Graduate Texts in Mathematics

Daniel Bump

Lie Groups

Springer

Graduate Texts in Mathematics
 225

Editorial Board
S. Axler F.W. Gehring K.A. Ribet

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

1 Takeuti/Zaring. Introduction to Axiomatic Set Theory. 2nd ed.
2 Охтову. Measure and Category. 2nd ed.
3 Schaefer. Topological Vector Spaces. 2nd ed.
4 Hilton/Stammbach. A Course in Homological Algebra. 2nd ed.
5 Mac Lane. Categories for the Working Mathematician. 2nd ed.
6 Hughes/Piper. Projective Planes.
7 J.-P. Serre. A Course in Arithmetic.
8 Takeuti/Zaring. Axiomatic Set Theory.
9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
10 Cohen. A Course in Simple Homotopy Theory.
11 Conway. Functions of One Complex Variable I. 2nd ed.
12 Beals. Advanced Mathematical Analysis.
13 ANDERSON/FuLLER. Rings and Categories of Modules. 2nd ed.
14 Golubitsky/Guillemin. Stable Mappings and Their Singularities.
15 Berberian. Lectures in Functional Analysis and Operator Theory.
16 Winter. The Structure of Fields.
17 Rosenblatt. Random Processes. 2nd ed.
18 Halmos. Measure Theory.
19 Halmos. A Hilbert Space Problem Book. 2nd ed.
20 Husemoller. Fibre Bundles. 3rd ed.
21 Humphreys. Linear Algebraic Groups.
22 Barnes/Mack. An Algebraic Introduction to Mathematical Logic.
23 Greub. Linear Algebra. 4th ed.
24 Holmes. Geometric Functional Analysis and Its Applications.
25 Hewitt/Stromberg. Real and Abstract Analysis.
26 Manes. Algebraic Theories.
27 Kelley. General Topology.
28 Zariski/Samuel. Commutative Algebra Vol.I.
29 Zariski/Samuel. Commutative Algebra. Vol.II.
30 Jacobson. Lectures in Abstract Algebra I. Basic Concepts.
31 Jacobson. Lectures in Abstract Algebra II. Linear Algebra.
32 Jacobson. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

33 HirsCh. Differential Topology

34 Spitzer. Principles of Random Walk. 2nd ed.
35 Alexander/Wermer. Several Complex Variables and Banach Algebras. 3rd ed.
36 Kelley/Namioka et al. Linear Topological Spaces.
37 Monk. Mathematical Logic.
38 Grauert/Fritzsche. Several Complex Variables.

39 ArVESON. An Invitation to C^{*}-Algebras.
40 Kemeny/Snell/Knapp. Denumerable Markov Chains. 2nd ed.
41 Apostol. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42 J.-P. Serre. Linear Representations of Finite Groups.
43 Gillman/Jerison. Rings of Continuous Functions.
44 Kendig. Elementary Algebraic Geometry.
45 Loève. Probability Theory I. 4th ed.
46 Loève. Probability Theory II. 4th ed.
47 Moise. Geometric Topology in Dimensions 2 and 3.
48 SACHS/Wu. General Relativity for Mathematicians.
49 Gruenberg/Weir. Linear Geometry. 2nd ed.
50 Edwards. Fermat's Last Theorem.
51 Klingenberg. A Course in Differential Geometry.
52 Hartshorne. Algebraic Geometry.
53 Manin. A Course in Mathematical Logic.
54 Graver/Watkins. Combinatorics with Emphasis on the Theory of Graphs.
55 Brown/Pearcy. Introduction to Operator Theory I: Elements of Functional Analysis.
56 Massey. Algebraic Topology: An Introduction.
57 Crowell/Fox. Introduction to Knot Theory.
58 Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. 2nd ed.
59 Lang. Cyclotomic Fields.
60 Arnold. Mathematical Methods in Classical Mechanics. 2nd ed.
61 Whitehead. Elements of Homotopy Theory.
62 Kargapolov/Merizjakov. Fundamentals of the Theory of Groups.
63 Bollobas. Graph Theory.

Daniel Bump

Lie Groups

Daniel Bump
Department of Mathematics
Stanford University
450 Serra Mall, Bldg. 380
Stanford, CA 94305-2125
USA

Editorial Board

S. Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132
USA

F.W. Gehring
Mathematics Department
East Hall
University of Michigan
Ann Arbor, MI 48109
USA

K.A. Ribet
Mathematics Department
University of California,
Berkeley
Berkeley, CA 94720-3840
USA

Mathematics Subject Classification (2000): 20xx, 22xx

```
Library of Congress Cataloging in Publication Data
Bump, Daniel.
    Lie groups / Daniel Bump.
    p. cm. --(Graduate texts in mathematics: 225)
    Includes bibliographical references and index.
    ISBN 978-1-4419-1937-3 ISBN 978-1-4757-4094-3 (eBook)
    DOI 10.1007/978-1-4757-4094-3
[on file]
```

ISBN 978-1-4419-1937-3 Printed on acid-free paper.
©2004 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, LLC in 2004
Softcover reprint of the hardcover 1st edition 2004
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Preface

This book aims to be a course in Lie groups that can be covered in one year with a group of good graduate students. I have attempted to address a problem that anyone teaching this subject must have, which is that the amount of essential material is too much to cover.

One approach to this problem is to emphasize the beautiful representation theory of compact groups, and indeed this book can be used for a course of this type if after Chapter 25 one skips ahead to Part III. But I did not want to omit important topics such as the Bruhat decomposition and the theory of symmetric spaces. For these subjects, compact groups are not sufficient.

Part I covers standard general properties of representations of compact groups (including Lie groups and other compact groups, such as finite or p adic ones). These include Schur orthogonality, properties of matrix coefficients and the Peter-Weyl Theorem.

Part II covers the fundamentals of Lie groups, by which I mean those subjects that I think are most urgent for the student to learn. These include the following topics for compact groups: the fundamental group, the conjugacy of maximal tori (two proofs), and the Weyl character formula. For noncompact groups, we start with complex analytic groups that are obtained by complexification of compact Lie groups, obtaining the Iwasawa and Bruhat decompositions. These are the reductive complex groups. They are of course a special case, but a good place to start in the noncompact world. More general noncompact Lie groups with a Cartan decomposition are studied in the last few chapters of Part II. Chapter 31, on symmetric spaces, alternates examples with theory, discussing the embedding of a noncompact symmetric space in its compact dual, the boundary components and Bergman-Shilov boundary of a symmetric tube domain, and Cartan's classification. Chapter 32 constructs the relative root system, explains Satake diagrams and gives examples illustrating the various phenomena that can occur, and reproves the Iwasawa decomposition, formerly obtained for complex analytic groups, in this more general context. Finally, Chapter 33 surveys the different ways Lie groups can be embedded in one another.

Part III returns to representation theory. The major unifying theme of Part III is Frobenius-Schur duality. This is the correspondence, originating in Schur's 1901 dissertation and emphasized by Weyl, between the irreducible representations of the symmetric group and the general linear groups. The correspondence comes from decomposing tensor spaces over both groups simultaneously. It gives a dictionary by which problems can be transferred from one group to the other. For example, Diaconis and Shahshahani studied the distribution of traces of random unitary matrices by transferring the problem of their distribution to the symmetric group. The plan of Part III is to first use the correspondence to simultaneously construct the irreducible representations of both groups and then give a series of applications to illustrate the power of this technique. These applications include random matrix theory, minors of Toeplitz matrices, branching formulae for the symmetric and unitary groups, the Cauchy identity, and decompositions of some symmetric and exterior algebras. Other thematically related topics topics discussed in Part III are the cohomology of Grassmannians, and the representation theory of the finite general linear groups.

This plan of giving thematic unity to the "topics" portion of the book with Frobenius-Schur the unifying theme has the effect of somewhat overemphasizing the unitary groups at the expense of other Lie groups, but for this book the advantages outweigh this disadvantage, in my opinion. The importance of Frobenius-Schur duality cannot be overstated.

In Chapters 48 and 49, we turn to the analogies between the representation theories of symmetric groups and the finite general linear groups, and between the representation theory of the finite general linear groups and the theory of automorphic forms. The representation theory of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ is developed to the extent that we can construct the cuspidal characters and explain HarishChandra's "Philosophy of Cusp Forms" as an analogy between this theory and the theory of automorphic forms. It is a habit of workers in automorphic forms (which many of us learned from Piatetski-Shapiro) to use analogies with the finite field case systematically.

The three parts have been written to be somewhat independent. One may thus start with Part II or Part III and it will be quite a while before earlier material is needed. In particular, either Part II or Part III could be used as the basis of a shorter course. Regarding the independence of Part III, the Weyl character formula for the unitary groups is obtained independently of the derivation in Part II. Eventually, we need the Bruhat decomposition but not before Chapter 47. At this point, the reader may want to go back to Part II to fill this gap.

Prerequisites include the Inverse Function Theorem, the standard theorem on the existence of solutions to first order systems of differential equations and a belief in the existence of Haar measures, whose properties are reviewed in Chapter 1. Chapters 17 and 50 assume some algebraic topology, but these chapters can be skipped. Occasionally algebraic varieties and algebraic groups
are mentioned, but algebraic geometry is not a prerequisite. For affine algebraic varieties, only the definition is really needed.

The notation is mostly standard. In $\operatorname{GL}(n), I$ or I_{n} denotes the $n \times n$ identity matrix and if g is any matrix, ${ }^{t} g$ denotes its transpose. Omitted entries in a matrix are zero. The identity element of a group is usually denoted 1 but also as I, if the group is GL(n) (or a subgroup), and occasionally as e when it seemed the other notations could be confusing. The notations \subset and \subseteq are synonymous, but we mostly use $X \subset Y$ if X and Y are known to be unequal, although we make no guarantee that we are completely consistent in this. If X is a finite set, $|X|$ denotes its cardinality.

One point where we differ with some of the literature is that the root system lives in $\mathbb{R} \otimes X^{*}(T)$ rather than in the dual space of the Lie algebra of the maximal torus T as in much of the literature. This is of course the right convention if one takes the point of view of algebraic groups, and it is also arguably the right point of view in general since the real significance of the roots has to do with the fact that they are characters of the torus, not that they can be interpreted as linear functionals on its Lie algebra.

To keep the book to a reasonable length, many standard topics have been omitted, and the reader may want to study some other books at the same time. Cited works are usually recommended ones.

Acknowledgments. The proofs in Chapter 36 on the Jacobi-Trudi identity were worked out years ago with Karl Rumelhart when he was still an undergraduate at Stanford. Very obviously, Chapters 40 and 41 owe a great deal to Persi Diaconis, and Chapter 43 on Cauchy's identity was suggested by a conversation with Steve Rallis. I would like to thank my students in Math 263 for staying with me while I lectured on much of this material.

This book was written using $\mathrm{T}_{\mathrm{E}} \mathrm{Xmacs}$, with further editing of the exported ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ file. The utilities patch and diff were used to maintain the differences between the automatically generated and the hand-edited $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ files. The figures were made with MetaPost. The weight diagrams in Chapter 24 were created using programs I wrote many years ago in Mathematica based on the Freudenthal multiplicity formula.

This work was supported in part by NSF grant DMS-9970841.

Contents

Preface v
Part I: Compact Groups
1 Haar Measure 3
2 Schur Orthogonality 6
3 Compact Operators 17
4 The Peter-Weyl Theorem 21
Part II: Lie Group Fundamentals
5 Lie Subgroups of $\operatorname{GL}(n, \mathbb{C})$ 29
6 Vector Fields 36
7 Left-Invariant Vector Fields 41
8 The Exponential Map 46
9 Tensors and Universal Properties 50
10 The Universal Enveloping Algebra 54
11 Extension of Scalars 58
12 Representations of $\mathfrak{s l}(2, \mathbb{C})$ 62
13 The Universal Cover 69
14 The Local Frobenius Theorem 79
15 Tori 86
16 Geodesics and Maximal Tori 94
17 Topological Proof of Cartan's Theorem 107
18 The Weyl Integration Formula 112
19 The Root System 117
20 Examples of Root Systems 127
21 Abstract Weyl Groups 136
22 The Fundamental Group 146
23 Semisimple Compact Groups 150
24 Highest-Weight Vectors 157
25 The Weyl Character Formula 162
26 Spin 175
27 Complexification 182
28 Coxeter Groups 189
29 The Iwasawa Decomposition 197
30 The Bruhat Decomposition 205
31 Symmetric Spaces 212
32 Relative Root Systems 236
33 Embeddings of Lie Groups 257
Part III: Topics
34 Mackey Theory 275
35 Characters of $\operatorname{GL}(n, \mathbb{C})$ 284
36 Duality between S_{k} and $G L(n, \mathbb{C})$ 289
37 The Jacobi-Trudi Identity 297
38 Schur Polynomials and $\operatorname{GL}(n, \mathbb{C})$ 308
39 Schur Polynomials and $\boldsymbol{S}_{\boldsymbol{k}}$ 315
40 Random Matrix Theory 321
41 Minors of Toeplitz Matrices 331
42 Branching Formulae and Tableaux 339
43 The Cauchy Identity 347
44 Unitary Branching Rules 357
45 The Involution Model for $\boldsymbol{S}_{\boldsymbol{k}}$ 361
46 Some Symmetric Algebras 370
47 Gelfand Pairs 375
48 Hecke Algebras 384
49 The Philosophy of Cusp Forms 397
50 Cohomology of Grassmannians 428
References 438
Index 446

Part I: Compact Groups

Haar Measure

If G is a locally compact group, there is, up to a constant multiple, a unique regular Borel measure μ_{L} that is invariant under left translation. Here left translation invariance means that $\mu(X)=\mu(g X)$ for all measurable sets X. Regularity means that

$$
\mu(X)=\inf \{\mu(U) \mid U \supseteq X, U \text { open }\}=\sup \{\mu(K) \mid K \subseteq X, K \text { compact }\}
$$

Such a measure is called a left Haar measure. It has the properties that any compact set has finite measure and any nonempty open set has measure >0.

We will not prove the existence and uniqueness of the Haar measure. See for example Halmos [51], Hewitt and Ross [57], Chapter IV, or Loomis [94] for a proof of this. Left-invariance of the measure amounts to left-invariance of the corresponding integral,

$$
\begin{equation*}
\int_{G} f(\gamma g) d \mu_{L}(g)=\int_{G} f(g) d \mu_{L}(g) \tag{1.1}
\end{equation*}
$$

for any Haar integrable function f on G.
There is also a right-invariant measure, μ_{R}, unique up to constant multiple, called a right Haar measure. Left and right Haar measures may or may not coincide. For example, if

$$
G=\left\{\left.\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}, y>0\right\}
$$

then it is easy to see that the left- and right-invariant measures are, respectively,

$$
d \mu_{L}=y^{-2} d x d y, \quad d \mu_{R}=y^{-1} d x d y
$$

They are not the same. However, there are many cases where they do coincide, and if the left Haar measure is also right-invariant, we call G unimodular.

Conjugation is an automorphism of G, and so it takes a left Haar measure to another left Haar measure, which must be a constant multiple of the first. Thus, if $g \in G$, there exists a constant $\delta(g)>0$ such that

$$
\int_{G} f\left(g^{-1} h g\right) d \mu_{L}(h)=\delta(g) \int_{G} f(h) d \mu_{L}(h)
$$

If G is a topological group, a quasicharacter is a continuous homomorphism $\chi: G \longrightarrow \mathbb{C}^{\times}$. If $|\chi(g)|=1$ for all $g \in G$, then χ is a unitary quasicharacter.

Proposition 1.1. The function $\delta: G \longrightarrow \mathbb{R}_{+}^{\times}$is a quasicharacter. The measure $\delta(h) \mu_{L}(h)$ is right-invariant.

The measure $\delta(h) \mu_{L}(h)$ is a right Haar measure, and we may write $\mu_{R}(h)=$ $\delta(h) \mu_{L}(h)$. The quasicharacter δ is called the modular quasicharacter.

Proof. Conjugation by first g_{1} and then g_{2} is the same as conjugation by $g_{1} g_{2}$ in one step. Thus $\delta\left(g_{1} g_{2}\right)=\delta\left(g_{1}\right) \delta\left(g_{2}\right)$, so δ is a quasicharacter. Using (1.1),

$$
\delta(g) \int_{G} f(h) d \mu_{L}(h)=\int_{G} f\left(g \cdot g^{-1} h g\right) d \mu_{L}(h)=\int_{G} f(h g) d \mu_{L}(h) .
$$

Replace f by $f \delta$ in this identity and then divide both sides by $\delta(g)$ to find that

$$
\int_{G} f(h) \delta(h) d \mu_{L}(h)=\int_{G} f(h g) \delta(h) d \mu_{L}(h)
$$

Thus, the measure $\delta(h) d \mu_{L}(h)$ is right-invariant.

Proposition 1.2. If G is compact, then G is unimodular and $\mu_{L}(G)<\infty$.

Proof. Since δ is a homomorphism, the image of δ is a subgroup of \mathbb{R}_{+}^{\times}. Since G is compact, $\delta(G)$ is also compact, and the only compact subgroup of \mathbb{R}_{+}^{\times}is just $\{1\}$. Thus δ is trivial, so a left Haar measure is right-invariant. We have mentioned as an assumed fact that the Haar volume of any compact subset of a locally compact group is finite, so if G is finite, its Haar volume is finite.

If G is compact, then it is natural to normalize the Haar measure so that G has volume 1.

To simplify our notation, we will denote $\int_{G} f(g) d \mu_{L}(g)$ by $\int_{G} f(g) d g$.
Proposition 1.3. If G is unimodular, then the map $g \longrightarrow g^{-1}$ is an isometry.
Proof. It is easy to see that $g \longrightarrow g^{-1}$ turns a left Haar measure into a right Haar measure. If left and right Haar measures agree, then $g \longrightarrow g^{-1}$ multiplies the left Haar measure by a positive constant, which must be 1 since the map has order 2.

EXERCISES

Exercise 1.1. Let $d_{a} X$ denote the Lebesgue measure on $\operatorname{Mat}_{n}(\mathbb{R})$. It is of course a Haar measure for the additive group $\operatorname{Mat}_{n}(\mathbb{R})$. Show that $|\operatorname{det}(X)|^{-n} d_{a} X$ is both a left and a right Haar measure on $\operatorname{GL}(n, \mathbb{R})$.

Exercise 1.2. Let P be the subgroup of $\mathrm{GL}(r+s, \mathbb{R})$ consisting of matrices of the form

$$
p=\left(\begin{array}{r}
g_{1} \\
\\
g_{2}
\end{array}\right), \quad g_{1} \in \mathrm{GL}(r, \mathbb{R}), g_{2} \in \mathrm{GL}(s, \mathbb{R}), \quad X \in \operatorname{Mat}_{r \times s}(\mathbb{R})
$$

Let $d g_{1}$ and $d g_{2}$ denote Haar measures on $\mathrm{GL}(r, \mathbb{R})$ and $\mathrm{GL}(s, \mathbb{R})$, and let $d_{\boldsymbol{a}} X$ denote an additive Haar measure on $\operatorname{Mat}_{r \times s}(\mathbb{R})$. Show that

$$
d_{L} p=\left|\operatorname{det}\left(g_{1}\right)\right|^{-s} d g_{1} d g_{2} d_{a} X, \quad d_{R} p=\left|\operatorname{det}\left(g_{2}\right)\right|^{-r} d g_{1} d g_{2} d_{a} X
$$

are (respectively) left and right Haar measures on P, and conclude that the modular quasicharacter of P is

$$
\delta(p)=\left|\operatorname{det}\left(g_{1}\right)\right|^{s}\left|\operatorname{det}\left(g_{2}\right)\right|^{-r} .
$$

Schur Orthogonality

In this chapter and the next two, we will consider the representation theory of compact groups. Let us begin with a few observations about this theory and its relationship to some related theories.

If V is a finite-dimensional complex vector space, or more generally a Banach space, and $\pi: G \longrightarrow \mathrm{GL}(V)$ a continuous homomorphism, then (π, V) is called a representation. Assuming $\operatorname{dim}(V)<\infty$, the function $\chi_{\pi}(g)=\operatorname{tr} \pi(g)$ is called the character of π. Also assuming $\operatorname{dim}(V)<\infty$, the representation (π, V) is called irreducible if V has no proper nonzero invariant subspaces, and a character is called irreducible if it is a character of an irreducible representation.
(If V is an infinite-dimensional topological vector space, then (π, V) is called irreducible if it has no proper nonzero invariant closed subspaces.)

A quasicharacter χ is a character in this sense since we can take $V=\mathbb{C}$ and $\pi(g) v=\chi(g) v$ to obtain a representation whose character is χ.

The archetypal compact Abelian group is the circle $\mathbb{T}=\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$. We normalize the Haar measure on \mathbb{T} so that it has volume 1. Its characters are the functions $\chi_{n}: \mathbb{T} \longrightarrow \mathbb{C}^{\times}, \chi_{n}(z)=z^{n}$. The important properties of the χ_{n} are that they form an orthonormal system and (deeper) an orthonormal basis of $L^{2}(\mathbb{T})$.

More generally, if G is a compact Abelian group, the characters of G form an orthonormal basis of $L^{2}(G)$. If $f \in L^{2}(G)$, we have a Fourier expansion,

$$
\begin{equation*}
f(g)=\sum_{\chi} a_{\chi} \chi(g), \quad a_{\chi}=\int_{G} f(g) \overline{\chi(g)} d g \tag{2.1}
\end{equation*}
$$

and the Plancherel formula is the identity:

$$
\begin{equation*}
\int_{G}|f(g)|^{2} d g=\sum_{\chi}\left|a_{\chi}\right|^{2} \tag{2.2}
\end{equation*}
$$

These facts can be directly generalized in two ways. First, Fourier analysis on locally compact Abelian groups, including Pontriagin duality, Fourier inversion, the Plancherel formula, etc. is an important and complete theory due to Weil [124] and discussed, for example, in Rudin [104] or Loomis [94]. The most important difference from the compact case is that the characters can vary continuously. The characters themselves form a group, the dual group \hat{G}, whose topology is that of uniform convergence on compact sets. The Fourier expansion (2.1) is replaced by the Fourier inversion formula

$$
f(g)=\int_{\hat{G}} \hat{f}(\chi) \chi(g) d \chi, \quad \hat{f}(\chi)=\int_{G} f(g) \overline{\chi(g)} d g
$$

The symmetry between G and \hat{G} is now evident. Similarly in the Plancherel formula (2.2) the sum on the right is replaced by an integral.

The second generalization, to arbitrary compact groups, is the subject of this chapter and the next two. In summary, group representation theory gives a orthonormal basis of $L^{2}(G)$ in the matrix coefficients of irreducible representations of G and a (more important and very canonical) orthonormal basis of the subspace of $L^{2}(G)$ consisting of class functions in terms of the characters of the irreducible representations. Most importantly, the irreducible representations are all finite-dimensional. The orthonormality of these sets is Schur orthogonality; the completeness is the Peter-Weyl Theorem.

These two directions of generalization can be unified. Harmonic analysis on locally compact groups agrees with representation theory. The Fourier inversion formula and the Plancherel formula now involve the matrix coefficients of the irreducible unitary representations, which may occur in continuous families and are usually infinite-dimensional. This field of mathematics, largely created by Harish-Chandra, is fundamental but beyond the scope of this book. See Knapp [81] for an extended introduction, and Gelfand, Graev and Piatetski-Shapiro [46] and Varadarajan [120] for the Plancherel formula for $\operatorname{SL}(2, \mathbb{R})$.

Although infinite-dimensional representations are thus essential in harmonic analysis on a noncompact group such as $\mathrm{SL}(n, \mathbb{R})$, noncompact Lie groups also have irreducible finite-dimensional representations, which are important in their own right. They are seldom unitary and hence not relevant to the Plancherel formula. The scope of this book includes finite-dimensional representations of Lie groups but not infinite-dimensional ones.

In this chapter and the next two, we will be mainly concerned with compact groups. In this chapter, all representations will be complex and finitedimensional except when explicitly noted otherwise.

By an inner product on a complex vector space, we mean a positive definite Hermitian form, denoted \langle,$\rangle . Thus \langle v, w\rangle$ is linear in v, conjugate linear in w, satisfies $\langle w, v\rangle=\langle v, w\rangle$, and $\langle v, v\rangle>0$ if $v \neq 0$. We will also use the term inner product for real vector spaces - an inner product on a real vector space is a positive definite symmetric bilinear form. Given a group G and a real or
complex representation $\pi: G \longrightarrow \mathrm{GL}(V)$, we say the inner product \langle,$\rangle on$ V is G-equivariant or invariant if it satisfies the identity

$$
\langle\pi(g) v, \pi(g) w\rangle=\langle v, w\rangle
$$

Proposition 2.1. If G is compact and (π, V) is any finite-dimensional complex representation, then V admits a G-equivariant inner product.

Proof. Start with an arbitrary inner product $\langle\langle\rangle$,$\rangle . Averaging it gives another$ inner product,

$$
\langle v, w\rangle=\int_{G}\langle\langle\pi(g) v, \pi(g) w\rangle\rangle d g
$$

for it is easy to see that this inner product is Hermitian and positive definite. It is G-equivariant by construction.

Proposition 2.2. If G is compact, every finite-dimensional representation is the direct sum of irreducible representations.

Proof. Let (π, V) be given. Let V_{1} be a nonzero invariant subspace of minimal dimension. It is clearly irreducible. Let V_{1}^{\perp} be the orthogonal complement of V_{1} with respect to a G-invariant inner product. It is easily checked to be invariant, of lower dimension than V, and so by induction $V_{1}^{\perp}=V_{2} \oplus \ldots \oplus V_{n}$ is a direct sum of invariant subspaces and so $V=V_{1} \oplus \ldots \oplus V_{n}$ is also.

A function of the form $\phi(g)=L(\pi(g) v)$, where (π, V) is a finitedimensional representation of $G, v \in V$ and $L: V \longrightarrow \mathbb{C}$ is a linear functional, is called a matrix coefficient on G. This terminology is natural, because if we choose a basis e_{1}, \cdots, e_{n}, of V, we can identify V with \mathbb{C}^{n} and represent g by matrices:

$$
\pi(g) v=\left(\begin{array}{ccc}
\pi_{11}(g) & \cdots & \pi_{1 n}(g) \\
\vdots & & \vdots \\
\pi_{n 1}(g) & \cdots & \pi_{n n}(g)
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right), \quad v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\sum_{j=1}^{n} v_{j} e_{j}
$$

Then each of the n^{2} functions $\pi_{i j}$ is a matrix coefficient. Indeed

$$
\pi_{i j}(g)=L_{i}\left(\pi(g) e_{j}\right)
$$

where $L_{i}\left(\sum_{j} v_{j} e_{j}\right)=v_{i}$.
Proposition 2.3. The matrix coefficients of G are continuous functions. The pointwise sum or product of two matrix coefficients is a matrix coefficient, so they form a ring.

Proof. If $v \in V$, then $g \longrightarrow \pi(g) v$ is continuous since by definition a representation $\pi: G \longrightarrow \mathrm{GL}(V)$ is continuous and so a matrix coefficient $L\left(\pi(g) v^{\prime}\right)$ is continuous.

If $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are representations, $v_{i} \in V_{i}$ are vectors and $L_{i}: V_{i} \longrightarrow \mathbb{C}$ are linear functionals, then we have representations $\pi_{1} \oplus \pi_{2}$ and $\pi_{1} \otimes \pi_{2}$ on $V_{1} \oplus V_{2}$ and $V_{1} \otimes V_{2}$, respectively. Given vectors $v_{i} \in V_{i}$ and functionals $L_{i} \in V_{i}^{*}$, then $L_{1}\left(\pi(g) v_{1}\right) \pm L_{2}\left(\pi(g) v_{2}\right)$ can be expressed as $L\left(\left(\pi_{1} \oplus \pi_{2}\right)(g)\left(v_{1}, v_{2}\right)\right)$ where $L: V_{1} \oplus V_{2} \longrightarrow \mathbb{C}$ is $L\left(x_{1}, x_{2}\right)=L_{1}\left(x_{1}\right) \pm L_{2}\left(x_{2}\right)$, so the matrix coefficients are closed under addition and subtraction.

Similarly, we have a linear functional $L_{1} \otimes L_{2}$ on $V_{1} \otimes V_{2}$ satisfying

$$
\left(L_{1} \otimes L_{2}\right)\left(x_{1} \otimes x_{2}\right)=L_{1}\left(x_{1}\right) L_{2}\left(x_{2}\right)
$$

and

$$
\left(L_{1} \otimes L_{2}\right)\left(\left(\pi_{1} \otimes \pi_{2}\right)(g)\left(v_{1} \otimes v_{2}\right)\right)=L_{1}\left(\pi_{1}(g) v_{1}\right) L_{2}\left(\pi_{2}(g) v_{2}\right)
$$

proving that the product of two matrix coefficients is a matrix coefficient.
If (π, V) is a representation, let V^{*} be the dual space of V. To emphasize the symmetry between V and V^{*}, let us write the dual pairing $V \times V^{*} \longrightarrow \mathbb{C}$ in the symmetrical form $L(v)=\llbracket v, L \rrbracket$. We have a representation $\left(\hat{\pi}, V^{*}\right)$, called the contragredient of π, defined by

$$
\begin{equation*}
\llbracket v, \hat{\pi}(g) L \rrbracket=\llbracket \pi\left(g^{-1}\right) v, L \rrbracket . \tag{2.3}
\end{equation*}
$$

Note that the inverse is needed here so that $\hat{\pi}\left(g_{1} g_{2}\right)=\hat{\pi}\left(g_{1}\right) \hat{\pi}\left(g_{2}\right)$.
If (π, V) is a representation, then by Proposition 2.3 any linear combination of functions of the form $L(\pi(g) v)$ with $v \in V, L \in V^{*}$ is a matrix coefficient, though it may be a function $L^{\prime}\left(\pi^{\prime}(g) v^{\prime}\right)$ where $\left(\pi^{\prime}, V^{\prime}\right)$ is not (π, V), but a larger representation. Nevertheless, we call any linear combination of functions of the form $L(\pi(g) v)$ a matrix coefficient of the representation (π, V). Thus the matrix coefficients of π form a vector space, which we will denote by \mathcal{M}_{π}. Clearly, $\operatorname{dim}\left(\mathcal{M}_{\pi}\right) \leqslant \operatorname{dim}(V)^{2}$.

Proposition 2.4. If f is a matrix coefficient of (π, V), then $\check{f}(g)=f\left(g^{-1}\right)$ is a matrix coefficient of $\left(\hat{\pi}, V^{*}\right)$.

Proof. This is clear from (2.3), regarding v as a linear functional on V^{*}.
We have actions of G on the space of functions on G by left and right translation. Thus if f is a function and $g \in G$, the left and right translates are

$$
(\lambda(g) f)(x)=f\left(g^{-1} x\right), \quad(\rho(g) f)(x)=f(x g)
$$

Theorem 2.1. Let f be a function on G. The following are equivalent.
(i) The functions $\lambda(g) f$ span a finite-dimensional vector space.
(ii) The functions $\rho(g) f$ span a finite-dimensional vector space.
(iii) The function f is a matrix coefficient of a finite-dimensional representation.

Proof. It is easy to check that if f is a matrix coefficient of a particular representation V, then so are $\lambda(g) f$ and $\rho(g) f$ for any $g \in G$. Since V is finitedimensional, its matrix coefficients span a finite-dimensional vector space; in fact, a space of dimension at most $\operatorname{dim}(V)^{2}$. Thus (iii) implies (i) and (ii).

Suppose that the functions $\rho(g) f$ span a finite-dimensional vector space V. Then (ρ, V) is a finite-dimensional representation of G, and we claim that f is a matrix coefficient. Indeed, define a functional $L: V \longrightarrow \mathbb{C}$ by $L(\phi)=\phi(1)$. Clearly, $L(\rho(g) f)=f(g)$, so f is a matrix coefficient, as required. Thus (ii) implies (iii).

Finally, if the functions $\lambda(g) f$ span a finite-dimensional space, composing these functions with $g \longrightarrow g^{-1}$ gives another finite-dimensional space which is closed under right translation, and \check{f} defined as in Proposition 2.4 is an element of this space; hence \check{f} is a matrix coefficient by the case just considered. By Proposition 2.4, f is also a matrix coefficient, so (i) implies (iii).

If (π_{1}, V_{1}) and (π_{2}, V_{2}) are representations, an intertwining operator, also known as a G-equivariant map $T: V_{1} \longrightarrow V_{2}$ or (since V_{1} and V_{2} are sometimes called G-modules) a G-module homomorphism, is a linear transformation T : $V_{1} \longrightarrow V_{2}$ such that

$$
T \circ \pi_{1}(g)=\pi_{2}(g) \circ T
$$

for $g \in G$. We will denote by $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ the space of all linear transformations $V_{1} \longrightarrow V_{2}$ and by $\operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ the subspace of those that are intertwining maps. If T is a bijective intertwining map, then $T^{-1}: V_{2} \longrightarrow V_{1}$ is also an intertwining map, so T is an isomorphism.

For the remainder of this chapter, unless otherwise stated, G will denote a compact group.
Theorem 2.2. (Schur's Lemma) (i) Let $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ be irreducible representations, and let $T: V_{1} \longrightarrow V_{2}$ be an intertwining operator. Then either T is zero or it is an isomorphism.
(ii) Suppose that (π, V) is an irreducible representation of G and $T: V \longrightarrow V$ is an intertwining operator. Then there exists a scalar $\lambda \in \mathbb{C}$ such that $T(v)=$ λv for all $v \in V$.

Proof. For (i), the kernel of T is an invariant subspace of V_{1}, which is assumed irreducible, so if T is not zero, $\operatorname{ker}(T)=0$. Thus T is injective. Also, the image of T is an invariant subspace of V_{2}. Since V_{2} is irreducible, if T is not zero, then $\operatorname{im}(T)=V_{2}$. Therefore T is bijective,

For (ii), let λ be any eigenvalue of T. Let $I: V \longrightarrow V$ denote the identity map. The linear transformation $T-\lambda I$ is an intertwining operator that is not an isomorphism, so it is the zero map by (i).

We are assuming that G is compact. The Haar volume of G is therefore finite, and we normalize the Haar measure so that the volume of G is 1.

We will consider the space $L^{2}(G)$ of functions on G that are squareintegrable with respect to the Haar measure. This is a Hilbert space with the inner product

$$
\left\langle f_{1}, f_{2}\right\rangle_{L^{2}}=\int_{G} f_{1}(g) \overline{f_{2}(g)} d g
$$

Schur orthogonality will give us an orthonormal basis for this space.
If (π, V) is a representation and \langle,$\rangle is an invariant inner product on V$, then every linear functional is of the form $x \longrightarrow\langle x, v\rangle$ for some $v \in V$. Thus a matrix coefficient may be written in the form $g \longrightarrow\langle\pi(g) w, v\rangle$, and such a representation will be useful to us in our discussion of Schur orthogonality.

Lemma 2.1. Suppose that $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are complex representations of the compact group G. Let \langle,$\rangle be any inner product on V_{1}$. If $v_{i}, w_{i} \in V_{i}$, then the map $T: V_{1} \longrightarrow V_{2}$ given by

$$
\begin{equation*}
T(w)=\int_{G}\left\langle\pi_{1}(g) w, v_{1}\right\rangle \pi_{2}\left(g^{-1}\right) v_{2} d g \tag{2.4}
\end{equation*}
$$

is G-equivariant.
Proof. We have

$$
T\left(\pi_{1}(h) w\right)=\int_{G}\left\langle\pi_{1}(g h) w, v_{1}\right\rangle \pi_{2}\left(g^{-1}\right) v_{2} d g
$$

The variable change $g \longrightarrow g h^{-1}$ shows that this equals $\pi_{2}(h) T(w)$, as required.

Theorem 2.3. (Schur orthogonality) Suppose that $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are irreducible representations of the compact group G. Either every matrix coefficient of π_{1} is orthogonal in $L^{2}(G)$ to every matrix coefficient of π_{2}, or the representations are isomorphic.

Proof. We must show that if there exist matrix coefficients $f_{i}: G \longrightarrow \mathbb{C}$ of π_{i} that are not orthogonal, then there is an isomorphism $T: V_{1} \longrightarrow V_{2}$. We may assume that the f_{i} have the form $f_{i}(g)=\left\langle\pi_{i}(g) w_{i}, v_{i}\right\rangle$ since functions of that form span the spaces of matrix coefficients of the representations π_{i}. Here we use the notation \langle,$\rangle to denote invariant bilinear forms on both V_{1}$ and V_{2}, and $v_{i}, w_{i} \in V_{i}$. Then our assumption is that

$$
\int_{G}\left\langle\pi_{1}(g) w_{1}, v_{1}\right\rangle\left\langle\pi_{2}\left(g^{-1}\right) v_{2}, w_{2}\right\rangle d g=\int_{G}\left\langle\pi_{1}(g) w_{1}, v_{1}\right\rangle \overline{\left\langle\pi_{2}(g) w_{2}, v_{2}\right\rangle} d g \neq 0
$$

Define $T: V_{1} \longrightarrow V_{2}$ by (2.4). The map is nonzero since the last inequality can be written $\left\langle w_{2}, T\left(w_{1}\right)\right\rangle \neq 0$. It is an isomorphism by Schur's Lemma.

This gives orthogonality for matrix coefficients coming from nonisomorphic irreducible representations. But what about matrix coefficients from the same representation? (If the representations are isomorphic, we may as well assume they are equal.) The following result gives us an answer to this question.

Theorem 2.4. (Schur orthogonality) Let (π, V) be an irreducible representation of the compact group G, with invariant inner product \langle,$\rangle . Then$ there exists a constant $d>0$ such that

$$
\begin{equation*}
\int_{G}\left\langle\pi(g) w_{1}, v_{1}\right\rangle \overline{\left\langle\pi(g) w_{2}, v_{2}\right\rangle} d g=d^{-1}\left\langle w_{1}, w_{2}\right\rangle\left\langle v_{2}, v_{1}\right\rangle \tag{2.5}
\end{equation*}
$$

Later, in Proposition 2.11, we will show that $d=\operatorname{dim}(V)$.
Proof. Fixing v_{1} and v_{2}, T given by (2.4) is G-equivariant, so by Schur's Lemma it is a scalar. Thus, there is a constant $c=c\left(v_{1}, v_{2}\right)$ depending only on v_{1} and v_{2} such that $T(w)=c w$. In particular, $T\left(w_{1}\right)=c w_{1}$, and so

$$
\begin{aligned}
c\left(v_{1}, v_{2}\right)\left\langle w_{1}, w_{2}\right\rangle & =\left\langle T\left(w_{1}\right), w_{2}\right\rangle= \\
\int_{G}\left\langle\pi(g) w_{1}, v_{1}\right\rangle\left\langle\pi\left(g^{-1}\right) v_{2}, w_{2}\right\rangle d g & =\int_{G}\left\langle\pi(g) w_{1}, v_{1}\right\rangle \overline{\left\langle\pi(g) w_{2}, v_{2}\right\rangle} d g .
\end{aligned}
$$

On the other hand, the variable change $g \longrightarrow g^{-1}$ and the properties of the inner product give us

$$
\int_{G}\left\langle\pi(g) w_{1}, v_{1}\right\rangle \overline{\left\langle\pi(g) w_{2}, v_{2}\right\rangle} d g=\int_{G}\left\langle\pi(g) v_{2}, w_{2}\right\rangle \overline{\left\langle\pi(g) v_{1}, w_{1}\right\rangle} d g
$$

so the same argument shows that there exists another constant $c^{\prime}\left(w_{1}, w_{2}\right)$ such that for all v_{1} and v_{2} we have

$$
\int_{G}\left\langle\pi(g) w_{1}, v_{1}\right\rangle \overline{\left\langle\pi(g) w_{2}, v_{2}\right\rangle} d g=c^{\prime}\left(w_{1}, w_{2}\right)\left\langle v_{2}, v_{1}\right\rangle
$$

Putting these two facts together, we get (2.5). We will compute d later in Proposition 2.11, but for now we simply note that it is positive since, taking $w_{1}=w_{2}$ and $v_{1}=v_{2}$, both the left-hand side of (2.5) and the two inner products on the right-hand side are positive.

