. Then the (rela
tive) Weil group W E / F is a certain finite extension of EX. It fits in an exact 
sequence: 

1 --+ EX --+ WE / F --+ Gal(EIF) --+ 1. 

If E' ::) E is a bigger field, there is a canonical map WE' / F --+ WE / F in
ducing the norm map E' --+ E, and the absolute Weil group WF is the 
inverse limit of the W E/ F. The discrete series representations of GL(k, F) are 
then parametrized by the irreducible k-dimensional complex representations 
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of WE / F. This is a slight oversimplification ~ we are neglecting the Steinberg 
representation and a few other discrete series that can be parametrized by 
replacing WE / F by the slightly larger Weil-Deligne group. 

This parametrization of irreducible representations of GL(k, F) by local 
Langlands correspondence. Borel [11] is still the standard reference for the 
Langlands correspondences. The local Langlands conjectures for GL(k) over 
non-Archimedean local fields of characteristic zero were proved by Harris and 
Taylor [53]. They also state the correspondence somewhat more precisely than 
Borel [11]. We gave an expository account of the correspondence in the last 
Section of Bump [18], which still seems to us to be useful. 

Assume that G = GL(k) over a local field F. We now explain why most but 
not all discrete series representations correspond to characters of anisotropic 
tori. If T is a maximal torus of G, then T/Z is anisotropic if T ~ EX where 
E / F is an extension of degree k. If () is a character of EX then inducing () to 
WE / F gives a representation ofWE / F of degree k. This gives a parametrization 
of many ~ even most ~ discrete series representations by characters of tori. In 
fact, if F is non-Archimedean and the residue characteristic is prime to k, then 
every irreducible representation is of this form. This is proved in Tate [118] 
(2.2.5.3). A simple proof when k = 2 is given in Bump [18], Proposition 4.9.3. 

Although the parametrization of the discrete series representations by 
characters of tori is thus a more complex story for local fields than for fi
nite fields, the construction of the irreducible representations by parabolic 
induction still follows the same pattern as in the finite field case. An analog 
of Theorem 49.3 is true, and the method of proof extends ~ the function Ll 
becomes a distribution, and the corresponding analog of Mackey theory is 
due to Bruhat [17]. Some differences occur because of measure considerations. 
There are important differences between the finite field case and the local field 
case when reducibility occurs. The finite field statement Corollary 49.1 is both 
suggestive and misleading when looking at the local field case. See Zelevinsky 
[132]. Zelevinsky's complete results are reviewed in Harris and Taylor [53]. 

Turning at last to automorphic forms, characters of tori still parametrize 
automorphic representations, and characters of anisotropic tori parametrize 
automorphic cuspidal representations. Thus, if E / F is an extension of number 
fields with [E : F] = k and AE is the adele ring of E, and if () is a character of 
A~/ EX, then there should exist an automorphic representation of GL(k, F) 
whose L-function is the same as the L-function of (). If E / F is cyclic, this is a 
theorem of Arthur and Clozel [3], Section 3.6. In contrast with the situation 
over local fields, however, where "most" discrete series are parametrized by 
characters of tori, the cuspidal representations obtained this way are rare. A 
few more are obtained if we allow parametrizations by the global Weil group, 
but even these are in the minority. 
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EXERCISES 

Exercise 49.1. (Transitivity of parabolic induction) (i) Let P be a parabolic 
subgroup of GL(k) with Levi factor M and unipotent radical U, so P = MU. 
Suppose that Q is a parabolic subgroup of M with Levi factor MQ and unipotent 
radical UQ. Show that MQ is the Levi factor of a parabolic subgroup R of GL(k) 
with unipotent radical UQU. 

(ii) In the setting of (i), show that parabolic induction from MQ directly to 
GL(k) gives the same result as parabolically inducing first to M, and then from M 
to GL(k). 

(iii) Show that the multiplication 0 is associative and that R(q) is a ring. 

Exercise 49.2. (Frobenius reciprocity for parabolic induction) Let P = 
MU be a parabolic subgroup of G = GL(n,lFq). 

(i) Let (7r, V) be a representation of G and let (0", W) be a representation of 
M. Let V U be the space of U-invariants in V. Since M normalizes U, V U is an 
M-module. On the other hand, we may parabolically induce W to a representation 
Ind(O") of G. Show that 

Hint: Make use of Theorem 34.1. We need to show that 

Let Va be the span of elements of the form W - 7r(u)w with U E U. Show that 
V = V U EB Va, as M-modules, and that any P-equivariant map V --+ W factors 
through V IVa ~ V U . 

(ii) Let X be a character of G, and let 0" be a character of M. Let Ind(O") be the 
character of the representation of G parabolically induced from 0", and let Xu be the 
function on M defined by 

1 
xu(m) = TVT L xCmu). 

uEU 

Show that Xu is a class function on M, and that 

Conclude that Xu is a character of M. (Note: Although this statement is closely 
related to (i), and may be deduced from it, this may also be proved using (34.14) 
and Frobenius reciprocity for characters, avoiding use of (i).) 