Before we turn to the evaluation of the constant d, we will prove a different orthogonality for the characters of irreducible representations (Theorem 2.5). This will require some preparations.

Proposition 2.5. The character χ of a representation (π, V) is a matrix coefficient of V.

Proof. If v_{1}, \cdots, v_{n} is a matrix of V, and L_{1}, \cdots, L_{n} is the dual basis of V^{*}, then $\chi(g)=\sum_{i=1}^{n} L_{i}\left(\pi(g) v_{i}\right)$.

Proposition 2.6. Suppose that (π, V) is a representation of G and $\left(\pi^{*}, V^{*}\right)$ is its contragredient. Then the character of π^{*} is the complex conjugate $\bar{\chi}$ of the character χ of G.

Proof. Referring to (2.3), $\pi^{*}(g)$ is the adjoint of $\pi(g)^{-1}$ with respect to the dual pairing \llbracket, \rrbracket, so its trace equals the trace of $\pi(g)^{-1}$. Since $\pi(g)$ is unitary with respect to an invariant inner product \langle,$\rangle , its eigenvalues t_{1}, \cdots, t_{n}$ all have absolute value 1 , and so

$$
\operatorname{tr} \pi(g)^{-1}=\sum_{i} t_{i}^{-1}=\sum_{i} \overline{t_{i}}=\overline{\chi(g)}
$$

The trivial representation of any group G is the representation on a onedimensional vector space V with $\pi(g) v=v$ being the trivial action.

Proposition 2.7. If (π, V) is an irreducible representation and χ its character, then

$$
\int_{G} \chi(g) d g=\left\{\begin{array}{l}
1 \text { if } \pi \text { is the trivial representation } \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. The character of the trivial representation is just the constant function 1 , and since we normalized the Haar measure so that G has volume 1, this integral is 1 if π is trivial. In general, we may regard $\int_{G} \chi(g) d g$ as the inner product of χ with the character 1 of the trivial representation, and if π is nontrivial, these are matrix coefficients of different irreducible representations and hence orthogonal by Theorem 2.3.

If (π, V) is a representation, let V^{G} be the subspace of G-invariants, that is,

$$
V^{G}=\{v \in V \mid \pi(g) v=v \text { for all } g \in G\}
$$

Proposition 2.8. If (π, V) is a representation of G and χ its character, then

$$
\int_{G} \chi(g) d g=\operatorname{dim}\left(V^{G}\right)
$$

Proof. Decompose $V=\oplus_{i} V_{i}$ into a direct sum of irreducible invariant subspaces, and let χ_{i} be the character of the restriction π_{i} of π to V_{i}. By Proposition 2.7, $\int_{G} \chi_{i}(g) d g=1$ if and only if π_{i} is trivial. Hence $\int_{G} \chi(g) d g$ is the number of trivial π_{i}. The direct sum of the V_{i} with π_{i} trivial is V^{G}, and the statement follows.

Suppose that $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are representations of G. We define a representation Π of $G \times G$ on the space $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ of all linear transformations $T: V_{1} \longrightarrow V_{2}$ by

$$
\begin{equation*}
\Pi(g, h) T=\pi_{2}(g) \circ T \circ \pi_{1}\left(h^{-1}\right) \tag{2.6}
\end{equation*}
$$

We recall that V_{1}^{*} is a module for the contragredient representation $\hat{\pi}_{1}$. We will compare this to the representation $\pi_{2} \otimes \hat{\pi}_{1}: G \times G \longrightarrow \mathrm{GL}\left(V_{2} \otimes V_{1}^{*}\right)$ defined by $\left(\pi_{2} \otimes \widehat{\pi}_{1}\right)(g, h)=\pi_{2}(g) \otimes \hat{\pi}_{1}(g)$. We denote by \llbracket, \rrbracket the dual pairing $V_{1} \times V_{1}^{*} \longrightarrow \mathbb{C}$.

Proposition 2.9. Let $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ be representations of G. Then the representation (2.6) of $G \times G$ on $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ is equivalent to the representation $\pi_{2} \otimes \hat{\pi}_{1}$ of $G \times G$ on $V_{2} \otimes V_{1}^{*}$.

Proof. Define a bilinear map $V_{2} \times V_{1}^{*} \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ by mapping $\left(v_{2}, L\right) \in$ $V_{2} \times V_{1}^{*}$ to the linear transformation $v_{1} \longmapsto \llbracket v_{1}, L \rrbracket v_{2}$. By the universal property of the tensor product, there is induced a linear map $\theta: V_{2} \otimes V_{1}^{*} \longrightarrow$ $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ such that $\theta\left(v_{2} \otimes L\right) v_{1}=\llbracket v_{1}, L \rrbracket v_{2}$. It is easy to see that θ is an isomorphism. We must show that it is $G \times G$-equivariant, that is,

$$
\begin{equation*}
\theta \circ\left(\pi_{2}(g) \otimes \hat{\pi}_{1}(h)\right)=\Pi(g, h) \circ \theta \tag{2.7}
\end{equation*}
$$

We have, for $v_{i} \in V_{i}$ and $L \in V_{1}^{*}$,

$$
\begin{gathered}
\theta \circ\left(\pi_{2}(g) \otimes \hat{\pi}_{1}(h)\right)\left(v_{2} \otimes L\right)\left(v_{1}\right)=\theta\left(\pi_{2}(g) v_{2} \otimes \hat{\pi}_{1}(h) L\right)\left(v_{1}\right)= \\
\llbracket v_{1}, \hat{\pi}_{1}(h) L \rrbracket \pi_{2}(g) v_{2}=\llbracket \pi_{1}\left(h^{-1}\right) v_{1}, L \rrbracket \pi_{2}(g) v_{2}= \\
\pi_{2}(g)\left(\llbracket \pi_{1}\left(h^{-1}\right) v_{1}, L \rrbracket v_{2}\right)=\pi_{2}(g) \theta\left(v_{2} \otimes L\right) \pi_{1}\left(h^{-1}\right) v_{1} \\
=(\Pi(g, h) \circ \theta)\left(v_{2} \otimes L\right) v_{1}
\end{gathered}
$$

This proves (2.7).
If (π, V) is an irreducible representation, we also have an action of $G \times G$ on the space \mathcal{M}_{π} of matrix coefficients of π. If $(g, h) \in G \times G$ and $f \in \mathcal{M}_{\pi}$, define $\mu(g, h) f: G \longrightarrow \mathbb{C}$ by $(\mu f)(x)=f\left(h^{-1} x g\right)$.

Proposition 2.10. If (π, V) is an irreducible complex representation of the compact group G, and $f \in \mathcal{M}_{\pi}$, then $\mu(g, h) f \in \mathcal{M}_{\pi}$. Thus $\mu: G \times G \longrightarrow$ $\mathrm{GL}\left(\mathcal{M}_{\pi}\right)$ is a representation. It is equivalent to the representation of $G \times G$ on $V \otimes V^{*} \cong \operatorname{End}(V)$ obtained by taking $\left(\pi_{1}, V_{1}\right)=\left(\pi_{2}, V_{2}\right)=(\pi, V)$ to be the same representation in Proposition 2.9.

Proof. If $v \in V, L \in V^{*}$, let $f_{v, L}(g)=\llbracket \pi(g) f, L \rrbracket$. The bilinear map $(v, L) \longrightarrow f_{v, L}$ induces an isomorphism $V \otimes V^{*} \longrightarrow \mathcal{M}_{\pi}$, which we claim is an isomorphism. This map is surjective by the definition of \mathcal{M}_{π}, and Schur orthogonality (Theorem 2.4) guarantees that \mathcal{M}_{π} contains $\operatorname{dim}(V)^{2}$ orthogonal and hence linearly independent vectors, so the map must also be injective. We check easily that $\mu(g, h) f_{v, L}=f_{\pi(g) v, \hat{\pi}(h) L}$, so this map is G-equivariant, and we conclude that $\mathcal{M}_{\pi} \cong V \otimes V^{*}$ as G-modules. The result now follows from Proposition 2.9.

If $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are irreducible representations, and χ_{1} and χ_{2} are their characters, we have already noted in proving Proposition 2.3 that we may form representations $\pi_{1} \oplus \pi_{2}$ and $\pi_{1} \otimes \pi_{2}$ on $V_{1} \oplus V_{2}$ and $V_{1} \otimes V_{2}$. It is easy to see that $\chi_{\pi_{1} \oplus \pi_{2}}=\chi_{\pi_{1}}+\chi_{\pi_{2}}$ and $\chi_{\pi_{1} \otimes \pi_{2}}=\chi_{\pi_{1}} \chi_{\pi_{2}}$. It is not quite true that the characters form a ring. Certainly the negative of a matrix coefficient is a matrix coefficient, yet the negative of a character is not a character. The set of characters is closed under addition and multiplication but not subtraction.

We define a generalized (or virtual) character to be a function of the form $\chi_{1}-\chi_{2}$, where χ_{1} and χ_{2} are characters. It is now clear that the generalized characters form a ring.

The character of a representation satisfies

$$
\chi\left(g h g^{-1}\right)=\chi(h)
$$

since $\chi\left(g h g^{-1}\right)$ is the trace of $\pi(g) \pi(h) \pi(g)^{-1}$, and the trace of a linear transformation is unchanged by conjugation.

Theorem 2.5. (Schur orthogonality) Let $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ be representations of G with characters χ_{1} and χ_{2}. Then

$$
\begin{equation*}
\int_{G} \chi_{1}(g) \overline{\chi_{2}(g)} d g=\operatorname{dim} \operatorname{Hom}_{G}\left(V_{1}, V_{2}\right) \tag{2.8}
\end{equation*}
$$

If π_{1} and π_{2} are irreducible, then

$$
\int_{G} \chi_{1}(g) \overline{\chi_{2}(g)} d g= \begin{cases}1 & \text { if } \pi_{1} \cong \pi_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. We embed $G \longrightarrow G \times G$ along the diagonal. Then $\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$, which is a $G \times G$-module by virtue of the representation (2.6), becomes a G-module, and it is clear that $\operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ is just the space of G-invariants. By Proposition 2.9, this means that $\operatorname{dim} \operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ is the same as the dimension of the space of G-invariants in $V_{2} \times V_{1}^{*}$, and using Proposition 2.6, the character of $\pi_{2} \otimes \hat{\pi}_{1}$ is $\chi_{2} \overline{\chi_{1}}$. The dimension of the space of G-invariants is $\int_{G} \chi_{2}(g) \overline{\chi_{1}(g)} d g$ by Proposition 2.8. It is an integer, so we may take its complex conjugate to obtain (2.8).

The second statement follows from (2.8) by Schur's Lemma, Theorem 2.2.

Proposition 2.11. The constant d in Theorem 2.4 equals $\operatorname{dim}(V)$.
Proof. Let v_{1}, \cdots, v_{n} be an orthonormal basis of $V, n=\operatorname{dim}(V)$. We have

$$
\chi(g)=\sum_{i}\left\langle\pi_{i}(g) v_{i}, v_{i}\right\rangle
$$

since $\left\langle\pi(g) v_{j}, v_{i}\right\rangle$ is the i, j component of the matrix of $\pi(g)$ with respect to this basis. Now

$$
1=\int_{G}|\chi(g)|^{2} d g=\sum_{i, j} \int_{G}\left\langle\pi(g) v_{i}, v_{i}\right\rangle \overline{\left\langle\pi(g) v_{j}, v_{j}\right\rangle} d g
$$

There are n^{2} terms on the right, but by (2.5) only the terms with $i=j$ are nonzero, and those equal d^{-1}. Thus $d=n$.

A function f on G is called a class function if it is constant on conjugacy classes, that is, if it satisfies the equation $f\left(h g h^{-1}\right)=f(g)$.

Proposition 2.12. If f is the matrix coefficient of an irreducible representation (π, V), and if f is a class function, then f is a constant multiple of χ_{π}.

Proof. By Schur's Lemma, there is a unique G-invariant vector in $\operatorname{Hom}_{\mathbb{C}}(V, V)$; hence. by Proposition 2.10, the same is true of \mathcal{M}_{π} in the action of G by conjugation. This matrix coefficient is of course χ_{π}.

Theorem 2.6. If f is a matrix coefficient and also a class function, then f is a finite linear combination of characters of irreducible representations.

Proof. Write $f=\sum_{i=1}^{n} f_{i}$, where each f_{i} is a class function of a distinct irreducible representation $\left(\pi_{i}, V_{i}\right)$. Since f is conjugation-invariant, and since the f_{i} live in spaces $\mathcal{M}_{\pi_{i}}$, which are conjugation-invariant and mutually orthogonal, each f_{i} is itself a class function and hence a constant multiple of $\chi_{\pi_{i}}$ by Proposition 2.12.

EXERCISES

Exercise 2.1. Suppose that G is a compact Abelian group and $\pi: G \longrightarrow \mathrm{GL}(n, \mathbb{C})$ an irreducible representation. Prove that $n=1$.

Exercise 2.2. Suppose that G is compact group and $f: G \longrightarrow \mathbb{C}$ is the matrix coefficient of an irreducible representation π. Show that $g \longmapsto \overline{f\left(g^{-1}\right)}$ is a matrix coefficient of the same representation π.

Exercise 2.3. Suppose that G is compact group. Let $C(g)$ be the space of continuous functions on G. If f_{1} and $f_{2} \in C(G)$, define the convolution $f_{1} * f_{2}$ of f_{1} and f_{2} by

$$
\left(f_{1} * f_{2}\right)(g)=\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h=\int_{G} f_{1}(h) f_{2}\left(h^{-1} g\right) d h .
$$

(i) Use the variable change $h \longrightarrow h^{-1} g$ to prove the identity of the last two terms. Prove that this operation is associative, and so $C(G)$ is a ring (without unit) with respect to covolution.
(ii) Let π be an irreducible representation. Show that the space \mathcal{M}_{π} of matrix coefficients of π is a 2-sided ideal in $C(G)$, and explain how this fact implies Theorem 2.3.

Compact Operators

If \mathfrak{H} is a normed linear space, a linear operator $T: \mathfrak{H} \rightarrow \mathfrak{H}$ is called bounded if there exists a constant C such that $|T x| \leqslant C|x|$ for all $x \in \mathfrak{H}$. In this case, the smallest such C is called the operator norm of T, and is denoted $|T|$. The boundedness of the operator T is equivalent to its continuity. If \mathfrak{H} is a Hilbert space, then a bounded operator T is self-adjoint if

$$
\langle T f, g\rangle=\langle f, T g\rangle
$$

for all $f, g \in \mathfrak{H}$. As usual, we call f an eigenvector with eigenvalue λ if $f \neq 0$ and $T f=\lambda f$. Given λ, the set of eigenvectors with eigenvalue λ is called the λ-eigenspace. It follows from elementary and usual arguments that if T is a selfadjoint bounded operator, then its eigenvalues are real, and the eigenspaces corresponding to distinct eigenvalues are orthogonal. Moreover, if $V \subset \mathfrak{H}$ is a subspace such that $T(V) \subset V$, it is easy to see that also $T\left(V^{\perp}\right) \subset V^{\perp}$.

A bounded operator $T: \mathfrak{H} \rightarrow \mathfrak{H}$ is compact if whenever $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$ is any sequence in \mathfrak{H}, the sequence $\left\{T x_{1}, T x_{2}, \cdots\right\}$ has a convergent subsequence.

Theorem 3.1. (Spectral Theorem for compact operators) Let T be a compact self-adjoint operator on a Hilbert space \mathfrak{H}. Let \mathfrak{N} be the nullspace of T. Then the Hilbert space dimension of \mathfrak{N}^{\perp} is at most countable. \mathfrak{N}^{\perp} has an orthonormal basis $\phi_{i}(i=1,2,3, \cdots)$ of eigenvectors of T so that $T \phi_{i}=\lambda_{i} \phi_{i}$. If \mathfrak{N}^{\perp} is not finite-dimensional, the eigenvalues $\lambda_{i} \rightarrow 0$ as $i \rightarrow \infty$.

Since the eigenvalues $\lambda_{i} \rightarrow 0$, if λ is any nonzero eigenvalue, it follows from this statement that the λ-eigenspace is finite-dimensional.

Proof. This depends upon the equality

$$
\begin{equation*}
|T|=\sup _{0 \neq x \in \mathfrak{H}} \frac{|\langle T x, x\rangle|}{\langle x, x\rangle} \tag{3.1}
\end{equation*}
$$

To prove this, let B denote the right-hand side. If $0 \neq x \in \mathfrak{H}$,

$$
|\langle T x, x\rangle| \leqslant|T x| \cdot|x| \leqslant|T| \cdot|x|^{2}=|T| \cdot\langle x, x\rangle
$$

so $B \leqslant|T|$. We must prove the converse. Let $\lambda>0$ be a constant, to be determined later. Using $\left\langle T^{2} x, x\right\rangle=\langle T x, T x\rangle$, we have

$$
\begin{gathered}
\left.\langle T x, T x\rangle=\frac{1}{4} \right\rvert\,\left\langle T\left(\lambda x+\lambda^{-1} T x\right), \lambda x+\lambda^{-1} T x\right\rangle- \\
\left\langle T\left(\lambda x-\lambda^{-1} T x\right), \lambda x-\lambda^{-1} T x\right\rangle \mid \leqslant \\
\frac{1}{4}\left|\left\langle T\left(\lambda x+\lambda^{-1} T x\right), \lambda x+\lambda^{-1} T x\right\rangle\right|+\left|\left\langle T\left(\lambda x-\lambda^{-1} T x\right), \lambda x-\lambda^{-1} T x\right\rangle\right| \leqslant \\
\frac{1}{4}\left[B\left\langle\lambda x+\lambda^{-1} T x, \lambda x+\lambda^{-1} T x\right\rangle+B\left\langle\lambda x-\lambda^{-1} T x, \lambda x-\lambda^{-1} T x\right\rangle\right]= \\
\frac{B}{2}\left[\lambda^{2}\langle x, x\rangle+\lambda^{-2}\langle T x, T x\rangle\right] .
\end{gathered}
$$

Now taking $\lambda=\sqrt{|T x| /|x|}$, we obtain

$$
|T x|^{2}=\langle T x, T x\rangle \leqslant B|x||T x|
$$

so $|T x| \leqslant B|x|$, which implies that $|T| \leqslant B$, whence (3.1).
We now prove that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors of T. It is an easy consequence of self-adjointness that \mathfrak{N}^{\perp} is T-stable. Let Σ be the set of all orthonormal subsets of \mathfrak{N}^{\perp} whose elements are eigenvectors of T. Ordering Σ by inclusion, Zorn's Lemma implies that it has a maximal element S. Let V be the closure of the linear span of S. We must prove that $V=\mathfrak{N}^{\perp}$. Let $\mathfrak{H}_{0}=V^{\perp}$. We wish to show $\mathfrak{H}_{0}=\mathfrak{N}$. It is obvious that $\mathfrak{N} \subseteq \mathfrak{H}_{0}$. To prove the opposite inclusion, note that \mathfrak{H}_{0} is stable under T, and T induces a compact self-adjoint operator on \mathfrak{H}_{0}. What we must show is that $T \mid \mathfrak{H}_{0}=0$. If T has a nonzero eigenvector in \mathfrak{H}_{0}, this will contradict the maximality of Σ. It is therefore sufficient to show that a compact self-adjoint operator on a nonzero Hilbert space has an eigenvector.

Replacing \mathfrak{H} by \mathfrak{H}_{0}, we are therefore reduced to the easier problem of showing that if $T \neq 0$, then T has a nonzero eigenvector. By (3.1), there is a sequence $x_{1}, x_{2}, x_{3}, \cdots$ of unit vectors such that $\left|\left\langle T x_{i}, x_{i}\right\rangle\right| \rightarrow|T|$. Observe that if $x \in \mathfrak{H}$, we have

$$
\langle T x, x\rangle=\langle x, T x\rangle=\overline{\langle T x, x\rangle}
$$

so the $\left\langle T x_{i}, x_{i}\right\rangle$ are real; we may therefore replace the sequence by a subsequence such that $\left\langle T x_{i}, x_{i}\right\rangle \rightarrow \lambda$, where $\lambda= \pm|T|$. Since $T \neq 0, \lambda \neq 0$. Since T is compact, there exists a further subsequence $\left\{x_{i}\right\}$ such that $T x_{i}$ converges to a vector v. We will show that $x_{i} \rightarrow \lambda^{-1} v$.

Observe first that

$$
\left|\left\langle T x_{i}, x_{i}\right\rangle\right| \leqslant\left|T x_{i}\right|\left|x_{i}\right|=\left|T x_{i}\right| \leqslant|T|\left|x_{i}\right|=|\lambda|,
$$

and since $\left\langle T x_{i}, x_{i}\right\rangle \rightarrow \lambda$, it follows that $\left|T x_{i}\right| \rightarrow|\lambda|$. Now

$$
\left|\lambda x_{i}-T x_{i}\right|^{2}=\left\langle\lambda x_{i}-T x_{i}, \lambda x_{i}-T x_{i}\right\rangle=\lambda^{2}\left|x_{i}\right|^{2}+\left|T x_{i}\right|^{2}-2 \lambda\left\langle T x_{i}, x_{i}\right\rangle
$$

and since $\left|x_{i}\right|=1,\left|T x_{i}\right| \rightarrow|\lambda|$, and $\left\langle T x_{i}, x_{i}\right\rangle \rightarrow \lambda$, this converges to 0 . Since $T x_{i} \rightarrow v$, the sequence λx_{i} therefore also converges to v, and $x_{i} \rightarrow \lambda^{-1} v$. Now, by continuity, $T x_{i} \rightarrow \lambda^{-1} T v$, so $v=\lambda^{-1} T v$. This proves that v is an eigenvector with eigenvalue λ. This completes the proof that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors.

Now let $\left\{\phi_{i}\right\}$ be this orthonormal basis and let λ_{i} be the corresponding eigenvalues. If $\epsilon>0$ is given, only finitely many $\left|\lambda_{i}\right|>\epsilon$ since otherwise we can find an infinite sequence of ϕ_{i} with $\left|T \phi_{i}\right|>e$. Such a sequence will have no convergent subsequence, contradicting the compactness of T. Thus \mathfrak{N}^{\perp} is countable-dimensional, and we may arrange the $\left\{\phi_{i}\right\}$ in a sequence. If it is infinite, we see the $\lambda_{i} \longrightarrow 0$.

Proposition 3.1. Let X and Y be compact topological spaces with Y a metric space with distance function d. Let U be a set of continuous maps $X \longrightarrow Y$ such that for every $x \in I$ and every $\epsilon>0$ there exists a neighborhood N of x such that $d\left(f(x), f\left(x^{\prime}\right)\right)<\epsilon$ for all $x^{\prime} \in N$ and for all $f \in U$. Then every sequence in U has a uniformly convergent subsequence.

We refer to the hypothesis on U as equicontinuity.
Proof. Let $S_{0}=\left\{f_{1}, f_{2}, f_{3}, \cdots\right\}$ be a sequence in U. We will show that it has a convergent subsequence. We will construct a subsequence that is uniformly Cauchy and hence has a limit. For every $n>1$, we will construct a subsequence $S_{n}=\left\{f_{n 1}, f_{n 2}, f_{n 3}, \cdots\right\}$ of S_{n-1} such that $\sup _{x \in X} d\left(f_{n i}(x), f_{n j}(x)\right) \leqslant 1 / n$.

Assume that S_{n-1} is constructed. For each $x \in X$, equicontinuity guarantees the existence of an open neighborhood N_{x} of x such that $d(f(y), f(x)) \leqslant$ $\frac{1}{3 n}$ for all $y \in N_{x}$ and all $f \in X$. Since X is compact, we can cover X by a finite number of these sets, say $N_{x_{1}}, \cdots, N_{x_{m}}$. Since the $f_{n-1, i}$ take values in the compact space Y, the m-tuples $\left(f_{n-1, i}\left(x_{1}\right), \cdots, f_{n-1, i}\left(x_{m}\right)\right)$ have an accumulation point, and we may therefore select the subsequence $\left\{f_{n i}\right\}$ such that $d\left(f_{n i}\left(x_{k}\right), f_{n j}\left(x_{k}\right)\right) \leqslant \frac{1}{3 n}$ for all i, j and $1 \leqslant k \leqslant m$. Then for any y, there exists x_{k} such that $y \in N_{x_{k}}$ and

$$
\begin{gathered}
d\left(f_{n i}(y), f_{n j}(y)\right) \\
\leqslant d\left(f_{n i}(y), f_{n i}\left(x_{k}\right)\right)+d\left(f_{n i}\left(x_{k}\right), f_{n j}\left(x_{k}\right)\right)+d\left(f_{n j}(y), f_{n j}\left(x_{k}\right)\right) \\
\leqslant \frac{1}{3 n}+\frac{1}{3 n}+\frac{1}{3 n}=\frac{1}{n}
\end{gathered}
$$

This completes the construction of the sequences $\left\{f_{n i}\right\}$.
The diagonal sequence $\left\{f_{11}, f_{22}, f_{33}, \cdots\right\}$ is uniformly Cauchy. Since Y is a compact metric space, it is complete, and so this sequence is uniformly convergent.

We topologize $C(X)$ by giving it the L^{∞} norm $\|_{\infty}$ (sup norm).
Proposition 3.2. (Ascoli and Arzela) Suppose that X is a compact space and that $U \subset C(X)$ is a bounded subset such that for every $x \in X$ and $\epsilon>0$ there is a neighborhood N of x such that $|f(x)-f(y)|_{\infty} \leqslant \epsilon$ for all $y \in N$ and all $f \in U$. Then every sequence in U has a uniformly convergent subsequence.

Again, the hypothesis on U is called equicontinuity.
Proof. Since U is bounded, there is a compact interval $Y \subset \mathbb{R}$ such that all functions in U take values in Y. The result follows from Proposition 3.1.

EXERCISES

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space \mathfrak{H}, and suppose that for every $\epsilon>0$ there exists a compact operator T_{ϵ} such that $\left|T-T_{\epsilon}\right|<\epsilon$. Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.)

Exercise 3.2. (Hilbert-Schmidt operators) Let X be a locally compact Hausdorff space with a positive Borel measure μ. Assume that $L^{2}(X)$ has a countable basis. Let $K \in L^{2}(X \times X)$. Consider the operator on $L^{2}(X)$ with kernel K defined by

$$
T f(x)=\int_{X} K(x, y) f(y) d y
$$

Let ϕ_{i} be an orthonormal basis of $L^{2}(X)$. Expand K in a Fourier expansion:

$$
K(x, y)=\sum_{i=1}^{\infty} \psi_{i}(x) \overline{\phi_{i}(y)}, \quad \psi_{i}=T \phi_{i} .
$$

Show that $\sum\left|\psi_{i}\right|^{2}=\iint|K(x, y)|^{2} d x d y<\infty$. Consider the operator T_{N} with kernel

$$
K_{N}(x, y)=\sum_{i=1}^{N} \psi_{i}(x) \overline{\phi_{i}(y)} .
$$

Show that T_{N} is compact, and deduce that T is compact.

The Peter-Weyl Theorem

In this chapter, we assume that G is a compact group. Let $C(G)$ be the convolution ring of continuous functions on G. It is a ring (without unit unless G is finite) under the multiplication of convolution:

$$
\left(f_{1} * f_{2}\right)(g)=\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h=\int_{G} f_{1}(h) f_{2}\left(h^{-1} g\right) d h
$$

(Use the variable change $h \longrightarrow h^{-1} g$ to prove the identity of the last two terms. See Exercise 2.3.) We will sometimes define $f_{1} * f_{2}$ by this formula even if f_{1} and f_{2} are not assumed continuous. For example, we will make use of the convolution defined this way if $f_{1} \in L^{\infty}(G)$ and $f_{2} \in L^{1}(G)$, or vice versa.

Since G has total volume 1, we have inequalities (where $\left|\left.\right|_{p}\right.$ denotes the L^{p} norm, $\left.1 \leqslant p \leqslant \infty\right)$

$$
\begin{equation*}
|f|_{1} \leqslant|f|_{2} \leqslant|f|_{\infty} \tag{4.1}
\end{equation*}
$$

The second inequality is trivial, and the first is Cauchy-Schwarz:

$$
|f|_{1}=\langle | f|, 1\rangle \leqslant|f|_{2} \cdot|1|_{2}=|f|_{2}
$$

(Here $|f|$ means the function $|f|(x)=|f(x)|$.)
Proposition 4.1. If $\phi \in C(G)$, then convolution with ϕ is a bounded operator T_{ϕ} on $L^{1}(G)$. If $f \in L^{1}(G)$, then $T_{\phi} f \in L^{\infty}(G)$ and

$$
\begin{equation*}
\left|T_{\phi} f\right|_{\infty} \leqslant|\phi|_{\infty}|f|_{1} \tag{4.2}
\end{equation*}
$$

Proof. If $f \in L^{1}(G)$, then

$$
\left|T_{\phi} f\right|_{\infty}=\sup _{g \in G}\left|\int_{G} \phi\left(g h^{-1}\right) f(h) d h\right| \leqslant|\phi|_{\infty} \int_{G}|f(h)| d h,
$$

proving (4.2). Using (4.1), it follows that the operator T_{ϕ} is bounded. In fact, (4.1) shows that it is bounded in each of the three metrics $\left|\left.\right|_{1},\left\|_{2}, \mid\right\|_{\infty}\right.$.

Proposition 4.2. If $\phi \in C(G)$, then convolution with ϕ is a bounded operator T_{ϕ} on $L^{2}(G)$ and $\left|T_{\phi}\right| \leqslant|\phi|_{\infty}$. The operator T_{ϕ} is compact, and if $\phi\left(g^{-1}\right)=$ $\frac{T_{\phi}}{\phi(g)}$, it is self-adjoint.

Proof. Using (4.1), $L^{\infty}(G) \subset L^{2}(G) \subset L^{1}(G)$, and by (4.2), $\left|T_{\phi} f\right|_{2} \leqslant$ $\left|T_{\phi} f\right|_{\infty} \leqslant|\phi|_{\infty}|f|_{1} \leqslant|\phi|_{\infty}|f|_{2}$, so the operator norm $\left|T_{\phi}\right| \leqslant|\phi|_{2}$.

By (4.1), the unit ball in $L^{2}(G)$ is contained in the unit ball in $L^{1}(G)$, so it is sufficient to show that $\mathfrak{B}=\left\{T_{\phi} f\left|f \in L^{1}(G),|f|_{1} \leqslant 1\right\}\right.$ is sequentially compact in $L^{2}(G)$. Also, by (4.1), it is sufficient to show that it is sequentially compact in $L^{\infty}(G)$, that is, in $C(G)$, whose topology is induced by the $L^{\infty}(G)$ norm. It follows from (4.2) that \mathfrak{B} is bounded. We show that it is equicontinuous. Since ϕ is continuous and G is compact, ϕ is uniformly continuous. This means that given $\epsilon>0$ there is a neighborhood N of the identity such that $|\phi(k g)-\phi(g)|<\epsilon$ for all g when $k \in N$. Now, if $f \in L^{1}(G)$ and $|f|_{1} \leqslant 1$, we have, for all g,

$$
\begin{gathered}
|(\phi * f)(k g)-(\phi * f)(g)|= \\
\left|\int_{G}\left[\phi\left(k g h^{-1}\right)-\phi\left(g h^{-1}\right)\right] f(h) d h\right| \leqslant \int_{G}\left|\phi\left(k g h^{-1}\right)-\phi\left(g h^{-1}\right)\right||f(h)| d h \leqslant \\
\epsilon|f|_{1} \leqslant \epsilon .
\end{gathered}
$$

This proves equicontinuity, and sequential compactness of \mathfrak{B} now follows by the Ascoli-Arzela Lemma (Proposition 3.2).

If $\phi\left(g^{-1}\right)=\overline{\phi(g)}$, then

$$
\left\langle T_{\phi} f_{1}, f_{2}\right\rangle=\int_{G} \int_{G} \phi\left(g h^{-1}\right) f_{1}(h) \overline{f_{2}(g)} d g d h
$$

while

$$
\left\langle f_{1}, T_{\phi} f_{2}\right\rangle=\int_{G} \int_{G} \overline{\phi\left(h g^{-1}\right)} f_{1}(h) \overline{f_{2}(g)} d g d h
$$

These are equal, so T is self-adjoint.
Recall that if $g \in G$, then $(\rho(g) f)(x)=f(x g)$ is the right translate of f by g.

Proposition 4.3. If $\phi \in C(G)$, and $\lambda \in \mathbb{C}$, the λ-eigenspace

$$
V(\lambda)=\left\{f \in L^{2}(G) \mid T_{\phi} f=\lambda f\right\}
$$

is invariant under $\rho(g)$ for all $g \in G$.
Proof. Suppose $T_{\phi} f=\lambda f$. Then

$$
\left(T_{\phi} \rho(g) f\right)(x)=\int_{G} \phi\left(x h^{-1}\right) f(h g) d h
$$

After the change of variables $h \longrightarrow h g^{-1}$, this equals

$$
\int_{G} \phi\left(x g h^{-1}\right) f(h) d h=\rho(g)\left(T_{\phi} f\right)(x)=\lambda \rho(g) f(x)
$$

Theorem 4.1. (Peter and Weyl) The matrix coefficients of G are dense in $C(G)$.

Proof. Let $f \in C(G)$. We will prove that there exists a matrix coefficient f^{\prime} such that $\left|f-f^{\prime}\right|_{\infty}<\epsilon$ for any given $\epsilon>0$.

Since G is compact, f is uniformly continuous. This means that there exists an open neighborhood U of the identity such that if $g \in U$, then $|\rho(g) f-f|_{\infty}<$ $\epsilon / 2$. Let ϕ be a nonnegative function supported in U such that $\int_{G} \phi(g) d g=1$. We may arrange that $\phi(g)=\phi\left(g^{-1}\right)$ so that the operator T_{ϕ} is self adjoint as well as compact. We claim that $\left|T_{\phi} f-f\right|_{\infty}<\epsilon / 2$. Indeed, if $h \in G$,

$$
\begin{aligned}
|(\phi * f)(h)-f(h)| & =\left|\int_{G}\left[\phi(g) f\left(g^{-1} h\right)-\phi(g) f(h)\right] d g\right| \leqslant \\
\int_{U} \phi(g) \mid f\left(g^{-1} h\right) & -f(h)\left|d g \leqslant \int_{U} \phi(g)\right| \rho(g) f-\left.f\right|_{\infty} d g \\
\leqslant & \int_{U} \phi(g)(\epsilon / 2) d g=\frac{\epsilon}{2}
\end{aligned}
$$

By Proposition 4.1, T_{ϕ} is a compact operator on $L^{2}(G)$. If λ is an eigenvalue of T_{ϕ}, let $V(\lambda)$ be the λ-eigenspace. By the spectral theorem, the spaces $V(\lambda)$ are finite-dimensional (except perhaps $V(0)$), mutually orthogonal, and they span $L^{2}(G)$ as a Hilbert space. By Proposition 4.3 they are T_{ϕ}-invariant. Let f_{λ} be the projection of f on $V(\lambda)$. Orthogonality of the f_{λ} implies that

$$
\begin{equation*}
\sum_{\lambda}\left|f_{\lambda}\right|_{2}^{2}=|f|_{2}^{2}<\infty \tag{4.3}
\end{equation*}
$$

Let

$$
f^{\prime}=T_{\phi}\left(f^{\prime \prime}\right), \quad f^{\prime \prime}=\sum_{|\lambda|>q} f_{\lambda}
$$

where $q>0$ remains to be chosen. We note that f^{\prime} and $f^{\prime \prime}$ are both contained in $\bigoplus_{|\lambda|>q} V(\lambda)$, which is a finite-dimensional vector space, and closed under right translation by Proposition 4.3, and by Theorem 2.1, it follows that they are matrix coefficients.

By (4.3), we may choose q so that $\sum_{0<q<|\lambda|}\left|f_{\lambda}\right|_{2}^{2}$ is as small as we like. Using (4.1) may thus arrange that

$$
\begin{equation*}
\left|\sum_{0<|\lambda|<q} f_{\lambda}\right|_{1} \leqslant\left|\sum_{0<|\lambda|<q} f_{\lambda}\right|_{2}=\sqrt{\sum_{0<|\lambda|<q}\left|f_{\lambda}\right|_{2}^{2}}<\frac{e}{2|\phi|_{\infty}} \tag{4.4}
\end{equation*}
$$

We have

$$
T_{\phi}\left(f-f^{\prime \prime}\right)=T_{\phi}\left(f_{0}+\sum_{0<|\lambda|<q} f_{\lambda}\right)=T_{\phi}\left(\sum_{0<|\lambda|<q} f_{\lambda}\right) .
$$

Using (4.2) and (4.4) we have $\left|T_{\phi}\left(f-f^{\prime \prime}\right)\right|_{\infty} \leqslant \epsilon / 2$. Now

$$
\begin{array}{r}
\left|f-f^{\prime}\right|_{\infty}=\left|f-T_{\phi} f+T_{\phi}\left(f-f^{\prime \prime}\right)\right| \leqslant\left|f-T_{\phi} f\right|+\left|T_{\phi} f-T_{\phi} f^{\prime \prime}\right| \\
\leqslant \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{array}
$$

Corollary 4.1. The matrix coefficients of G are dense in $L^{2}(G)$.
Proof. Since $C(G)$ is dense in $L^{2}(G)$, this follows from the Peter-Weyl Theorem and (4.1).

We say that a topological group G has no small subgroups if it has a neighborhood U of the identity such that the only subgroup of G contained in U is just $\{1\}$. For example, we will see that Lie groups have no small subgroups. On the other hand, some groups, such as $\mathrm{GL}\left(n, \mathbb{Z}_{p}\right)$ where \mathbb{Z}_{p} is the ring of p-adic integers, have a neighborhood basis at the identity consisting of open subgroups. Such a group is called totally disconnected, and for such a group the no small subgroups property fails very strongly.

A representation is called faithful if its kernel is trivial.
Theorem 4.2. Let G be a compact group that has no small subgroups. Then G has a faithful finite-dimensional representation.

Proof. Let U be a neighborhood of the identity that contains no subgroup but $\{1\}$. By the Peter-Weyl Theorem, we can find a finite-dimensional representation π and a matrix coefficient f such that $f(1)=0$ but $f(g)>1$ when $g \notin U$. The function f is constant on the kernel of π, so that kernel is contained in U. It follows that the kernel is trivial.

We will now prove a fact about infinite-dimensional representations of a compact group G. The Peter-Weyl Theorem amounts to a "completeness" of the finite-dimensional representations from the point of view of harmonic analysis. One aspect of this is the L^{2} completeness asserted in Corollary 4.1. Another aspect, which we now prove, is that there are no irreducible unitary infinite-dimensional representations. From the point of view of harmonic analysis, these two statements are closely related and in fact equivalent. Representation theory and Fourier analysis on groups are essentially the same thing.

If H is a Hilbert space, a representation $\pi: G \longrightarrow \operatorname{End}(H)$ is called unitary if $\langle\pi(g) v, \pi(g) w\rangle=\langle v, w\rangle$ for all $v, w \in H, g \in G$. It is also assumed that the $\operatorname{map}(g, v) \longmapsto \pi(g) v$ from $G \times H \longrightarrow H$ is continuous.

Theorem 4.3. (Peter and Weyl) Let H be a Hilbert space and G a compact group. Let $\pi: G \longrightarrow \operatorname{End}(H)$ be a unitary representation. Then H is a direct sum of finite-dimensional irreducible representations.

Proof. We first show that if H is nonzero then it has an irreducible finitedimensional invariant subspace. We choose a nonzero vector $v \in H$. Let N be a neighborhood of the identity of G such that if $g \in N$ then $|\pi(g) v-v| \leqslant|v| / 2$. We can find a nonnegative continuous function ϕ on G supported in N such that $\int_{G} \phi(g) d g=1$.