Exercise 49.3. Suppose that H is a subgroup of GL(k, lFq) containing T such that 
for every a E if? the group H contains either Xa or X-a. Show that H is a (not 
necessarily standard) parabolic subgroup. If H contains exactly one of Xa or X-a 
for each a E S, show that H is a (not necessarily standard) Borel subgroup. (See 
Exercise 21.1). 

The next exercise is very analogous to the computation of the constant terms of 
Eisenstein series. For example, the computation around pages 39-40 of Langlands 
[91] is a near exact analog. 
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Exercise 49.4. Let 1 :( k, r < n. Let 0"1,0"2 be monatomic characters of GL(r, IF q) 
and GL( n - r, IF q) with respect to a pair of distinct cuspidal representations. Let 0" 

denote the character of the representation 0"1 00"2 of GL( n, IF q), which is irreducible 
by Theorem 49.6. Let ml E GL( k, IF q) and m2 E GL( n - k, IF q). Let U be the 
unipotent radical of the standard parabolic subgroup P of GL( n, IF q) with Levi 
factor M = GL(k, lFq) x GL(n - k, lFq). if k = r, k i- n - r, 

Hint: Both sides are class functions, so it is sufficient to compare the inner products 
with PI @P2 where PI and P2 are irreducible representations of GL(k, lFq)andGL(n
k, IF q) respectively. Using Exercise 49.2 this amounts to comparing 0"1°0"2 and PI 0p2. 

To do this, explain why in the last statement in Theorem 49.6 the assumption that 
the B~ are monatomic with respect to distinct cuspidals may be omitted provided 
this assumption is made for the Bi . 

Exercise 49.5. If k+l = m, and if P = MU is the standard parabolic of GL(m, lFq) 
with Levi factor M = GL(k,lFq) x GL(l,lFq), then the space of U-invariants of any 
representation err, V) of GL(m,lFq) is an M-module. Show that this functor from 
representations of GL(m,lFq) to representations of GL(k,lFq) x GL(l,lFq) can be 
made the basis of a comultiplication in R(q) and that R(q) is a Hopf algebra. 

Exercise 49.6. Prove Theorem 49.5. 

Exercise 49.7. Let G = GL(k,lFq). As in Exercise 47.4, let N be the subgroup of 
upper triangular unipotent matrices. Let '¢ : IF q --+ C x be a nontrivial additive 
character, and let '¢N be the character of N defined by 

,pN (' x;' :;: :n ~ ,p(x" + x" + + x,_,,). 

Let P be the "mirabolic" subgroup of 9 E G whose bottom row is (0,· .. ,0,1). (Note 
that P is not a parabolic subgroup.) Call an irreducible representation of P cU8pidal 
if it has no U-fixed vector for the unipotent radical U of any standard parabolic 
subgroup of G. Note that U is contained in P for each such U. If 1 :( r < k let 
Gr be GL(r,lFq) embedded in G in the upper left hand corner, and let N r be the 
subgroup of x E N in which Xij = ° if i < j :( r. 

(i) Show that the representation K, = Ind~('¢) is irreducible. (Hint: Use Mackey 
theory to compute Homp(K" K,).) 

(ii) Let err, V) be a cuspidal representation of P. Let Lr be the set of all linear 
functionals A on V such that A(7r(X)V) = '¢N(X)V for v E V and x E L r . Show 
that if A E Lr and r > 1 then there exists 'Y E G r - 1 such that A' E Lr- 1 , where 
A'(V) = A(7r("()V). 

(iii) Show that the restriction of an cuspidal representation 7r of G L (k, IF q) to P 
is a direct sum of copies of K,. Then use Exercise 47.4 to show that at most one copy 
can occur, so 7rlp = K,. 
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(iv) Show that every irreducible cuspidal representation of GL( k, IF q) has dimen
sion (q - l)(l- 1) ... (l-l - 1). 

Exercise 49.8. Let 0 : IF\ ----+ ex be a character. 
q 

(i) Show that the following are equivalent. 
(a) The character 0 does not factor through the norm map lFqk ----+ 
IF qd for any proper divisor d of k; 
(b) The character 0 has k distinct conjugates under Gal(lF qk /IF q); 

(c) We have oqr-l =f. 1 for all divisors r of k. 
(ii) Show that the number of such 0 satisfying these equivalent conditions given 

by (49.8), and that this is also the number of monic irreducible polynomials of degree 
k over lFq. 

Exercise 49.9. Suppose that 0 : iF; ----+ ex is a character. Suppose that for all 
d::;; k, the restriction of 0 to lF x

d does not factor through the norm map lF Xd ----+ lFqXr 
q q 

for any proper divisor r of d. Let A be a partition of k. Show that the restriction of 
o to TA contains the trivial character multiplicity r, equal to the number of parts of 
A of size 1, and to k - r other characters that are all distinct from one another. 