We claim that $\int_{G} \phi(g) \pi(g) v d g \neq 0$. This can be proved by taking the inner product with v. Indeed

$$
\begin{equation*}
\left\langle\int_{G} \phi(g) \pi(g) v d g, v\right\rangle=\langle v, v\rangle-\left\langle\int_{N} \phi(g)(v-\pi(g) v) d g, v\right\rangle \tag{4.5}
\end{equation*}
$$

and

$$
\left|\left\langle\int_{N} \phi(g)(v-\pi(g) v) d g, v\right\rangle\right| \leqslant \int_{N}|v-\pi(g) v| d g \cdot|v| \leqslant|v|^{2} / 2 .
$$

Thus, the two terms in (4.5) differ in absolute value and cannot cancel.
Next, using the Peter-Weyl Theorem, we may find a matrix coefficient f such that $|f-\phi|_{\infty}<\epsilon$, where ϵ can be chosen arbitrarily. We have

$$
\left|\int_{G}(f-\phi)(g) \pi(g) v d g\right| \leqslant \epsilon|v|
$$

so if ϵ is sufficiently small we have $\int_{G} f(g) \pi(g) v d g \neq 0$.
Since f is a matrix coefficient, so is the function $g \longmapsto f\left(g^{-1}\right)$ by Proposition 2.4. Thus, let (ρ, W) be a finite-dimensional representation with $w \in W$ and $L: W \longrightarrow \mathbb{C}$ a linear functional such that $f\left(g^{-1}\right)=L(\rho(g) w)$. Define a $\operatorname{map} T: W \longrightarrow H$ by

$$
T(x)=\int_{G} L\left(\rho\left(g^{-1}\right) x\right) \pi(g) v d g
$$

This is an intertwining map by the same argument used to prove (2.4). It is nonzero since $T(w)=\int f(g) \pi(g) v d g \neq 0$.

We have proven that every nonzero unitary representation of G has a nonzero finite-dimensional invariant subspace, which we may obviously assume to be irreducible. From this we deduce the stated result. Let (π, H) be a unitary representation of G. Let Σ be the set of all sets of orthogonal finitedimensional irreducible invariant subspaces of H, ordered by inclusion. Thus if $S \in \Sigma$ and $U, V \in S$, then U and V are finite-dimensional irreducible invariant subspaces, If $U \neq V$. then $U \perp V$. By Zorn's Lemma, Σ has a maximal element S and we are done if S spans H as a Hilbert space. Otherwise, let H^{\prime} be the orthogonal complement of the span of S. By what we have shown, H^{\prime} contains an invariant irreducible subspace. We may append this subspace to S, contradicting its maximality.

EXERCISES

Exercise 4.1. Let G be totally disconnected, and let $\pi: G \longrightarrow \mathrm{GL}(n, \mathbb{C})$ be a finitedimensional representation. Show that the kernel of π is open. (Hint: use the fact that $\mathrm{GL}(n, \mathbb{C})$ has no small subgroups.) Conclude (in contrast with Theorem 4.2) that the compact group $\mathrm{GL}\left(n, \mathbb{Z}_{p}\right)$ has no faithful finite-dimensional representation.

Exercise 4.2. Suppose that G is a compact Abelian group and $H \subset G$ a closed subgroup. Let $\chi: H \longrightarrow \mathbb{C}^{\times}$be a character. Show that χ can be extended to a character of G. (Hint: Apply Theorem 4.3 to the space $V=\left\{f \in L^{2}(G) \mid f(h g)=\chi(h) f(g)\right\}$. To show that V is nonzero, note that if $\phi \in C(G)$ then $f(g)=\int \phi(h g) \chi(h)^{-1} d h$ defines an element of V. Use Urysohn's Lemma to construct ϕ such that $f \neq 0$.)

Part II: Lie Group Fundamentals

Lie Subgroups of GL $(\boldsymbol{n}, \mathbb{C})$

If U is an open subset of \mathbb{R}^{n}, we say that a map $\phi: U \longrightarrow \mathbb{R}^{m}$ is smooth if it has continuous partial derivatives of all orders. More generally, if $X \subset \mathbb{R}^{n}$ is not necessarily open, we say that a map $\phi: X \longrightarrow \mathbb{R}^{n}$ is smooth if for every $x \in X$ there exists an open set U of \mathbb{R}^{n} containing x such that ϕ can be extended to a smooth map on U. A diffeomorphism of $X \subseteq \mathbb{R}^{n}$ with $Y \subseteq \mathbb{R}^{m}$ is a homeomorphism $F: X \longrightarrow Y$ such that both F and F^{-1} are smooth. We will assume as known the following useful criterion.

Inverse Function Theorem. If $U \subset \mathbb{R}^{d}$ is open and $u \in U$, if $F: U \longrightarrow$ \mathbb{R}^{n} is a smooth map, with $d<n$, and if the matrix of partial derivatives $\left(\partial F_{i} / \partial x_{j}\right)$ has rank d at u, then u has a neighborhood N such that F induces a diffeomorphism of N onto its image.

A subset X of a topological space Y is locally closed (in Y) if for all $x \in X$ there exists an open neighborhood U of x in Y such that $X \cap U$ is closed in U. This is equivalent to saying that X is the intersection of an open set and a closed set. We say that X is a submanifold of \mathbb{R}^{n} of dimension d if it is a locally closed subset and every point of X has a neighborhood that is diffeomorphic to an open set in \mathbb{R}^{d}.

Let us identify $\operatorname{Mat}_{n}(\mathbb{C})$ with the Euclidean space $\mathbb{C}^{n^{2}} \cong \mathbb{R}^{2 n^{2}}$. The subset $\mathrm{GL}(n, \mathbb{C})$ is open, and if a closed subgroup G of $\mathrm{GL}(n, \mathbb{C})$ is a submanifold of $\mathbb{R}^{2 n^{2}}$ in this identification, we say that G is a closed Lie subgroup of $\operatorname{GL}(n, \mathbb{C})$. It may be shown that any closed subgroup of $\mathrm{GL}(n, \mathbb{C})$ is a closed Lie subgroup. See Remark 7.1 and Remark 7.2 for some subtleties behind the innocent term "closed Lie subgroup."

More generally, a Lie group is a topological group G that is a differentiable manifold such that the multiplication and inverse maps $G \times G \longrightarrow G$ and $G \longrightarrow G$ are smooth. We will give a proper definition of a differentiable manifold in the next chapter. In this chapter, we will restrict ourselves to closed Lie subgroups of $\mathrm{GL}(n, \mathbb{C})$.

Example 5.1. If F is a field, then the general linear group $\mathrm{GL}(n, F)$ is the group of invertible $n \times n$ matrices with coefficients in F. It is a Lie group. Assuming that $F=\mathbb{R}$ or \mathbb{C}, the group $\operatorname{GL}(n, F)$ is an open set in $\operatorname{Mat}_{n}(F)$ and hence a manifold of dimension n^{2} if $F=\mathbb{R}$ or $2 n^{2}$ if $F=\mathbb{C}$. The special linear group is the subgroup $\mathrm{SL}(n, F)$ of matrices with determinant 1 . It is a closed Lie subgroup of $\mathrm{GL}(n, F)$ of dimension $n^{2}-1$ or $2\left(n^{2}-1\right)$.

Example 5.2. If $F=\mathbb{R}$ or \mathbb{C}, let $O(n, F)=\left\{g \in \mathrm{GL}(n, F) \mid g \cdot{ }^{t} g=I\right\}$. This is the $n \times n$ orthogonal group. More geometrically, $O(n, F)$ is the group of linear transformations preserving the quadratic form $Q\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{2}+$ $x_{2}^{2}+\ldots+x_{n}^{2}$. To see this, if $(x)=^{t}\left(x_{1}, \cdots, x_{n}\right)$ is represented as a column vector, we have $Q(x)=Q\left(x_{1}, \cdots, x_{n}\right)={ }^{t} x \cdot x$, and it is clear that $Q(g x)=$ $Q(x)$ if $g \cdot{ }^{t} g=I$. The group $O(n, \mathbb{R})$ is compact and is usually denoted simply $O(n)$. The group $O(n)$ contains elements of determinants ± 1. The subgroup of elements of determinant 1 is the special orthogonal group $\mathrm{SO}(n)$. The dimension of $O(n)$ and its subgroup $\mathrm{SO}(n)$ of index 2 is $\frac{1}{2}\left(n^{2}-n\right)$. This will be seen in Proposition 5.6 when we compute their Lie algebra (which is the same for both groups).

Example 5.3. More generally, over any field, a vector space V on which there is given a quadratic form q is called a quadratic space, and the set $O(V, q)$ of linear transformations of V preserving q is an orthogonal group. Over the complex numbers, it is not hard to prove that all orthogonal groups are isomorphic (Exercise 5.4), but over the real numbers, some orthogonal groups are not isomorphic to $O(n)$. If $k+r=n$, let $O(k, r)$ be the subgroup of $\operatorname{GL}(n, \mathbb{R})$ preserving the indefinite quadratic form $x_{1}^{2}+\ldots+x_{k}^{2}-x_{k+1}^{2}-\ldots-x_{n}^{2}$. If $r=0$, this is $O(n)$, but otherwise this group is noncompact. The dimensions of these Lie groups are, like $\mathrm{SO}(n)$, equal to $\frac{1}{2}\left(n^{2}-n\right)$.

Example 5.4. The unitary group $U(n)=\left\{g \in \mathrm{GL}(n, \mathbb{C}) \mid g \cdot \overline{{ }^{t} g}=I\right\}$. If $g \in$ $U(n)$ then $|\operatorname{det}(g)|=1$, and every complex number of absolute value 1 is a possible determinant of $g \in U(n)$. The special unitary group $\mathrm{SU}(n)=U(n) \cap$ $\mathrm{SL}(n, \mathbb{C})$. The dimensions of $U(n)$ and $\mathrm{SU}(n)$ are n^{2} and $n^{2}-1$, just like $\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{SL}(n, \mathbb{R})$.

Example 5.5. If $F=\mathbb{R}$ or \mathbb{C}, let $\mathrm{Sp}(2 n, F)=\left\{g \in \mathrm{GL}(2 n, F) \mid g \cdot J \cdot{ }^{t} g=J\right\}$, where

$$
J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

This is the symplectic group. The compact group $\operatorname{Sp}(2 n, \mathbb{C}) \cap U(2 n)$ will be denoted as simply $\operatorname{Sp}(2 n)$.

A Lie algebra over a field F is a vector space \mathfrak{g} over F endowed with a bilinear map, the Lie bracket, denoted $(X, Y) \longrightarrow[X, Y]$ for $X, Y \in \mathfrak{g}$, that satisfies $[X, Y]=-[Y, X]$ and the Jacobi identity

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \tag{5.1}
\end{equation*}
$$

The identity $[X, Y]=-[Y, X]$ implies that $[X, X]=0$.
We will show that it is possible to associate a Lie algebra with any Lie group. We will show this for closed Lie subgroups of GL (n, \mathbb{C}) in this chapter and for arbitrary lie groups in Chapter 7.

First we give two purely algebraic examples of Lie algebras.
Example 5.6. Let A be an associative algebra. Define a bilinear operation on A by $[X, Y]=X Y-Y X$. With this definition, A becomes a Lie algebra.

If $A=\operatorname{Mat}_{n}(F)$, where F is a field, we will denote the Lie algebra associated with A by the previous example as $\mathfrak{g l}(n, F)$. After Proposition 5.5 it will become clear that this is the Lie algebra of $\mathrm{GL}(n, F)$ when $F=\mathbb{R}$ or \mathbb{C}. Similarly, if V is a vector space over F, then the space $\operatorname{End}(V)$ of F-linear transformations $V \longrightarrow V$ is an associative algebra and hence a Lie algebra, denoted $\mathfrak{g l}(V)$.

Example 5.7. Let F be a field and let A be an F-algebra. By a derivation of A we mean a map $D: A \longrightarrow A$ that is F-linear, and satisfies $D(f g)=$ $f D(g)+D(f) g$. We have $D(1 \cdot 1)=2 D(1)$, which implies that $D(1)=0$, and therefore $D(c)=0$ for any $c \in F \subset A$. It is easy to check that if D_{1} and D_{2} are derivations, then so is $\left[D_{1}, D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}$. However, $D_{1} D_{2}$ and $D_{2} D_{1}$ are themselves not derivations. It is easy to check that the derivations of A form a Lie algebra.

The exponential map exp : $\operatorname{Mat}_{n}(\mathbb{C}) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is defined by

$$
\begin{equation*}
\exp (X)=I+X+\frac{1}{2} X^{2}+\frac{1}{6} X^{3}+\ldots \tag{5.2}
\end{equation*}
$$

This series is convergent for all matrices X.
Remark 5.1. If X and Y commute, then $\exp (X+Y)=\exp (X) \exp (Y)$. If they do not commute, this is not true.

A one-parameter subgroup of a Lie group G is a continuous homomorphism $\mathbb{R} \longrightarrow G$. We denote this by $t \mapsto g_{t}$. Since $t X$ and $u X$ commute, for $X \in$ $\operatorname{Mat}_{n}(\mathbb{C})$, the map $t \longrightarrow \exp (t X)$ is a one-parameter subgroup. We will also denote $\exp (X)=e^{X}$.

Proposition 5.1. Let U be an open subset of \mathbb{R}^{n}, and let $x \in U$. Then we may find a smooth function f with compact support contained in U that does not vanish at x.

Proof. We may assume $x=\left(x_{1}, \cdots, x_{n}\right)$ is the origin. Define

$$
f\left(x_{1}, \cdots, x_{n}\right)=\left\{\begin{array}{cl}
e^{-\left(1-|x|^{2} / r^{2}\right)^{-1}} & \text { if }|x| \leqslant r \\
0 & \text { otherwise }
\end{array}\right.
$$

This function is smooth and has support in the ball $\{|x| \leqslant r\}$. Taking r sufficiently small, we can make this vanish outside U.

Proposition 5.2. Let G be a closed Lie subgroup of $\mathrm{GL}(n, \mathbb{C})$, and let $X \in$ $\operatorname{Mat}_{n}(\mathbb{C})$. Then the path $t \longrightarrow \exp (t X)$ is tangent to the submanifold G of $\mathrm{GL}(n, \mathbb{C})$ at $t=0$ if and only if it is contained in G for all t.
Proof. If $\exp (t X)$ is contained in G for all t, then clearly it is tangent to G at $t=0$. We must prove the converse. Suppose that $\exp \left(t_{0} X\right) \notin G$ for some $t_{0}>$ 0 . Using Proposition 5.1, Let ϕ_{0} be a smooth compactly supported function on $\operatorname{GL}(n, \mathbb{C})$ such that $\phi_{0}(g)=0$ for all $g \in G, \phi_{0} \geqslant 0$, and $\phi_{0}\left(\exp \left(t_{0} X\right)\right) \neq 0$. Let

$$
f(t)=\phi(\exp (t X)), \quad \phi(h)=\int_{G} \phi_{0}(h g) d g, \quad t \in \mathbb{R},
$$

in terms of a left Haar measure on G. Clearly, ϕ is constant on the cosets $h G$ of G, vanishes on G, but is nonzero at $\exp \left(t_{0} X\right)$. For any t,

$$
f^{\prime}(t)=\left.\frac{d}{d u} \phi(\exp (t X) \exp (u X))\right|_{u=0}=0
$$

since the path $u \longrightarrow \exp (t X) \exp (u X)$ is tangent to the coset $\exp (t X) G$ and ϕ is constant on such cosets. Moreover, $f(0)=0$. Therefore, $f(t)=0$ for all t, which is a contradiction since $f\left(t_{0}\right) \neq 0$.
Proposition 5.3. Let G be a closed Lie subgroup of $\mathrm{GL}(n, \mathbb{C})$. The set $\operatorname{Lie}(G)$ of all $X \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $\exp (t X) \subset G$ is a vector space whose dimension is equal to the dimension of G as a manifold.

Proof. This is clear from the characterization of Proposition 5.2.
Proposition 5.4. Let G be a closed Lie subgroup of $\mathrm{GL}(n, \mathbb{C})$. The map

$$
X \longrightarrow \exp (X)
$$

gives a diffeomorphism of a neighborhood of the identity in $\operatorname{Lie}(G)$ onto a neighborhood of the identity in G.
Proof. First we note that since $\exp (X)=I+X+\frac{1}{2} X^{2}+\ldots$, the Jacobian of exp at the identity is 1 , so exp induces a diffeomorphism of an open neighborhood U of the identity in $\operatorname{Mat}_{n}(\mathbb{C})$ onto a neighborhood of the identity in $\mathrm{GL}_{n}(\mathbb{C}) \subset \operatorname{Mat}_{n}(\mathbb{C})$. Now, since by Proposition $5.3 \mathrm{Lie}(H)$ is a vector subspace of dimension equal to the dimension of H as a manifold, the Inverse Function Theorem implies that the image of $\operatorname{Lie}(H) \cap U$ must be mapped onto an open neighborhood of the identity in H.

Proposition 5.5. If G is a closed Lie subgroup of $\mathrm{GL}(n, \mathbb{C})$, and if $X, Y \in$ $\operatorname{Lie}(G)$, then $[X, Y] \in \operatorname{Lie}(G)$.
Proof. It is evident that $\operatorname{Lie}(G)$ is mapped to itself under conjugation by elements of G. Thus, $\operatorname{Lie}(G)$ contains

$$
\frac{1}{t}\left(e^{t X} Y e^{-t X}-Y\right)=X Y-Y X+\frac{t}{2}\left(X^{2} Y-2 X Y X+Y X^{2}\right)+\ldots
$$

Because this is true for all t, passing to the limit $t \longrightarrow 0$ shows that $[X, Y] \in$ $\operatorname{Lie}(G)$.

We see that $\operatorname{Lie}(G)$ is a Lie subalgebra of $\mathfrak{g l}(n, \mathbb{C})$. Thus, we are able to associate a Lie algebra with a Lie group.
Example 5.8. The Lie algebra of $\mathrm{GL}(n, F)$ with $F=\mathbb{R}$ or \mathbb{C} is $\mathfrak{g l}(n, F)$.
Example 5.9. Let $\mathfrak{s l}(n, F)$ be the subspace of $X \in \mathfrak{g l}(n, F)$ such that $\operatorname{tr}(X)=$ 0 . This is a Lie subalgebra, and it is the Lie algebra of $\operatorname{SL}(n, F)$ when $F=\mathbb{R}$ or \mathbb{C}. This follows immediately from the fact that $\operatorname{det}\left(e^{X}\right)=e^{\operatorname{tr}(X)}$ for any matrix X because if x_{1}, \cdots, x_{n} are the eigenvalues of X, then $e^{x_{1}}, \cdots, e^{x_{n}}$ are the eigenvalues of e^{X}.

Example 5.10. Let $\mathfrak{o}(n, F)$ be the set of $X \in \mathfrak{g l}(n, F)$ that are skew-symmetric, in other words, that satisfy $X+{ }^{t} X=0$. It is easy to check that $\mathfrak{o}(n, F)$ is closed under the Lie bracket and hence is a Lie subalgebra.

Proposition 5.6. If $F=\mathbb{R}$ or \mathbb{C}, the Lie algebra of $O(n, F)$ is $\mathfrak{o}(n, F)$. The dimension of $O(n)$ is $\frac{1}{2}\left(n^{2}-n\right)$, and the dimension of $O(n, \mathbb{C})$ is $n^{2}-n$.
Proof. Let $G=O(n, F), \mathfrak{g}=\operatorname{Lie}(G)$. Suppose $X \in \mathfrak{o}(n, F)$. Exponentiate the identity $-t X=t^{t} X$ to get

$$
\exp (t X)^{-1}={ }^{t} \exp (t X)
$$

whence $\exp (t X) \in O(n, F)$ for all $t \in \mathbb{R}$. Thus $\mathfrak{o}(n, F) \subseteq \mathfrak{g}$. To prove the converse, suppose that $X \in \mathfrak{g}$. Then, for all t,

$$
\begin{aligned}
I & =\exp (t X) \cdot{ }^{t} \exp (t X) \\
& =\left(I+t X+\frac{1}{2} t^{2} X^{2}+\ldots\right)\left(I+t^{t} X+\frac{1}{2} t^{2} \cdot{ }^{t} X^{2}+\ldots\right) \\
& =I+t\left(X+{ }^{t} X\right)+\frac{1}{2} t^{2}\left(X^{2}+2 X \cdot{ }^{t} X+{ }^{t} X^{2}\right)+\ldots
\end{aligned}
$$

Since this is true for all t, each coefficient in this Taylor series must vanish (except of course the constant one). In particular, $X+{ }^{t} X=0$. This proves that $\mathfrak{g}=\mathfrak{o}(n, F)$.

The dimensions of $O(n)$ and $O(n, \mathbb{C})$ are most easily calculated by computing the dimension of the Lie algebras. A skew-symmetric matrix is determined by its upper triangular entries, and there are $\frac{1}{2}\left(n^{2}-n\right)$ of these.
Example 5.11. Let $\mathfrak{u}(n)$ be the set of $X \in \mathrm{GL}(n, \mathbb{C})$ such that $X+\overline{{ }^{t} X}=0$. One checks easily that this is closed under the $\mathfrak{g l}(n, \mathbb{C})$ Lie bracket $[X, Y]=$ $X Y-Y X$. Despite the fact that these matrices have complex entries, this is a real Lie algebra, for it is only a real vector space, not a complex one. (It is not closed under multiplication by complex scalars.) It may be checked along the lines of Proposition 5.6 that $\mathfrak{u}(n)$ is the Lie algebra of $U(n)$, and similarly $\mathfrak{s u}(n)=\{X \in \mathfrak{u}(n) \mid \operatorname{tr}(X)=0\}$ is the Lie algebra of $\mathrm{SU}(n)$.
Example 5.12. Let $\mathfrak{s p}(2 n, F)$ be the set of matrices $X \in \operatorname{Mat}_{2 n}(F)$ that satisfy $X J+J^{t} X=0$, where

$$
J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

This is the Lie algebra of $\operatorname{Sp}(2 n, F)$.

EXERCISES

Exercise 5.1. Show that $O(n, m)$ is the group of $g \in \mathrm{GL}(n+m, \mathbb{R})$ such that $g J_{1}{ }^{t} g=J_{1}$, where

$$
J_{1}=\left(\begin{array}{lll}
I_{n} & \\
& -I_{m}
\end{array}\right)
$$

Exercise 5.2. If $F=\mathbb{R}$ or \mathbb{C}, let $O_{J}(F)$ be the group of all $g \in \mathrm{GL}(N, F)$ such that $g J^{t} g=J$, where J is the $N \times N$ matrix

$$
\begin{equation*}
J=\left(\underset{1}{ } . \cdot{ }^{1}\right) \tag{5.3}
\end{equation*}
$$

Show that $O_{J}(\mathbb{R})$ is conjugate in $\mathrm{GL}(N, \mathbb{R})$ to $O(n, n)$ if $N=2 n$ and to $O(n+1, n)$ if $N=2 n+1$. (Hint: Find a matrix $\sigma \in \mathrm{GL}(N, \mathbb{R})$ such that $\sigma J^{t} \sigma=J_{1}$, where J is as in the previous exercise.)

Exercise 5.3. Let J be as in the previous exercise, and let

$$
\sigma=\left(\begin{array}{ccccc}
\frac{1}{\sqrt{2 i}} & & \cdots & & -\frac{i}{\sqrt{2 i}} \\
& \frac{1}{\sqrt{2 i}} & & -\frac{i}{\sqrt{2 i}} & \\
\vdots & & \ddots & . & \\
& & . & \ddots & \\
& \frac{i}{\sqrt{2 i}} & & -\frac{1}{\sqrt{2 i}} & \\
\frac{i}{\sqrt{2 i}} & & \ldots & & -\frac{1}{\sqrt{2 i}}
\end{array}\right)
$$

with all entries not on one of the two diagonals equal to zero. If N is odd, the middle element of this matrix is 1 .
(i) Show that $\sigma^{t} \sigma=J$, with J as in (5.3). With $O_{J}(F)$ as in Example 5.2, deduce that $\sigma^{-1} O_{J}(\mathbb{C}) \sigma=O(n, \mathbb{C})$. Why does the same argument not prove that $\sigma^{-1} O_{J}(\mathbb{R}) \sigma=O(n, \mathbb{R})$?
(ii) Show that if $g \in O_{J}(\mathbb{C})$ and $h=\sigma^{-1} g \sigma$, then h is real if and only if g is unitary.
(iii) Show that the group $O_{J}(\mathbb{C}) \cap U(N)$ is conjugate in $\mathrm{GL}(N, \mathbb{C})$ to $O(N)$.

Exercise 5.4. Let V_{1} and V_{2} be vector spaces over a field F, and let q_{i} be a quadratic form on V_{i} for $i=1,2$. The quadratic spaces are called equivalent if there exists an isomorphism $l: V_{1} \longrightarrow V_{2}$ such that $q_{1}=q_{2} \circ l$.
(i) Show that over a field of characteristic not equal to 2 , any quadratic form is equivalent to $\sum a_{i} x_{i}^{2}$ for some constants a_{i}.
(ii) Show that, if $F=\mathbb{C}$, then any quadratic space of dimension n is equivalent to \mathbb{C}^{n} with the quadratic form $x_{1}^{2}+\cdots+x_{n}^{2}$.
(iii) Show that, if $F=\mathbb{R}$, then any quadratic space of dimension n is equivalent to \mathbb{R}^{n} with the quadratic form $x_{1}^{2}+\cdots+x_{r}^{2}-x_{r+1}^{2}-\cdots x_{n}^{2}$ for some r.

Exercise 5.5. Compute the Lie algebra of $\operatorname{Sp}(2 n, \mathbb{R})$ and the dimension of the group.

Let $\mathbb{H}=\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k$ be the ring of quaternions, where $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j i=k, j k=-k j=i, k i=-i k=j$. Then $\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j$. If $x=$ $a+b i+c j+d k \in \mathbb{H}$ with a, b, c, d real, let $\bar{x}=a-b i-c j-d k$. If $u \in \mathbb{C}$, then $j u j^{-1}=\bar{u}$. The group $\mathrm{GL}(n, \mathbb{H})$ consists of all $n \times n$ invertible quaternion matrices.

Exercise 5.6. Show that there is a ring isomorphism $\operatorname{Mat}_{n}(\mathbb{H}) \longrightarrow \operatorname{Mat}_{2 n}(\mathbb{C})$ with the following description. Any $A \in \operatorname{Mat}_{n}(\mathbb{H})$ may be written uniquely as $A_{1}+A_{2} j$; the isomorphism in question maps

$$
A_{1}+A_{2} j \longmapsto\left(\begin{array}{cc}
A_{1} & A_{2} \\
-\bar{A}_{2} & \bar{A}_{1}
\end{array}\right) .
$$

Exercise 5.7. Show that if $A \in \operatorname{Mat}_{n}(\mathbb{H})$, then $A \cdot{ }^{t} \bar{A}=I$ if and only if the complex $2 n \times 2 n$ matrix

$$
\left(\begin{array}{cc}
A_{1} & A_{2} \\
-\bar{A}_{2} & \bar{A}_{1}
\end{array}\right)
$$

is in both $\operatorname{Sp}(2 n, \mathbb{C})$ and $U(2 n)$. Recall that the intersection of these two groups was the group denoted $\mathrm{Sp}(2 n)$.

Exercise 5.8. Show that the groups $\mathrm{SO}(2), \mathrm{SU}(2)$, and $\mathrm{Sp}(4)$ may be identified with the groups of matrices

$$
\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in F,|a|^{2}+|b|^{2}=1\right\}\right.
$$

where $F=\mathbb{R}, \mathbb{C}$, or \mathbb{H}, respectively.

Vector Fields

A smooth premanifold of dimension n is a Hausdorff topological space M together with a set \mathcal{U} of pairs (U, ϕ), where the set of U such that $(U, \phi) \in \mathcal{U}$ for some ϕ is an open cover of M and such that, for each $(U, \phi) \in \mathcal{U}$, the image $\phi(U)$ of ϕ is an open subset of \mathbb{R}^{n} and ϕ is a homeomorphism of U onto $\phi(U)$. We assume that if $U, V \in \mathcal{U}$, then $\phi_{V} \circ \phi_{U}^{-1}$ is a diffeomorphism from $\phi_{U}(U \cap V)$ onto $\phi_{V}(U \cap V)$. The set \mathcal{U} is called a preatlas.

If M and N are premanifolds, a continuous map $f: M \longrightarrow N$ is smooth if whenever (U, ϕ) and (V, ψ) are charts of M and N, respectively, the map $\psi \circ f \circ \phi^{-1}$ is a smooth map from $\phi\left(U \cap f^{-1}(V)\right) \longrightarrow \psi(V)$. Smooth maps are the morphisms in the category of smooth premanifolds. The smooth map f is a diffeomorphism if it is a bijection and has a smooth inverse. Open subsets of \mathbb{R}^{n} are naturally premanifolds, and the definitions of smooth maps and diffeomorphisms are consistent with the definitions already given in that special case.

If M is a premanifold with atlas \mathcal{U}, and if we replace \mathcal{U} by the larger set \mathcal{U}^{\prime} of all pairs (U, ϕ), where U is an open subset of M and ϕ is a diffeomorphism of U onto an open subset of \mathbb{R}^{n}, then the set of smooth maps $M \longrightarrow N$ or $N \longrightarrow M$, where N is another premanifold, is unchanged. If $\mathcal{U}=\mathcal{U}^{\prime}$, then we call \mathcal{U}^{\prime} an atlas and M a smooth manifold.

Suppose that M is a smooth manifold and $m \in M$. If U is a neighborhood of x and (ϕ, U) is a chart such that $\phi(x)$ is the origin in \mathbb{R}^{n}, then we may write $\phi(u)=\operatorname{big}\left(x_{1}(u), \cdots, x_{n}(u)\right)$, where $x_{1}, \cdots, x_{m}: U \longrightarrow \mathbb{R}$ are smooth functions. Composing ϕ with a translation in \mathbb{R}^{n}, we may arrange that $x_{i}(m)=0$, and it is often advantageous to do so. We call x_{1}, \cdots, x_{m} a set of local coordinates at m or coordinate functions on U. The set U itself may be called a coordinate neighborhood.

Let $m \in M$, and let $F=\mathbb{R}$ or \mathbb{C}. A germ of an F-valued function is an equivalence class of pairs $\left(U, f_{U}\right)$, where U is an open neighborhood of x and $f: U \longrightarrow F$ is a function. The equivalence relation is that $\left(U, f_{U}\right)$ and (V, f_{V}) are equivalent if f_{U} and f_{V} are equal on some open neighborhood W of x contained in $U \cap V$. Let \mathcal{O}_{m} be the set of germs of smooth real-
valued functions. It is a ring in an obvious way, and evaluation at m induces a surjective homomorphism $\mathcal{O}_{m} \longrightarrow \mathbb{R}$, the evaluation map. We will denote the evaluation map $f \mapsto f(m)$, a slight abuse of notation since f is a germ, not a function. Let \mathcal{M}_{m} be the kernel of this homomorphism; that is, the ideal of germs of smooth functions vanishing at m. Then \mathcal{O}_{m} is a local ring and \mathcal{M}_{m} is its maximal ideal.

Lemma 6.1. Suppose that f is a smooth function on a neighborhood U of the origin in \mathbb{R}^{n}, and $f\left(0, x_{2}, \cdots, x_{n}\right)=0$ for $\left(0, x_{2}, \cdots, x_{n}\right) \in U$. Then

$$
g\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left\{\begin{array}{cl}
x_{1}^{-1} f\left(x_{1}, \cdots, x_{n}\right) & \text { if } x_{1} \neq 0, \\
\left(\partial f / \partial x_{1}\right)\left(0, x_{2}, \cdots, x_{n}\right) & \text { if } x_{1}=0,
\end{array}\right.
$$

defines a smooth function on U.
Proof. We show first that g is continuous. Indeed, with x_{2}, \cdots, x_{n} fixed,

$$
\lim _{x_{1} \rightarrow 0} x_{1}^{-1} f\left(x_{1}, \cdots, x_{n}\right)=\left(\partial f / \partial x_{1}\right)\left(0, x_{2}, \cdots, x_{n}\right)
$$

by the definition of the derivative. Convergence is uniform on compact sets in x_{2}, \cdots, x_{n} since by the remainder form of Taylor's Theorem

$$
\left|x_{1}^{-1} f\left(x_{1}, \cdots, x_{n}\right)-\left(\partial f / \partial x_{1}\right)\left(0, x_{2}, \cdots, x_{n}\right)\right| \leqslant \frac{B}{2} x_{1}
$$

where B is an upper bound for $\left|\partial^{2} f / \partial x_{1}\right|$. Since $\partial f / \partial x_{1}\left(0, x_{2}, \cdots, x_{n}\right)$ is continuous by the smoothness of f, it follows that g is continuous.

A similar argument based on Taylor's Theorem shows that the higher partial derivatives $\partial^{n} g / \partial x_{1}^{n}$ are also continuous.

Finally, the two functions

$$
\frac{\partial^{k_{2}+\ldots+k_{n}} f}{\partial x_{2}^{k_{2}} \cdots \partial x_{n}^{k_{n}}} \quad \text { and } \quad \frac{\partial^{k_{2}+\ldots+k_{n}} g}{\partial x_{2}^{k_{2}} \cdots \partial x_{n}^{k_{n}}}
$$

bear the same relationship to each other as f and g, so we obtain similarly continuity of the mixed partials $\partial^{k_{1}+k_{2}+\ldots+k_{n}} g / \partial x_{1}^{k_{1}} \partial x_{2}^{k_{2}} \cdots \partial x_{n}^{k_{n}}$.

Proposition 6.1. Let $m \in M$, where M is a smooth manifold of dimension n. Let $\mathcal{O}=\mathcal{O}_{m}$ and $\mathcal{M}=\mathcal{M}_{m}$. Let x_{1}, \cdots, x_{n} be the germs of a set of local coordinates at m. Then x_{1}, \cdots, x_{n} generate the ideal \mathcal{M}. Moreover, $\mathcal{M} / \mathcal{M}^{2}$ is a vector space of dimension n generated by the images of x_{1}, \cdots, x_{n}.

Proof. Although this is really a statement about germs of functions, we will work with representative functions defined in some neighborhood of m.

If $f \in \mathcal{M}$, we write $f=f_{1}+f_{2}$, where $f_{1}\left(x_{1}, \cdots, x_{2}\right)=f\left(0, x_{2}, \cdots, x_{n}\right)$ and $f_{2}=f-f_{1}$. Then $f_{2} \in x_{1} \mathcal{O}$ by Lemma 6.1, while f_{2} is the germ of a function in x_{2}, \cdots, x_{n} vanishing at m and lies in $x_{2} \mathcal{O}+\ldots+x_{n} \mathcal{O}$ by induction on n.

As for the last assertion, if $f \in \mathcal{M}$, let $a_{i}=\left(\partial f / \partial x_{i}\right)(m)$. Then $f-\sum_{i} a_{i} x_{i}$ vanishes to order 2 at m. We need to show that it lies in \mathcal{M}^{2}. Thus, what we must prove is that if f and $\partial f / \partial x_{i}$ vanish at m, then f is in \mathcal{M}^{2}. To prove this, write $f=f_{1}+f_{2}+f_{3}$, where

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f\left(x_{1}, \cdots, x_{n}\right)-f\left(0, x_{2}, \cdots, x_{n}\right)-x_{1} \frac{\partial f}{\partial x_{1}}\left(0, x_{2}, \cdots, x_{n}\right) \\
f_{2}\left(x_{1}, \cdots, x_{n}\right)=f\left(0, x_{2}, \cdots, x_{n}\right) \\
f_{3}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} \frac{\partial f}{\partial x_{1}}\left(0, x_{2}, \cdots, x_{n}\right)
\end{gathered}
$$

Two applications of Lemma 6.1 show that $f_{1}=x_{1}^{-2} h$ where h is smooth, so $f_{1} \in \mathcal{M}^{2}$. The function f_{2} also vanishes, with its first-order partial derivatives at m, but is a function in one fewer variables, so by induction it is in \mathcal{M}^{2}. Lastly, $\partial f / \partial x_{1}$ vanishes at m and hence is in \mathcal{M} by the part of this proposition that is already proved, so multiplying by x_{1} gives an element of \mathcal{M}^{2}.

A local derivation of \mathcal{O}_{m} is a map $X: \mathcal{O}_{m} \longrightarrow \mathbb{R}$ that is \mathbb{R}-linear and such that

$$
\begin{equation*}
X(f g)=f(m) X(g)+g(m) X(f) \tag{6.1}
\end{equation*}
$$

Taking $f=g=1$ gives $X(1 \cdot 1)=2 X(1)$ so X annihilates constant functions.
For example, if x_{1}, \ldots, x_{n} are a set of local coordinates and $a_{1}, \cdots, a_{n} \in \mathbb{R}$, then

$$
\begin{equation*}
X f=\sum_{i=1}^{n} a_{i} \frac{\partial f}{\partial x_{i}}(m) \tag{6.2}
\end{equation*}
$$

is a local derivation.
Proposition 6.2. Let m be a point on an n-dimensional smooth manifold M. Every local derivation of \mathcal{O}_{m} is of the form (6.2). The set $T_{m}(M)$ of such local derivations is an n-dimensional real vector space.

Proof. If f and g both vanish at m, then (6.1) implies that a local derivation X vanishes on \mathcal{M}^{2}, and by Proposition 6.1 it is therefore determined by its values on x_{1}, \cdots, x_{n}. If these are a_{1}, \cdots, a_{n}, then X agrees with the righthand side of (6.2).

We now define tangent space $T_{m}(M)$ to be the space of local derivations of \mathcal{O}_{m}. We will call elements of $T_{m}(M)$ tangent vectors. Thus, a tangent vector at m is the same thing as a local derivation of the ring \mathcal{O}_{m}.

This definition of tangent vector and tangent space has the advantage that it is intrinsic. Proposition 6.2 allows us to relate this definition to the intuitive notion of a tangent vector. Intuitively, a tangent vector should be an equivalence class of paths through m : two paths are equivalent if they are tangent. By a path we mean a smooth map $u:(-\epsilon, \epsilon) \longrightarrow M$ such that
$u(0)=m$ for some $\epsilon>0$. Given a function, or the germ of a function at m, we can use the path to define a local derivation

$$
\begin{equation*}
X f=\left.\frac{d}{d t} f(u(t))\right|_{t=0} \tag{6.3}
\end{equation*}
$$

Using the chain rule, this equals (6.2) with $a_{i}=\left.(d / d t)\left(x_{i}(u(t))\right)\right|_{t=0}$.
We will denote the element (6.2) of $T_{m}(M)$ by the notation

$$
X=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}} .
$$

By a vector field X on M we mean a rule that assigns to each point $m \in M$ an element $X_{m} \in T_{m}(M)$. The assignment $m \longrightarrow X_{m}$ must be smooth. This means that if x_{1}, \cdots, x_{n} are local coordinates on an open set $U \subseteq M$, then there exist smooth functions a_{1}, \cdots, a_{n} on U such that

$$
\begin{equation*}
X_{m}=\sum_{i=1}^{n} a_{i}(m) \frac{\partial}{\partial x_{i}} \tag{6.4}
\end{equation*}
$$

It follows from the chain rule that this definition is independent of the choice of local coordinates x_{i}.

Now let $A=C^{\infty}(M, \mathbb{R})$ be the ring of smooth real-valued functions on M. Given a vector field X on M, we may obtain a derivation of A as follows. If $f \in A$, let $X(f)$ be the smooth function that assigns to $m \in M$ the value $X_{m}(f)$, where we are of course applying X_{m} to the germ of f at m. For example, if $M=U$ is an open set on \mathbb{R}^{n} with coordinate functions x_{1}, \cdots, x_{n} on U, given smooth functions $a_{i}: U \longrightarrow \mathbb{R}$, we may associate a derivation of A with the vector field (6.4) by

$$
\begin{equation*}
(X f)(m)=\sum_{i=1}^{n} a_{i}(m) \frac{\partial f}{\partial x_{i}}(m) \tag{6.5}
\end{equation*}
$$

The content of the next theorem is that every derivation of A is associated with a vector field in this way.