Exercise 49.10. Obtain a character table of GL(2, lF3), a group of order 48. Show 
that there are three distinct characters 0 of lFi such that 0 does not factor through 
the norm map IF qk ----+ IF qd for any proper divisor of d. Of these, two (of order 
eight) can be extended to an injective homomorphism iF~ ----+ ex, but the third (of 
order four) cannot. If 0 is this third character, then X2 defined by (49.9) defines a 
character that splits as Xtriv + Xsteinberg - 0'2, where Xtriv and Xsteinberg are the trivial 
and Steinberg characters, and 0'2 is the character of a cuspidal representation. Show 
also that 0'2 differs from the sum ofthe two one-dimensional characters of GL(2, lF3) 
only on the two non-semisimple conjugacy classes, of elements of orders 3 and 6. 

Exercise 49.11. Suppose that X is an irreducible representation of GL(k,lFq). Let 
9 be a regular semisimple element whose eigenvalues generate IF qk. If X(g) =f. 0, show 
that X is monatomic. 

Exercise 49.12. Let 0 be a character of lFq. Show that there exists a character (j of 
iFq extending 0, whose kernel is the same as that of O. 

Exercise 49.13. Let 0 be an injective character of iFq. Prove the following result. 

Theorem. Let A be a partition of n and let t ETA' Then O'k,O(t) = 0 unless A = (n). 

Hint: Assume by induction that the statement is true for all k < n. Write 
t = (tl' ... ,tT ) where ti E G L( Ai, IF q) has distinct eigenvalues in IF qAi' Show that 

(O'k 0 In-k)(t) = L O'k(ti). 
Ai 
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Cohomology of Grassmannians 

In this chapter, we will deviate from our usual policy of giving complete proofs 
in order to explain some important matters. Among other things, we will see 
that the ring R introduced in Chapter 36 has yet another interpretation in 
terms of the cohomology of Grassmannians. 

References for this chapter are Fulton [44], Hiller [58], Hodge and Pedoe 
[59], Kleiman [79], and Manivel [96]. 

We recall the notion of a CW-complex. Intuitively, this is just a space 
decomposed into open cells, the closure of each cell being contained in the 
union of cells of lower dimension - for example a simplicial complex. (See 
Dold [35], Chapter 5, and the appendix in Milnor and Stasheff [98].) Let lffin 
be the closed unit ball in Euclideann-space. Let lffi~ be its interior, the unit 
disk, and let §n-l be its boundary, the n-1 sphere. We are given a Hausdorff 
topological space X together with set S of subspaces of X. It is assumed that 
X is the disjoint union ofthe Ci E S, which are called cells. Each space Gi E S 
is homeomorphic to lffid(i) for some d(i) by a homeomorphism Ci : lffid(i) --+ Gi 

that extends to a continuous map Ci : lffid(i) --+ X. The image Of§d(i)-l under 
Ci lies in the union of cells Gi of strictly lower dimension. Thus, if we define 
the n-skeleton 

Xn= U Gi , 

d(i)~n 

the image of §d(i)-l under Ci is contained in Xd(i)-l' It is assumed that its 
image is contained in only finitely many Gi and that X is given the Whitehead 
topology, in which a subset of X is closed if and only if its intersection with 
each Gi is closed. 

Let K be a compact Lie group, T a maximal compact subgroup, and X 
the flag manifold KIT. We recall from Theorem 29.4 that X is naturally 
a complex analytic manifold. The reason (we recall) is that we can identify 
X = G I B where G is the complexification of K and B is its Borel subgroup. 

We have already seen in Chapter 17 that the Euler characteristic of X is 
equal to the order of the Weyl group W. It is possible to be a bit more precise 
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than this: Hi(X) = 0 unless i is even and L::i dimH2i(X) = IWI. We will 
explain the reason for this now. 

We may give a cell decomposition making X into a CW-complex as follows. 
If w E W, then BwB/B is homeomorphic to Cl(w), where l is the length 
function on W. The proof is the same as Proposition 48.7: the unipotent 
subgroup U;;; whose Lie algebra is 

is homeomorphic to Cl(w), and u t----+ uwB is a homeomorphism of U;;; onto 
BwB/B. The closure C(w) of BwB/B - known as a "closed Schubert cell" 
- is a union of cells of smaller dimension, so G / B becomes a CW complex. 
Since the homology of a CW-complex is the same as the cellular homology 
of its skeleton (Dold [35], Chapter 5), and all the cells in this complex have 
even dimension - the real dimension of BwB/B is 2l(w) - it follows that the 
homology of X is all even-dimensional. 

Since X is a compact complex analytic manifold (Theorem 29.4), it is an 
orient able manifold, and by Poincare duality we may associate with C(w) a 
cohomology class, and these classes span the cohomology ring H*(X) as a 
vector space. 