Proposition 6.3. There is a one-to-one correspondence between vector fields on a smooth manifold M and derivations of $C^{\infty}(M, \mathbb{R})$. Specifically, if D is any derivation of $C^{\infty}(M, \mathbb{R})$, there is a unique vector field X on M such that $D f=X f$ for all f.

Proof. We show first that if $m \in M$, and if $f \in A=C^{\infty}(M, \mathbb{R})$ has germ zero at m, then the function $D f$ vanishes at m. This implies that D induces a welldefined $\operatorname{map} X_{m}: \mathcal{O}_{m} \longrightarrow \mathbb{R}$ that is a local derivation. Our assumption means that f vanishes in a neighborhood of m, so there is another smooth function g such that $g f=f$, yet $g(m)=0$. Now $D(f)(m)=g(m) D(f)+f(m) D(g)$. Since both f and g vanish at m, we see that $D(f)(m)=0$.

Now let x_{i} be local coordinates on an open set U of M. For each $m \in U$ there are real numbers $a_{i}(m)$ such that (6.4) is true. We need to know that the $a_{i}(m)$ are smooth functions. Indeed, we have $a_{i}(m)=D\left(x_{i}\right)$, so it is smooth.

Now let X and Y be vector fields on M. By Proposition 6.3, we may regard these as derivations of $C^{\infty}(M, \mathbb{R})$. As we have noted in Example 5.7, derivations of an arbitrary ring form a Lie algebra. Thus $[X, Y]=X Y-Y X$ defines a derivation:

$$
\begin{equation*}
[X, Y] f=X(Y f)-Y(X f) \tag{6.6}
\end{equation*}
$$

By Proposition 2.8 this derivation [X, Y] corresponds to a vector field. Let us see this again concretely by computing its effect in local coordinates. If $X=$ $\sum a_{i} \frac{\partial}{\partial x_{i}}$ and $Y=\sum b_{i} \frac{\partial}{\partial x_{i}}$, we have $X(Y f)=\sum_{i, j}\left[a_{j} \frac{\partial b_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}+a_{i} b_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]$. This is not a derivation, but if we subtract $Y(X f)$ to cancel the unwanted mixed partials, we see that

$$
[X, Y]=\sum_{i, j}\left[a_{j} \frac{\partial b_{i}}{\partial x_{j}}-b_{j} \frac{\partial a_{i}}{\partial x_{j}}\right] \frac{\partial}{\partial x_{i}}
$$

EXERCISES

The following exercise requires some knowledge of topology.
Exercise 6.1. Let X be a vector field on the sphere S^{k}. If $X_{m} \neq 0$ for all $m \in S^{k}$, show that the antipodal map $a: S^{k} \longrightarrow S^{k}$ and the identity map $S^{k} \longrightarrow S^{k}$ are homotopic. Show that this implies that k is odd. (Hint: Normalize the vector field so that X_{m} is a unit tangent vector for all m. If $m \in S^{k}$ consider the great circle $\theta_{m}:[0,2 \pi] \longrightarrow S^{k}$ tangent to X_{m}. Then $\theta_{m}(0)=\theta_{m}(2 \pi)=m$, but $m \longmapsto \theta_{m}(\pi)$ is the antipodal map.)

Left-Invariant Vector Fields

To recapitulate, a Lie group is a differentiable manifold with a group structure in which the multiplication and inversion maps $G \times G \longrightarrow G$ and $G \longrightarrow G$ are smooth. A homomorphism of Lie groups is a group homomorphism that is also a smooth map.

Remark 7.1. There is a subtlety in the definition of a Lie subgroup. A Lie subgroup is best defined as a Lie group H with an injective homomorphism $i: H \longrightarrow G$. With this definition, the image of i in G is not closed, however, as the following example shows. Let G be $\mathbb{T} \times \mathbb{T}$, where \mathbb{T} is the circle \mathbb{R} / \mathbb{Z}. Let H be \mathbb{R}, and let $i: H \longrightarrow G$ be the map $i(t)=(\alpha t, \beta t)$ modulo 1 , where the ratio α / β is irrational. This is a Lie subgroup, but the image of H is not closed. To require a closed image in the definition of a Lie subgroup would invalidate a theorem of Chevalley that subalgebras of the Lie algebra of a Lie group correspond to Lie subgroups. If we wish to exclude this type of example, we will explicitly describe a Lie subgroup of G as a closed Lie subgroup.

Remark 7.2. On the other hand, in the expression "closed Lie subgroup," the term "Lie" is redundant. It may be shown that a closed subgroup of a Lie group is a submanifold and hence a Lie group. See Bröcker and Tom Dieck [16], Theorem 3.11 on p. 28; Knapp [83] Chapter I Section 4; or Knapp [82], Theorem 1.5 on p .20 . We will only prove this for the special case of an Abelian subgroup in Theorem 15.2 below.

Let G be a Lie group. If $g \in G$, then $L_{g}: G \longrightarrow G$ defined by $L_{g}(h)=g h$ is a diffeomorphism and hence induces maps $L_{g, *}: T_{h}(G) \longrightarrow T_{g h}(G)$. A vector field X on G is left-invariant if $L_{g, *}\left(X_{h}\right)=X_{g h}$.

Proposition 7.1. The vector space of left-invariant vector fields is closed under [,] and is a Lie algebra of dimension $\operatorname{dim}(G)$. If $X_{e} \in T_{e}(G)$, there is a unique left-invariant vector field X on G with the prescribed tangent vector at the identity.

Proof. Given a tangent vector X_{e} at the identity element e of G, we may define a left-invariant vector field by $X_{g}=L_{g, *}\left(X_{e}\right)$, and conversely any leftinvariant vector field must satisfy this identity, so the space of left-invariant vector fields is isomorphic to the tangent space of G at the identity. Therefore, its vector space dimension equals the dimension of G.

Let $\operatorname{Lie}(G)$ be the vector space of left-invariant vector fields, which we may identify with the $T_{e}(G)$. It is clearly closed under [,].

Suppose now that $G=\operatorname{GL}(n, \mathbb{C})$. We have defined two different Lie algebras for G : first, $\operatorname{Mat}_{n}(\mathbb{C})$ with the commutation relation $[X, Y]=X Y-Y X$ (matrix multiplication); and second, left-invariant vector fields. The first Lie algebra is an n^{2}-dimensional complex Lie algebra, which we may regard as a $2 n^{2}$-dimensional real Lie algebra that happens to have a complex structure. The second Lie algebra is a $2 n^{2}$-dimensional vector space by Proposition 7.1 because G is an open set in $\operatorname{Mat}_{n}(\mathbb{C})=\mathbb{C}^{n^{2}} \cong \mathbb{R}^{2 n^{2}}$ and hence has dimension $2 n^{2}$ as a manifold. We want to see that they are the same.

If $X \in \operatorname{Mat}_{n}(\mathbb{C})$, we begin by associating with X a left-invariant vector field. Since G is an open subset of the real vector space $V=\operatorname{Mat}_{n}(\mathbb{C})$, we may identify the tangent space to G at the identity with V. With this identification, an element $X \in V$ is the local derivation at I (see (6.3)) defined by

$$
\left.f \longmapsto \frac{d}{d t} f(I+t X)\right|_{t=0},
$$

where f is the germ of a smooth function at I. The two paths $t \longrightarrow I+t X$ and $t \longrightarrow \exp (t X)=I+t X+\ldots$ are tangent when $t=0$, so this is the same as

$$
\left.f \longrightarrow \frac{d}{d t} f(\exp (t X))\right|_{t=0}
$$

which is a better definition. Indeed, if H is a Lie subgroup of $\mathrm{GL}(n, \mathbb{C})$ and X is in the Lie algebra of H, then by Proposition 5.2, the second path $\exp (t X)$ stays within H, so this definition still makes sense.

It is clear how to extrapolate this local derivation to a left-invariant global derivation of $C^{\infty}(G, \mathbb{R})$. We must define

$$
\begin{equation*}
(d X) f(g)=\left.\frac{d}{d t} f(g \exp (t X))\right|_{t=0} \tag{7.1}
\end{equation*}
$$

By Proposition 2.8, the left-invariant derivation $d X$ of $C^{\infty}(G, \mathbb{R})$ corresponds to a left-invariant vector field. To distinguish this derivation from the element X of $\operatorname{Mat}_{n}(\mathbb{C})$, we will resist the temptation to denote this derivation also as X and denote it by $d X$.
Lemma 7.1. Let f be a smooth map from a neighborhood of the origin in \mathbb{R}^{n} into a finite-dimensional vector space. We may write

$$
\begin{equation*}
f(x)=c_{0}+c_{1}(x)+B(x, x)+r(x) \tag{7.2}
\end{equation*}
$$

where $c_{1}: \mathbb{R}^{n} \longrightarrow V$ is linear, $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow V$ is symmetric and bilinear, and r vanishes to order 3.

Proof. This is just the familiar Taylor expansion. Denoting $u=\left(u_{1}, \cdots, u_{n}\right)$, let $c_{0}=f(0)$,

$$
c_{1}(u)=\sum_{i} \frac{\partial f}{\partial x_{i}}(0) u_{i}
$$

and

$$
B(u, v)=\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0) u_{i} v_{j}
$$

Both $f(x)$ and $c_{0}+c_{1}(x)+B(x, x)$ have the same partial derivatives of order $\leqslant 2$, so the difference $r(x)$ vanishes to order 3 . The fact that B is symmetric follows from the equality of mixed partials:

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(0)
$$

Proposition 7.2. If $X, Y \in \operatorname{Mat}_{n}(\mathbb{C})$, and if f is a smooth function on $G=\operatorname{GL}(n, \mathbb{C})$, then $d[X, Y] f=d X(d Y f)-d Y(d X f)$.

Here $[X, Y]$ means $X Y-Y X$; that is, the bracket computed as in Chapter 5 . The content of this proposition is that this definition is consistent with the bracket in Chapter 5.

Proof. We fix a function $f \in C^{\infty}(G)$ and an element $g \in G$. By Lemma 7.1, we may write, for X near 0 ,

$$
f(g(I+X))=c_{0}+c_{1}(X)+B(X, X)+r(X)
$$

where c_{1} is linear in X, B is symmetric and bilinear, and r vanishes to order 3 at $X=0$. We will show that

$$
\begin{equation*}
(d X f)(g)=c_{1}(X) \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(d X \circ d Y f)(g)=c_{1}(X Y)+2 B(X, Y) \tag{7.4}
\end{equation*}
$$

Indeed,

$$
\begin{gathered}
(d X f)(g)=\left.\frac{d}{d t} f(g(I+t X))\right|_{t=0}= \\
\left.\frac{d}{d t}\left(c_{0}+c_{1}(t X)+B(t X, t X)+r(t X)\right)\right|_{t=0}
\end{gathered}
$$

We may ignore the B and r terms because they vanish to order $\geqslant 2$, and since c_{1} is linear, this is just $c_{1}(X)$ proving (7.3). Also

$$
\begin{gathered}
(d X \circ d Y f)(g)=\frac{d}{d t}\left(\left.(d Y f)(g(I+t X))\right|_{u=0}\right. \\
=\left.\frac{\partial}{\partial t} \frac{\partial}{\partial u} f(g(I+t X)(I+u Y))\right|_{t=u=0} \\
=\frac{\partial}{\partial t} \frac{\partial}{\partial u}\left[c_{0}+c_{1}(t X+u Y+t u X Y)\right. \\
+B(t X+u Y+t u X Y, t X+u Y+t u X Y)+r(t X+u Y+t u X Y)]\left.\right|_{t=u=0} .
\end{gathered}
$$

We may omit r from this computation since it vanishes to third order. Expanding the linear and bilinear maps c_{1} and B, we obtain (7.4).

Similarly,

$$
(d Y \circ d X f)(g)=c_{1}(Y X)+2 B(X, Y)
$$

Subtracting this from (7.4) to kill the unwanted B term, we obtain

$$
((d X \circ d Y-d Y \circ d X) f)(g)=c_{1}(X Y-Y X)=(d[X, Y] f)(g)
$$

by (7.3).
This proposition shows that if $X \in \operatorname{Mat}_{n}(\mathbb{C})$, and if we associate with X a derivation of $C^{\infty}(G, \mathbb{R})$, where $G=\operatorname{GL}(n, \mathbb{C})$, using the formula (7.1), then the two brackets give the same result.

Suppose that M and N are smooth manifolds and $\phi: M \longrightarrow N$ is a smooth map. If $m \in M$ and $n=\phi(m)$, we get a map $\phi_{*}: T_{m}(M) \longrightarrow T_{n}(N)$. Indeed, if \mathcal{O}_{m} and \mathcal{O}_{n} are the local rings, composition with ϕ gives a homomorphism $\mathcal{O}_{n} \longrightarrow \mathcal{O}_{m}$, so if D is a local derivation of \mathcal{O}_{m}, then $\mathcal{O}_{n} \ni f \longmapsto D(f \circ \phi)$ is a local derivation of $T_{n}(N)$.

If ϕ is a diffeomorphism of M onto N, then we can push a vector field X on M forward this way to obtain a vector field on N. However, if ϕ is not a diffeomorphism, this doesn't work because some points in N may not even be in the image of ϕ, while others may be in the image of two different points m_{1} and m_{2} with no guarantee that $\phi_{*} X_{m_{1}}=\phi_{*} X_{m_{2}}$.

Nevertheless, if $\phi: G \longrightarrow H$ is a homomorphism of Lie groups, there is an induced map of Lie algebras, as we will now explain. Let X be a left-invariant vector field on G. We have induced a map $\phi_{*}: T_{e}(G) \longrightarrow T_{e}(H)$, and by Proposition 7.1 applied to H there is a unique left-invariant vector field Y on H such that $\phi_{*} X_{e}=Y_{e}$. We regard Y as an element of $\operatorname{Lie}(H)$, and $X \longmapsto Y$ is a map $\operatorname{Lie}(G) \longrightarrow \operatorname{Lie}(H)$, which we denote $\operatorname{Lie}(\phi)$.

A map $f: \mathfrak{g} \longrightarrow \mathfrak{h}$ of Lie algebras is naturally called a homomorphism if $f([X, Y])=[f(X), f(Y)]$.
Proposition 7.3. If $\phi: G \longrightarrow H$ is a Lie group homomorphism, then $\operatorname{Lie}(\phi)$: $\operatorname{Lie}(G) \longrightarrow \operatorname{Lie}(H)$ is a Lie algebra homomorphism.
Proof. If $X, Y \in G$, then X_{e} and Y_{e} are local derivations of $\mathcal{O}_{e}(G)$, and it is clear from the definitions that $\phi_{*}\left(\left[X_{e}, Y_{e}\right]\right)=\left[\phi_{*}\left(X_{e}\right), \phi_{*}\left(Y_{e}\right)\right]$. Consequently, $[\operatorname{Lie}(\phi) X, \operatorname{Lie}(\phi) Y]$ and $\operatorname{Lie}(\phi)([X, Y])$ are left-invariant vector fields on H that agree at the identity, so they are the same by Proposition 7.1.

The Lie algebra homomorphism $\operatorname{Lie}(\phi)$ is called the differential of ϕ.
We may ask to what extent the Lie algebra homomorphism $\operatorname{Lie}(\phi)$ contains complete information about ϕ. For example, given Lie groups G and H with Lie algebras \mathfrak{g} and \mathfrak{h}, and a homomorphism $f: \mathfrak{g} \longrightarrow \mathfrak{h}$, is there a homomorphism $G \longrightarrow H$ with $\operatorname{Lie}(\phi)=f$?

In general, the answer is no, as the following example will show.
Example 7.1. Let $H=\mathrm{SU}(2)$ and let $G=\mathrm{SO}(3)$. H acts on the threedimensional space V of Hermitian matrices $\xi=\left(\begin{array}{cc}x & y+i z \\ y-i z & -x\end{array}\right)$ of trace zero by $h: \xi \mapsto h \xi h^{-1}=h \xi^{\bar{t} h}$, and

$$
\xi \mapsto-\operatorname{det}(\xi)=x^{2}+y^{2}+z^{2}
$$

is an invariant positive definite quadratic form on V invariant under this action. Thus, the transformation $\xi \mapsto h \xi h^{-1}$ of V is orthogonal, and we have a homomorphism $\psi: \mathrm{SU}(2) \longrightarrow \mathrm{SO}(3)$. Both groups are three-dimensional, and ψ is a local homeomorphism at the identity. The differential Lie (ψ) : $\mathfrak{s u}(2) \longrightarrow \mathfrak{s o}(3)$ is therefore an isomorphism and has an inverse, which is a Lie algebra homomorphism $\mathfrak{s o (3)} \longrightarrow \mathfrak{s u}(2)$. However, ψ itself does not have an inverse since it has a nontrivial element in its kernel, $-I$. Therefore, $\operatorname{Lie}(\psi)^{-1}: \mathfrak{s o}(3) \longrightarrow \mathfrak{s u}(2)$ is an example of a Lie algebra homomorphism that does not correspond to a Lie group homomorphism $\mathrm{SO}(3) \longrightarrow \mathrm{SU}(2)$.

Nevertheless, we will see later (Proposition 14.2) that if G is simplyconnected, then any Lie algebra homomorphism $\mathfrak{g} \longrightarrow \mathfrak{h}$ corresponds to a Lie group homomorphism $G \longrightarrow H$. Thus, the obstruction to lifting the Lie algebra homomorphism $\mathfrak{s o}(3) \longrightarrow \mathfrak{s u}(2)$ to a Lie group homomorphism is topological and corresponds to the fact that $\mathrm{SO}(3)$ is not simply-connected.

EXERCISES

Exercise 7.1. Compute the Lie algebra homomorphism $\operatorname{Lie}(\psi): \mathfrak{s u}(2) \longrightarrow \mathfrak{s o}(3)$ of Example 7.1 explicitly.

Exercise 7.2. Show that no Lie group can be homeomorphic to the sphere S^{k} if k is even. On the other hand, show that $\mathrm{SU}(2) \cong S^{3}$.

The Exponential Map

The exponential map, introduced for closed Lie subgroups of $\operatorname{GL}(n, \mathbb{C})$ in Chapter 5 , can be defined for a general Lie group G as a map $\operatorname{Lie}(G) \longrightarrow G$.

We may consider a vector field (6.5) that is allowed to vary smoothly. By this we mean that we introduce a real parameter $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$ and smooth functions $a_{i}: M \times(-\epsilon, \epsilon) \longrightarrow \mathbb{C}$ and consider a vector field, which in local coordinates is given by

$$
\begin{equation*}
(X f)(m)=\sum_{i=1}^{n} a_{i}(m, \lambda) \frac{\partial f}{\partial x_{i}}(m) \tag{8.1}
\end{equation*}
$$

Proposition 8.1. Suppose that M is a smooth manifold, $m \in M$, and X is a vector field on M. Then, for sufficiently small $\epsilon>0$, there exists a path $p:(-\epsilon, \epsilon) \longrightarrow M$ such that $p(0)=m$ and $p_{*}(d / d t)(t)=X_{p(t)}$ for $t \in(-\epsilon, \epsilon)$. Such a curve, on whatever interval it is defined, is uniquely determined. If the vector field X is allowed to depend on a parameter λ as in (8.1), then for small values of $t, p(t)$ depends smoothly on λ.

Here we are regarding the interval $(-\epsilon, \epsilon)$ as a manifold, and $p_{*}(d / d t)$ is the image of the tangent vector $d / d t$. We call such a curve an integral curve for the vector field.

Proof. In terms of local coordinates x_{1}, \cdots, x_{n} on M, the vector field X is

$$
\sum a_{i}\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{i}}
$$

where the a_{i} are smooth functions in the coordinate neighborhood. If a path $p(t)$ is specified, let us write $x_{i}(t)$ for the x_{i} component of $p(t)$, with the coordinates of m being $x_{1}=\ldots=x_{n}=0$. Applying the tangent vector $p_{*}(t)(d / d t)(t)$ to a function $f \in C^{\infty}(G)$ gives

$$
\frac{d}{d t} f\left(x_{1}(t), \cdots, x_{n}(t)\right)=\sum x_{i}^{\prime}(t) \frac{\partial f}{\partial x_{i}}\left(x_{1}(t), \cdots, x_{n}(t)\right)
$$

On the other hand, applying $X_{p(t)}$ to the same f gives

$$
\sum_{i} a_{i}\left(x_{1}(t), \cdots, x_{n}(t)\right) \frac{\partial f}{\partial x_{i}}\left(x_{1}(t), \cdots, x_{n}(t)\right)
$$

so we need a solution to the first-order system

$$
x_{i}^{\prime}(t)=a_{i}\left(x_{1}(t), \cdots, x_{n}(t)\right), \quad x_{i}(0)=0, \quad(i=1, \cdots, n)
$$

The existence of such a solution for sufficiently small $|t|$, and its uniqueness on whatever interval it does exist, is guaranteed by a standard result in the theory of ordinary differential equations, which may be found in most texts. See, for example, Ince [66], Chapter 3, particularly Section 3.3, for a rigorous treatment. The required Lipschitz condition follows from smoothness of the a_{i}. For the statement about continuously varying vector fields, one needs to know the corresponding fact about first-order systems, which is discussed in Section 3.31 of [66]. Here Ince imposes an assumption of analyticity on the dependence of the differential equation on λ, which he allows to be a complex parameter, because he wants to conclude analyticity of the solutions; if one weakens this assumption of analyticity to smoothness, one still gets smoothness of the solution.

In general, the existence of the integral curve of a vector field is only guaranteed in a small segment $(-\epsilon, \epsilon)$, as in Proposition 8.1. However, we will now see that, for left-invariant vector fields on a Lie group, the integral curve extends to all \mathbb{R}. This fact underlies the construction of the exponential map.

Theorem 8.1. Let G be a Lie group and \mathfrak{g} its Lie algebra. There exists a map $\exp : \mathfrak{g} \longrightarrow G$ that is a local homeomorphism in a neighborhood of the origin in \mathfrak{g} such that, for any $X \in \mathfrak{g}, t \longrightarrow \exp (t X)$ is an integral curve for the left-invariant vector field X. Moreover, $\exp ((t+u) X)=\exp (t X) \exp (u X)$.

Proof. Let $X \in \mathfrak{g}$. We know that for sufficiently small $\epsilon>0$ there exists an integral curve $p:(-\epsilon, \epsilon) \longrightarrow G$ for the left-invariant vector field X with $p(0)=1$. We show first that if $p:(a, b) \longrightarrow G$ is any integral curve for an open interval (a, b) containing 0 , then

$$
\begin{equation*}
p(s) p(t)=p(s+t) \text { when } s, t, s+t \in(a, b) \tag{8.2}
\end{equation*}
$$

Indeed, since X is invariant under left-translation, left-translation by $p(s)$ takes an integral curve for the vector field into another integral curve. Thus $t \longrightarrow p(s) p(t)$ and $t \longrightarrow p(s+t)$ are both integral curves, with the same initial condition $0 \longrightarrow p(s)$. They are thus the same.

With this in mind, we show next that if $p:(-a, a) \longrightarrow G$ is an integral curve for the left-invariant vector field X, then we may extend it to all of \mathbb{R}. Of course, it is sufficient to show that we may extend it to $\left(-\frac{3}{2} a, \frac{3}{2} a\right)$. We extend it by the rule $p(t)=p(a / 2) p(t-a / 2)$ when $-a / 2 \leqslant t \leqslant 3 a / 2$ and
$p(t)=p(-a / 2) p(t+a / 2)$ when $-3 a / 2 \leqslant t \leqslant a / 2$, and it follows from (8.2) that this definition is consistent on regions of overlap.

Now define $\exp : \mathfrak{g} \longrightarrow G$ as follows. Let $X \in \mathfrak{g}$, and let $p: \mathbb{R} \longrightarrow G$ be an integral curve for the left-invariant vector field X with $p(0)=0$. We define $\exp (X)=p(1)$. We note that if $u \in \mathbb{R}$, then $t \mapsto p(t u)$ is an integral curve for $u X$, so $\exp (u X)=p(u)$.

The exponential map is a smooth map, at least for X near the origin in \mathfrak{g}, by the last statement in Proposition 8.1. Identifying the tangent space at the origin in the vector space \mathfrak{g} with \mathfrak{g} itself, \exp induces a map $T_{0}(\mathfrak{g}) \longrightarrow T_{e}(G)$ (that is $\mathfrak{g} \longrightarrow \mathfrak{g}$), and this map is the identity map by construction. Thus the Jacobian of \exp is nonzero and, by the Inverse Function Theorem, \exp is a local homeomorphism near 0 .

We also denote $\exp (X)$ as e^{X} for $X \in \mathfrak{g}$.
Remark 8.1. If $G=\mathrm{GL}(n, \mathbb{C})$, then as we explained in Chapter 7, Proposition 7.2 allows us to identify the Lie algebra of G with $\operatorname{Mat}_{n}(\mathbb{C})$. We observe that the definition of $\exp : \operatorname{Mat}_{n}(\mathbb{C}) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ by a series in (5.2) agrees with the definition in Theorem 8.1. This is because $t \longmapsto \exp (t X)$ with either definition is an integral curve for the same left-invariant vector field, and the uniqueness of such an integral curve follows from Proposition 8.1.

A representation of a Lie algebra \mathfrak{g} over a field F is a Lie algebra homomorphism $\rho: \mathfrak{g} \longrightarrow \operatorname{End}(V)$, where V is an F-vector space, or more generally a vector space over a field E containing F, and $\operatorname{End}(V)$ is given the Lie algebra structure that it inherits from its structure as an associative algebra. Thus

$$
\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)
$$

We may sometimes find it convenient to denote $\rho(x) v$ as just $x v$ for $x \in \mathfrak{g}$ and $v \in V$. We may think of $(x, v) \mapsto x v=\pi(x) v$ as a multiplication. If V is a vector space, given a map $\mathfrak{g} \times V \longrightarrow V$ denoted $(x, v) \mapsto x v$ such that $x \mapsto \pi(x)$ is a representation, where $\pi(x): V \longrightarrow V$ is the endomorphism $v \longrightarrow x v$, then we call V a \mathfrak{g}-module. A homomorphism $\phi: U \longrightarrow V$ of \mathfrak{g}-modules is an F-linear map satisfying $\phi(x v)=x \phi(v)$.

Example 8.1. If $\phi: G \longrightarrow \mathrm{GL}(V)$ is a representation, where V is a real or complex vector space, then the Lie algebra of $\mathrm{GL}(V)$ is $\operatorname{End}(V)$, so the differential $\operatorname{Lie}(\phi): \operatorname{Lie}(G) \longrightarrow \operatorname{End}(V)$, defined by Proposition 7.3, is a Lie algebra representation.

By the universal property of $U(\mathfrak{g})$ in Theorem 10.1, A Lie algebra representation $\rho: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ extends to a ring homomorphism $U(\mathfrak{g}) \longrightarrow \operatorname{End}(V)$, which we continue to denote as ρ.

If \mathfrak{g} is a Lie algebra over a field F, we get a homomorphism ad : $\mathfrak{g} \longrightarrow$ $\operatorname{End}(\mathfrak{g})$, called the adjoint map, defined by $\operatorname{ad}(x) y=[x, y]$. We give $\operatorname{End}(\mathfrak{g})$ the Lie algebra structure it inherits as an associative ring. We have

$$
\begin{equation*}
\operatorname{ad}(x)([y, z])=[\operatorname{ad}(x)(y), z]+[y, \operatorname{ad}(x)(z)] \tag{8.3}
\end{equation*}
$$

since, by the Jacobi identity, both sides equal $[x,[y, z]]=[[x, y], z]+[y,[x, z]]$. This means that $\operatorname{ad}(x)$ is a derivation of \mathfrak{g}.

Also

$$
\begin{equation*}
\operatorname{ad}(x) \operatorname{ad}(y)-\operatorname{ad}(y) \operatorname{ad}(x)=\operatorname{ad}([x, y]) \tag{8.4}
\end{equation*}
$$

since applying either side to $z \in \mathfrak{g}$ gives $[x,[y, z]]-[y,[x, z]]=[[x, y], z]$ by the Jacobi identity. So ad : $\mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$ is a Lie algebra representation.

We digress to explain the geometric origin of ad. To begin with, representations of Lie algebras arise naturally from representations of Lie groups. Suppose that G is a Lie group and \mathfrak{g} is its Lie algebra. If V is a vector space over \mathbb{R} or \mathbb{C}, any Lie group homomorphism $\pi: G \longrightarrow \mathrm{GL}(V)$ induces a Lie algebra homomorphism $\mathfrak{g} \longrightarrow \operatorname{End}(V)$ by Proposition 7.3 ; that is, a real or complex representation.

In particular, G acts on itself by conjugation, and so it acts on $\mathfrak{g}=T_{e}(G)$. This representation is called the adjoint representation and is denoted Ad : $G \longrightarrow \mathrm{GL}(\mathfrak{g})$. We show next that the differential of Ad is ad. That is:

Proposition 8.2. Let G be a Lie group, \mathfrak{g} its Lie algebra, and Ad : $G \longrightarrow$ $\mathrm{GL}(\mathfrak{g})$ the adjoint representation. Then the Lie group representation $\mathfrak{g} \longrightarrow$ End(g) corresponding to Ad by Proposition 7.3 is ad.

Proof. It will be most convenient for us to think of elements of the Lie algebra as tangent vectors at the identity or as local derivations of the local ring there. Let $X, Y \in \mathfrak{g}$. If $f \in C^{\infty}(G)$, define $c(g) f(h)=f\left(g^{-1} h g\right)$. Then our definitions of the adjoint representation amount to

$$
(\operatorname{Ad}(g) Y) f=Y\left(c\left(g^{-1}\right) f\right)
$$

To compute the differential of Ad, note that the path $t \longrightarrow \exp (t X)$ in G is tangent to the identity at $t=0$ with tangent vector X. Therefore, under the representation of \mathfrak{g} in Proposition $7.3, X$ maps Y to the local derivation at the identity

$$
\left.f \longmapsto \frac{d}{d t}\left(\operatorname{Ad}\left(e^{t X}\right) Y\right) f\right|_{t=0}=\left.\frac{d}{d t} \frac{d}{d u} f\left(e^{t X} e^{u Y} e^{-t X}\right)\right|_{t=u=0}
$$

By the chain rule, if $F\left(t_{1}, t_{2}\right)$ is a function of two real variables,

$$
\begin{equation*}
\left.\frac{d}{d t} F(t, t)\right|_{t=0}=\frac{\partial F}{\partial t_{1}}(0,0)+\frac{\partial F}{\partial t_{2}}(0,0) \tag{8.5}
\end{equation*}
$$

Applying this, with u fixed to $F\left(t_{1}, t_{2}\right)=f\left(e^{t_{1} X} e^{u Y} e^{-t_{2} X}\right)$, our last expression equals

$$
\left.\frac{d}{d u} \frac{d}{d t} f\left(e^{t X} e^{u Y}\right)\right|_{t=u=0}-\left.\frac{d}{d u} \frac{d}{d t} f\left(e^{u Y} e^{t X}\right)\right|_{t=u=0}=X Y f(1)-Y X f(1)
$$

This is of course the same as the effect of $[X, Y]=\operatorname{ad}(X) Y$.

Tensors and Universal Properties

We will review the basic properties of the tensor product and use them to illustrate the basic notion of a universal property, which we will see repeatedly.

If R is a commutative ring and M, N, and P are R-modules, then a bilinear map $f: M \times N \longrightarrow P$ is a map satisfying

$$
\begin{array}{ll}
f\left(r_{1} m_{1}+r_{2} m_{2}, n\right)=r_{1} f\left(m_{1}, n\right)+r_{2} f\left(m_{2}, n\right), & r_{i} \in R, m_{i} \in M, n \in N \\
f\left(m, r_{1} n_{1}+r_{2} n_{2}\right)=r_{1} f\left(m, n_{1}\right)+r_{2} f\left(m, n_{2}\right), & r_{i} \in R, n_{i} \in N, m \in M
\end{array}
$$

More generally, if M_{1}, \cdots, M_{k} are R-modules, the notion of a k-linear map $M_{1} \times \cdots \times M_{k} \longrightarrow P$ is defined similarly: the map must be linear in each variable.

The tensor product $M \otimes_{R} N$ is an R-module together with a bilinear map $\otimes: M \times N \longrightarrow M \otimes_{R} N$ satisfying the following property.

Universal Property of the Tensor Product. If P is any R-module and p : $M \times N \longrightarrow P$ is a bilinear map, there exists a unique R-module homomorphism $F: M \otimes N \longrightarrow P$ such that $p=F \circ \otimes$.

Why do we call this a universal property? It says that $\otimes: M \times N \longrightarrow$ $M \otimes N$ is a "universal" bilinear map in the sense that any bilinear map of $M \times N$ factors through it. The module $M \otimes_{R} N$ is uniquely determined by the universal property. This important fact is obvious if one thinks of it correctly. Before we explain this point, let us make a categorical observation.

If \mathcal{C} is a category, an initial object in \mathcal{C} is an object X_{0} such that, for every object Y, the Hom set $\operatorname{Hom}_{\mathcal{C}}\left(X_{0}, Y\right)$ consists of a single element. A terminal object is an object X_{∞} such that, for every object Y, the Hom set $\operatorname{Hom}_{\mathcal{C}}\left(Y, X_{\infty}\right)$ consists of a single element. For example, in the category of sets, the empty set is an initial object and a set consisting of one element is a terminal object.

Lemma 9.1. In any category, any two initial objects are isomorphic. Any two terminal objects are isomorphic.

Proof. If X_{0} and X_{1} are initial objects, there exist unique morphisms f : $X_{0} \longrightarrow X_{1}$ (since X_{0} is initial) and $g: X_{1} \longrightarrow X_{0}$ (since X_{1} is initial). Then $g \circ f: X_{0} \longrightarrow X_{0}$ and $1_{X_{0}}: X_{0} \longrightarrow X_{0}$ must coincide since X_{0} is initial, and similarly $f \circ g=1_{X_{1}}$. Thus f and g are inverse isomorphisms. Similarly, terminal objects are isomorphic.

Theorem 9.1. The tensor product $M \otimes_{R} N$, if it exists, is determined up to isomorphism by the universal property.

Proof. Let \mathcal{C} be the following category. An object in \mathcal{C} is an ordered pair (P, p), where P is an R-module and $p: M \times N \longrightarrow P$ is a bilinear map. If $X=(P, p)$ and $Y=(Q, q)$ are objects, then a morphism $X \longrightarrow Y$ consists of an R-module homomorphism $f: P \longrightarrow Q$ such that $q=f \circ p$. The universal property of the tensor product means that $\otimes: M \times N \longrightarrow N \otimes N$ is an initial object in this category and therefore determined up to isomorphism.

Of course, we usually denote $\otimes(m, n)$ as $m \otimes n$ in $M \otimes_{R} N$. We have not proved that $M \otimes_{R} N$ exists. We refer to any text on algebra for this fact, such as Lang [90], Chapter XVI.

In general by a universal property we mean any characterization of a mathematical object that can be expressed by saying that some associated object is an initial or terminal object in some category. The basic paradigm is that a universal property characterizes an object up to isomorphism.

A typical application of the universal property of the tensor product is to make $M \otimes_{R} N$ into a functor. Specifically, if $\mu: M \longrightarrow M^{\prime}$ and ν : $N \longrightarrow N^{\prime}$ are R-module homomorphisms, then there is a unique R-module homomorphism $\mu \otimes \nu: M \otimes_{R} N \longrightarrow M^{\prime} \otimes_{R} N^{\prime}$ such that $(\mu \otimes \nu)(m \otimes n)=$ $\mu(m) \otimes \nu(n)$. We get this by applying the universal property to the R-bilinear $\operatorname{map} M \times N \longrightarrow M^{\prime} \otimes N^{\prime}$ defined by $(m, n) \longmapsto \mu(m) \otimes \nu(n)$.

As another example of an object that can be defined by a universal property, let V be a vector space over a field F. Let us ask for an F-algebra $\otimes V$ together with an F-linear map $i: V \longrightarrow \otimes V$ satisfying the following condition.

Universal Property of the Tensor Algebra. If A is any F-algebra and $\phi: V \longrightarrow A$ is an F-linear map then there exists a unique F-algebra homomorphism $\Phi: \bigotimes V \longrightarrow A$ such that $r=\rho \circ i$.

It should be clear from the previous discussion that this universal property characterizes the tensor algebra up to isomorphism. To prove existence, we can construct a ring with this exact property as follows. Let unadorned \otimes mean \otimes_{F} in what follows. By $\otimes^{k} V$ we mean the k-fold tensor product $V \otimes \ldots \otimes V$ (k times); if $k=0$, then it is natural to take $\otimes^{0} V=F$ while $\otimes^{1} V=V$. If V has finite dimension d, then $\otimes^{k} V$ has dimension d^{k}. Let

$$
\bigotimes V=\bigoplus_{k=0}^{\infty}\left(\otimes^{k} V\right)
$$

Then $\otimes V$ has the natural structure of a graded F-algebra in which the multiplication $\otimes^{k} V \times \otimes^{l} V \longrightarrow \otimes^{k+l} V$ sends

$$
\left(v_{1} \otimes \ldots \otimes v_{k}, u_{1} \otimes \ldots \otimes u_{l}\right) \longrightarrow v_{1} \otimes \ldots \otimes v_{k} \otimes u_{1} \otimes \ldots \otimes u_{l}
$$

We regard V as a subset of $\otimes V$ embedded onto $\otimes^{1} V=V$.
Proposition 9.1. The universal property of the tensor algebra is satisfied.
Proof. If $\phi: V \longrightarrow A$ is any linear map of V into an F-algebra, define a map $\Phi: \otimes V \longrightarrow A$ by $\Phi\left(v_{1} \otimes \cdots \otimes v_{k}\right)=\phi\left(v_{1}\right) \cdots \phi\left(v_{k}\right)$ on $\otimes^{k} V$. It is easy to see that Φ is a ring homomorphism. It is unique since V generates $\otimes V$ as an F-algebra.

We will also encounter the symmetric and exterior powers of a vector space V over the field F. Let V^{k} denote $V \times \cdots \times V(k$ times $)$. A k-linear $\operatorname{map} f: V^{k} \longrightarrow U$ into another vector space is called symmetric if for any $\sigma \in S_{k}$ it satisfies $f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=f\left(v_{1}, \cdots, v_{k}\right)$ and alternating if $f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=\varepsilon(\sigma) f\left(v_{1}, \cdots, v_{k}\right)$, where $\varepsilon: S_{k} \longrightarrow\{ \pm 1\}$ is the alternating (sign) character. The k-th symmetric and exterior powers of V, denoted $\vee^{k} V$ and $\wedge^{k} V$, are F-vector spaces, together with k-linear maps $\vee: V^{k} \longrightarrow \vee^{k} V$ and $\wedge: V^{k} \longrightarrow \wedge^{k} V$. The map \vee is symmetric, and the map \wedge is alternating. We normally denote $\vee\left(v_{1}, \cdots, v_{k}\right)=v_{1} \vee \cdots \vee v_{k}$ and similarly for \wedge. The following universal properties are required.

Universal Properties of the Symmetric and Exterior Powers: Let

 $f: V^{k} \longrightarrow U$ be any symmetric (resp. alternating) k-linear map. Then there exists a unique F-linear map $\phi: \vee^{k} V \longrightarrow U\left(\right.$ resp. $\left.\wedge^{k} V \longrightarrow U\right)$ such that $f=\phi \circ \vee($ resp. $f=\phi \circ \wedge)$.As usual, the symmetric and exterior algebras are characterized up to isomorphism by the universal property. We may construct $\vee^{k} V$ as a quotient of $\otimes^{k} V$, dividing by the subspace W generated by elements of the form $v_{1} \otimes \cdots \otimes v_{k}-v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$, with a similar construction for \wedge^{k}. The universal property of $\vee^{k} V$ then follows from the universal property of the tensor product. Indeed, if $f: V^{k} \longrightarrow U$ is any symmetric k-linear map, then there is induced a linear map $\psi: \otimes^{k} V \longrightarrow U$ such that $f=\psi \circ \otimes$. Since f is symmetric, ψ vanishes on W, so ψ induces a map $\vee^{k} V=\otimes^{k} V / W \longrightarrow U$ and the universal property follows.