This description can be recast in the language of algebraic geometry. A 
substitute for the cohomology ring was defined by Chow [28]. See Hartshorne 
[54], Appendix A, for a convenient synopsis of the Chow ring, and see Fulton 
[45] for a modern treatment. In the graded Chow ring of a nonsingular variety 
X, the homogeneous elements of degree r are rational equivalence classes of 
algebraic cycles. Here an algebraic cycle of co dimension r is an element of the 
free Abelian group generated by the irreducible subvarieties of codimension 
r. Rational equivalence of cycles is an equivalence relation of algebraic defor
mation. For divisors, which are cycles of co dimension 1, it coincides with the 
familiar relation of linear equivalence. We recall that two divisors Dl and D2 
are linearly equivalent if Dl - D2 is the divisor of a function f in the function 
field of X. 

The multiplication in the Chow ring is the intersection of cycles. If two 
subvarieties Y and Z (of co dimensions m and n) are given, we say that Y and 
Z intersect properly if every irreducible component of Y n Z has co dimension 
m+n. (If m+n exceeds the dimension of X, this means that Y and Z have an 
empty intersection.) Chow's Lemma asserts that Y and Z may be deformed 
to intersect properly. That is, there exist Y' and Z' rationally equivalent to Y 
and Z, respectively, such that Y and Z' intersect properly. The intersection 
X n Z is then a union of cycles of codimension m + n, whose sum in the Chow 
ring is Y n Z. (They must be counted with a certain intersection multiplicity.) 

The "moving" process embodied by Chow's Lemma will be an issue for 
us when we consider the intersection pairing in Grassmannians, so let us 
contemplate a simple case of intersections in ]p>n. Hartshorne [54], 1.7, gives a 
beautiful and complete treatment of intersection theory in Ipm. 
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The space Ipln (C), which we will come to presently, resembles flag manifolds 
and Grassmannians in that the Chow ring and the cohomology ring coincide. 
(Indeed, Ipln(C) is a Grassmannian.) The homology ofpn(C) can be computed 
very simply since it has a cell decomposition in which each cell is an affine 
space Ai ~ Ci . 

Each cell contributes to the homology in exactly one dimension, so 

H- (pn(c)) ~ {Z if i ~ 2~ is even, 
t 0 otherWIse. 

(50.1) 

The cohomology is the same by Poincare duality. The multiplicative structure 
in the ring H* (pn (C)) is that of a truncated polynomial ring. The cohomology 
class of a hyperplane (Cn- 1 in the decomposition (50.1)) is a generator. 

Let us consider the intersection of two curves Y and Z in p2 ( C). The 
intersection Y . Z, which is the product in the Chow ring, 1, is a cycle of 
degree zero, that is, just a sum of points. The rational equivalence class of a 
cycle of degree zero is completely determined by the number of points, and 
intersection theory on p2 is fully described if we know how to compute this 
number. 

Each curve is the locus of a homogeneous polynomial in three variables, 
and the degree of this polynomial is the degrees of the curves, dey) and d( Z). 
According to Bezout's Theorem, the number of points in the intersection of 
Y and Z equals dey) d(Z). 

~ 

A curve of degree 2 
(hyperbola) deformed 

into a pair of lines. 

Fig. 50.1. A curve of degree d in ]p2 is linearly equvalent to d lines. 

Bezout's Theorem can be used to illustrate Chow's Lemma. First, note that 
a curve of degree d is rationally equivalent to a sum of d lines (Figure 50.1), 
so Y is linearly equivalent to a sum of d(Y) lines, and Z is linearly equivalent 
to a sum of d(Z) lines. Since two lines have a unique point of intersection, 
the first set of dey) lines will intersect the second set of d( Z) lines in exactly 
dey) d(Z) points, which is Bezout's Theorem for p2 (Figure 50.2). 

It is understood that a point of transversal intersection is counted once, 
but a point where Y and Z are tangent is counted with a multiplicity that 
can be defined in different ways. 
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Fig. 50.2. Bezout's Theorem via Chow's Lemma. 

What is the 
multiplicity of one 
circle intersecting? 

To compute 
y.y ... 

... deform 
one copy 

of the circle 

\/ 
Four! 

/\ 
Fig. 50.3. The self-intersection multiplicity of a cycle in ]p>2. 

The intersection Y . Z must be defined even when the cycles Y and Z 
are equal. For this, one may replace Z by a rationally equivalent cycle before 
taking the intersection. The self-intersection Y . Y is computed using Chow's 
Lemma, which allows one copy of Y to be deformed so that its intersection 
with the undeformed Y is transversal. Thus, replacing Y by a rationally equiv
alent cycle, one may count the intersections straightforwardly (Figure 50.2). 

The Chow ring often misses much of the cohomology. For example, if X is 
a curve of genus 9 > 1, then Hl(X) ~ 7l.,2g is nontrivial, yet the cohomology 
of an algebraic cycle of co dimension d lies in H 2d(X), and is never odd
dimensional. However, if X is a flag variety, projective space, or Grassmannian, 
the Chow ring and the cohomology ring are isomorphic. The cup product 
corresponds to the intersection of algebraic cycles. 