If V has dimension d, then $V^{k} V$ has dimension $\binom{d+k-1}{k}$, for if x_{1}, \cdots, x_{d} is a basis of V, then $\left\{x_{i_{1}} \vee \cdots \vee x_{i_{k}} \mid 1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k} \leqslant d\right\}$ is a basis for $\vee^{k} V$. On the other hand, the exterior power vanishes unless $k \leqslant d$, in which case it has dimension $\binom{d}{k}$. A basis consists of $\left\{x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \mid 1 \leqslant i_{1}<i_{2}<\right.$ $\left.\cdots<i_{k} \leqslant d\right\}$. The vector spaces $\vee^{k} V$ may be collected together to make a commutative graded algebra:

$$
\bigvee V=\bigoplus_{k=0}^{\infty} \vee^{k} V
$$

This is the symmetric algebra. The exterior algebra $\Lambda V=\bigoplus_{k} \wedge^{k} V$ is constructed similarly. The spaces $\vee^{0} V$ and $\wedge^{0} V$ are one-dimensional and it is natural to take $\vee^{0} V=\wedge^{0} V=F$.

EXERCISES

Exercise 9.1. Prove that the tensor algebra $\otimes V$ is associative.
Exercise 9.2. Let V be a finite-dimensional vector space over a field F that may be assumed to be infinite. Let $\mathcal{P}(V)$ be the ring of polynomial functions on V. Note that an element of the dual space V^{*} is a function on V, so regarding this function as a polynomial gives an injection $V^{*} \longrightarrow \mathcal{P}(V)$. Show that this linear map extends to a ring isomorphism $\bigvee V^{*} \longrightarrow \mathcal{P}(V)$.

Exercise 9.3. Prove that if V is a vector space, then $V \otimes V \cong(V \wedge V) \oplus(V \vee V)$.
Exercise 9.4. Use the universal properties of the symmetric and exterior power to show that if V and W are vector spaces, then there are maps $\vee^{k} f: \vee^{k} V \longrightarrow \vee^{k} W$ and $\wedge^{k} f: \wedge^{k} V \longrightarrow \wedge^{k} W$ such that
$\vee^{k} f\left(v_{1} \vee \cdots \vee v_{k}\right)=f\left(v_{1}\right) \vee \cdots \vee f\left(v_{k}\right), \quad \wedge^{k} f\left(v_{1} \wedge \cdots \wedge v_{k}\right)=f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)$.
Exercise 9.5. Suppose that $V=F^{4}$. Let $f: V \longrightarrow V$ be the linear transformation with matrix

$$
\left(\begin{array}{llll}
a & & & \\
& b & & \\
& & c & \\
& & & d
\end{array}\right)
$$

Compute the trace of the linear transformations $\vee^{2} f$ and $\wedge^{2} f$ on $\vee^{2} V$ and $\wedge^{2} V$.

The Universal Enveloping Algebra

We have seen that elements of the Lie algebra of a Lie group G are derivations of $C^{\infty}(G)$; that is, differential operators that are left-invariant. The universal enveloping algebra is the ring of all left-invariant differential operators, including higher-order ones. There is a purely algebraic construction of this ring.

We recall from Example 5.6 that if A is an associative algebra, then A may be regarded as a Lie algebra by the rule $[a, b]=a b-b a$ for $a, b \in A$. We will denote this Lie algebra by $\operatorname{Lie}(A)$.

Theorem 10.1. Let \mathfrak{g} be a Lie algebra over a field F. There exists an associative F-algebra $U(\mathfrak{g})$ with a Lie algebra homomorphism $i: \mathfrak{g} \longrightarrow \operatorname{Lie}(U(\mathfrak{g}))$ such that if A is any F-algebra, and $\phi: \mathfrak{g} \longrightarrow \operatorname{Lie}(A)$ is a Lie algebra homomorphism, then there exists a unique F-algebra homomorphism $\Phi: U(\mathfrak{g}) \longrightarrow$ A such that $\phi=\Phi \circ i$.

As always, an object (in this case $U(\mathfrak{g})$) defined by a universal property is characterized up to isomorphism by that property.

Proof. Let \mathcal{K} be the ideal in $\bigotimes \mathfrak{g}$ generated by elements of the form $[x, y]-$ $x \otimes y-y \otimes x$ for $x, y \in \mathfrak{g}$, and let $U(\mathfrak{g})$ be the quotient $\otimes V / \mathcal{K}$. Let $\phi:$ $\mathfrak{g} \longrightarrow \operatorname{Lie}(A)$ be a Lie algebra homomorphism. This means that ϕ is an F linear map such that $\phi([x, y])=\phi(x) \phi(y)-\phi(y) \phi(x)$. Then ϕ extends to a ring homomorphism $\otimes \mathfrak{g} \longrightarrow A$ by Proposition 9.1. Our assumption implies that \mathcal{K} is in the kernel of this homomorphism, and so there is induced a ring homomorphism $U(\mathfrak{g}) \longrightarrow A$. Clearly, $U(\mathfrak{g})$ is generated by the image of \mathfrak{g}, so this homomorphism is uniquely determined.

Proposition 10.1. If \mathfrak{g} is the Lie algebra of a Lie group G, then the natural map $i: \mathfrak{g} \longrightarrow U(\mathfrak{g})$ is injective.

It is a consequence of the Poincaré-Birkhoff-Witt Theorem, a standard and purely algebraic theorem, that $i: \mathfrak{g} \longrightarrow U(\mathfrak{g})$ is injective for any Lie algebra.

Instead of proving the Poincaré-Birkhoff-Witt Theorem, we give a short proof of this weaker statement.

Proof. Let A be the ring of endomorphisms of $C^{\infty}(G)$. Regarding $X \in \mathfrak{g}$ as a derivation of $C^{\infty}(G)$, we have a Lie algebra homomorphism $\mathfrak{g} \longrightarrow \operatorname{Lie}(A)$, which by Theorem 10.1 induces a map $U(\mathfrak{g}) \longrightarrow A$. If $X \in \mathfrak{g}$ had zero image in $U(\mathfrak{g})$, it would have zero image in A. It would therefore be zero.

If V is a vector space over F and $\pi: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is a representation, then we call a bilinear form B on V invariant if

$$
B(\pi(X) v, w)+B(v, \pi(X) w)=0
$$

for $X \in \mathfrak{g}, v, w \in V$. The following proposition shows that this notion of invariance is the Lie algebra analog of the more intuitive corresponding notion for Lie groups.

Proposition 10.2. Suppose that G is a Lie group, \mathfrak{g} its Lie algebra, and $\pi: G \longrightarrow \mathrm{GL}(V)$ a representation admitting an invariant bilinear form B. Then B is invariant for the differential of π.

Proof. Invariance under π means that

$$
B\left(\pi\left(e^{t X}\right) v, \pi\left(e^{t X}\right) w\right)=B(v, w)
$$

Thus, the derivative of this with respect to t is zero. By (8.5), this derivative is

$$
B(\pi(X) v, w)+B(v, \pi(X) w)
$$

On \mathfrak{g} itself, define $B(x, y)=\operatorname{tr}(\operatorname{ad}(x) \operatorname{ad}(y))$, the Killing form.
Proposition 10.3. The Killing form on a Lie algebra is symmetric and invariant with respect to ad.

Proof. Invariance under ad means

$$
\begin{equation*}
B([x, y], z)+B(y,[x, z])=0 \tag{10.1}
\end{equation*}
$$

Using (8.4), $B([x, y], z)$ is the trace of

$$
\operatorname{ad}(x) \operatorname{ad}(y) \operatorname{ad}(z)-\operatorname{ad}(y), \operatorname{ad}(x) \operatorname{ad}(z)
$$

while $B(y,[x, z])$ is the trace of

$$
\operatorname{ad}(y) \operatorname{ad}(x) \operatorname{ad}(z)-\operatorname{ad}(y) \operatorname{ad}(z) \operatorname{ad}(x)
$$

Using the property of endomorphisms A and B of a vector space that $\operatorname{tr}(A B)=$ $\operatorname{tr}(B A)$, these sum to zero. This same fact implies that $B(x, y)=B(y, x)$.

Theorem 10.2. Suppose that the Lie algebra \mathfrak{g} admits a nondegenerate symmetric invariant bilinear form B. Let x_{1}, \cdots, x_{d} be a basis of \mathfrak{g}, and let $y_{1}, \cdots y_{d}$ be the dual basis, so that $B\left(x_{i}, y_{j}\right)=\delta_{i j}$ (Kronecker δ). Then the element $\Delta=\sum_{i} x_{i} y_{i}$ of $U(\mathfrak{g})$ is in the center of $U(\mathfrak{g})$. The element Δ is independent of the choice of basis x_{1}, \cdots, x_{d}.

The element Δ is called the Casimir element of $U(\mathfrak{g})$ (with respect to B).
Proof. Let $z \in \mathfrak{g}$. There exist constants $\alpha_{i j}$ and $\beta_{i j}$ such that $\left[z, x_{i}\right]=$ $\sum_{j} \alpha_{i j} x_{i}$ and $\left[z, y_{i}\right]=\sum_{j} \beta_{i j} y_{j}$. Since B is invariant, we have

$$
0=B\left(\left[z, x_{i}\right], y_{j}\right)+B\left(x_{i},\left[z, y_{j}\right]\right)=\alpha_{i j}+\beta_{j i}
$$

Now

$$
z \sum_{i} x_{i} y_{i}=\sum_{i}\left(\left[z, x_{i}\right] y_{i}+x_{i} z y_{i}\right)=\left(\sum_{i, j} \alpha_{i j} x_{j} y_{i}\right)+\sum_{i} x_{i} z y_{i}
$$

while

$$
\sum_{i} x_{i} y_{i} z=\sum_{i}\left(-x_{i}\left[z, y_{i}\right]+x_{i} z y_{i}\right)=-\left(\sum_{i, j} \beta_{i j} x_{i} y_{j}\right)+\sum_{i} x_{i} z y_{i}
$$

and since $\beta_{i j}=-\alpha_{j i}$, these are equal. Thus Δ commutes with \mathfrak{g}, and since \mathfrak{g} generates $U(\mathfrak{g})$ as a ring, it is in the center.

It remains to be shown that Δ is independent of the choice of basis x_{1}, \cdots, x_{d}. Suppose that $x_{1}^{\prime}, \cdots, x_{d}^{\prime}$ is another basis. Write $x_{i}^{\prime}=\sum_{j} \alpha_{i j} x_{j}$, and if $y_{1}^{\prime}, \cdots, y_{d}^{\prime}$ is the corresponding dual basis, let $y_{i}^{\prime}=\sum_{j} \beta_{i j} y_{j}$. The condition that $B\left(x_{i}^{\prime}, y_{j}^{\prime}\right)=\delta_{i j}$ (Kronecker δ) implies that $\sum_{k} \alpha_{i k} \beta_{j k}=\delta_{i j}$. Therefore, the matrices $\left(\alpha_{i j}\right)$ and $\left(\beta_{i j}\right)$ are transpose inverses of each other and so we have also $\sum_{k} \alpha_{k i} \beta_{k j}=\delta_{i j}$. Now $\sum_{k} x_{k}^{\prime} y_{k}^{\prime}=\sum_{i, j, k} \alpha_{k i} \beta_{k j} x_{i} y_{j}=\sum_{k} x_{k} y_{k}=\Delta$.

A representation (ρ, V) of a Lie algebra \mathfrak{g} is irreducible if there is no proper nonzero subspace $U \subset V$ such that $\rho(x) U \subseteq U$ for all $x \in \mathfrak{g}$.

Proposition 10.4. Let $\rho: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ be an irreducible representation of the Lie algebra \mathfrak{g}. If c is in the center of $U(\mathfrak{g})$, then there exists a scalar λ such that $\rho(c)=\lambda I_{V}$.

Proof. Let λ be any eigenvalue of $\rho(c)$. Let U be the λ-eigenspace of $\rho(c)$. Since $\rho(c)$ commutes with $\rho(x)$ for all $x \in \mathfrak{g}$, we see that $\rho(x) U \subseteq U$ for all $x \in \mathfrak{g}$. By the definition of irreducibility, $U=V$, so $\rho(c)$ acts by the scalar λ.

EXERCISES

Exercise 10.1. Let $X_{i j} \in \mathfrak{g l}(n, \mathbb{R})(1 \leqslant i, j \leqslant n)$ be the $n \times n$ matrix with a 1 in the i, j position and 0 's elsewhere. Show that $\left[X_{i j}, X_{k l}\right]=\delta_{j k} X_{i l}-\delta_{i l} X_{k j}$, where $\delta_{j k}$ is the Kronecker δ. From this, show that

$$
\sum_{i_{1}=1}^{n} \cdots \sum_{i_{r}=1}^{n} X_{i_{1} i_{2}} X_{i_{2} i_{3}} \cdots X_{i_{n} i_{1}}
$$

is in the center of $U(\mathfrak{g l}(n, \mathbb{R}))$.
Exercise 10.2. Let G be a connected Lie group and \mathfrak{g} its Lie algebra. Define an action of \mathfrak{g} on the space $C^{\infty}(G)$ of smooth functions on G by

$$
X f(g)=\left.\frac{d}{d t} f\left(g e^{t X}\right)\right|_{t=0}
$$

(i) Show that this is a representation of G. Explain why Theorem 10.1 implies that this action of \mathfrak{g} on $C^{\infty}(G)$ can be extended to a representation of the associative algebra $U(\mathfrak{g})$ on $C^{\infty}(G)$.
(ii) If $h \in G$, let $\rho(h)$ and $\lambda(h)$ be the endomorphisms of G given by left and right translation. Thus

$$
\rho(h) f(g)=f(g h), \quad \lambda(h) f(g)=f\left(h^{-1} g\right) .
$$

Show that if $h \in G$ and $D \in U(\mathfrak{g})$, then $\lambda(h) \circ D=D \circ \lambda(h)$. If D is in the center of $U(\mathfrak{g})$ then prove that $\rho(h) \circ D=D \circ \rho(h)$. (Hint: Prove this first if h is of the form e^{X} for some $X \in G$, and recall that G was assumed to be connected, so it is generated by a neighborhood of the identity.)

Exercise 10.3. Let $G=\mathrm{GL}(n, \mathbb{R})$. Let B be the "Borel subgroup" of upper triangular matrices with positive diagonal entries, and let $K=\mathrm{SO}(n)$.
(i) Show that every element of $g \in G$ has a unique decomposition as $g=b k$ with $b \in B$ and $k \in K$.
(ii) Let s_{1}, \cdots, s_{n} be complex numbers. By (i), we may define an element ϕ of $C^{\infty}(G)$ by

$$
\phi\left(\left(\begin{array}{cccc}
y_{1} & * & \cdots & * \\
0 & y_{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & y_{n}
\end{array}\right) k\right)=\prod_{i=1}^{n} y_{i}^{s_{i}}, \quad y_{i}>0, k \in K .
$$

Show that ϕ is an eigenfunction of the center of $U(\mathfrak{g})$. That is, if D is in the center of $U(\mathfrak{g})$, then $D \phi=\lambda \phi$ for some complex number λ. (Hint: Characterize ϕ by properties of left and right translation and use Exercise 10.2 (ii).)

11

Extension of Scalars

We will be interested in complex representations of both real and complex Lie algebras. There is an important distinction to be made. If \mathfrak{g} is a real Lie algebra, then a complex representation is an \mathbb{R}-linear homomorphism $\mathfrak{g} \longrightarrow$ $\operatorname{End}(V)$, where V is a complex vector space. On the other hand, if \mathfrak{g} is a complex Lie algebra, we require that the homomorphism be \mathbb{C}-linear. The reader should note that we ask more of a complex representation of a complex Lie algebra than we do of a complex representation of a real Lie algebra.

The interplay between real and complex Lie groups and Lie algebras will prove important to us. We begin this theme right here with some generalities about extension of scalars.

If R is a commutative ring and S is a larger commutative ring containing R, we may think of S as an R-algebra. In this case, there are functors between the categories of R-modules and S-modules. Namely, if N is an S-module, we may regard it as an R-module. On the other hand, if M is an R-module, then thinking of S as an R-module, we may form the R-module $M_{S}=S \otimes_{R} M$. This has an S-module structure such that $t(s \otimes m)=t s \otimes m$ for $t, s \in S$, and $m \in M$. We call this the S-module obtained by extension of scalars. If $\phi: M \longrightarrow N$ is an R-module homomorphism, $1 \otimes \phi: M_{S} \longrightarrow N_{S}$ is an S-module homomorphism, so extension of scalars is a functor.

Of the properties of extension of scalars, we note the following:
Proposition 11.1. Let $S \supseteq R$ be commutative rings.
(i) If M_{1} and M_{2} are R-modules, we have the following natural isomorphisms of S-modules:

$$
\begin{gather*}
S \otimes_{R} R \cong S \tag{11.1}\\
S \otimes_{R}\left(M_{1} \oplus M_{2}\right) \cong\left(S \otimes_{R} M_{1}\right) \oplus\left(S \otimes_{R} M_{2}\right) \tag{11.2}\\
\left(S \otimes_{R} M_{1}\right) \otimes_{S}\left(S \otimes_{R} M_{2}\right) \cong S \otimes_{R}\left(M_{1} \otimes_{R} M_{2}\right) \tag{11.3}
\end{gather*}
$$

(ii) If M is an R-module and N is an S-module, we have a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{R}(M, N) \cong \operatorname{Hom}_{S}\left(S \otimes_{R} M, N\right) \tag{11.4}
\end{equation*}
$$

Proof. To prove (11.1), note that the multiplication $S \times R \longrightarrow S$ is an R bilinear map hence by the universal property of the tensor product induces an R-module homomorphism $S \otimes_{R} R \longrightarrow S$. On the other hand, $s \longrightarrow s \otimes 1$ is an R-module homomorphism $S \longrightarrow S \otimes_{R} R$, and these maps are inverses of each other. With our definition of the S-module structure on $S \otimes_{R} R$, they are S-module isomorphisms.

To prove (11.2), one may characterize the direct sum $M_{1} \oplus M_{2}$ as follows: given an R-module M with maps $j_{i}: M_{i} \longrightarrow M, p_{i}: M \longrightarrow M_{i}(i=1,2)$ such that $p_{i} \circ j_{i}=1_{M_{i}}$ and $j_{1} \circ p_{1}+j_{2} \circ p_{2}=1_{M}$, then there are maps

$$
\begin{gathered}
M \longrightarrow M_{1} \oplus M_{2}, \quad m \longmapsto\left(p_{1}(m), p_{2}(m)\right), \\
M_{1} \oplus M_{2} \longrightarrow M, \quad\left(m_{1}, m_{2}\right) \longmapsto i_{1} m_{1}+i_{2} m_{2}
\end{gathered}
$$

These are easily checked to be inverses of each other, and so $M \cong M_{1} \oplus M_{2}$. For example, if $M=M_{1} \oplus M_{2}$, such maps exist - take the inclusion and projection maps in and out of the direct sum. Now applying the functor $M \mapsto S \otimes_{R} M$ gives maps for $S \otimes_{R}\left(M_{1} \otimes_{R} M_{2}\right)$ showing that it is isomorphic to the left-hand side of (11.2).

To prove (11.3), one has an S-bilinear map

$$
\begin{equation*}
\left(S \otimes_{R} M_{1}\right) \times\left(S \otimes_{R} M_{2}\right) \longrightarrow S \otimes_{R}\left(M_{1} \otimes_{R} M_{2}\right) \tag{11.5}
\end{equation*}
$$

such that $\left(\left(s_{1} \otimes m_{1}\right),\left(s_{2} \otimes m_{2}\right)\right) \mapsto s_{1} s_{2} \otimes\left(m_{1} \otimes m_{2}\right)$. To see this, we note that with s_{2} and m_{2} fixed, $s_{1} \times m_{1} \mapsto s_{1} s_{2} \otimes\left(m_{1} \otimes m_{2}\right)$ is R-bilinear, so by the universal property there is (for fixed s_{2} and m_{2}) an R-module homomorphism that we denote $j_{s_{2}, m_{2}}: S \otimes_{R} M_{1} \longrightarrow S \otimes_{R}\left(M_{1} \otimes_{R} M_{2}\right)$ such that $j_{s_{2}, m_{2}}\left(s_{1} \otimes\right.$ $\left.m_{1}\right)=s_{1} s_{2} \otimes\left(m_{1} \otimes m_{2}\right)$. Now, with $\alpha \in S \otimes M_{1}$ fixed, the map $\left(s_{2}, m_{2}\right) \mapsto$ $j_{s_{2}, m_{2}}(\alpha)$ is R-bilinear, so there exists a map $J_{\alpha}: S \otimes_{R} M_{2} \longrightarrow S \otimes_{R}\left(M_{1} \otimes_{R}\right.$ M_{2}) such that $J_{\alpha}\left(s_{2} \otimes m_{2}\right)=j_{s_{2}, m_{2}}(\alpha)$. The map (11.5) is $J_{s_{1} \otimes m_{1}}\left(s_{2} \otimes m_{2}\right)$. This map is S-bilinear, so it induces a homomorphism

$$
\begin{equation*}
\left(S \otimes_{R} M_{1}\right) \otimes_{S}\left(S \otimes_{R} M_{2}\right) \longrightarrow S \otimes_{R}\left(M_{1} \otimes_{R} M_{2}\right) \tag{11.6}
\end{equation*}
$$

Similarly, there is an R-bilinear map

$$
S \times\left(M_{1} \otimes_{R} M_{2}\right) \longrightarrow\left(S \otimes_{R} M_{1}\right) \otimes_{S}\left(S \otimes_{R} M_{2}\right)
$$

such that $\left(s, m_{1} \otimes m_{2}\right) \mapsto\left(s \otimes m_{1}\right) \otimes\left(1 \otimes m_{2}\right)=\left(1 \otimes m_{1}\right) \otimes\left(s \otimes m_{2}\right)$. This induces an S-module homomorphism that is the inverse to (11.6).

To prove (11.4), we describe the correspondence explicitly. If

$$
\phi \in \operatorname{Hom}_{R}(M, N) \quad \text { and } \quad \Phi \in \operatorname{Hom}_{S}(S \otimes M, N)
$$

then ϕ and Φ correspond if $\phi(m)=\Phi(1 \otimes m)$ and $\Phi(s \otimes m)=s \phi(m)$. It is easily checked that $\phi \mapsto \Phi$ and $\Phi \mapsto \phi$ are well-defined inverse isomorphisms.

If V is a d-dimensional real vector space, then the complex vector space $V_{\mathbb{C}}=\mathbb{C} \otimes_{\mathbb{R}} V$ is a d-dimensional complex vector space. This follows from Proposition 11.1 because if $V \cong \mathbb{R} \otimes \ldots \otimes \mathbb{R}$ (d copies), then (11.1) and (11.2) imply that $V_{\mathbb{C}} \cong \mathbb{C} \otimes \ldots \otimes \mathbb{C}(d$ copies $)$. We call $V_{\mathbb{C}}$ the complexification of V. The natural map $V \longrightarrow V_{\mathbb{C}}$ given by $v \mapsto 1 \otimes v$ is injective, so we may think of V as a real vector subspace of $V_{\mathbb{C}}$.

Proposition 11.2. (i) If V is a real vector space and W is a complex vector space, any \mathbb{R}-linear transformation $V \longrightarrow W$ extends uniquely to a \mathbb{C}-linear transformation $V_{\mathbb{C}} \longrightarrow W$.
(ii) If V and U are real vector spaces, any \mathbb{R}-linear transformation $V \longrightarrow U$ extends uniquely to a \mathbb{C}-linear map $V_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$.
(iii) If V and U are real vector spaces, any \mathbb{R}-bilinear map $V \times V \longrightarrow U$ extends uniquely to a \mathbb{C}-bilinear map $V_{\mathbb{C}} \times V_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$.

Proof. Part (i) is a special case of (ii) of Proposition 11.1. Part (ii) follows by taking $W=U_{\mathbb{C}}$ in part (i) after composing the given linear map $V \longrightarrow U$ with the inclusion $U_{\mathbb{C}} \longrightarrow W$. As for (iii), an \mathbb{R}-bilinear map $V \times V \longrightarrow U$ induces an \mathbb{R}-linear map $V \otimes_{\mathbb{R}} V \longrightarrow U$ and hence by (ii) a \mathbb{C}-linear map $\left(V \otimes_{\mathbb{R}} V\right)_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$. But by $(11.3),\left(V \otimes_{\mathbb{R}} V\right)_{\mathbb{C}}$ is $V_{\mathbb{C}} \otimes_{\mathbb{C}} V_{\mathbb{C}}$, and a \mathbb{C}-linear map $V_{\mathbb{C}} \otimes_{\mathbb{C}} V_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$ is the same thing as a \mathbb{C}-bilinear map $V_{\mathbb{C}} \times V_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$.

Proposition 11.3. (i) The complexification $\mathfrak{g}_{\mathbb{C}}$ of a real Lie algebra \mathfrak{g} with the bracket extended as in Proposition 11.2 (iii) is a Lie algebra.
(ii) If \mathfrak{g} is a real Lie algebra, \mathfrak{h} is a complex Lie algebra, and $\rho: \mathfrak{g} \longrightarrow \mathfrak{h}$ is a real Lie algebra homomorphism, then ρ extends uniquely to a homomorphism $\rho_{\mathbb{C}}$: $\mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{h}$ of complex Lie algebras. In particular, any complex representation of \mathfrak{g} extends uniquely to a complex representation of $\mathfrak{g}_{\mathbb{C}}$.
(iii) If \mathfrak{g} is a real Lie subalgebra of the complex Lie algebra \mathfrak{h}, and if $\mathfrak{h}=\mathfrak{g} \oplus i \mathfrak{g}$ (that is, if \mathfrak{g} and $i \mathfrak{g}$ span \mathfrak{h} but $\mathfrak{g} \cap i \mathfrak{g}=\{0\}$), then $\mathfrak{h} \cong \mathfrak{g}_{\mathbb{C}}$ as complex Lie algebras.

Proof. For (i), the extended bracket satisfies the Jacobi identity since both sides of (5.1) are trilinear maps on $\mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{g}_{\mathbb{C}}$, which by assumption vanish on $\mathfrak{g} \times \mathfrak{g} \times \mathfrak{g}$. Since \mathfrak{g} generates $\mathfrak{g}_{\mathbb{C}}$ over the complex numbers, (5.1) is therefore true on $\mathfrak{g}_{\mathbb{C}}$.

For (ii), the extension is given by Proposition 11.2 (i), taking $W=\mathfrak{h}$. To see that the extension is a Lie algebra homomorphism, note that both $\rho([x, y])$ and $\rho(x) \rho(y)-\rho(y) \rho(x)$ are bilinear maps $\mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{h}$ that agree on $\mathfrak{g} \times \mathfrak{g}$. Since \mathfrak{g} generates $\mathfrak{g}_{\mathbb{C}}$ over \mathbb{C}, they are equal for all $x, y \in \mathfrak{g}_{\mathbb{C}}$.

For (iii), by Proposition 11.2 (i), it will be least confusing to distinguish between \mathfrak{g} and its image in \mathfrak{h}, so we prove instead the following equivalent statement: if \mathfrak{g} is a real Lie algebra, \mathfrak{h} is a complex Lie algebra, $f: \mathfrak{g} \longrightarrow \mathfrak{h}$ is an injective homomorphism, and if $\mathfrak{h}=f(\mathfrak{g}) \oplus i f(\mathfrak{g})$, then f extends to an isomorphism $\mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{h}$ of complex Lie algebras. Now f extends to a Lie algebra homomorphism $f_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{h}$ by part (ii). To see that this is an isomorphism,
note that it is surjective since $f(\mathfrak{g})$ spans \mathfrak{h}. To prove that it is injective, if $f_{\mathbb{C}}(X+i Y)=0$ with $X, Y \in \mathfrak{g}$, then $f(X)+i f(Y)=0$. Now $f(X)=f(Y)=0$ because $f(\mathfrak{g}) \cap i f(\mathfrak{g})=0$. Since f is injective, $X=Y=0$.

Of course, given any complex representation of $\mathfrak{g}_{\mathbb{C}}$, we may also restrict it to \mathfrak{g}, so Proposition 11.3 implies that complex representations of \mathfrak{g} and complex representations of $\mathfrak{g}_{\mathbb{C}}$ are really the same thing. (They are equivalent categories.)

As an example, let us consider the complexification of $\mathfrak{u}(n)$.
Proposition 11.4. (i) Every $n \times n$ complex matrix X can be written uniquely as $X_{1}+i X_{2}$, where X_{1} and X_{2} are $n \times n$ complex matrices satisfying $X_{1}=$ $-{ }^{t} X_{1}$ and $X_{2}={ }^{t} X_{2}$.
(ii) The complexification of the real Lie algebra $\mathfrak{u}(n)$ is isomorphic to $\mathfrak{g l}(n, \mathbb{C})$.
(iii)The complexification of the real Lie algebra $\mathfrak{s u}(n)$ is isomorphic to $\mathfrak{s l}(n, \mathbb{C})$.

Proof. For (i), we note that we must have

$$
X_{1}=\frac{1}{2}\left(X-{ }^{t} X\right), \quad \frac{1}{2 i}\left(X+{ }^{t} X\right) .
$$

For (ii), we will use the criterion of Proposition 11.3 (iii). We recall that $\mathfrak{u}(n)$ is the real Lie algebra consisting of complex $n \times n$ matrices satisfying $X=\overline{-^{t} X}$. We want to get the complex conjugation out of the picture before we try to complexify it, so we write $X=X_{1}+i X_{2}$, where X_{1} and X_{2} are real $n \times n$ matrices. We must have $X_{1}=-{ }^{t} X_{1}$ and $X_{2}={ }^{t} X_{2}$. Thus, as a vector space, we may identify $\mathfrak{u}(2)$ with the real vector space of pairs $\left(X_{1}, X_{2}\right) \in$ $\operatorname{Mat}_{n}(\mathbb{R}) \oplus \operatorname{Mat}_{n}(\mathbb{R})$, where X_{1} is skew-symmetric and X_{2} symmetric. The Lie bracket operation, required by the condition that

$$
\begin{equation*}
[X, Y]=X Y-Y X \text { when } X=X_{1}+i X_{2} \text { and } Y=Y_{1}+i Y_{2}, \tag{11.7}
\end{equation*}
$$

amounts to the rule

$$
\begin{gather*}
{\left[\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right]=} \\
\left(X_{1} Y_{1}-X_{2} Y_{2}-Y_{1} X_{1}+Y_{2} X_{2}, X_{1} Y_{2}+X_{2} Y_{1}-Y_{2} X_{1}-Y_{1} X_{2}\right) \tag{11.8}
\end{gather*}
$$

Now (i) shows that the complexification of this vector space (allowing X_{1} and X_{2} to be complex) can be identified with $\operatorname{Mat}_{n}(\mathbb{C})$. Of course, (11.7) and (11.8) are still equivalent if X_{1}, X_{2}, Y_{1}, and Y_{2} are allowed to be complex, so with the Lie bracket in (11.8), this Lie algebra is $\operatorname{Mat}_{n}(\mathbb{C})$ with the usual bracket. We recall from Example 5.6 that this is the Lie algebra $\mathfrak{g l}(n, \mathbb{C})$.
(iii) is similar to (ii), and we leave it to the reader.

Theorem 11.1. Every complex representation of the Lie algebra $\mathfrak{u}(n)$ or the Lie algebra $\mathfrak{g l}(n, \mathbb{R})$ extends uniquely to a complex representation of $\mathfrak{g l}(n, \mathbb{C})$. Every complex representation of the Lie algebra $\mathfrak{s u}(n)$ or the Lie algebra $\mathfrak{s l}(n, \mathbb{R})$ extends uniquely to a complex representation of $\mathfrak{s l}(n, \mathbb{C})$.
Proof. This follows from Proposition 11.3 since the complexification of $\mathfrak{u}(n)$ or $\mathfrak{g l}(n, \mathbb{R})$ is $\mathfrak{g l}(n, \mathbb{C})$, while the complexification of $\mathfrak{s u}(n)$ or $\mathfrak{s l}(n, \mathbb{R})$ is $\mathfrak{s l}(n, \mathbb{C})$. For $\mathfrak{g l}(2, \mathbb{R})$ or $\mathfrak{s l}(2, \mathbb{R})$, this is obvious. For $\mathfrak{u}(n)$ and $\mathfrak{s u}(n)$, this is Proposition 11.4.

Representations of $\mathfrak{s l}(2, \mathbb{C})$

Unless otherwise indicated, in this chapter a representation of a Lie group or Lie algebra is a complex representation.

Let us exhibit some representations of the group $\operatorname{SL}(2, \mathbb{C})$. We start with the standard representation on \mathbb{C}^{2}, with $\mathrm{SL}(2, \mathbb{C})$ acting by matrix multiplication on column vectors. Due to the functoriality of \vee^{k}, there is induced a representation of $\mathrm{SL}(2, \mathbb{C})$ on $\vee^{k} \mathbb{C}^{2}$. The dimension of this vector space is $k+1$. In short, \vee^{k} gives us a representation $\mathrm{SL}(2, \mathbb{C}) \longrightarrow \mathrm{GL}(k+1, \mathbb{C})$. There is an induced map of Lie algebras $\mathfrak{s l}(2, \mathbb{C}) \longrightarrow \mathfrak{g l}(k+1, \mathbb{C})$ by Proposition 7.3 , and it is not hard to see that this is a complex Lie algebra homomorphism. We have corresponding representations of $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(2)$, and we will eventually see that these are all the irreducible representations of these groups.

Let us make these symmetric power representations more explicit for the algebra $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$. A basis of \mathfrak{g} consists of the three matrices

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad R=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad L=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

They satisfy the commutation relations

$$
\begin{equation*}
[H, R]=2 R, \quad[H, L]=-2 L, \quad[R, L]=H \tag{12.1}
\end{equation*}
$$

Let

$$
\boldsymbol{x}=\binom{1}{0}, \quad \boldsymbol{y}=\binom{0}{1}
$$

be the standard basis of \mathbb{C}^{2}. We have a corresponding basis of $k+1$ elements in $\vee^{k} \mathbb{C}^{2}$, which we will label by integers $k, k-2, k-4, \cdots,-2 k$ for reasons that will become clear presently. Thus we let

$$
v_{k-2 l}=\boldsymbol{x} \vee \cdots \vee \boldsymbol{x} \vee \boldsymbol{y} \vee \cdots \vee \boldsymbol{y} \quad(k-l \text { copies of } x, l \text { copies of } y) .
$$

Since \vee^{k} is a functor, if $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ is a linear transformation, there is induced a linear transformation $\vee^{k} f$ of $\vee^{k} \mathbb{C}^{2}$. (See Exercise 9.4.) In particular, let us compute the effect of $\vee^{k} R$ on v_{i}. In \mathbb{C}^{2},

$$
\exp (t R):\left\{\begin{array}{lc}
\boldsymbol{x} & \longmapsto \boldsymbol{x}, \\
\boldsymbol{y} & \longmapsto \boldsymbol{y}+t \boldsymbol{x} .
\end{array}\right.
$$

Therefore, in $\vee^{k} V$, remembering that the \vee operation is symmetric (commutative), we see that $\exp (t R)$ maps $v_{k-2 l}$ to

$$
v_{k-2 l}+t l v_{k-2 l+2}+t^{2}\binom{l}{2} v_{k-2 l+4}+\cdots
$$

Therefore, in the Lie algebra,

$$
\left(V^{k} R\right) v_{k-2 l}=\left.\frac{d}{d t} \exp (t R) v_{k-2 l}\right|_{t=0}=\left\{\begin{array}{cl}
l v_{k-2 l+2} & \text { if } l>0 \tag{12.2}\\
0 & \text { if } l=0
\end{array}\right.
$$

Similarly, it may be checked that

$$
\left(\vee^{k} L\right) v_{k-2 l}=\left\{\begin{array}{cl}
(k-l) v_{k-2 l-2} & \text { if } l<k \tag{12.3}\\
0 & \text { if } l=k
\end{array}\right.
$$

and

$$
\begin{equation*}
\left(\vee^{k} H\right) v_{k-2 l}=(k-2 l) v_{k-2 l} . \tag{12.4}
\end{equation*}
$$

The last identity is the reason for the labeling of the vectors $v_{k-2 l}$: the subscript is the eigenvalue of H.

For example, if $k=3$, then with respect to the basis $v_{3}, v_{1}, v_{-1}, v_{-3}$, we find that

$$
\begin{gathered}
\vee^{3} R=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right), \\
V^{3} L=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \vee^{3} H=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) .
\end{gathered}
$$

It may be checked directly that these matrices satisfy the commutation relations (12.1).

Proposition 12.1. The representation $\vee^{k} \mathbb{C}^{2}$ of $\mathfrak{s l}(2, \mathbb{R})$ is irreducible.
Proof. Suppose that U is a nonzero invariant subspace. Choose a nonzero element $\sum a_{k-2 l} v_{k-2 l}$ of U. Let $k-2 l$ be the smallest integer such that $a_{k-2 l} \neq$ 0 . Applying R to this vector l times shifts each $v_{r} \longrightarrow v_{r+2}$ times a nonzero constant, except for v_{k}, which it kills. Consequently, this operation R^{l} will kill every vector v_{r} with $r \geqslant k-2 l$, leaving only a nonzero constant times v_{k}. Thus $v_{k} \in U$. Now applying L repeatedly shows that $v_{k-2}, v_{k-4}, \cdots \in U$, so U contains a basis of $\vee^{k} \mathbb{C}^{2}$. We see that any nonzero invariant subspace of $\vee^{k} \mathbb{C}^{2}$ is the whole space, so the representation is irreducible.

If $k=0$, we reiterate that $\vee^{0} \mathbb{C}^{2}=\mathbb{C}$. It is a trivial $\mathfrak{s l}(2, \mathbb{R})$-module, meaning that $\pi(X)$ acts as zero on it for all $X \in \mathfrak{s l}(2, \mathbb{R})$.

Now we need an element of the center of $U(\mathfrak{s l}(2, \mathbb{R}))$. An invariant bilinear form on \mathfrak{g} is given by $B(x, y)=\frac{1}{2} \operatorname{tr}(x y)$, where the trace is the usual trace of a matrix, and $x y$ is the product of two matrices, not multiplication in $U(\mathfrak{s l}(2, \mathbb{R}))$. The invariance of this bilinear form follows from the property of the trace that $\operatorname{tr}(x y)=\operatorname{tr}(y x)$ since

$$
B([x, y], z)+B(y,[x, z])=\frac{1}{2}(\operatorname{tr}(x y z)-\operatorname{tr}(y x z)+\operatorname{tr}(y x z)-\operatorname{tr}(y z x))=0
$$

proving (10.1). Dual to the basis H, R, L of $\mathfrak{s l}(2, \mathbb{R})$ is the basis $H, 2 L, 2 R$, and it follows from Theorem 10.2 that the Casimir element

$$
\Delta=H^{2}+2 R L+2 L R
$$

is an element of the center of $U(\mathfrak{s l}(2, \mathbb{R}))$.
Proposition 12.2. The element Δ acts by the scalar $\lambda=k^{2}+2 k$ on $\vee^{k} \mathbb{C}^{2}$.
Proof. To calculate the effect of Δ on the space, we apply it to a basis vector $v_{k-2 l}$. We see that

$$
\begin{gather*}
H^{2} v_{k-2 l}=(k-2 l)^{2} v_{k-2 l}, \tag{12.5}\\
2 R L v_{k-2 l}=2 R(k-l) v_{k-2 l-2}=2(l+1)(k-l) v_{k-2 l}, \tag{12.6}\\
2 L R v_{k-2 l}=2 L l v_{k-2 l+2}=2 l(k-l+1) v_{k-2 l} \tag{12.7}
\end{gather*}
$$

Adding these,

$$
\begin{equation*}
\Delta v_{k-2 l}=\left(k^{2}+2 k\right) v_{k-2 l} . \tag{12.8}
\end{equation*}
$$

This completes the proof.
Proposition 12.3. Let (π, V) be a finite-dimensional complex representation of $\mathfrak{s l}(2, \mathbb{R})$. Assume that Δ acts by a scalar λ on V. Let v_{k} be an eigenvector of $\pi(H)$ on V, so that $\pi(H) v_{k}=k v_{k}$ for some $k \in \mathbb{C}$ chosen so that the real part of k is as large as possible. Then k is a nonnegative integer, $\lambda=k^{2}+2 k$, and v_{k} generates an irreducible subspace of V isomorphic to $\vee^{k} \mathbb{C}^{2}$.