Let us now consider intersection theory on G / P, where P is a parabolic 
subgroup, that is, a proper subgroup of G containing B. For such a variety, 
the story is much the same as for the flag manifold - the Chow ring and 
the cohomology ring can be identified, and the Bruhat decomposition gives a 
decomposition of the space as a CW-complex. We can write 

B\G/P ~ W/Wp , 
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where Wp is the Weyl group of the Levi factor of P. If G = GL(n), this is 
Proposition 48.1 (iii). If wE W, let C(w)O be the open Schubert cell BwP/ P, 
and let C(w) be its closure, which is the union of C(w)O and open Schubert 
cells of lower dimension. The closed Schubert cells C(w) give a basis of the 
cohomology. 

We will discuss the particular case where G = GL(r + s, q and P is the 
maximal parabolic subgroup 

with Levi factor M = GL(r,q x GL(s,q. The quotient Xr,s = G/P is then 
the Grassmannian, a compact complex manifold of dimension rs. In this case, 
the cohomology ring H*(Xr,s) is closely related to the ring n introduced in 
Chapter 36. 

To explain this point, let us explain how to "truncate" the ring n and ob
tain a finite-dimensional algebra that will be isomorphic to H*(Xr,s). Suppose 
that Jr is the linear span of all 8 A such that the length of >. is > r. Then Jr 
is an ideal, and the quotient n/Jr ~ A(r) by the characteristic map. Indeed, 
it follows from Proposition 38.3 that Jr is the kernel of the homomorphism 
ch(n) : n --+ A(n). 

We can also consider the ideal L Js, where t is the involution of Theorem 
36.3. By Proposition 37.2, this is the span of the 8 A in which the length of >.t 
is greater than s - in other words, in which >'1 > s. So Jr + L Js is the span of 
all 8 A such that the diagram of >. does not fit in an r x s box. Therefore, the 
ring nr,s = n/(Jr+ L Js) is spanned by the images of 8 A where the diagram of 
>. does fit in an r x s box. For example, n3,2 is spanned by 80,8(1),8(2),8(11), 

8(21), 8(22), S(111)' 8(211), 8(221), and 8(222). It is a free Z-module of rank 10. 
In general the rank of the ring nr,s is r~S), which is the number of partitions 
of r + s of length ~ r into parts not exceeding s - that is, partitions whose 
diagrams fit into a box of dimensions r x s. 

Theorem 50.1. The cohomology ring of Xr,s is isomorphic to nr,s. In this 
isomorphism, the cohomology classes of the Schubert cells correspond to the 
8 A, as >. runs through the partitions whose diagrams fit into an r x s box. 

We will not prove this. Proofs (all rather similar and based on a method 
of Hodge) may be found in Fulton [44], Hiller [58], Hodge and Pedoe [59], 
and Manivel [96]. We will instead give an informal discussion of the result, 
including a precise description of the isomorphism and an example. 

Let us explain how to associate a partition >. whose diagram is contained 
in the r x s box with a Schubert cell of codimension equal to 1>.1. In fact, to 
every coset wWp in W/Wp we will associate such a partition. 

Right multiplication by an element of W p ~ Sr X Ss consists ofreordering 
the first r columns and the last s columns. Hence, the representative w of 
the given coset in W /W p may be chosen to be a permutation matrix such 



50 Cohomology of Grassmannians 433 

that the entries in the first r columns are in ascending order, and so that the 
entries in the last s columns are in ascending order. In other words, if (J is the 
permutation such that Wa(j),j -=1= 0, then 

(J(1) < (J(2) < ... < (J(r), (J(r + 1) < (J(r + 2) < ... < (J(r + s). (50.2) 

With this choice, we associate a partition A as follows. We mark some of the 
zero entries of the permutation matrix W as follows. If 1 ~ j ~ T, if the 1 in 
the i-th row is in the last s columns, and if the 1 in the j-th column is above 
(i,j), then we mark the (i,j)-th entry. For example, if r = 3 and s = 2, here 
are a some examples of a marked matrix: 

1 1 1 
1 • 1 • 1 

• • 1 1 • 1 (50.3) 
1 1 1 

• • • 1 • • • 1 1 

Now, we collect the marked columns and read off the permutation. For each 
row containing marks, there will be a part of the permutation equal to the 
number of marks in that row. In the three examples above, the respective 
permutations A are: 

(2,2,1), (2,1,1), (2). 

Their diagrams fit into a 2 x 3 box. We will write C).. for the closed Schubert 
cell C(w) when A and ware related this way. 

Let Fi be the vector subspace of Cr+s consisting of vectors of the form 
t(Xl'''' ,Xi, 0,,,, ,0). The group G acts on the Grassmannian gr,s of T

dimensional subspaces of Cr+s. The stabilizer of Fr is precisely the parabolic 
subgroup P, so there is a bijection Xr,s ~ gr,s in which the coset gP f------t 

gFr. We topologize gr,s by asking that this map be a homeomorphism. 
We can characterize the Schubert cells in terms of this parametrization by 

means of integer sequences. Given a sequence (d) = (do, d1,'" ,dr +s ) with 

we can consider the set <ted) of V in gr,s such that 

Let <t(d) be the set of V in gr,s such that 

dim(V n Fi ) ~ di . 