Proof. Suppose that v is an eigenvector of H with eigenvalue r. Then we show that $R v$ (if nonzero) is also an eigenvector, with eigenvalue $r+2$. Indeed, in the enveloping algebra, we have $H R-R H=[H, R]=2 R$, so $H R v=$ $R H v+2 R v=(r+2) R v$.

Next we show that if v is an eigenvector of H with eigenvalue k, and if $R v=0$, then $\lambda=k^{2}+2 k$. Indeed, since $R L-L R=[R, L]=H$, we may write $\Delta=H^{2}+2 H+4 L R$, so applying Δ to v gives $\left(k^{2}+2 k\right) v$.

Similarly, if v is an eigenvector of H with eigenvalue r, and $L v \neq 0$, then $L v$ is an eigenvector with eigenvalue $r-2$. Moreover, if v is an eigenvector of H with eigenvalue h, and if $L v=0$, then $\lambda=h^{2}-2 h$.

Since $\pi(H)$ is an endomorphism of a complex vector space, it has at least one eigenvalue. If v_{k} is an eigenvector with eigenvalue k, chosen so that k has maximum real part, then $R v_{k}=0$, since $k+2$ is not an eigenvalue. Thus $\lambda=k^{2}+k$. Now, applying L successively, we obtain eigenvectors $L v_{k}, L^{2} v_{k}, \cdots$ with eigenvalues $k-2, k-4, \cdots$. Eventually these must vanish. Let $h=k-2 l$ be such that $L^{l} v_{k} \neq 0$, while $L^{l+1} v_{k}=0$. Then $\lambda=h^{2}-2 h$.

Since $h^{2}-2 h=k^{2}+2 k$, we have $2(h+k)=h^{2}-k^{2}=(h-k)(h+k)$. Either $h-k=2$ or $h+k=0$. However, $h \leqslant k$ so $h-k=2$ is impossible and $h=-k$. Since $h=k-2 l$, we see that $l=k$. In particular, k is a nonnegative integer.

Now define v_{k-2}, v_{k-4}, \cdots by

$$
v_{k-2 l-2}=\frac{1}{k-l} L v_{k-2 l}
$$

We claim that (12.2), (12.3), and (12.4) are all satisfied. Already (12.3) and (12.4) are evident. As for (12.2), we may argue by induction. Suppose that this statement is true for l. Then, of the equations (12.5), (12.6), (12.7), and (12.8), all but (12.6) are known; (12.7) uses the induction hypothesis. Now (12.6) follows by subtracting (12.5) and (12.7) from (12.8), and (12.2) follows for $l+1$.

It follows that $v_{k}, v_{k-2}, \cdots, v_{-k}$ span a submodule of V that is isomorphic to $\vee^{k} \mathbb{C}^{2}$.

Proposition 12.4. Let (π, V) be an irreducible complex representation of the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$. Then Δ acts by a scalar λ on V, and $\lambda=k^{2}+2 k$ for some nonnegative integer k. The representation π is isomorphic to $\vee^{k} \mathbb{C}^{2}$.

Proof. By Proposition 10.4, there exists a scalar λ such that Δ acts by λ on V. By Proposition 12.3, if we choose k to be an eigenvector of $\pi(H)$ on V with maximum real part, an eigenvector v_{k} for k generates an irreducible subspace isomorphic to $\bigvee^{k} \mathbb{C}^{2}$. Since V is irreducible, the result follows.

Theorem 12.1. Let (π, V) be any irreducible complex representation of $\mathfrak{s l}(2, \mathbb{R}), \mathfrak{s u}(2)$ or $\mathfrak{s l}(2, \mathbb{C})$. Then π is isomorphic to $\vee^{k} \mathbb{C}^{2}$ for some k.

Proof. By Theorem 11.1, it is sufficient to show this for $\mathfrak{s l}(2, \mathbb{R})$, in which case the statement follows from Proposition 12.4.

We can't quite say yet that the finite-dimensional representations of $\mathfrak{s l}(2, \mathbb{R}), \mathfrak{s u}(2)$, and $\mathfrak{s l}(2, \mathbb{C})$ are now classified. We know the irreducible representations of these three Lie algebras. What is missing is a theorem that says that every irreducible representation is completely reducible, that is, a direct sum of irreducible representations.

We will make use of the Casimir element Δ. If $\mathfrak{g}=\mathfrak{s u}(2)$, we haven't proven that this is an element of $U(\mathfrak{g})$. This can be checked by direct computation, but we don't really need it - it is an element of $U\left(\mathfrak{g}_{\mathbb{C}}\right) \cong U(\mathfrak{g})_{\mathbb{C}}$ and as such acts as a scalar on any complex representation of \mathfrak{g}.

Proposition 12.5. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$, $\mathfrak{s u}(2)$ or $\mathfrak{s l}(2, \mathbb{C})$. Let (π, V) be a finitedimensional complex representation of \mathfrak{g}. If there exists $k \geqslant 1$ such that $\pi\left(\Delta^{k}\right) v=0$ for all $v \in V$, then $\pi(X) v=0$ for all $X \in \mathfrak{g}, v \in V$.

Proof. There is nothing to do if $V=\{0\}$. Assume therefore that U is a maximal proper invariant subspace of U. By induction on $\operatorname{dim}(V), \mathfrak{g}$ acts trivially on U. Now V / U is irreducible by the maximality of U, and Δ annihilates V / U, so by the classification of the irreducible representations of \mathfrak{g} in Theorem $12.1, \mathfrak{g}$ acts trivially on V / U. This means that if $Y \in \mathfrak{g}$ and $v \in V$, then $\pi(Y) v \in U$. Since \mathfrak{g} acts trivially on U, if X is another element of \mathfrak{g}, we have $\pi(X) \pi(Y) v=0$ and similarly $\pi(Y) \pi(X)=0$. Thus $\pi([X, Y]) v=\pi(X) \pi(Y) v-\pi(Y) \pi(X) v=0$, and since by (12.1) elements of the form $[X, Y]$ span \mathfrak{g}, it follows that \mathfrak{g} acts trivially on V.

Proposition 12.6. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$, $\mathfrak{s u}(2)$, or $\mathfrak{s l}(2, \mathbb{C})$. Let (π, V) be a finitedimensional complex representation of \mathfrak{g}.
(i) If $v \in V$ and $\Delta^{2} v=0$, then $\Delta v=0$.
(ii) We have $V=V_{0} \oplus V_{1}$, where V_{0} is the kernel of Δ and V_{1} is the image of Δ. Both are invariant subspaces. If $X \in \mathfrak{g}$ and $v \in V_{0}$, then $\pi(X) v=0$.
(iii) The subspace $V_{0}=\{v \in V \mid \pi(X)=0$ for all $X \in \mathfrak{g}\}$.
(iv) If $0 \longrightarrow V \longrightarrow W \longrightarrow Q \longrightarrow 0$ is an exact sequence of \mathfrak{g}-modules, then there is an exact sequence $0 \longrightarrow V_{0} \longrightarrow W_{0} \longrightarrow Q_{0} \longrightarrow 0$.

Proof. Since Δ commutes with the action of \mathfrak{g}, the kernel W of Δ^{k} is an invariant subspace. Now (i) follows from Proposition 12.5.

It follows from (i) that $V_{0} \cap V_{1}=\{0\}$. Now for any linear endomorphism of a vector space, the dimension of the image equals the codimension of the kernel, so $\operatorname{dim}\left(V_{0}\right)+\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}(V)$. It follows that $V_{0}+V_{1}=V$ and this sum is direct. Since Δ commutes with the action of \mathfrak{g}, both V_{0} and V_{1} are invariant subspaces.

It follows from Proposition 12.5 that \mathfrak{g} acts trivially on V_{0}. This proves (ii) and also (iii) since it is obvious that $\{v \in V \mid \pi(X) v=0\} \subseteq V_{0}$, and we have proved the other inclusion.

For (iv), any homomorphism $V \longrightarrow W$ of \mathfrak{g}-modules maps V_{0} into W_{0}, so $V \longrightarrow V_{0}$ is a functor. Given a short exact sequence $0 \longrightarrow V \longrightarrow W \longrightarrow$ $Q \longrightarrow 0$, consider

Exactness of the two middle rows implies exactness of the top row. We must show that $W_{0} \longrightarrow Q_{0}$ is surjective. We will deduce this from the Snake Lemma. The cokernel of $\Delta: V \longrightarrow V$ is $V / V_{1} \cong V_{0}$, and similarly the cokernel of $\Delta: W \longrightarrow W$ is $W / W_{1} \cong W_{0}$, so the Snake Lemma gives us a long exact sequence:

$$
0 \longrightarrow V_{0} \longrightarrow W_{0} \longrightarrow Q_{0} \longrightarrow V_{0} \longrightarrow W_{0}
$$

Since the last map is injective, the map $Q_{0} \longrightarrow V_{0}$ is zero, and hence $W_{0} \longrightarrow$ Q_{0} is surjective.

If V is a \mathfrak{g}-module, we call $V_{0}=\{v \in V \mid X v=0$ for all $X \in \mathfrak{g}\}$ the module of invariants. The proposition shows that it is an exact functor.

If \mathfrak{g} is a Lie algebra and V, W are \mathfrak{g}-modules, we can make the space $\operatorname{Hom}(V, W)$ of all \mathbb{C}-linear transformations $V \longrightarrow W$ into a \mathfrak{g}-module by:

$$
(X \phi) v=X \phi(v)-\phi(X v)
$$

It is straightforward to check that Π is a Lie algebra representation. The module of invariants is the space

$$
\operatorname{Hom}_{\mathfrak{g}}(V, W)=\{\phi: V \longrightarrow W \mid \phi(X v)=X \phi(v) \text { for all } X \in \mathfrak{g}\}
$$

of all \mathfrak{g}-module homomorphisms.
Proposition 12.7. Let U, V, W, Q be \mathfrak{g}-modules, where \mathfrak{g} is one of $\mathfrak{s l}(2, \mathbb{R})$, $\mathfrak{s u}(2)$, or $\mathfrak{s l}(2, \mathbb{C})$, and let

$$
0 \longrightarrow V \longrightarrow W \longrightarrow Q \longrightarrow 0
$$

be an exact sequence of \mathfrak{g}-modules. Composition with these maps gives an exact sequence:

$$
0 \longrightarrow \operatorname{Hom}_{\mathfrak{g}}(U, V) \longrightarrow \operatorname{Hom}_{\mathfrak{g}}(U, W) \longrightarrow \operatorname{Hom}_{\mathfrak{g}}(U, Q) \longrightarrow 0
$$

Proof. Composition with these maps gives a short exact sequence:

$$
0 \longrightarrow \operatorname{Hom}(U, V) \longrightarrow \operatorname{Hom}(U, W) \longrightarrow \operatorname{Hom}(U, Q) \longrightarrow 0
$$

Here, of course, $\operatorname{Hom}(U, V)$ is just the space of all linear transformations of complex vector spaces. Taking the spaces of invariants gives the exact sequence of $\mathrm{Hom}_{\mathfrak{g}}$ spaces, and by Proposition 12.6 it is exact.

Theorem 12.2. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$, $\mathfrak{s u}(2)$, or $\mathfrak{s l}(2, \mathbb{C})$. Any finite-dimensional complex representation of \mathfrak{g} is a direct sum of irreducible representations.

Proof. Let W be a \mathfrak{g}-module. If W is zero or irreducible, there is nothing to check. Otherwise, let V be a proper nonzero submodule and let $Q=W / V$. We have an exact sequence

$$
0 \longrightarrow V \longrightarrow W \longrightarrow Q \longrightarrow 0
$$

and by induction on $\operatorname{dim}(W)$ both V and Q decompose as direct sums of irreducible submodules. By Proposition 12.7, composition with these maps produces an exact sequence

$$
0 \longrightarrow \operatorname{Hom}(Q, V)_{\mathfrak{g}} \longrightarrow \operatorname{Hom}(Q, W)_{\mathfrak{g}} \longrightarrow \operatorname{Hom}(Q, Q)_{\mathfrak{g}} \longrightarrow 0
$$

The surjectivity of the map $\operatorname{Hom}(Q, W)_{\mathfrak{g}} \longrightarrow \operatorname{Hom}(Q, Q)_{\mathfrak{g}}$ means that there is a map $i: Q \longrightarrow W$ whose composition $p \circ i$ with the projection $p: W \longrightarrow Q$ is the identity map on Q.

Now V and $i(Q)$ are submodules of W such that $V \cap i(Q)=\{0\}$ and $W=V+i(Q)$. Indeed, if $x \in V \cap i(Q)$, then $p(x)=0$ since $p(V)=\{0\}$, and writing $x=i(q)$ with $q \in Q$, we have $q=(p \circ i)(q)=p(x)=0$; so $x=0$ and if $w \in W$ we can write $w=v+q$, where $v=w-i p(w)$ and $q=i p(w)$ and, since $p(v)=p(w)-p(w)=0, v \in \operatorname{ker}(p)=V$ and $q \in i(Q)$.

We see that $W=V \oplus i(Q)$, and since V and Q are direct sums of irreducible submodules, so is W.

EXERCISES

Exercise 12.1. If (π, V) is a representation of $\operatorname{SL}(2, \mathbb{R}), \mathrm{SU}(2)$ or $\mathrm{SL}(2, \mathbb{C})$, then we may restrict the character of π to the diagonal subgroup. This gives

$$
\xi_{\pi}(t)=\operatorname{tr} \pi\binom{t}{t^{-1}}
$$

which is a polynomial in t and t^{-1}.
(i) Compute $\xi_{\pi}(t)$ for the symmetric power representations. Show that the polynomials $\xi_{\pi}(t)$ are linearly independent and determine the representation π.
(ii) Show that if $\Pi=\pi \otimes \pi^{\prime}$, then $\xi_{\Pi}=\xi_{\pi} \xi_{\pi^{\prime}}$. Use this observation to compute the decomposition of $\pi \otimes \pi^{\prime}$ into irreducibles when $\pi=\mathrm{V}^{n} \mathbb{C}^{2}$ and $\pi^{\prime}=\mathrm{V}^{m} \mathbb{C}^{2}$.

The Universal Cover

If U is a Hausdorff topological space, a path is a continuous map $p:[0,1] \longrightarrow$ U. The path is closed if the endpoints coincide: $p(0)=p(1)$. A closed path is also called a loop.

An object in the category of pointed topological spaces consists of a pair (X, x_{0}), where X is a topological space and $x_{0} \in X$. The chosen point $x_{0} \in X$ is called the base point. A morphism in this category is a continuous map taking base point to base point.

If U and V are topological spaces and $\phi, \psi: U \longrightarrow V$ are continuous maps, a homotopy $h: \phi \rightsquigarrow \psi$ is a continuous map $h: U \times[0,1] \longrightarrow V$ such that $h(u, 0)=\phi(u)$ and $h(u, 1)=\psi(1)$. To simplify the notation, we will denote $h(u, t)$ as $h_{t}(u)$ in a homotopy. Two maps ϕ and ψ are called homotopic if there exists a homotopy $\phi \rightsquigarrow \psi$. Homotopy is an equivalence relation.

If $p:[0,1] \longrightarrow U$ and $p^{\prime}:[0,1] \longrightarrow U$ are two paths, we say that p and p^{\prime} are path-homotopic if there is a homotopy $h: p \leadsto p^{\prime}$ that does not move the endpoints. This means that $h_{t}(0)=p(0)=p^{\prime}(0)$ and $h_{t}(1)=p(1)=p^{\prime}(1)$ for all t. We call h a path-homotopy, and we write $p \approx p^{\prime}$ if a path-homotopy exists.

Suppose there exists a continuous function $f:[0,1] \longrightarrow[0,1]$ such that $f(0)=0$ and $f(1)=1$ and that $p^{\prime}=p \circ f$. Then we say that p^{\prime} is a reparametrization of p. The paths are path-homotopic since we can consider $p_{t}(u)=p((1-t) u+t f(u))$. Because the interval $[0,1]$ is convex, $(1-t) u+t f(u) \in[0,1]$ and $p_{t}: p \rightsquigarrow p^{\prime}$.

Let us say that a map of topological spaces is trivial if it is constant, mapping the entire domain to a single point. A topological space U is contractible if the identity map $U \longrightarrow U$ is homotopic to a trivial map. A space U is path-connected if for all $x, y \in U$ there exists a path $p:[0,1] \longrightarrow U$ such that $p(0)=x$ and $p(1)=y$.

Suppose that $p:[0,1] \longrightarrow U$ and $q:[0,1] \longrightarrow U$ are two paths in the space U such that the right endpoint of p coincides with the left endpoint of q; that is, $p(1)=q(0)$. Then we can concatenate the paths to form the path $p \star q$:

$$
(p \star q)(t)=\left\{\begin{array}{cl}
p(2 t) & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\
q(2 t-1) & \text { if } \frac{1}{2} \leqslant t \leqslant 1
\end{array}\right.
$$

We may also reverse a path: $-p$ is the path $(-p)(t)=p(1-t)$. These operations are compatible with path-homotopy, and the path $p \star(-p)$ is homotopic to the trivial path $p_{0}(t)=p(0)$. To see this, define

$$
p_{t}(u)=\left\{\begin{array}{cl}
p(2 t u) & \text { if } 0 \leqslant u \leqslant 1 / 2 \\
p(2 t(1-u)) & \text { if } 1 / 2 \leqslant u \leqslant 1
\end{array}\right.
$$

This is a path-homotopy $p_{0} \rightsquigarrow p \star(-p)$. Also $(p \star q) \star r \approx p \star(q \star r)$ if $p(1)=q(0)$ and $q(1)=r(0)$, since these paths differ by a reparametrization.

The space U is simply-connected if it is path-connected and given any closed path (that is, any $p:[0,1] \longrightarrow U$ such that $p(0)=p(1)$), there exists a path-homotopy $f: p \leadsto p_{0}$, where p_{0} is a trivial loop mapping $[0,1]$ onto a single point. Visually, the space is simply-connected if every closed path can be shrunk to a point. It may be convenient to fix a base point $x_{0} \in U$. In this case, to check whether U is simply-connected or not, it is sufficient to consider loops $p:[0,1] \longrightarrow U$ such that $p(0)=p(1)=x_{0}$. Indeed, we have:

Proposition 13.1. Suppose the space U is path-connected. The following are equivalent.
(i) Every loop in U is path-homotopic to a trivial loop.
(ii) Every loop p in U with $p(0)=p(1)=x_{0}$ is path-homotopic to a trivial loop.
(iii) Every continuous map of the circle $S^{1} \longrightarrow U$ is homotopic to a trivial map.

Thus, any one of these conditions is a criterion for simple connectedness.
Proof. Clearly, (i) implies (ii). Assuming (ii), if p is a loop in U, let x be the endpoint $p(0)=p(1)$ and (using path-connectedness) let q be a path from x_{0} to x. Then $q \star p \star(-q)$ is a loop beginning and ending at x_{0}, so using (ii) it is path-homotopic to the trivial path $p_{0}(t)=x_{0}$ for all $t \in[0,1]$. Since $p_{0} \approx q \star p \star(-q), p \approx(-q) \star p_{0} \star q$, which is path homotopic to the trivial loop $t \longmapsto x$. Thus (ii) implies (i).

As for (iii), a continuous map of the circle $S^{1} \longrightarrow U$ is equivalent to a path $p:[0,1] \longrightarrow U$ with $p(0)=p(1)$. To say that this path is homotopic to a trivial path is not quite the same as saying it is path-homotopic to a trivial path because in deforming p we need $p_{t}(0)=p_{t}(1)$ (so that it extends to a continuous map of the circle), but we do not require that $p_{t}(0)=p(0)$ for all t. Thus, it may not be a path-homotopy. However, we may modify it to obtain a path-homotopy as follows: let

$$
q_{t}(u)=\left\{\begin{array}{cl}
p_{3 t u}(0) & \text { if } 0 \leqslant u \leqslant 1 / 3 \\
p_{t}(3 u-1) & \text { if } 1 / 3 \leqslant u \leqslant 2 / 3 \\
p_{(3-3 u) t}(1) & \text { if } 2 / 3 \leqslant u \leqslant 1
\end{array}\right.
$$

Then q_{t} is a path-homotopy. When $t=0$, it is a reparametrization of the original path, and when $t=1$, since p_{1} is trivial, q_{1} is path-homotopic to a trivial path. Thus, (iii) implies (i), and the converse is obvious.

A map $\pi: N \longrightarrow M$ is called a covering map if the fibers $\pi^{-1}(x)$ are discrete for $x \in M$, and every point $m \in M$ has a neighborhood U such that $\pi^{-1}(U)$ is homeomorphic to $U \times \pi^{-1}(x)$ in such a way that the composition

$$
\pi^{-1}(U) \cong U \times \pi^{-1}(x) \longrightarrow U
$$

where the second map is the projection, coincides with the given map π. We say that the cover is trivial if N is homeomorphic to $M \times F$, where the space F is discrete, in such a way that π is the composition $N \cong M \times F \longrightarrow M$ (where the second map is the projection). Thus, every $m \in M$ has a neighborhood U such that the restricted covering map $\pi^{-1}(U) \longrightarrow U$ is trivial, a property we will cite as local triviality of the cover.

Proposition 13.2. Let $\pi: N \longrightarrow M$ be a covering map.
(i) If $p:[0,1] \longrightarrow M$ is a path, and if $y \in \pi^{-1}(p(0))$, then there exists a unique path $\tilde{p}:[0,1] \longrightarrow N$ such that $\pi \circ \tilde{p}=p$ and $\tilde{p}(0)=y$.
(ii) If $\tilde{p}, \tilde{p}^{\prime}:[0,1] \longrightarrow N$ are paths with $\tilde{p}(0)=\tilde{p}^{\prime}(0)$, and if the paths $\pi \circ \tilde{p}$ and $\pi \circ \tilde{p}^{\prime}$ are path-homotopic, then the paths \tilde{p} and \tilde{p}^{\prime} are path-homotopic.

We refer to this property as the path-lifting property of the covering space.
Proof. If the cover is trivial, then we may assume that $N=M \times F$ where F is discrete, and if $y=(x, f)$, where $x=p(0)$ and $f \in F$, then the unique solution to this problem is $\tilde{p}(t)=(p(t), f)$.

Since $p([0,1])$ is compact, and since the cover is locally trivial, there are a finite number of open sets $U_{1}, U_{2}, \cdots, U_{n}$ and points $x_{0}=0<x_{1}<\cdots<$ $x_{n}=1$ such that $p\left(\left[x_{i-1}, x_{i}\right]\right) \subset U_{i}$ and such that the restriction of the cover to U_{i} is trivial. On each interval $\left[x_{i-1}, x\right]$, there is a unique solution, and patching these together gives the unique general solution. This proves (i).

For (ii), since $p=\pi \circ \tilde{p}$ and $p^{\prime}=\pi \circ \tilde{p}^{\prime}$ are path-homotopic, there exists a continuous map $(u, t) \mapsto p_{t}(u)$ from $[0,1] \times[0,1] \longrightarrow M$ such that $p_{0}(u)=p(u)$ and $p_{1}(u)=p^{\prime}(u)$. For each t, using (i) there is a unique path $\widetilde{p_{t}}:[0,1] \longrightarrow \tilde{M}$ such that $p_{t}=\pi \circ \tilde{p}_{t}$ and $\tilde{p}_{t}(0)=p(0)$. One may check that $(u, t) \mapsto \tilde{p}_{t}(u)$ is continuous, and $\widetilde{p_{0}}=\tilde{p}$ and $\widetilde{p_{1}}=\tilde{p}^{\prime}$, so \tilde{p} and \tilde{p}^{\prime} are path-homotopic.

Covering spaces of a fixed space M form a category: if $\pi: N \longrightarrow M$ and $\pi^{\prime}: N^{\prime} \longrightarrow M$ are covering maps, a morphism is a covering map $f: N \longrightarrow N^{\prime}$ such that $\pi=\pi^{\prime} \circ f$. If M is a pointed space, we are actually interested in the subcategory of pointed covering maps: if x_{0} is the base point of M, the base point of N must lie in the fiber $\pi^{-1}\left(x_{0}\right)$, and in this category the morphism f must preserve base points. We call this category the category of pointed covering maps or pointed covers of M.

Let M be a path-connected space with a fixed base point x_{0}. We assume that every point has a contractible neighborhood. The fundamental group $\pi_{1}(M)$ consists of the set of homotopy classes of loops in M with left and right endpoints equal to x_{0}. The multiplication in $\pi_{1}(M)$ is concatenation, and the inverse operation is path-reversal. Clearly, $\pi_{1}(M)=1$ if and only if M is simply-connected. Changing the base point replaces $\pi_{1}(M)$ by an isomorphic group, but not canonically so. Thus, $\pi_{1}(M)$ is a functor from the category of pointed spaces to the category of groups - not a functor on the category of topological spaces. If M happens to be a topological group, we will always take the base point to be the identity element.

Proposition 13.3. If M is simply-connected, is N path-connected, and π : $N \longrightarrow M$ is a covering map, then π is a homeomorphism.

Proof. Since a covering map is always a local homeomorphism, what we need to show is that π is bijective. It is of course surjective. Suppose that $n, n^{\prime} \in N$ have the same image in M. Since N is path-connected, let $\tilde{p}:[0,1] \longrightarrow N$ be a path with $\tilde{p}(0)=n$ and $\tilde{p}(1)=n^{\prime}$. Because M is simply-connected and $\tilde{\pi} \circ p(0)=\tilde{\pi} \circ p(1)$, the path $\tilde{\pi} \circ p$ is path-homotopic to a trivial path. By Proposition 13.2 (ii), so is p. Therefore $n=n^{\prime}$.

Theorem 13.1. Let M be a path-connected space with base point x_{0} in which every point has a contractible neighborhood. Then there exists a simplyconnected space \tilde{M} with a covering map $\tilde{\pi}: \tilde{M} \longrightarrow M$. If $\pi: N \longrightarrow M$ is any pointed covering map, there is a unique morphism $\tilde{M} \longrightarrow N$ of pointed covers of M. If N is simply-connected, this map is an isomorphism. Thus M has a unique simply-connected cover.

Note that this is a universal property. Therefore it characterizes \tilde{M} up to isomorphism. The space \tilde{M} is called the universal covering space of M.

Proof. To construct \tilde{M}, let \tilde{M} as a set be the set of all paths $p:[0,1] \longrightarrow M$ such that $p(0)=x_{0}$ modulo the equivalence relation of path-homotopy. We define the covering map $\tilde{\pi}: \tilde{M} \longrightarrow M$ by $\tilde{\pi}(p)=p(1)$. To topologize \tilde{M}, let $x \in M$ and let U be a contractible neighborhood of x. Let $F=\tilde{\pi}^{-1}(x)$. It is a set of path-homotopy classes of paths from x_{0} to x. Using the contractibility, of U, it is straightforward to show that, given $p \in \pi^{-1}(U)$ with $y=\pi(p) \in U$, there is a unique element F represented by a path p^{\prime} such that $p \approx p^{\prime} \star q$, where q is a path from x to y lying entirely within U. We topologize $\tilde{\pi}^{-1}(U)$ in the unique way such that the map $p \mapsto\left(p^{\prime}, y\right)$ is a homeomorphism $\tilde{\pi}^{-1}(U) \longrightarrow$ $F \times U$.

We must show that, given a pointed covering map $\pi: N \longrightarrow M$, there exists a unique morphism $\tilde{M} \longrightarrow N$ of pointed covers of M. Let y_{0} be the base point of N. An element of $\tilde{\pi}^{-1}(x)$, for $x \in M$, is an equivalence class under the relation of path-homotopy of paths $p:[0,1] \longrightarrow M$ with $x_{0}=p(0)$. By Proposition 13.2 (i), there is a unique path $q:[0,1] \longrightarrow N$ lifting this with
$q(0)=y_{0}$, and Proposition 13.2 (ii) shows that the path-homotopy class of q depends only on the path-homotopy class of p. Then mapping $p \mapsto q(1)$ is the unique morphism $\tilde{M} \longrightarrow N$ of pointed covers of M.

If N is simply-connected, any covering map $M \longrightarrow N$ is an isomorphism by Proposition 13.3.

If M is a pointed space and x_{0} is its base point, then the fiber $\tilde{\pi}^{-1}\left(x_{0}\right)$ coincides with its fundamental group $\pi_{1}(M)$. We are interested in the case where $M=G$ is a Lie group. We take the base point to be the origin.

Theorem 13.2. Suppose that G is a path-connected group in which every point has a contractible neighborhood. Then the universal covering space \tilde{G} admits a group structure in which both the natural inclusion map $\pi_{1}(G) \longleftrightarrow \tilde{G}$ and the projection $\tilde{\pi}: \tilde{G} \longrightarrow G$ are homomorphisms. The kernel of $\tilde{\pi}$ is $\pi_{1}(G)$.

Proof. If $p:[0,1] \longrightarrow G$ and $q:[0,1] \longrightarrow G$ are paths, so is $t \mapsto p \cdot q(t)=$ $p(t) q(t)$. If $p(0)=q(0)=1_{G}$, the identity element in G, then $p \cdot q(0)=1_{G}$ also. If p and p^{\prime} are path-homotopic and q, q^{\prime} are another pair of path-homotopic paths, then $p \cdot q$ and $p^{\prime} \cdot q^{\prime}$ are path-homotopic, for if $t \mapsto p_{t}$ is a path-homotopy $p \rightsquigarrow p^{\prime}$ and $t \mapsto q_{t}$ is a path-homotopy $q \rightsquigarrow q^{\prime}$, then $t \mapsto p_{t} \cdot q_{t}$ is a pathhomotopy $p \cdot q \rightsquigarrow p^{\prime} \cdot q^{\prime}$.

It is straightforward to see that the projection $\tilde{\pi}$ is a group homomorphism. To see that the inclusion of the fundamental group as the fiber over the identity in \tilde{G} is a group homomorphism, let p and q be loops with $p(0)=p(1)=$ $q(0)=q(1)=1_{G}$. There is a continuous map $f:[0,1] \times[0,1] \longrightarrow G$ given by $(t, u) \longrightarrow p(t) q(u)$. Taking different routes from $(0,0)$ to $(1,1)$ will give path-homotopic paths. Going directly via $t \mapsto f(t, t)=p(t) q(t)$ gives $p \cdot q$, while going indirectly via

$$
t \mapsto\left\{\begin{array}{rlrl}
f(2 t, 0) & =p(2 t) & & \text { if } 0 \leqslant t \leqslant \frac{1}{2} \\
f(1,2 t-1) & =q(2 t-1) & \text { if } \frac{1}{2} \leqslant t \leqslant 1
\end{array}\right.
$$

gives the concatenated path $p \star q$. Thus, $p \star q$ and $p \cdot q$ are path-homotopic, so the multiplication in $\pi_{1}(G)$ is compatible with the multiplication in \tilde{G}.

The last statement, that the kernel of $\tilde{\pi}$ is $\pi_{1}(G)$, is true by definition.
Proposition 13.4. Let S^{r} denote the r-sphere. Then $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$, while S^{r} is simply-connected if $r \geqslant 2$.

Proof. We may identify the circle S^{1} with the unit circle in \mathbb{C}. Then $x \mapsto e^{2 \pi i x}$ is a covering map $\mathbb{R} \longrightarrow S^{1}$. The space \mathbb{R} is contractible and hence simplyconnected, so it is the universal covering space. If we give $S^{1} \subset \mathbb{C}^{\times}$the group structure it inherits from \mathbb{C}^{\times}, then this map $\mathbb{R} \longrightarrow S^{1}$ is a group homomorphism, so by Theorem 13.2 we may identify the kernel \mathbb{Z} with $\pi_{1}\left(S^{1}\right)$.

To see that S^{r} is simply-connected for $r \geqslant 2$, let $p:[0,1] \longrightarrow S^{r}$ be a path. Since it is a mapping from a lower-dimensional manifold, perturbing the path slightly if necessary, we may assume that p is not surjective. If it omits one
point $P \in S^{r}$, its image is contained in $S^{r}-\{P\}$, which is homeomorphic to \mathbb{R}^{r} and hence contractible. Therefore p, is path-homotopic to a trivial path.

Proposition 13.5. The group $\mathrm{SU}(2)$ is simply-connected. The group $\mathrm{SO}(3)$ is not. In fact $\pi_{1}(\mathrm{SO}(3)) \cong \mathbb{Z} / 2 \mathbb{Z}$.

Proof. Note that $\mathrm{SU}(2)=\left\{\left.\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)| | a\right|^{2}+|b|^{2}=1\right\}$ is homeomorphic to the 3 sphere in \mathbb{C}^{2}. As such, it is simply-connected. We have a homomorphism $\mathrm{SU}(2) \longrightarrow \mathrm{SO}(3)$, which we constructed in Example 7.1. Since this mapping induced an isomorphism of Lie algebras, its image is an open subgroup of $\mathrm{SO}(3)$, and since $\mathrm{SO}(3)$ is connected, this homomorphism is surjective. The kernel $\{ \pm I\}$ of this homomorphism is finite, so this is a covering map. Because $\mathrm{SU}(2)$ is simply-connected, it follows from the uniqueness of the simply-connected covering group that it is the universal covering group of $\mathrm{SO}(3)$. The kernel of this homomorphism $\mathrm{SU}(2) \longrightarrow \mathrm{SO}(3)$ is therefore the fundamental group, and it has order 2.

Let G and H be topological groups. By a local homomorphism $G \longrightarrow H$ we mean the following data: a neighborhood U of the identity and a continuous $\operatorname{map} \phi: U \longrightarrow H$ such that $\phi(u v)=\phi(u) \phi(v)$ whenever u, v, and $u v \in U$. This implies that $\phi\left(1_{G}\right)=1_{H}$, so if $u, u^{-1} \in U$ we have $\phi\left(u^{-1}\right)=\phi(u)$. We may as well replace U by $U \cap U^{-1}$ so this is true for all $u \in U$.

Theorem 13.3. Let G and H be topological groups, and assume that G is simply-connected. Let U be a neighborhood of the identity in G. Then any local homomorphism $U \longrightarrow H$ can be extended to a homomorphism $G \longrightarrow H$.

Proof. Let $g \in G$. Let $p:[0,1] \longrightarrow G$ be a path with $p(0)=1_{G}, p(1)=g$. (Such a path exists because G is path-connected.) We first show that there exists a unique path $q:[0,1] \longrightarrow H$ such that $q(0)=1_{H}$, and

$$
\begin{equation*}
q(v) q(u)^{-1}=\phi\left(p(v) p(u)^{-1}\right) \tag{13.1}
\end{equation*}
$$

when $u, v \in[0,1]$ and $|u-v|$ is sufficiently small. We note that when u and v are sufficiently close, $p(v) p(u)^{-1} \in U$, so this makes sense. To construct a path q with this property, find $0=x_{0}<x_{1}<\cdots<x_{n}=1$ such that when u and v lie in an interval $\left[x_{i-1}, x_{i+1}\right]$, we have $p(v) p(u)^{-1} \in U(1 \leqslant i<n)$. Define $q\left(x_{0}\right)=1_{H}$, and if $v \in\left[x_{i}, x_{i+1}\right]$ define

$$
\begin{equation*}
q(v)=\phi\left(p(v) p\left(x_{i}\right)^{-1}\right) q\left(x_{i}\right) \tag{13.2}
\end{equation*}
$$

This definition is recursive because here $q\left(x_{i}\right)$ is defined by (13.2) with i replaced by $i-1$ if $i>0$. With this definition, (13.2) is actually true for $v \in\left[x_{i-1}, x_{i+1}\right]$ if $i \geqslant 1$. Indeed, if $v \in\left[x_{i-1}, x_{i}\right]$ (the subinterval for which this is not a definition), we have

$$
q(v)=\phi\left(p(v) p\left(x_{i-1}\right)^{-1}\right) q\left(x_{i-1}\right)
$$

so what we need to show is that

$$
q\left(x_{i}\right) q\left(x_{i-1}\right)^{-1}=\phi\left(p(v) p\left(x_{i}\right)^{-1}\right)^{-1} \phi\left(p(v) p\left(x_{i-1}\right)^{-1}\right)
$$

It follows from the fact that ϕ is a local homomorphism that the right-hand side is

$$
\phi\left(p\left(x_{i}\right) p\left(x_{i-1}\right)^{-1}\right)
$$

Replacing i by $i-1$ in (13.2) and taking $v=x_{i}$, this equals $q\left(x_{i}\right) q\left(x_{i-1}\right)^{-1}$. Now (13.1) follows for this path by noting that if $\epsilon=\frac{1}{2} \min \left|x_{i+1}-x_{i}\right|$, then when $|u-v|<\epsilon, u, v \in[0,1]$, there exists an i such that $u, v \in\left[x_{i-1}, x_{i+1}\right]$, and (13.1) follows from (13.2) and the fact that ϕ is a local homomorphism. This proves that the path q exists. To show that it is unique, assume that (13.1) is valid for $|u-v|<\epsilon$, and choose the x_{i} so that $\left|x_{i}-x_{i+1}\right|<\epsilon$; then for $v \in\left[x_{i}, x_{i+1}\right],(13.2)$ is true, and the values of q are determined by this property.

Next we indicate how one can show that if p and p^{\prime} are path-homotopic, and if q and q^{\prime} are the corresponding paths in H, then $q(1)=q^{\prime}(1)$. It is sufficient to prove this in the special case of a path-homotopy $t \mapsto p_{t}$, where $p_{0}=p$ and $p_{1}=p^{\prime}$, such that there exists a sequence $0=x_{1} \leqslant \cdots \leqslant x_{n}=1$ with $p_{t}(u) p_{t^{\prime}}(v)^{-1} \in U$ when $u, v \in\left[x_{i-1}, x_{i+1}\right]$ and t and $t^{\prime} \in[0,1]$. For although a general path-homotopy may not satisfy this assumption, it can be broken into steps, each of which does. In this case, we define

$$
q_{t}(v)=\phi\left(p_{t}(v) p\left(x_{i}\right)^{-1}\right) q\left(x_{i}\right)
$$

when $v \in\left[x_{i}, x_{i+1}\right]$ and verify that this q_{t} satisfies

$$
q_{t}(v) q_{t}(u)^{-1}=\phi\left(p_{t}(v) p_{t}(u)^{-1}\right)
$$

when $|u-v|$ is small. In particular, this is satisfied when $t=1$ and $p_{1}=p^{\prime}$, so $q_{1}=q^{\prime}$ by definition. Now $q^{\prime}(1)=\phi\left(p^{\prime}(1) p(1)^{-1}\right) q(1)=q(1)$ since $p(1)=$ $p^{\prime}(1)$, as required.

We now define $\phi(g)=q(1)$. Since G is simply-connected, any two paths from the identity to g are path-homotopic, so this is well-defined. It is straightforward to see that it agrees with ϕ on U. We must show that it is a homomorphism. Given g and g^{\prime} in G, let p be a path from the identity to g, and let p^{\prime} be a path from the identity to g^{\prime}, and let q and q^{\prime} be the corresponding paths in H defined by (13.1). We construct a path $p^{\prime \prime}$ from the identity to $g g^{\prime}$ by

$$
p^{\prime \prime}(t)=\left\{\begin{array}{cc}
p^{\prime}(2 t) & \text { if } 0 \leqslant t \leqslant 1 / 2 \\
p(2 t-1) g^{\prime} & \text { if } 1 / 2 \leqslant t \leqslant 1
\end{array}\right.
$$

Let

$$
q^{\prime \prime}(t)=\left\{\begin{array}{cc}
q^{\prime}(2 t) & \text { if } 0 \leqslant t \leqslant 1 / 2 \\
q(2 t-1) q^{\prime}(1) & \text { if } 1 / 2 \leqslant t \leqslant 1
\end{array}\right.
$$

Then it is easy to check that $q^{\prime \prime}$ is related to $p^{\prime \prime}$ by (13.1), and taking $t=1$, we see that $\phi\left(g g^{\prime}\right)=q^{\prime \prime}(1)=q(1) q^{\prime}(1)=\phi(g) \phi\left(g^{\prime}\right)$.