(50.4) 

(50.5) 

(50.6) 

The function V f------t dim(V n Fi ) is upper semicontinuous on gr,s, that is, for 
any integer n, {V I dim(V n Fi ) ~ n} is closed. Therefore <t(d) is closed, and 
in fact it is the closure of !ted)' 
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Lemma 50.1. In the characterization of Q:(d) it is only necessary to impose 
the condition (50.6) at integers 0 < i < r + s such that di+1 = di > di- l . 

Proof. If dHl > di and dim(V n FHl ) ~ dHb then since V n Fi has codi
mension at most 1 in V n FHl we do not need to assume dim(V n Fi ) ~ di . 

If di = di- l and dim(V n Fi - l ) ~ di- l then dim(V n Fi - l ) ~ di- l . D 

We will show Q:(d) is the image in 9r ,s of an open Schubert cell. For example, 
with r = 3 and s = 2, taking w to be the first matrix in (50.3), we consider 
the Schubert cell BwP/P, whose image in 93,2 consists of all bwF3 , where 
b E B. A one-dimensional unipotent subspace of B is sufficient to produce all 
of these elements, and a typical such space consists of all matrices of the form 

1 1 Xl Xl 

1 1 X2 X2 

1 Q; 1 X3 Q;X 3 

1 1 0 X3 

1 1 0 0 

with Q; fixed. These may be characterized by the conditions (50.5) with 

(do,'" ,d5 ) = (0,1,2,2,3,3). 

Proposition 50.1. The image in 9r,s of the Schubert cell C( w) corresponding 
to the partition A (whose diagram, we have noted, must fit in an r x s box) is 
Q:( d), where the integer sequence (do, dl , ... ,dr+s ) where 

(50.7) 

Similarly, the image ofC(w)O is Q:(d)' 

We note that, by Lemma 50.1, if (d) is the sequence in (50.7), the closed 
Schubert cell Q:(d) is characterized by the conditions 

dim(V n Fs+i - A,) ~ i. (50.8) 

Also, by Lemma 50.1, this only needs to be checked when Ai > AHI. (The 
characterization of the open Schubert cell still requires dim(V n Fk) to be 
specified for all k, not just those of the form s + i-Ad 

Proof. We will prove this for the open cell. The image of C(w)O in 9r,s consists 
of all spaces bwFr with b E B, so we must show that, with di as in (50.7), we 
have 

dim(bwFr n Fi ) = di . 

Since b stabilizes Fi , we may apply b- l , and we are reduced to showing that 
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If a is the permutation such that wu(j),j =I- 0, then the number of entries 
below the nonzero element in the i-th column, where 1 ~ i ~ r, is r+s-O'(i). 
However, r-i of these are not "marked." Therefore Ai = (r+s-O'(i)) -(r-i), 
that is, 

O'(i) = s + i-Ai. (50.9) 

Now wFr is the space of vectors that have arbitrary values in the 0'(1), 
0'(2), ... ,O'(r) positions, and all other entries are zero. So the dimension of 
wFr n Fi is the number of k such that 1 ~ j ~ rand O'(k) ~ i. Using (50.2), 

O'(i) ~ k < O'(i + 1), 

which by (50.9) is equivalent to (50.7). o 

When (d) and A are related as in (50.7), we will also denote the Schubert 
cell <t( d) by <t A' 

As we asserted earlier, the cohomology ring Xr,s is isomorphic to the quo
tient Rr,s of the ring n, which has played such a role in this last part of the 
book. To get some intuition for this, let us consider the identity in n 

8(1) . 8(1) = 8(2) + 8(11)' 

By the parametrization we have given, 8 A corresponds to the Schubert cell 
<tA• In the case at hand, the relevant cells are characterized by the following 
conditions: 

<t(1) = {V I dim(V n Fs) ~ 1}, 

<t(2) = {VI dim(VnFs_ 1) ~ 1}, 

<t(U) = {V I dim(V n Fs+1) ~ 2}. 

So our expectation is that if we deform <t(1) into two copies <t(1) and <t(/1) that 
intersect properly, the intersection will be rationally equivalent to the sum of 
<t(2) and <t(U)' We may choose spaces Gs and Hs of co dimension s such that 
Gs n Hs = Fs- 1 and Gs + Hs = Fs+!' Now let us consider the intersection of 

<t(1) = {VI dim(VnGs ) ~ 1}, <t(1) = {V I dim(V n Hs) ~ 1}. 

If V lies in both <t(1) and <t(1)' then let v' and v" be nonzero vectors in VnGs 

and V n H s , respectively. There are two possibilities. Either v' and v" are 
proportional, in which case they lie in V n Fs- b so V E <t(2) , or they are 
linearly independent. In the second case, both lie in FS+b so V E <t(U)' 

The intersection theory of flag manifolds is very similar to that of Grass
mannians. The difference is that while the cohomology of Grassmannians for 
GL(r) is modeled on the ring n, which can be identified as in Chapter 36 
with the ring A of symmetric polynomials, the cohomology of flag manifolds 
is modeled on a polynomial ring. Specifically, if B is the Borel subgroup of 



436 Lie Groups 

G = GL( r, q, then the cohomology ring of G / E is a quotient of the polyno
mial ring Z[XI' ... ,xr ], where each Xi is homogeneous of degree 2. Lascoux and 
Schiitzenberger defined elements of the polynomial ring Z [Xl, ... ,xr ] called 
Schubert polynomials which playa role analogous to that of the Schur poly
nomials (See Fulton [44] and Manivel [96]). 

A minor problem is that H* (G / E) is not precisely the polynomial ring 
Z[XI,··· ,xr] but a quotient, just as H*(Qr,s) is not precisely n or even its 
quotient n/ Jr, which is isomorphic to the ring of symmetric polynomials in 
Z[XI'··· ,xr ]. 

The ring Z[XI,··· ,xr ] should be more properly regarded as the cohomol
ogy ring of an infinite CW -complex, which is the cohomology ring of the space 
Fr of r-flags in Coo. That is, let Fr,s be the space of r-flags in cr+s: 

(50.10) 

We can regard Fr,s as G / P, where P is the parabolic subgroup 

{ (b ;) I bEE, g E GL(r, q} . (50.11) 

We may embed Fr,s,-----+Fr,s+1, and the union of the Fr,s (topologized as 
the direct limit) is Fr. The open Schubert cells in Fr,s correspond to dou
ble cosets E\G/P parametrized by elements W E Sr+s/Ss. As we increase s, 
the CW-complex Fr,s is obtained by adding new cells, but only in higher 
dimension. The n-skeleton stabilizes when s is sufficiently large, and so 
Hn(Fr) ~ Hn(Fr,s) if s is sufficiently large. The ring H*(Fr) ~ Z[Xl,··· ,xr] 
is perhaps the natural domain of the Schubert polynomials. 

The cohomology of Grassmannians (and flag manifolds) provided some of 
the original evidence for the famous conjectures of Weil [125] on the num
ber of points on a variety over a finite field. Let us count the number of 
points of Xr,s over the field IF q with field elements. Representing the space as 
GL(n,lFq)/P(lFq), where n = r + s, its cardinality is 

IGL(n,lFq)1 

lP(lFa ) I 
(qn _l)(qn _ q) ... (qn _ qn-l) 

(qr _ l)(qr _ q) ... (qr _ qr-l) . (qS _ l)(qS _ q) ... (qS _ qS-l) . qrs· 

In the denominator, we have used the Levi decomposition of P = MU, where 
the Levi factor M = GL(r) x GL( s) and the unipotent radical U has dimension 
r s. This is a Gaussian binomial coefficient (~) q. It is a generating function for 
the cohomology ring H*(Xr,s). 

Motivated by these examples and other similar ones, as well as the ex
amples of projective nonsingular curves (for which there is cohomology in 
dimension 1, so that the Chow ring and the cohomology ring are definitely 
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distinct), Weil proposed a more precise relationship between the complex co
homology of a nonsingular projective variety and the number of solutions over 
a finite field. Proving the Weil conjectures required a new cohomology theory 
that was eventually supplied by Grothendieck. This is the l-adic cohomology. 
Let Fq be the algebraic closure of IF q, and let ¢ : X -+ X be the geomet
ric Frobenius map, which raises the coordinates of a point in X to the q-th 
power. The fixed points of ¢ are then the elements of X (IF q), and they may 
be counted by means of a generalization of the Lefschetz fixed-point formula: 

2n 

IX(Fq)1 = 2) _l)k tr(¢IHk). 
k=O 

The dimensions of the l-adic cohomology groups are the same as the com
plex cohomology, andin these examples (since all the cohomology comes from 
algebraic cycles) the odd-dimensional cohomology vanishes while on H2i(X) 
the Frobenius endomorphism acts by the scalar qi. Thus 

n 

IX(Fq)1 = LdimH2k(X)qk. 
k=O 

The l-adic cohomology groups have the same dimensions as the complex ones. 
Hence, the Grothendieck-Lefschetz fixed-point formula explains the extraor
dinary fact that the number of points over a finite field of the Grassmannian 
or flag varieties is a generating function for the complex cohomology. 

EXERCISES 

Exercise 50.1. Consider the space Fr,s(lFq ) of r-flags in JFT+s. Compute the car
dinality by representing it as GL( n, IF q) / P(lF q), where P is the parabolic sub
group (50.11). Show that IFr,s (lFq )I = 'Eidi(r,s)qi, where for fixed s, we have 
di(r,s) = (r+~-l). 