We turn next to the computation of the fundamental groups of some noncompact Lie groups.

As usual, we call a square complex matrix g Hermitian if $g={ }^{t} \bar{g}$. The eigenvalues of a Hermitian matrix are real, and it is called positive definite if these eigenvalues are positive. If g is Hermitian, so are g^{2} and $e^{g}=I+g+$ $\frac{1}{2} g^{2}+\ldots$. According to the spectral theorem, the Hermitian matrix g can be written $k a k^{-1}$, where a is diagonal and k unitary. We have $g^{2}=k a^{2} k^{-1}$ and $k e^{a} k^{-1}$, so g^{2} and e^{g} are positive definite.

Proposition 13.6. (i) If g_{1} and g_{2} are positive definite Hermitian matrices, and if $g_{1}^{2}=g_{2}^{2}$, then $g_{1}=g_{2}$.
(ii) If g_{1} and g_{2} are Hermitian matrices and $e^{g_{1}}=e^{g_{2}}$, then $g_{1}=g_{2}$.

Proof. Suppose that $g_{1}^{2}=g_{2}^{2}$. We may write $g_{i}=k_{i} a_{i} k_{i}^{-1}$, where a_{i} is diagonal with positive entries, and we may arrange it so the entries in a_{i} are in descending order. Since a_{1}^{2} and a_{2}^{2} are similar diagonal matrices with their entries in descending order, they are equal, and since the squaring map on the positive reals is injective, $a_{1}=a_{2}$. Denote $a=a_{1}=a_{2}$. It is not necessarily true that $k_{1}=k_{2}$, but denoting $k=k_{1}^{-1} k_{2}, k$ commutes with a^{2}. Let $\lambda_{1}>\lambda_{2}>\cdots$ be the distinct eigenvalues of a with multiplicities d_{1}, d_{2}, \cdots. Since k commutes with

$$
a^{2}=\left(\begin{array}{ccc}
\lambda_{1}^{2} I_{d_{1}} & & \\
& \lambda_{2}^{2} I_{d_{2}} & \\
& & \ddots
\end{array}\right)
$$

it has the form

$$
k=\left(\begin{array}{lll}
K_{1} & & \\
& K_{2} & \\
& & \ddots .
\end{array}\right)
$$

where K_{i} is a $d_{i} \times d_{i}$ block. This implies that k commutes with a, and so $g_{2}=k a k^{-1}=g_{1}$ 。

The proof assuming $e^{g_{1}}=e^{g_{2}}$ is identical. It is no longer necessary to assume that g_{1} and g_{2} are positive definite because (unlike the squaring map) the exponential map is injective on all of \mathbb{R}.

Theorem 13.4. Let P be the space of positive definite Hermitian matrices. If $g \in \mathrm{GL}(n, \mathbb{C})$, then g may be written uniquely as $p k$, where $k \in U(n)$ and $p \in P$. Moreover, the multiplication map $P \times U(n) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is a diffeomorphism.

This is one of several related decompositions referred to as the Cartan decomposition. See Chapter 31 for related material.

Proof. The matrix $g \cdot{ }^{t} \bar{g}$ is positive definite and Hermitian, so by the spectral theorem it can be diagonalized by a unitary matrix. This means we can write $g \cdot{ }^{t} \bar{g}=\kappa a \kappa^{-1}$, where κ is unitary and a is a diagonal matrix with positive real
entries. We may take the square root of a, writing $a=d^{2}$, where d is another diagonal matrix with positive real entries. Let $p=\kappa d \kappa^{-1}$. Since ${ }^{t} \bar{k}=k^{-1}$, we have $g \cdot{ }^{t} \bar{g}=\kappa d \kappa^{-1} \cdot{ }^{t} \overline{\left(\kappa d k^{-1}\right)}=p \cdot{ }^{t} \bar{p}$, which implies that $k=p^{-1} g$ is unitary.

The existence of the decomposition is now proved. To see that it is unique, suppose that $p k=p^{\prime} k^{\prime}$, where p and p^{\prime} are positive definite Hermitian matrices, and k and k^{\prime} are unitary. To show that $p=p^{\prime}$ and $k=k^{\prime}$, we may move the k^{\prime} to the other side, so it is sufficient to show that if $p k=p^{\prime}$, then $p=p^{\prime}$. Taking transpose inverses, $k^{-1} p=p^{\prime}$, so $\left(p^{\prime}\right)^{2}=p k k^{-1} p=p^{2}$. The uniqueness now follows from Proposition 13.6.

We now know that the multiplication map $P \times U(n) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is a bijection. To see that it is a diffeomorphism, we can use the inverse function theorem. One must check that the Jacobian of the map is nonzero near any given point $\left(p_{0}, k_{0}\right) \in P \times U(n)$. Let X_{0} be a fixed Hermitian matrix such that $\exp \left(X_{0}\right)=p_{0}$. Parametrize P by elements of the vector space \mathfrak{p} of Hermitian matrices, which we map to P by the map $\mathfrak{p} \ni X \longmapsto \exp \left(X_{0}+X\right)$, and parametrize $U(n)$ by elements of $\mathfrak{u}(n)$ by means of the map $\mathfrak{u}(n) \ni Y \longmapsto$ $\exp (Y) p_{0}$. Noting that \mathfrak{p} and $\mathfrak{u}(n)$ are complementary subspaces of $\mathfrak{g l}(n, \mathbb{C})$, it is clear using this parametrization of a neighborhood of $\left(p_{0}, k_{0}\right)$ that the Jacobian is nonzero there, and so the multiplication map is a diffeomorphism.

Theorem 13.5. We have

$$
\pi_{1}(\mathrm{GL}(n, \mathbb{C})) \cong \pi_{1}(U(n)), \quad \pi_{1}(\mathrm{SL}(n, \mathbb{C})) \cong \pi_{1}(\mathrm{SU}(n))
$$

and

$$
\pi_{1}(\mathrm{SL}(n, \mathbb{R})) \cong \pi_{1}(\mathrm{SO}(n))
$$

We have omitted $\operatorname{GL}(n, \mathbb{R})$ from this list because it is not connected. There is a general principle here: the fundamental group of a connected Lie group is the same as the fundamental group of a maximal compact subgroup.

Proof. First, let $G=\mathrm{GL}(n, \mathbb{C}), K=U(n)$, and P be the space of positive definite Hermitian matrices. By the Cartan decomposition, multiplication $K \times P \longrightarrow G$ is a bijection, and in fact, a homeomorphism, so it will follow that $\pi_{1}(K) \cong \pi_{1}(G)$ if we can show that P is contractible. However, the exponential map from the space \mathfrak{p} of Hermitian matrices to P is bijective (in fact a homeomorphism) by Proposition 13.6, and the space \mathfrak{p} is a real vector space and hence contractible.

For $G=\mathrm{SL}(n, \mathbb{C})$, one argues similarly, with $K=\mathrm{SU}(n)$ and P the space of positive definite Hermitian matrices of determinant one. The exponential map from the space \mathfrak{p} of Hermitian matrices of trace zero is again a homeomorphism of a real vector space onto P.

Finally, for $G=\mathrm{SL}(n, \mathbb{R})$, one takes $K=\mathrm{SO}(n), P$ to be the space of positive definite real matrices of determinant one, and \mathfrak{p} to be the space of real symmetric matrices of trace zero.

The remainder of this chapter will be less self-contained. For completeness, we calculate the fundamental groups of $\mathrm{SO}(n)$ and $\mathrm{SU}(n)$, making use of some facts from algebraic topology that we do not prove.

If G is a Hausdorff topological group and H is a closed subgroup, then the coset space G / H is a Hausdorff space with the quotient topology. Such a quotient is called a homogeneous space.

Proposition 13.7. Let G be a Lie group and H a closed subgroup. If the homogeneous space G / H is homeomorphic to a sphere S^{r} where $r \geqslant 3$, then $\pi_{1}(G) \cong \pi_{1}(H)$.

Proof. The map $G \longrightarrow G / H$ is a fibration (Spanier [112], Example 4 on p. 91 and Corollary 14 on p. 96). It follows that there is an exact sequence

$$
\pi_{2}(G / H) \longrightarrow \pi_{1}(H) \longrightarrow \pi_{1}(G) \longrightarrow \pi_{1}(G / H)
$$

(Spanier [112], Theorem 10 on p. 377). Since G / H is a sphere of dimension $\geqslant 3$, its first and second homotopy groups are trivial and the result follows.

Theorem 13.6. The groups $\mathrm{SU}(n)$ are simply-connected for all n. On the other hand,

$$
\pi_{1}(\mathrm{SO}(n)) \cong\left\{\begin{array}{cc}
\mathbb{Z} & \text { if } n=2 \\
\mathbb{Z} / 2 \mathbb{Z} & \text { if } n>2
\end{array}\right.
$$

Proof. Since $\mathrm{SO}(2)$ is a circle, its fundamental group is \mathbb{Z}. By Proposition 13.5 $\pi_{1}(\mathrm{SO}(3)) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $\pi_{1}(\mathrm{SU}(2))$ is trivial. The group $\mathrm{SO}(n)$ acts transitively on the unit sphere S^{n-1} in \mathbb{R}^{n}, and the isotropy subgroup is $\operatorname{SO}(n-1)$, so $\mathrm{SO}(n) / \mathrm{SO}(n-1)$ is homeomorphic to S^{n-1}. By Proposition 13.7, we see that $\pi_{1}(\mathrm{SO}(n)) \cong \pi_{1}(\mathrm{SO}(n-1))$ if $n \geqslant 4$. Similarly, $\mathrm{SU}(n)$ acts on the unit sphere $S^{2 n-1}$ in \mathbb{C}^{n}, and so $\mathrm{SU}(n) / \mathrm{SU}(n-1) \cong S^{2 n-1}$, whence $\mathrm{SU}(n) \cong \mathrm{SU}(n-1)$ for $n \geqslant 2$.

If $n \geqslant$, the universal covering group of $\mathrm{SO}(n)$ is called the spin group and is denoted $\operatorname{Spin}(n)$.

EXERCISES

Exercise 13.1. Let $\widetilde{\mathrm{SL}}(2, \mathbb{R})$ be the universal covering group of $\mathrm{SL}(2, \mathbb{R})$. Let π : $\widetilde{\mathrm{SL}}(2, \mathbb{R}) \longrightarrow \mathrm{GL}(V)$ be any finite-dimensional irreducible representation. Show that π factors through $\mathrm{SL}(2, \mathbb{R})$ and is hence not a faithful representation. (Hint: Use the results of Chapter 12.)

The Local Frobenius Theorem

Let M be an n-dimensional smooth manifold. The tangent bundle $T M$ of M is the disjoint union of all tangent spaces of points of M. It can be given the structure of a manifold of dimension $2 \operatorname{dim}(M)$ as follows. If U is a coordinate neighborhood and x_{1}, \cdots, x_{n} are local coordinates on U, then $T(U)=\left\{T_{x} M \mid x \in U\right\}$ can be taken to be a coordinate neighborhood of $T M$. Every element of $T_{x} M$ with $x \in U$ can be written uniquely as

$$
\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}
$$

and mapping this tangent vector to $\left(x_{1}, \cdots, x_{n}, a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{2 n}$ gives a chart on $T(U)$, making $T M$ into a manifold.

By a d-dimensional family D in the tangent bundle of M we mean a rule that associates with each $x \in M$ a d-dimensional subspace $D_{x} \subset T_{x}(M)$. We ask that the family be smooth. By this we mean that in a neighborhood U of any given point x there are smooth vector fields X_{1}, \cdots, X_{d} such that for $u \in U$ the vectors $X_{i, u} \in T_{u}(M)$ span D_{u}.

We say that a vector field X is subordinate to the family D if $X_{x} \in D_{x}$ for all $x \in U$. The family is called involutory if whenever X and Y are vector fields subordinate to D then so is $[X, Y]$. This definition is motivated by the following considerations.

An integral manifold of the family D is a d-dimensional submanifold N such that, for every point $x \in N$, the tangent space $T_{x}(N)$, identified with its image in $T_{x}(M)$, is D_{x}. We may ask whether it is possible, at least locally in a neighborhood of every point, to pass an integral manifold. This is surely a natural question.

Let us observe that if it is true, then the family D is involutory. To see this (at least plausibly), let U be an open set in M that is small enough that through each point in U there is an integral submanifold that is closed in U. Let J be the subspace of $C^{\infty}(U)$ consisting of functions that are constant on these integral submanifolds. Then the restriction of a vector field X to U is
subordinate to D if and only if it annihilates J. It is clear from (6.6) that if X and Y have this property, then so does $[X, Y]$.

The Frobenius Theorem is a converse to this observation. A global version may be found in Chevalley [26]. We will content ourselves with the local theorem.

Lemma 14.1. If X_{1}, \cdots, X_{d} are vector fields on M such that $\left[X_{i}, X_{j}\right]$ lies in the $C^{\infty}(M)$ span of X_{1}, \cdots, X_{d}, and if for each $x \in M$ we define D_{x} to be the span of $X_{1 x}, \cdots, X_{d x}$, then D is an involutory family.

Proof. Any vector field subordinate to D has the form (locally near x) $\sum_{i} f_{i} X_{i}$, where f_{i} are smooth functions. To check that the commutator of two such vector fields is also of the same form amounts to using the formula

$$
[f X, g Y]=f g[X, Y]+f X(g) Y-g Y(f) X
$$

which follows easily on applying both sides to a function h and using the fact that X and Y are derivations of $C^{\infty}(M)$.

Theorem 14.1. (Frobenius) Let D be a smooth involutory d-dimensional family in the tangent bundle of M. Then for each point $x \in M$ there exists a neighborhood U of x and an integral manifold N of D through x in U. If N^{\prime} is another integral manifold through x, then N and N^{\prime} coincide near x. That is, there exists a neighborhood V of x such that $V \cap N=V \cap N^{\prime}$.

Proof. Since this is a strictly local statement, it is sufficient to prove this when M is an open set in \mathbb{R}^{n} and x is the origin. We show first that if X is a vector field that does not vanish at x, then we may find a system y_{1}, \cdots, y_{n} of coordinates in which $X=\partial / \partial y_{n}$. Let x_{1}, \cdots, x_{n} be the standard Cartesian functions. Since X does not vanish at the origin, the function $X\left(x_{i}\right)$ does not vanish at the origin for some i, say x_{n}. We write

$$
X=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

in terms of smooth functions $a_{i}=a_{i}\left(x_{1}, \cdots, x_{n}\right)$ and $a_{n}(0, \cdots, 0) \neq 0$. Fix small numbers u_{1}, \cdots, u_{n-1}. We consider an integral curve for the vector field through the point $\left(u_{1}, \cdots, u_{n-1}, 0\right)$. Thus, we have a path $t \longrightarrow$ $\left(x_{1}(t), \cdots, x_{n}(t)\right)$ such that

$$
x_{i}^{\prime}(t)=a_{i}\left(x_{1}(t), \cdots, x_{n}(t)\right), \quad\left(x_{i}(0), \cdots, x_{n}(0)\right)=\left(u_{1}, \cdots, u_{n-1}, 0\right)
$$

For u_{1}, \cdots, u_{n-1} sufficiently small, we have $a_{n}\left(u_{1}, \cdots, u_{n-1}, 0\right) \neq 0$ and so this integral curve is transverse to the plane $x_{n}=0$. We choose our coordinate system y_{1}, \cdots, y_{n} so that

$$
\begin{aligned}
& y_{i}\left(x_{1}(t), \cdots, x_{n}(t)\right)=u_{i}, \quad(i=1,2,3, \cdots, n-1) \\
& y_{n}\left(x_{1}(t), \cdots, x_{n}(t)\right)=t
\end{aligned}
$$

Now any path with y_{1}, \cdots, y_{n-1} held constant, say $y_{i}=u_{i}(i=1, \cdots, n-1)$ and $y_{n}=t$, is an integral curve for the vector field X, so

$$
\frac{\partial}{\partial y_{n}}=\sum_{i} \frac{\partial x_{i}}{\partial y_{n}} \frac{\partial}{\partial x_{i}}=\sum_{i} \frac{d x_{i}}{d t} \frac{\partial}{\partial x_{i}}=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}}=X
$$

This proves that there exists a coordinate system in which $X=\partial / \partial y_{n}$.
If $d=1$, the result is proved by this. We will assume that $d>1$ and that the existence of integral manifolds is known for lower-dimensional involutory families. Let X_{1}, \cdots, X_{d} be smooth vector fields such that $X_{i, u}$ span D_{u} for u near the origin. We have just shown that we may assume that $X=X_{d}=$ $\partial / \partial y_{n}$. Since D is involutory, $\left[X_{d}, X_{i}\right]=\sum_{j} g_{i j} X_{j}$ for smooth functions $g_{i j}$. We will show that we can arrange things so that $g_{i d}=0$ when $i<d$; that is,

$$
\begin{equation*}
\left[X_{d}, X_{i}\right]=\sum_{j=1}^{d-1} g_{i j} X_{j}, \quad(i<d) \tag{14.1}
\end{equation*}
$$

Indeed, writing

$$
\begin{equation*}
X_{i}=\sum_{j=1}^{n} h_{i j} \frac{\partial}{\partial y_{j}}, \quad(i=1, \cdots, d-1) \tag{14.2}
\end{equation*}
$$

we will still have a spanning set if we subtract $h_{i n} X_{d}$ from X_{i}. We may therefore assume that $h_{i n}=0$ for $i<d$. Thus

$$
\begin{equation*}
X_{i}=\sum_{j=1}^{n-1} h_{i j} \frac{\partial}{\partial y_{j}}, \quad(i=1, \cdots, d-1) \tag{14.3}
\end{equation*}
$$

In other words, we may assume that X_{i} does not involve $\partial / \partial y_{n}$ for $i<d$. Now

$$
\begin{equation*}
\left[X_{d}, X_{i}\right]=\sum_{j=1}^{n-1} \frac{\partial h_{i j}}{\partial y_{n}} \frac{\partial}{\partial y_{j}} \tag{14.4}
\end{equation*}
$$

On the other hand, we have

$$
\left[X_{d}, X_{i}\right]=\sum_{j=1}^{d-1} g_{i j} X_{j}+g_{i d} X_{d}=\sum_{j=1}^{d-1} \sum_{k=1}^{n-1} g_{i j} h_{j k} \frac{\partial}{\partial y_{k}}+g_{i d} \frac{\partial}{\partial y_{n}}
$$

Comparing the coefficients of $\partial / \partial y_{n}$ in this expression with that in (14.4) shows that $g_{i d}=0$, proving (14.1).

Next we show that if $\left(a_{1}, \cdots, a_{d-1}\right)$ are real constants, then there exist smooth functions f_{1}, \cdots, f_{d-1} such that for small y_{1}, \cdots, y_{n-1} we have

$$
\begin{equation*}
f_{i}\left(y_{1}, y_{2}, \cdots, y_{n-1}, 0\right)=a_{i}, \quad(i=1, \cdots, d-1) \tag{14.5}
\end{equation*}
$$

and

$$
\left[X_{d}, \sum_{i=1}^{d-1} f_{i} X_{i}\right]=0
$$

Indeed,

$$
\left[X_{d}, \sum_{i=1}^{d-1} f_{i} X_{i}\right]=\sum_{i} \frac{\partial f_{i}}{\partial y_{n}} X_{i}+\sum_{i, j} f_{i} g_{i j} X_{j}
$$

For this to be zero, we need the f_{i} to be solutions to the first-order system

$$
\frac{\partial f_{j}}{\partial y_{n}}+\sum_{i=1}^{d-1} g_{i j} f_{i}=0, \quad i=1, \cdots, d-1
$$

This first-order system has a solution locally with the prescribed initial condition.

Since the a_{i} can be arbitrary, we may choose

$$
a_{i}=\left\{\begin{array}{l}
1 \text { if } i=1 \\
0 \text { otherwise }
\end{array}\right.
$$

Then the vector field $\sum f_{i} X_{i}$ agrees with X_{1} on the hyperplane $y_{n}=0$. Replacing X_{1} by $\sum f_{i} X_{i}$, we may therefore assume that $\left[X_{d}, X_{1}\right]=0$. Repeating this process, we may similarly assume that $\left[X_{d}, X_{i}\right]=0$ for all $i<d$. Now with the $h_{i j}$ as in (14.2), this means that $\partial h_{i j} / \partial y_{n}=0$, so the $h_{i j}$ are independent of y_{n}.

Since the $h_{i j}$ are independent of y_{n}, we may interpret (14.3) as defining $d-1$ vector fields on \mathbb{R}^{n-1}. They span a $d-1$-dimensional involutory family of tangent vectors in \mathbb{R}^{n-1} and by induction there exists an integral manifold for this vector field. If this manifold is $N_{0} \subset \mathbb{R}^{n-1}$, then it is clear that

$$
N=\left\{\left(y_{1}, \cdots, y_{n}\right) \mid\left(y_{1}, \cdots, y_{n-1}\right) \in N_{0}\right\}
$$

is an integral manifold for D.
We have established the existence of an integral submanifold. The local uniqueness of the integral submanifold can also be proved now. In fact, if we repeat the process by which we selected the coordinate system y_{1}, \cdots, y_{n} so that the vector field $\partial / \partial y_{n}$ was subordinate to the involutory family D, we eventually arrive at a system in which D is spanned by $\partial / \partial y_{n-d+1}, \cdots, \partial / \partial y_{n}$. Then the integral manifold is given by the equations $y_{1}=\ldots=y_{n-d}=0$.

If G is a Lie group, a local subgroup of G consists of an open neighborhood U of the identity and a closed subset K of U such that $1_{G} \in K$, and if $x, y \in K$ such that $x y \in U$, then $x y \in K$, and if $x \in K$ such that $x^{-1} \in U$, then $x^{-1} \in K$. For example, if H is a closed subgroup of G and U is any open set, then $U \cap H$ is a local subgroup.

Proposition 14.1. Let G be a Lie group with Lie algebra \mathfrak{g}, and let \mathfrak{k} be a Lie subalgebra of \mathfrak{g}. Then there exists a local subgroup K of G whose tangent space at the identity is \mathfrak{k}. The exponential map sends a neighborhood of the identity in \mathfrak{k} onto a neighborhood of the identity in K.

Proof. The Lie algebra \mathfrak{g} of G has two incarnations: as the tangent space to the identity of G and as the set of left-invariant vector fields. For definiteness, we identify $\mathfrak{g}=T_{e}(G)$ and recall how the left-invariant vector field arises.

If $g \in G$, let $\lambda_{g}: G \longrightarrow G$ be left translation by g, so that $\lambda_{g}(x)=g x$. Let $\lambda_{g *}: T_{e}(G) \longrightarrow T_{x}(G)$ be the induced map of tangent spaces. Then the left-invariant vector field associated with $X_{e} \in \mathfrak{g}$ has $X_{g}=\lambda_{g *}\left(X_{e}\right)$.

Let $d=\operatorname{dim}(\mathfrak{k})$ and let D be the d-dimensional family of tangent vectors such that $D_{g}=\lambda_{g *}(\mathfrak{k})$. Since \mathfrak{k} is closed under the bracket, it follows from Lemma 14.1 that D is involutory, so there exists an integral submanifold K in a neighborhood U of the identity. We will show that if U is sufficiently small, then K is a local group.

Indeed, let x and y be elements of K such that $x y \in U$. Since the vector fields associated with elements of \mathfrak{k} are left-invariant, the involutory family D is invariant under left translation. The image of K under right translation by x is also an integral submanifold of D through x, so this submanifold is K itself. These submanifolds therefore coincide near x and, since y is in K, its left translate $x y$ by x is also in K.

Since the one-parameter subgroups $\exp (t X)$ with $X \in \mathfrak{k}$ are tangent to the left-invariant vector field at every point, they are contained in the integral submanifold K near the identity, and the image of a neighborhood of the identity under exp is a manifold of the same dimension as K, so the last statement is clear.

Proposition 14.2. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h}, respectively, and let $\pi: \mathfrak{g} \longrightarrow \mathfrak{h}$ be a Lie algebra homomorphism. Then there exists a neighborhood U of G and a local homomorphism $\pi: U \longrightarrow H$ whose differential is π.

Proof. The tangent space to $G \times H$ at the identity is $\mathfrak{g} \oplus \mathfrak{h}$. Let

$$
\mathfrak{k}=\{(X, \pi(X)) \mid X \in \mathfrak{g}\} \subset \mathfrak{g} \oplus \mathfrak{h}
$$

It is a Lie subalgebra, corresponding by Proposition 14.1 to a local subgroup K of $G \times H$. The tangent space to the identity of K is \mathfrak{k}, which intersects \mathfrak{h} in $\mathfrak{g} \oplus \mathfrak{h}$ transversally in a single point; indeed \mathfrak{g} is the direct sum of \mathfrak{k} and \mathfrak{h}. Concretely, this reflects the fact that \mathfrak{k} is the graph of a map $\pi: \mathfrak{g} \longrightarrow \mathfrak{h}$. Using the inverse function theorem, the same is true locally of K : since its tangent space at the identity is a direct sum complement of the tangent space of H in the tangent space of $G \times H$, it is, locally, the graph of a mapping. Thus, there exists a map $\pi: U \longrightarrow H$ of a sufficiently small neighborhood of the identity in G such that if $(g, h) \in G \times H, g \in U$, and $h \in \pi(U)$, then $(g, h) \in K$ if and only if $h=\pi(g)$. Because K is a local subgroup, this implies that π is a local homomorphism.

Theorem 14.2. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h}, respectively, and let $\pi: \mathfrak{g} \longrightarrow \mathfrak{h}$ be a Lie algebra homomorphism. Assume that G is
simply-connected. Then there exists a Lie group homomorphism $\pi: G \longrightarrow H$ with differential π.

Proof. This follows from Proposition 14.2 and Theorem 13.3.
We can now give another proof of Theorem 12.2. We will extend the validity of the result a bit, though the algebraic method would work as well for this.

Theorem 14.3. Let G and K be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{k}. Assume K is compact and simply-connected. Suppose that \mathfrak{g} and \mathfrak{k} have isomorphic complexifications. Then every finite-dimensional irreducible complex representation of \mathfrak{g} is completely reducible. If G is connected, then every irreducible complex representation of G is completely reducible.

Proof. Let (π, V) be a finite-dimensional representation of G, and let W be a proper nonzero invariant subspace. We will show that there is another invariant subspace W^{\prime} such that $V=W \oplus W^{\prime}$. By induction on $\operatorname{dim}(V)$, it will follow that both W and W^{\prime} are direct sums of irreducible representations.

The differential of π is a complex representation of \mathfrak{g}. As in Proposition 11.3, we may extend it to a representation of $\mathfrak{g}_{\mathbb{C}} \cong \mathfrak{k}_{\mathbb{C}}$ and then restrict it to \mathfrak{k}. Since K is simply-connected, the resulting Lie algebra homomorphism $\mathfrak{k} \longrightarrow$ $\mathfrak{g l}(V)$ is the differential of a Lie group homomorphism $\pi_{K}: K \longrightarrow \mathrm{GL}(V)$.

Now, because K is compact, this representation of K is completely reducible (Proposition 2.2). Thus there exists a K-invariant subspace W^{\prime} such that $V=W \oplus W^{\prime}$. Of course, W^{\prime} is also invariant with respect to \mathfrak{k} and hence $\mathfrak{k}_{\mathbb{C}} \cong \mathfrak{g}_{\mathbb{C}}$, and hence \mathfrak{g}. It is therefore invariant under $\exp (\mathfrak{g})$. If G is connected, it is generated by a neighborhood of the identity, and so W^{\prime} is G-invariant.

Theorem 14.4. Let (π, V) be a finite-dimensional irreducible complex representation of $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$, $\mathfrak{s u}(n)$, or $\mathfrak{s l}(n, \mathbb{C})$. If \mathfrak{g} is $\mathfrak{s l}(n, \mathbb{C})$ then assume that $\pi: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is complex linear. Then π is completely reducible.

Proof. We will prove this for $\mathfrak{s l}(n, \mathbb{R})$ and $\mathfrak{s u}(n)$. By Theorem $13.6, K$ is simply-connected and the hypotheses of Theorem 14.3 are satisfied. For $\mathfrak{s l}(n, \mathbb{R})$, we can take $G=\operatorname{SL}(n, \mathbb{R}), K=\operatorname{SU}(n)$. For $\mathfrak{s u}(n)$, we can take $G=K=\mathrm{SU}(n)$.

The case of $\mathfrak{s l}(n, \mathbb{C})$ requires a minor modification to Theorem 14.3 (Exercises 14.1 and 14.2) and is left to the reader.

Theorem 14.5. Let (π, V) be a finite-dimensional irreducible complex representation of $\mathrm{SL}(n, \mathbb{R})$. Then π is completely reducible.

Proof. We take $G=\mathrm{SL}(n, \mathbb{R}), K=\mathrm{SU}(n)$.

EXERCISES

Exercise 14.1. Let G be a connected complex analytic Lie group, and let $K \subset$ G be a compact Lie subgroup. Let \mathfrak{g} and $\mathfrak{k} \subset \mathfrak{g}$ be the Lie algebras of G and K, respectively. Assume that \mathfrak{g} is the complexification of \mathfrak{k} and that K is simplyconnected. Then every finite-dimensional irreducible complex representation of \mathfrak{g} is completely reducible. If G is connected, then every irreducible complex analytic representation of G is completely reducible.

Exercise 14.2. Prove that any complex analytic representation of $\mathfrak{s l}(n, \mathbb{C})$ is completely reducible.

Tori

A complex manifold M is constructed analogously to a smooth manifold. We specify an atlas $\mathcal{U}=\{(U, \phi)\}$, where each chart $U \subset M$ is an open set and $\phi: U \longrightarrow \mathbb{C}^{m}$ is a homeomorphism of U onto its image that is assumed to be open in \mathbb{C}^{m}. It is assumed that the transition functions $\psi \circ \phi^{-1}: \phi(U \cap V) \longrightarrow$ $\psi(U \cap V)$ are holomorphic for any two charts (U, ϕ) and (V, ψ). A complex Lie group (or complex analytic group) is a Hausdorff topological group that is a complex manifold in which the multiplication and inversion maps $G \times G \longrightarrow G$ and $G \longrightarrow G$ are holomorphic. The Lie algebra of a complex Lie group is a complex Lie algebra. For example, $\mathrm{GL}(n, \mathbb{C})$ is a complex Lie group.

If \mathfrak{g} is a Lie algebra and $X, Y \in \mathfrak{g}$, we say that X and Y commute if $[X, Y]=0$. We call the Lie algebra \mathfrak{g} Abelian if $[X, Y]=0$ for all $X, Y \in \mathfrak{g}$.

Proposition 15.1. The Lie algebra of an Abelian Lie group is Abelian.
Proof. The action of G on itself by conjugation is trivial, so the induced action Ad of G on its Lie algebra is trivial. By Proposition 8.2, it follows that ad $: \operatorname{Lie}(G) \longrightarrow \operatorname{End}(\operatorname{Lie}(G))$ is the zero map, so $[X, Y]=\operatorname{ad}(X) Y=0$.

Proposition 15.2. If G is a Lie group, and X and Y are commuting elements of Lie (G), then $e^{X+Y}=e^{X} e^{Y}$. In particular, $e^{X} e^{Y}=e^{Y} e^{X}$.

Proof. First note that, since the differential of Ad is ad (Proposition 8.2), $\operatorname{Ad}\left(e^{t X}\right) Y=Y$ for all t. Recalling that $\operatorname{Ad}\left(e^{t X}\right)$ is the endomorphism of Lie (G) induced by conjugation, this means that conjugation by $e^{t X}$ takes the one-parameter subgroup $u \longrightarrow e^{u Y}$ to itself, so $e^{t X} e^{u Y} e^{-t X}=e^{u Y}$. Thus $e^{t X}$ and $e^{u Y}$ commute for all real t and u.

We recall from Chapter 8 that the path $p(t)=e^{t Y}$ is characterized by the fact that $p(0)=1_{G}$, while $p_{*}(d / d t)=Y_{p(t)}$. The latter condition means that if $f \in C^{\infty}(G)$ we have

$$
\frac{d}{d t} f(p(t))=(Y f)(p(t))
$$

Let $q(t, u)=e^{t X} e^{u Y}$. The vector field Y is invariant under left translation, in particular left translation by $e^{t X}$, so

$$
\frac{\partial}{\partial u} f(q(t, u))=(Y f)\left(e^{t X} e^{u Y}\right)
$$

Similarly (making use of $e^{t X} e^{u Y}=e^{u Y} e^{t X}$),

$$
\frac{\partial}{\partial t} f(q(t, u))=(X f)\left(e^{t X} e^{u Y}\right)
$$

Now, by the chain rule,

$$
\begin{gathered}
\frac{d}{d v} f(q(v, v))=\left.\frac{\partial}{\partial t} f(q(t, u))\right|_{t=u=v}+\left.\frac{\partial}{\partial u} f(q(t, u))\right|_{t=u=v} \\
=(Y f+X f)(q(v, v))
\end{gathered}
$$

This means that the path $v \longrightarrow r(v)=q(v, v)$ satisfies $r_{*}(d / d v)=(X+Y)_{r(v)}$ whence $e^{v(X+Y)}=e^{v X} e^{v Y}$. Taking $v=1$, the result is proved.

A compact torus is a compact connected Lie group that is Abelian. In the context of Lie group theory a compact torus is usually just called a torus, though in the context of algebraic groups the term "torus" is used slightly differently.

For example, $\mathbb{T}=\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$ is a torus. This group is isomorphic to \mathbb{R} / \mathbb{Z}. Even though \mathbb{R} and \mathbb{Z} are additive groups, we may, during the following discussion, sometimes write the group law in \mathbb{R} / \mathbb{Z} multiplicatively.

Proposition 15.3. Let T be a torus, and let \mathfrak{t} be its Lie algebra. Then $\exp :$ $\mathfrak{t} \longrightarrow T$ is a homomorphism, and its kernel is a lattice. We have $T \cong(\mathbb{R} / \mathbb{Z})^{r} \cong$ \mathbb{T}^{r}, where r is the dimension of T.

Proof. Let \mathfrak{t} be the Lie algebra of T. Since T is Abelian, so is \mathfrak{t}, and by Proposition 15.2, \exp is a homomorphism from the additive group \mathfrak{t} to T. The kernel $\Lambda \subset \mathfrak{t}$ is discrete since exp is a local homeomorphism, and Λ is cocompact since T is compact. Thus, Λ is a lattice and $T \cong \mathfrak{t} / \Lambda \cong(\mathbb{R} / \mathbb{Z})^{r} \cong$ \mathbb{T}^{r}.

A character of \mathbb{R}^{r} of the form

$$
\begin{equation*}
\left(x_{1}, \cdots, x_{r}\right) \mapsto \prod_{k=1}^{r} e^{2 \pi i\left(\sum k_{j} x_{j}\right)} \tag{15.1}
\end{equation*}
$$

where $\left(k_{1}, \cdots, k_{r}\right) \in \mathbb{Z}^{r}$, induces a character on $(\mathbb{R} / \mathbb{Z})^{r}$.
Proposition 15.4. Every irreducible complex representation of $(\mathbb{R} / \mathbb{Z})^{r}$ coincides with (15.1) for suitable $k_{i} \in \mathbb{Z}$.

Proof. By classical Fourier analysis, these characters span $L^{2}\left((\mathbb{R} / \mathbb{Z})^{r}\right)$. Thus, the character χ of any complex representation π is not orthogonal to (15.1) for some $\left(k_{1}, \cdots, k_{r}\right) \in \mathbb{Z}^{r}$. By Schur orthogonality, χ agrees with this character.

We also want to know the irreducible real representations of $(\mathbb{Z} / \mathbb{R})^{r}$. Let $k_{1}, \cdots, k_{r} \in \mathbb{Z}$ be given. Assume that they are not all zero. The complex character (15.1) is not a real representation. However, regarding it as a homomorphism $(\mathbb{Z} / \mathbb{R})^{r} \longrightarrow \mathbb{T}$, we may compose it with the real representation $\mathbb{T} \ni t=e^{2 \pi i \theta} \mapsto\left(\begin{array}{cc}\cos (2 \pi \theta) & \sin (2 \pi \theta) \\ -\sin (2 \pi \theta) & \cos (2 \pi \theta)\end{array}\right)$ of \mathbb{T}. We obtain a real representation

$$
\left(x_{1}, \cdots, x_{r}\right) \mapsto\left(\begin{array}{cc}
\cos \left(2 \pi \Sigma k_{i} x_{i}\right) & \sin \left(2 \pi \Sigma k_{i} x_{i}\right) \tag{15.2}\\
-\sin \left(2 \pi \Sigma k_{i} x_{i}\right) & \cos \left(2 \pi \Sigma k_{i} x_{i}\right)
\end{array}\right) .
$$

Proposition 15.5. Let $T=(\mathbb{Z} / \mathbb{R})^{r}$ and let (π, V) be an irreducible real representation. Then either π is trivial or π is two-dimensional and is one of the irreducible representations (15.2) with $k_{i} \in \mathbb{Z}$ not all zero.

Proof. It is straightforward to see that the real representation (15.2) is irreducible. The completeness of this set of irreducible real representations follows from the corresponding classification of the irreducible complex characters (Proposition 15.4).

If T is a compact torus, we will associate with T a complex analytic group $T_{\mathbb{C}}$, which we call the complexification of T. Let $\mathfrak{t}_{\mathbb{C}}=\mathbb{C} \otimes \mathfrak{t}$ be the complexification of the Lie algebra, and let $T_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} / \Lambda$, where $\Lambda \subset \mathfrak{t}$ is the kernel of $\exp : \mathfrak{t} \longrightarrow T$. It is easy to see that this construction is functorial: given a homomorphism $\phi: T \longrightarrow U$ of compact tori, the differential $\phi_{*}: \operatorname{Lie}(T) \longrightarrow \operatorname{Lie}(U)$ commutes with the exponential map, so ϕ_{*} kills the kernel Λ of $\exp : \mathfrak{t} \longrightarrow T$. Therefore, there is an induced map $T_{\mathbb{C}} \longrightarrow U_{\mathbb{C}}$.

If we identify $T=(\mathbb{R} / \mathbb{Z})^{r}$, the complexification $T_{\mathbb{C}} \cong(\mathbb{C} / \mathbb{Z})^{r}$. Since $x \longrightarrow e^{2 \pi i x}$ induces an isomorphism of the additive group \mathbb{C} / \mathbb{Z} with the multiplicative group \mathbb{C}^{\times}, we see that $T_{\mathbb{C}} \cong\left(\mathbb{C}^{\times}\right)^{r}$. We call any complex Lie group isomorphic to $\left(\mathbb{C}^{\times}\right)^{r}$ for some r a complex torus.

By a linear character χ of a compact torus T, we mean a continuous homomorphism $T \longrightarrow \mathbb{C}^{\times}$. These are just the characters of irreducible representations, known explicitly by (15.1). They take values in \mathbb{T}, as we may see from (15.1), or by noting that the image is a compact subgroup of \mathbb{C}^{\times}.

By a rational character χ of a complex torus T, we mean an analytic homomorphism $T \longrightarrow \mathbb{C}^{\times}$.

Proposition 15.6. Let T be a compact torus. Then any linear character χ of T extends uniquely to a rational character of $T_{\mathbb{C}}$.