Exercise 50.2. Prove that H*(Fr) is a polynomial ring in r generators, with gener
ators in H2 (Fr) being the cohomology classes of the canonical line bundles ~i j here 
Xi associates with a flag (50.10) the one-dimensional vector space Fi/Fi- 1 • 
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pointed covering map, 71 
pointed topological space, 69 
polarization, 310 
polynomial character, 373 
Pontriagin duality, 6 
positive root, 127, 136 
positive Weyl chamber, 129, 142 
power-sum symmetric polynomial, 287 
preatlas, 36 
probability measure, 322 

quadratic space, 30, 34 
quantum group, 385 
quasicharacter, 4 

modular, 4 
unitary, 4 

quasisplit group, 250 
quaternionic representation, 361, 362 

raising operator, 365 
random matrix theory, 327 
rank 

real,220 
rank of a Lie group, 117 
rational character, 88, 240 
rational equivalence of cycles, 429 
real form, 186 
real representation, 361, 362 
reduced norm, 236 
reducible root system, 133, 193 
reductive group, 236, 257 
reflection, 117 
regular element, 146, 254, 396 
regular embedding, 258 
regular function, 313 
regular semisimple element, 413 
relative root system, 145, 236, 237 
relative Weyl group, 236, 245 
reparametrization of a path, 69 
representation, 6 

algebraic, 186 
contragredient, 9, 361 
cuspidal, 397 
discrete series, 397 
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orthogonal, 361, 362 
quaternionic, 361, 362 
real, 361, 362 
symplectic, 361, 362 

trivial, 13 
unitary, 24 

restricted root system, 236, 237 
Riemann zeta function, 329 
Riemannian manifold, 94 
Riemannian structure, 94 
root, 118, 207 

positive, 127, 136 
simple, 127, 145 
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root folding, 265 
root lattice, 127 
root system 

absolute, 236, 237 
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Schubert polynomial, 436 
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Schur polynomial, 297, 308 
Schur's Lemma, 10 
self-adjoint, 17 
semisimple element, 396, 413 
semisimple Lie algebra, 150 
semisimple Lie group, 150 
Siegel domain 
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Siegel parabolic subgroup, 225 
Siegel space, 221 
Siegel upper half-space, 221 
simple positive root, 145 
simple reflection, 136, 206 
simple root, 127, 136 
simply-connected, 45 

topological space, 70 
simply-laced Dynkin diagram, 194 
singular element, 146, 254 
skew partition, 344 
smooth manifold, 36 
smooth map, 29, 36 
smooth premanifold, 36 
solvable Lie algebra, 198 

Lie's theorem, 200 
special linear group, 30 
special orthogonal group, 30 
special unitary group, 30 
spin group, 78 
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split group, 249 
standard Borel subgroup, 202 
standard parabolic subgroup, 258, 385, 

386, 404 
standard representation, 158 
standard tableau, 341 
stationary length, 96 
Steinberg character, 389 
strip 
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vertical, 344 

subgroup 
commutator, 155 

submanifold, 29 
subpermutation matrix, 378 
summation convention, 95 
support, 165 
support of a permutation, 315 
support of an intertwining operator, 279 
symmetric algebra, 53, 352, 353 
symmetric power, 52 
symmetric space, 212 

boundary, 224 
dual,213 
Hermitian, 221 
irreducible, 215 
reducible, 215 
type I, 217 
type II, 216 
type III, 217 
type IV, 216 

symplectic group, 30 
symplectic representation, 361, 362 

tableau, 341 
standard, 341 

tangent bundle, 79 
tangent space, 38 
tangent vector, 38 
tensor product, 50 
terminal object, 50 
Tits' system, 205, 206 
Toeplitz matrix, 331 
topological generator, 89 
torus, 87, 413 

anisotropic, 423 
compact, 87 
complex, 88 

totally disconnected group, 24 

triality, 265 
triangulable, 107 
trivial path, 69 
trivial representation, 13 
tube domain, 222 
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twisted Frobenius-Schur number, 367 
type I symmetric spaces, 217 
type II symmetric spaces, 216 
type III symmetric spaces, 217 
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type of conjugacy class, 415 

unimodular group, 3 
unipotent character, 389 
unipotent matrix, 197 
unipotent radical, 269 
unipotent subgroup, 269 
unitary group, 30 
unitary representation, 7, 24 
universal cover, 72 
universal property, 50, 51 

vector field, 39 
left invariant, 41 
subordinate to a family, 79 

vertical strip, 344 
virtual character, 15 

weak convergence of measures, 322 
weight, 125, 143, 162 

dominant, 144 
fundamental dominant, 127 
half-integral, 179 
integral, 179 

weight diagram, 158 
weight lattice, 127 
weight multiplity, 163 
well-paced, 95 
Weyl chamber, 142 

positive, 129 
Weyl character formula, 165 
Weyl dimension formula, 169 
Weyl group, 91 

relative, 236, 245 
Weyl integration formula, 112 

Young diagram, 293 
Young tableau, 341 
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