Proof. Without loss of generality, we may assume that $T=(\mathbb{R} / \mathbb{Z})^{r}$ and that $T_{\mathbb{C}}=\left(\mathbb{C}^{\times}\right)^{r}$, where the embedding $T \longrightarrow T_{\mathbb{C}}$ is the map $\left(x_{1}, \cdots, x_{r}\right) \longrightarrow$
$\left(e^{2 \pi i x_{1}}, \cdots, e^{2 \pi i x_{r}}\right)$. Every linear character of T is given by (15.1) for suitable $k_{i} \in \mathbb{Z}$, and this extends to the rational character $\left(t_{1}, \cdots, t_{r}\right) \longrightarrow \prod t_{i}^{k_{i}}$ of $T_{\mathbb{C}}$. Since a rational character is holomorphic, it is determined by its values on the image \mathbb{T}^{r} of T.

We will denote the group of characters of a compact torus T as $X^{*}(T)$. We will denote its group law additively: if χ_{1} and χ_{2} are characters, then $\left(\chi_{1}+\chi_{2}\right)(t)=\chi_{1}(t) \chi_{2}(t)$. We may identify $X^{*}(T)$ with the group of rational characters of $T_{\mathbb{C}}$.

A (topological) generator of a compact torus T is an element t such that the smallest closed subgroup of T containing t is T itself.

Theorem 15.1. (Kronecker) Let $\left(t_{1}, \cdots, t_{r}\right) \in \mathbb{R}^{r}$, and let t be the image of this point in $T=(\mathbb{R} / \mathbb{Z})^{r}$. Then t is a generator of T if and only if $1, t_{1}, \cdots, t_{r}$ are linearly independent over \mathbb{Q}.

Proof. Let H be the closure of the group $\langle t\rangle$ generated by t in $T=(\mathbb{R} / \mathbb{Z})^{r}$. Then T / H is a compact Abelian group, and if it is not reduced to the identity it has a character χ. We may regard this as a character of T that is trivial on H, and as such it has the form (15.1) for suitable $k_{i} \in \mathbb{Z}$. Since t itself is in H, this means that $\sum k_{j} t_{j} \in \mathbb{Z}$, so $1, t_{1}, \cdots, t_{r}$ are linearly dependent. The existence of nontrivial characters of T / H is thus equivalent to the linear dependence of $1, t_{1}, \cdots, t_{r}$ and the result follows.

Corollary 15.1. Every compact torus T has a generator. Indeed, generators are dense in T.

Proof. We may assume that $T=(\mathbb{R} / \mathbb{Z})^{r}$. By Kronecker's Theorem 15.1, what we must show is that r-tuples $\left(t_{1}, \cdots, t_{r}\right)$ such that $1, t_{1}, \cdots, t_{r}$ are linearly independent over \mathbb{Q} are dense in \mathbb{R}^{r}. If $1, t_{1}, \cdots, t_{i-1}$ are linearly independent, then linear independence of $1, t_{1}, \cdots, t_{i}$ excludes only countably many t_{i}, and the result follows from the uncountability of \mathbb{R}.

Proposition 15.7. Let $T=(\mathbb{R} / \mathbb{Z})^{r}$.
(i) Every automorphism of T is of the form $t \longrightarrow M t\left(\bmod \mathbb{Z}^{r}\right)$, where $M \in$ $\mathrm{GL}(r, \mathbb{Z})$. Thus $\operatorname{Aut}(T) \cong \mathrm{GL}(r, \mathbb{Z})$.
(ii) If H is a connected topological space and $f: H \longrightarrow \operatorname{Aut}(T)$ is a map such that $(h, t) \longrightarrow f(h) t$ is a continuous map $H \times T \longrightarrow T$, then f is constant.

We can express (ii) by saying that $\operatorname{Aut}(T)$ is discrete since if it is given the discrete topology, then $(h, t) \longrightarrow f(h) t$ is continuous if and only if f is locally constant.

Proof. If $\phi: T \longrightarrow T$ is an automorphism, then ϕ induces an invertible linear transformation M of the Lie algebra \mathfrak{t} of T that commutes with the exponential map. It must preserve the kernel Λ of $\exp : \mathfrak{t} \longrightarrow T$. We may
identify $\mathfrak{t}=\mathbb{R}^{r}$ in such a way that Λ is identified with \mathbb{Z}^{r}, in which case the matrix of M must lie in $\mathrm{GL}(r, \mathbb{Z})$. Part (i) is now clear.

For part (ii), since T is compact and f is continuous, as $h \longrightarrow h_{1}, f(h) t \longrightarrow$ $f\left(h_{1}\right) t$ uniformly for $t \in T$. It is easy to see from (i) that this is impossible unless f is locally constant.

In the remainder of this chapter, we will consider tori embedded in Lie groups. First, we prove a general statement that implies the existence of tori.

Theorem 15.2. Let G be a Lie group and H a closed Abelian subgroup. Then H is a Lie subgroup of G. If G is compact, then the connected component of the identity in H is a torus.

The assumption that H is Abelian is unnecessary (Exercise 15.1). See Remark 7.2 for references to a result without this assumption.

Proof. Let $\mathfrak{g}=\operatorname{Lie}(G)$. The exponential map $\mathfrak{g} \longrightarrow G$ is a local homeomorphism near the origin. Let U be a neighborhood of $0 \in \mathfrak{g}$ such that exp has a smooth inverse $\log : \exp (U) \longrightarrow U$. Let

$$
\mathfrak{h}=\{X \in \mathfrak{g} \mid \exp (\lambda X) \in H \text { for all } \lambda \in \mathbb{R}\} .
$$

Lemma 15.1. If $X \in \mathfrak{h}$ and $Y \in U$, and if $e^{Y} \in H$ then $[X, Y]=0$.
To prove the lemma, note that for any $t>0$ both $e^{t X}$ and $e^{Y} \in H$ commute, so $e^{Y}=e^{t X} e^{Y} e^{-t X}=\exp (\operatorname{Ad}(t X) Y)$. If t is small enough, both Y and $\operatorname{Ad}(t X) Y$ are in U, so applying log we have $\operatorname{Ad}(t X) Y=Y$. By Proposition 8.2, it follows that $\operatorname{ad}(X) Y=0$, proving the lemma.

Let us now show that \mathfrak{h} is an Abelian Lie algebra. It is clearly closed under scalar multiplication. If X and Y are in \mathfrak{h}, then $e^{t Y} \in H$ and $t Y \in U$ for small enough t, so by the lemma $[X, t Y]=0$. Thus $[X, Y]=0$. By Proposition 15.2 we have $e^{t(X+Y)}=e^{t X} e^{t Y}$ for all t, so $X+Y \in \mathfrak{h}$.

Now we will show that there exists a neighborhood V of the identity in G such that $V \subseteq \exp (U)$ and $V \cap H=\{\exp (X) \mid X \in \mathfrak{h} \cap \log (V)\}$. This will show that $V \cap H$ is a smooth locally closed submanifold of G. Since every point of H has a neighborhood diffeomorphic to this neighborhood of the identity, it will follow that H is a submanifold of G and hence a Lie subgroup.

It is clear that, for every open neighborhood of V contained in $\exp (U)$, we have $V \cap H \supseteq\{\exp (X) \mid X \in \mathfrak{h} \cap \log (V)\}$. If this inclusion is proper for every V, then there exists a sequence $\left\{h_{n}\right\} \subset H \cap \exp (U)$ such that $h_{n} \longrightarrow 1$ but $\log \left(h_{n}\right) \notin \mathfrak{h}$. We write $\log \left(h_{n}\right)=X_{n}$.

Let us write $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$, where \mathfrak{p} is a vector subspace. We will show that we may choose $X_{n} \in \mathfrak{p}$. Write $X_{n}=Y_{n}+Z_{n}$, where $Y_{n} \in \mathfrak{h}$ and $Z_{n} \in \mathfrak{p}$. By the lemma, $\left[X_{n}, Y_{n}\right]=0$, so $e^{Z_{n}}=e^{X_{n}} e^{-Y_{n}} \in H$. We may replace X_{n} by Z_{n} and h_{n} by $e^{Z_{n}}$, and we still have $h_{n} \longrightarrow 1$ but $\log \left(h_{n}\right) \notin \mathfrak{h}$, and after this substitution we have $X_{n} \in \mathfrak{p}$.

Let us put an inner product on \mathfrak{g}. We choose it so that the unit ball is contained in U. The vectors $X_{n} /\left|X_{n}\right|$ lie on the unit ball in \mathfrak{p}, which is compact, so they have an accumulation point. Passing to a subsequence, we may assume that $X_{n} /\left|X_{n}\right| \longrightarrow X_{\infty}$, where X_{∞} lies in the unit ball in \mathfrak{p}. We will show that $X_{\infty} \in \mathfrak{h}$, which is a contradiction since $\mathfrak{h} \cap \mathfrak{p}=\{0\}$.

To show that $X_{\infty} \in \mathfrak{h}$, we must show that $e^{t X_{\infty}} \in H$. It is sufficient to show this for $t<1$. With t fixed, let r_{n} be the smallest integer greater than $t /\left|X_{n}\right|$. Evidently, $r_{n} X_{n} \longrightarrow t X_{\infty}$ and $e^{r_{n} X_{n}}=\left(e^{X_{n}}\right)^{r_{n}} \in H$ since $e^{X_{n}} \in H$. Since H is closed, $e^{t X_{\infty}} \in H$ and the proof that H is a Lie group is complete.

If G is compact, then so is H. The connected component of the identity in H is a connected compact Abelian Lie group and hence a torus.

If G is a group and H a subgroup, we will denote by $N_{G}(H)$ and $C_{G}(H)$ the normalizer and centralizers of H. If no confusion is possible, we will denote them as simply $N(H)$ and $C(H)$.

Let G be a compact, connected Lie group. It contains tori, for example $\{1\}$, and an ascending chain $T_{1} \subsetneq T_{2} \subsetneq T_{3} \subsetneq \cdots$ has length bounded by the dimension of G. Therefore G contains maximal tori. Let T be a maximal torus.

The normalizer $N(T)=\left\{g \in G \mid g T g^{-1}=T\right\}$. It is a closed subgroup since if $t \in T$ is a generator, $N(T)$ is the inverse image of T under the continuous $\operatorname{map} g \longrightarrow g t g^{-1}$.

Proposition 15.8. Let G be a compact Lie group and T a maximal torus. Then $N(T)$ is a closed subgroup of G. The connected component $N(T)^{\circ}$ of the identity in $N(T)$ is T itself. The quotient $N(T) / T$ is a finite group.

Proof. We have a homomorphism $N(T) \longrightarrow \operatorname{Aut}(T)$ in which the action is by conjugation. By Proposition 15.7, $\operatorname{Aut}(T) \cong \mathrm{GL}(r, \mathbb{Z})$ is discrete, so any connected group of automorphisms must act trivially. Thus, if $n \in N(T)^{\circ}, n$ commutes with T. If $N(T)^{\circ} \neq T$, then it contains a one-parameter subgroup $\mathbb{R} \ni t \longrightarrow n(t)$, and the closure of the group generated by T and $n(t)$ is a closed commutative subgroup strictly larger than T. By Theorem 15.2 , it is a torus, contradicting the maximality of T. It follows that $T=N(T)^{\circ}$.

The quotient group $N(T)^{\circ} / T$ is both discrete and compact and hence finite.

The quotient $N(T) / T$ is called the Weyl group of G with respect to T.
Example 15.1. Suppose that $G=U(n)$. A maximal torus is

$$
T=\left\{\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right)| | t_{1}\left|=\ldots=\left|t_{n}\right|=1\right\}\right.
$$

Its normalizer $N(T)$ consists of all monomial matrices (matrices with a single nonzero entry in each row and column) so the quotient $N(T) / T \cong S_{n}$.

Proposition 15.9. Let T be a maximal torus in the compact connected Lie group G, and let $\mathfrak{t}, \mathfrak{g}$ be the Lie algebras of T and G, respectively.
(i) Any vector in \mathfrak{g} fixed by $\operatorname{Ad}(T)$ is in \mathfrak{t}.
(ii) We have $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{p}$, where \mathfrak{p} is invariant under $\operatorname{Ad}(T)$. Under the restriction of Ad to T, \mathfrak{p} decomposes into a direct sum of two-dimensional irreducible representations of T of the form (15.2).
Proof. For (i), if $X \in \mathfrak{g}$ is fixed by $\operatorname{Ad}(T)$, then by Proposition 15.2, $\exp (t X)$ is a one-parameter subgroup that is not contained in T but that commutes with T, and unless $X \in \mathfrak{t}$, the closure of the group it generates with T will be a torus strictly larger than T, which is a contradiction.

Since G is compact, there exists a positive definite symmetric bilinear form on the real vector space that is \mathfrak{g}-invariant under the real representation Ad : $G \longrightarrow \mathrm{GL}(\mathfrak{g})$. The orthogonal complement \mathfrak{p} of \mathfrak{t} is invariant under $\operatorname{Ad}(\mathrm{T})$. It contains no $\operatorname{Ad}(T)$-fixed vectors by (i). Since every nontrivial irreducible real representation of T is of the form (15.2), (ii) follows.

Corollary 15.2. If G is a compact connected Lie group and T a maximal torus, then $\operatorname{dim}(G)-\operatorname{dim}(T)$ is even.

Proof. This follows since $\operatorname{dim}(G / T)=\operatorname{dim}(\mathfrak{p})$, and \mathfrak{p} decomposes as a direct sum of two-dimensional irreducible representations.

We review the notion of an orientation. Let M be a manifold of dimension n. The orientation bundle of M is a certain two-fold cover that we now describe. One way of constructing \tilde{M} begins with the n-fold exterior power of the tangent bundle: the fiber over $x \in M$ is $\wedge^{n} T_{x}(M)$. This is a one-dimensional real vector space. Omitting the origin and dividing by the equivalence relation $v \sim w$ if $v=\lambda w$ for $0<\lambda \in \mathbb{R}$, when v, w are elements of $\wedge^{n} T_{x}(M)$, produces a set $F(x)$ with two points. The disjoint union $\tilde{M}=\bigcup_{x \in M} F(x)$ is topologized as follows. Let $\pi: \tilde{M} \longrightarrow M$ be the map sending $F(x)$ to x. If X_{1}, \cdots, X_{n} are vector fields that are linearly independent on an open set U, then $X_{1} \wedge \cdots \wedge X_{n}$ determines, for each $x \in \underset{\sim}{U}$, an element $s(x)$ of $\pi^{-1}(x)$. We topologize \tilde{M} by requiring that $s: U \longrightarrow \tilde{M}$ be a local homeomorphism.

Now an orientation of the manifold M is a global section of the orientation bundle, that is, a continuous map $s: M \longrightarrow \tilde{M}$ such that $p \circ s(x)=x$ for all $x \in M$. If an orientation exists, then \tilde{M} is a trivial cover, and $\tilde{M} \cong$ $M \times(\mathbb{Z} / 2 \mathbb{Z})$. In this case, the bundle M is called orientable. Any complex manifold is orientable. On the other hand, a Möbius strip is not orientable.

If M and N are manifolds of dimension n and $f: M \longrightarrow N$ is a diffeomorphism, there is induced for each $x \in M$ an isomorphism $\wedge^{n} T_{x}(M) \longrightarrow$ $\wedge^{n} T_{f(x)}(N)$ and so there is induced a canonical map $\tilde{f}: \tilde{M} \longrightarrow \tilde{N}$ covering f.
Proposition 15.10. Let G be a connected Lie group and H a connected closed Lie subgroup. Then the quotient space G / H is a connected orientable manifold.

The manifold G / H is called a flag manifold. We see that the flag manifold is orientable as well as even-dimensional. See Remark 17.1.

Proof. To make G / H a manifold, choose a subspace \mathfrak{p} of $\mathfrak{g}=\operatorname{Lie}(G)$ complementary to $\mathfrak{h}=\operatorname{Lie}(H)$. Then $X \longrightarrow \exp (X) g H$ is a local homeomorphism of a neighborhood of the identity in \mathfrak{p} with a neighborhood of the coset $g H$ in G / H.

To see that $M=G / H$ is orientable, let $\pi: \tilde{M} \longrightarrow M$ be the orientation bundle, and let ω be an element of $\pi^{-1}(H)$. If $g \in G$ then g acts by left translation on M and hence induces an automorphism \tilde{g} of \tilde{M}. We can define a global section s of \tilde{M} by $s(g H)=\tilde{g}(\omega)$ if we can check that this is welldefined. Thus, if $g H=g^{\prime} H$, we must show that $\tilde{g}(\omega)=\tilde{g}^{\prime}(\omega)$ in the fiber of \tilde{M} above $g H$. We will show that the map $\tilde{g}: M \longrightarrow M$ can be deformed into \tilde{g}^{\prime} through a sequence of maps \tilde{g}_{t}, each of them mapping $H \longrightarrow g H$, so that $\tilde{g}_{0}=\tilde{g}$ and $\tilde{g}_{1}^{\prime}=\tilde{g}^{\prime}$. This is sufficient because the fiber of \tilde{M} above $g H$ is a discrete set consisting of two elements, and $t \longrightarrow \widetilde{g_{t}}(\omega)$ is then a continuous map from $[0,1]$ into this discrete set.

The existence of $\widetilde{g_{t}}$ will follow from the connectedness of H. Note that if $\gamma \in G$ we have

$$
\begin{equation*}
\gamma g H=g H \quad \Longleftrightarrow \quad \gamma \in g H g^{-1} \tag{15.3}
\end{equation*}
$$

In particular, $g^{\prime} g^{-1} \in g H g^{-1}$. Since H is connected, so is $g H^{-1}$, and there is a path $t \longmapsto \gamma_{t}$ from the identity to $g^{\prime} g^{-1}$ within $g H^{-1}$. Then $x H \longmapsto \gamma_{t} g x H$ is a diffeomorphism of M that agrees with left translation by g when $t=0$ and left translation by g^{\prime} when $t=1$, and by (15.3), each canonical lifting $\widetilde{g_{t}}$ takes $H \longrightarrow g H$, as required.

EXERCISES

Exercise 15.1. Prove Theorem 15.2 without the assumption that G is Abelian.

Geodesics and Maximal Tori

An important theorem of Cartan asserts that any two maximal tori in a compact Lie group are conjugate. We will give two proofs of this, one using some properties of geodesics in a Riemannian manifold and one using some algebraic topology. The reader will experience no loss of continuity if he reads one of these proofs and skips the other. The proof in this chapter is simpler and more self-contained.

We begin by establishing the properties of geodesics that we will need. These properties are rather well-known, though they do require proof. Some readers may want to start reading with Theorem 16.1.

A Riemannian manifold consists of a smooth manifold M and for every $x \in M$ an inner product on the tangent space T_{x}. Since T_{x} is a real vector space and not a complex one, an inner product in this context is a positive definite symmetric bilinear form. We also describe this family of inner products on the tangent spaces as a Riemannian structure on the manifold M. We will denote the inner product of $X, Y \in T_{x}$ by $\langle X, Y\rangle$ and the length $\sqrt{\langle X, X\rangle}=|X|$. As part of the definition, the inner product must vary smoothly with x. To make this condition precise, we choose a system of coordinates x_{1}, \cdots, x_{n} on some open set U of M, where $n=\operatorname{dim}(M)$. Then, at each point $x \in U$, a basis of $T_{x}(M)$ consists of $\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}$. Let

$$
\begin{equation*}
g_{i j}=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle \tag{16.1}
\end{equation*}
$$

Thus, the matrix $\left(g_{i j}\right)$ representing the inner product is positive definite symmetric. Smoothness of the inner product means that the $g_{i j}$ are smooth functions of $x \in U$.

We also define $\left(g^{i j}\right)$ to be the inverse matrix to $\left(g_{i j}\right)$. Thus, the functions $g^{i j}$ satisfy

$$
\sum_{j} g_{i j} g^{j k}=\delta_{i}^{k}, \quad \text { where } \quad \delta_{i}^{k}=\left\{\begin{array}{l}
1 \text { if } i=k \tag{16.2}\\
0 \text { otherwise }
\end{array}\right.
$$

and of course

$$
g_{i j}=g_{j i}, \quad g^{i j}=g^{j i}
$$

Suppose that $p:[0,1] \longrightarrow M$ is a path in the Riemannian manifold M. We say p is admissible if it is smooth, and moreover the movement along the path never "stops," that is, the tangent vector $p_{*}(d / d t)$, where t is the coordinate function on $[0,1]$, is never zero. The length or arclength of p is

$$
\begin{equation*}
|p|=\int_{0}^{1}\left|p_{*}\left(\frac{d}{d t}\right)\right| d t \tag{16.3}
\end{equation*}
$$

In terms of local coordinates, if we write $x_{i}(t)=x_{i}(p(t))$ the integrand is

$$
\left|p_{*}\left(\frac{d}{d t}\right)\right|=\sqrt{g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}} .
$$

We call the path well-paced if

$$
\int_{0}^{a}\left|p_{*}\left(\frac{d}{d t}\right)\right| d t=|p| a
$$

for all $0 \leqslant a \leqslant 1$. Intuitively, this means that the point $p(t)$ moves along the path at a constant "velocity."

It is an easy application of the chain rule that the arclength of p is unchanged under reparametrization. Moreover, every path has a unique reparametrization that is well-paced.

A Riemannian manifold becomes a complete metric space by defining the distance between two points a and b as the infimum of the lengths of the paths connecting them. It is not immediately obvious that there will be a shortest path, and indeed there may not be for some Riemannian manifolds, but it is easy to check that this definition satisfies the triangle inequality and induces the standard topology.

We will encounter various quantities indexed by $1 \leqslant i, j, k, \cdots \leqslant n$, where n is the dimension of the manifold M under consideration. We will make use of Einstein's summation convention (in this chapter only). According to this convention, if any index is repeated in a term, it is summed. For example, suppose that $p:[0,1] \longrightarrow M$ is a path lying entirely in a single chart $U \subset$ M with coordinate functions x_{1}, \cdots, x_{n}. Then we may regard x_{1}, \cdots, x_{n} as functions of $t \in[0,1]$, namely $x_{i}(t)=x_{i}(p(t))$. If $f: U \longrightarrow \mathbb{C}$ is a smooth function, then according to the chain rule

$$
\frac{d f}{d t}\left(x_{1}(t), \cdots, x_{n}(t)\right)=\sum_{i=1}^{n} \frac{d x_{i}}{d t} \frac{\partial f}{\partial x_{i}}\left(x_{1}(t), \cdots, x_{n}(t)\right)
$$

According to the summation convention, we can write this as simply

$$
\frac{d f}{d t}=\frac{d x_{i}}{d t} \frac{\partial f}{\partial x_{i}}
$$

and the summation over i is understood because it is a repeated index.

If for every smooth curve $q:[0,1] \longrightarrow M$ with the same endpoints as p we have $|p| \leqslant|q|$, then we say that p is a path of shortest length. We will presently define geodesics by means of a differential equation, but for the moment we may provisionally describe a geodesic as a well-paced path along a manifold M that on short intervals is a path of shortest length.

An example will explain the qualification "on short intervals" in this definition. On a sphere, a geodesic is a great circle. The path in Figure 16.1 is a geodesic. It is obviously not the path of shortest length between a and b.

Fig. 16.1. A geodesic on a sphere.

Although the indicated geodesic is not a path of shortest length, if we break it into smaller segments, we may still hope that these shorter paths may be paths of shortest length. Indeed they will be paths of shortest length if they are not too long, and this is the content of Proposition 16.4 below. For example, the segment from a to c is a path of shortest length.

Let $p:[0,1] \longrightarrow M$ be an admissible path. We can consider deformations of p, namely we can consider a smooth family of paths $u \longrightarrow p_{u}$, where, for each $u \in(-\epsilon, \epsilon), p_{u}$ is a path from a to b and $p_{0}=p$. Note that, as with the definition of path-homotopy, we require that the endpoints be fixed as the path is deformed. We consider the function $f(u)=\left|p_{u}\right|$. We say the path is of stationary length if $f^{\prime}(0)=0$ for every such deformation.

If p is a path of shortest length, then 0 will be a minimum of f so $f^{\prime}(0)=0$. As for the example in Figure 16.1, the path from a to b may be deformed by raising it up above the equator and simultaneously shrinking it, but even under such a deformation we will have $f^{\prime}(0)=0$. So although this path is not a path of shortest length, it is still a path of stationary length.

Let x_{1}, \cdots, x_{n} be coordinate functions on some open set U on M. Relative to this coordinate system, let $g_{i j}$ and $g^{i j}$ be as in (16.1) and (16.2). We define
the Christoffel symbols

$$
[i j, k]=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x_{j}}+\frac{\partial g_{j k}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{k}}\right), \quad\{i j, k\}=g^{k l}[i j, l]
$$

In the last expression, l is summed by the summation convention.
Proposition 16.1. Suppose that $p:[0,1] \longrightarrow M$ is a well-paced admissible path. If the path lies within an open set U on which x_{1}, \cdots, x_{n} is a system of coordinates, then writing $x_{i}(t)=x_{i}(p(t))$, the path is of stationary length if and only if it satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} x_{k}}{d t^{2}}=\{i j, k\} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t} \tag{16.4}
\end{equation*}
$$

Proof. Let us consider the effect of deforming the path. We consider a family p_{u} of paths parametrized by $u \in(-\epsilon, \epsilon)$, where $\epsilon>0$ is a small real number. It is assumed that the family of paths varies smoothly, so $(t, u) \longmapsto p_{u}(t)$ is a smooth $\operatorname{map}(-\epsilon, \epsilon) \times[0,1] \longrightarrow M$.

We regard the coordinate functions x_{i} of the point $x=p_{u}(t)$ to be functions of u and t.

It is assumed that $p_{0}(t)=p(t)$ and that the endpoints are fixed, so that $p_{u}(0)=p(u)$ and $p_{u}(1)=p(1)$ for all $u \in(-\epsilon, \epsilon)$. Therefore,

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial u}=0 \quad \text { when } t=0 \text { or } 1 \tag{16.5}
\end{equation*}
$$

In local coordinates, the arclength (16.3) becomes

$$
\begin{equation*}
\left|p_{u}\right|=\int_{0}^{1} \sqrt{g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}} d t \tag{16.6}
\end{equation*}
$$

Because the path $p(t)=p_{0}(t)$ is well-paced, the integrand is constant (independent of t) when $u=0$, so

$$
\begin{equation*}
\frac{\partial}{\partial t} \sqrt{g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}}=0 \quad \text { when } u=0 \tag{16.7}
\end{equation*}
$$

We do not need to assume that the deformed path $p(t, u)$ is well-paced for any $u \neq 0$.

Let $f(u)=\left|p_{u}\right|$. We have

$$
f^{\prime}(u)=\frac{\partial}{\partial u} \int_{0}^{1} \sqrt{g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}} d t
$$

This equals

$$
\begin{aligned}
& \int_{0}^{1}\left(g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}\right)^{-\frac{1}{2}}\left[\frac{1}{2} \frac{\partial g_{i j}}{\partial u} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}+\frac{1}{2} g_{i j} \frac{\partial^{2} x_{i}}{\partial u \partial t} \frac{\partial x_{j}}{\partial t}+\frac{1}{2} g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial^{2} x_{j}}{\partial u \partial t}\right] d t= \\
& \int_{0}^{1}\left(g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}\right)^{-\frac{1}{2}}\left[\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial x_{l}}{\partial u} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}+g_{i j} \frac{\partial^{2} x_{i}}{\partial u \partial t} \frac{\partial x_{j}}{\partial t}\right] d t
\end{aligned}
$$

where we have used the chain rule, and combined two terms that are equal. (The variables i and j are summed by the summation convention, so we may interchange them, and using $g_{i j}=g_{j i}$, the last two terms on the left-hand side are equal.) We integrate the second term by parts with respect to t, making use of (16.5) and (16.7) to obtain

$$
\begin{aligned}
f^{\prime}(0)= & \int_{0}^{1}\left(g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}\right)^{-\frac{1}{2}}\left[\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial x_{l}}{\partial u} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}-\frac{\partial x_{i}}{\partial u} \frac{\partial}{\partial t}\left(g_{i j} \frac{\partial x_{j}}{\partial t}\right)\right] d t= \\
& \int_{0}^{1}\left(g_{i j} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}\right)^{-\frac{1}{2}}\left[\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}-\frac{\partial}{\partial t}\left(g_{l j} \frac{\partial x_{j}}{\partial t}\right)\right] \frac{\partial x_{l}}{\partial u} d t .
\end{aligned}
$$

Now all the partial derivatives are evaluated when $u=0$. The last step is just a relabeling of a summed index.

We observe that the displacements $\partial x_{l} / \partial u$ are arbitrary except that they must vanish when $t=0$ and $t=1$. (We did not assume the deformed path to be well-paced except when $u=0$.) Thus, the path is of stationary length if and only if

$$
0=\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}-\frac{\partial}{\partial t}\left(g_{l j} \frac{\partial x_{j}}{\partial t}\right)
$$

so the condition is

$$
g_{l j} \frac{\partial^{2} x_{j}}{\partial t^{2}}=\frac{1}{2} \frac{\partial g_{i j}}{\partial x_{l}} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}-\frac{\partial g_{l j}}{\partial t} \frac{\partial x_{j}}{\partial t}
$$

Now

$$
\frac{\partial g_{l j}}{\partial t} \frac{\partial x_{j}}{\partial t}=\frac{\partial g_{l j}}{\partial x_{i}} \frac{\partial x_{i}}{d t} \frac{\partial x_{j}}{\partial t}=\frac{1}{2}\left[\frac{\partial g_{l j}}{\partial x_{i}}+\frac{\partial g_{l i}}{\partial x_{j}}\right] \frac{\partial x_{i}}{d t} \frac{\partial x_{j}}{\partial t} .
$$

The two terms on the right-hand side are of course equal since both i and j are summed indices. We obtain in terms of the Christoffel symbols

$$
g_{l j} \frac{\partial^{2} x_{j}}{\partial t^{2}}=[i j, l] \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial t}
$$

Multiplying by $g^{k l}$, summing the repeated index l, and using (16.2), we obtain (16.4).

We define a geodesic to be a solution to the differential equation (16.4). This definition does not depend upon the choice of coordinate systems because the differential equation (16.4) arose from a variational problem that was formulated without reference to coordinates. Naturally, one may alternatively confirm by direct computation that the differential equation (16.4) is stable under coordinate changes.

Proposition 16.2. Let x be a point on the Riemannian manifold M, and let $X \in T_{x}(M)$. Then, for sufficiently small ϵ, there is a unique geodesic $p:(-\epsilon, \epsilon) \longrightarrow M$ such that $p(0)=x$ and $p_{*}(d / d t)=X$.

Proof. Let x_{1}, \cdots, x_{n} be coordinate functions. Let y_{1}, \cdots, y_{n} be a set of new variables, and rewrite (16.4) as a first-order system

$$
\begin{array}{r}
\frac{d x_{i}}{d t}=y_{i} \\
\frac{d y_{i}}{d t}=\{i j, k\} y_{i} y_{j}
\end{array}
$$

The conditions $p(0)=x$ and $p_{*}(d / d t)=X$ amount to initial conditions for this first-order system, and the existence and uniqueness of the solution follow from the general theory of first-order systems.

We now come to a property of geodesics that may be less intuitive. Let U be a smooth submanifold of M, homeomorphic to a disk, of codimension 1 . If $x \in U$, we consider the geodesic $t \longmapsto p_{x}(t)$ such that $p_{x}(0)=x$ and such that $p_{x, *}(d / d t)$ is the unit normal vector to M at x in a fixed direction. For small $\epsilon>0$, let $U^{\prime}=\left\{p_{x}(\epsilon) \mid x \in U\right\}$. In other words, U^{\prime} is a translation of the disk U along the family of geodesics normal to U.

It is obvious that U is normal to each of the geodesic curves p_{x}. What is less obvious, and will be proved in the next proposition, is that U^{\prime} is also normal to the geodesics p_{x}.

In order to prove this, we will work with a particular set of coordinates. Let x_{2}, \cdots, x_{n} be local coordinates on U. At each point $x=\left(x_{2}, \cdots, x_{n}\right) \in U$, we choose the unit normal vector in a fixed direction and construct the geodesic path through the point with that tangent vector. We prescribe a coordinate system on M near U by asking that $\left(0, x_{2}, \cdots, x_{n}\right)$ agree with the point $x \in U$ and that the path $t \longmapsto\left(t, x_{2}, \cdots, x_{n}\right)$ agree with p_{x}. We describe such a coordinate system as geodesic coordinates.

Proposition 16.3. In geodesic coordinates, $g_{1 i}=0$ for $2 \leqslant i \leqslant n$. Also $g_{11}=1$.

In view of (16.1), this amounts to saying that the geodesic curves (having tangent vector $\partial / \partial x_{1}$) are orthogonal to the level hypersurfaces $x_{1}=$ constant (having tangent spaces spanned by $\partial / \partial x_{2}, \cdots, \partial / \partial x_{n}$), such as U and U^{\prime} in Figure 16.2.

Proof. Having chosen coordinates so that the path $t \longmapsto\left(t, x_{2}, \cdots, x_{n}\right)$ is a geodesic, we see that if all $d x_{i} / d t=0$ in (16.4), for $i \neq 1$, then $d^{2} x_{k} / d t^{2}=0$ for all k. This means that $\{11, k\}=0$. Since the matrix $\left(g_{k l}\right)$ is invertible, it follows that $[11, k]=0$, so

$$
\begin{equation*}
\frac{\partial g_{1 k}}{\partial x_{1}}=\frac{1}{2} \frac{\partial g_{11}}{\partial x_{k}} . \tag{16.8}
\end{equation*}
$$

First, take $k=1$ in (16.8). We see that $\partial g_{11} / \partial x_{1}=0$, so if x_{2}, \cdots, x_{n} are held constant, g_{11} is constant. When $x_{1}=0$, the initial condition of the geodesic curve p_{x} through $\left(0, x_{2}, \cdots, x_{n}\right)$ is that it is tangent to the unit normal to the surface, that is, its tangent vector $\partial / \partial x_{1}$ has length one, and by (16.1) it follows that $g_{11}=1$ when $x_{1}=0$, so $g_{11}=1$ throughout the geodesic coordinate neighborhood.

Now let $2 \leqslant k \leqslant n$ in (16.8). Since g_{11} is constant, $\partial g_{1 k} / \partial x_{1}=0$, and so $g_{1 k}$ is also constant when x_{2}, \cdots, x_{n} are held constant. When $x_{1}=0$, our assumption that the geodesic curve p_{x} is normal to the surface means that $\partial / \partial x_{1}$ and $\partial / \partial x_{k}$ are orthogonal, so by (16.1), $g_{1 k}$ vanishes when $x_{1}=0$ and so it vanishes for all x_{1}.

Fig. 16.2. Hypersurface remains perpendicular to geodesics on parallel translation.

With these preparations, we may now prove that short geodesics are paths of shortest length.

Proposition 16.4. (i) Let $p:[0,1] \longrightarrow M$ be a geodesic. Then there exists an $\epsilon>0$ such that the restriction of p to $[0, \epsilon]$ is the unique path of shortest length from $p(0)$ to $p(\epsilon)$.
(ii) Let $x \in M$. There exists a neighborhood N of x such that for all $y \in N$ there exists a unique path of shortest distance from x to y, and that path is a geodesic.

Proof. We choose a hypersurface U orthogonal to p at $t=0$ and construct geodesic coordinates as explained before Proposition 16.3. We choose ϵ and B so small that the set N of points with coordinates $\left\{x_{1} \in[0, \epsilon], 0 \leqslant\right.$ $\left.\left|x_{2}\right|, \cdots,\left|x_{n}\right| \leqslant B\right\}$ is contained within the interior of this geodesic coordinate neighborhood. We can assume that the coordinates of $p(0)$ are $(0, \cdots, 0)$, so by construction $p(t)=(t, 0, \cdots, 0)$. Then $|p|=\epsilon$, where now $|p|$ denotes the length of the restriction of the path to the interval from 0 to ϵ.

We will show that if $q:[0, \epsilon] \longrightarrow M$ is any path with $q(0)=p(0)$ and $q(\epsilon)=p(\epsilon)$, then $|q| \geqslant|p|$.

First, we consider paths $q:[0, \epsilon] \longrightarrow M$ that lie entirely within the set N and such that the x_{1}-coordinate of $q(t)$ is monotonically increasing. Reparametrizing q, we may arrange that $q(t)$ and $p(t)$ have the same $x_{1^{-}}$ coordinate, which equals t. Let us write $q(t)=\left(t, x_{2}(t), \cdots, x_{n}(t)\right)$. We also denote $x_{1}(t)=t$. Since $g_{1 k}=g_{k 1}=0$ when $k \geqslant 2$ and $g_{11}=1$, we have

$$
\begin{aligned}
& |q|=\int_{0}^{\epsilon} \sqrt{\sum_{i, j} g_{i j} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}} d t \\
& \int_{0}^{\epsilon} \sqrt{1+\sum_{2 \leqslant i, j \leqslant n} g_{i j} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}} d t .
\end{aligned}
$$

Now since the matrix $\left(g_{i j}\right)_{1 \leqslant i, j \leqslant n}$ is positive definite, its principal minor $\left(g_{i j}\right)_{2 \leqslant i, j \leqslant n}$ is also positive definite, so

$$
\sum_{2 \leqslant i, j \leqslant n} g_{i j} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t} \geqslant 0
$$

and

$$
|q| \geqslant \int_{0}^{\epsilon} \sqrt{1} d t=\epsilon=|p|
$$

This argument is easily extended to include all paths such that the values of x_{1} for those t such that $q(t) \in N$ cover the entire interval $[0, \epsilon]$. Paths for which this is not true must be long enough to reach the edges of the box $x_{i}>B$, and after reducing ϵ if necessary, they must be longer than ϵ. This completes our discussion of (i).

For (ii), given each unit tangent vector $X \in T_{x}(M)$, there is a unique geodesic $p_{X}:\left[0, \epsilon_{X}\right] \longrightarrow M$ through x tangent to X, and $\epsilon_{X}>0$ may be chosen so that this geodesic is a path of shortest length. We assert that ϵ_{X} may be chosen so that the same value ϵ_{X} is valid for nearby unit tangent vectors Y. We leave this point to the reader except to remark that it is perhaps easiest to see this by applying a diffeomorphism of M that moves X to Y and regarding X as fixed while the metric $g_{i j}$ varies; if Y is sufficiently near X, the variation of $g_{i j}$ will be small and the ϵ in part (i) can be chosen to work for small variations of the $g_{i j}$. So for each unit tangent vector $X \in T_{x}(M)$ there exists an $\epsilon_{X}>0$ and a neighborhood N_{X} of X in the unit ball of $T_{x}(M)$ such that $p_{Y}:\left[0, \epsilon_{X}\right] \longrightarrow M$ is a path of shortest length for all $Y \in N_{X}$. Since the unit tangent ball in $T_{x}(M)$ is compact, a finite number of N_{X} suffice to cover it, and if ϵ is the minimum of the corresponding ϵ_{X}, then we can take N to be the set of all points connected to x by a geodesic of length $<\epsilon$.

If M is a connected Riemannian manifold, we make M into a metric space by defining $d(x, y)$ to be the infimum of $|p|$, where p is a smooth path from x to y.

Theorem 16.1. Let M be a compact connected Riemannian manifold, and let x and y be points of M. Then there is a geodesic $p:[0,1] \longrightarrow M$ with $p(0)=x$ and $p(1)=y$.

A more precise statement may be found in Kobayashi and Nomizu [86], Theorem 4.2 on p. 172. It is proved there that if M is connected and geodesically complete, meaning that any well-paced geodesic can be extended to $(-\infty, \infty)$, then the conclusion of the theorem is true. (It is not hard to see that a compact manifold is geodesically complete.)

Proof. Let $\left\{p_{i}\right\}$ be a sequence of well-paced paths from x to y such that $\left|p_{i}\right| \longrightarrow d(x, y)$. Because they are well-paced, if $0 \leqslant a<b \leqslant 1$ we have $d\left(p_{i}(a), p_{i}(b)\right)=(b-a)\left|p_{i}\right|$, and it follows that $\left\{p_{i}\right\}$ are equicontinuous. Thus by Proposition 3.1 there is a subsequence that converges uniformly to a path p. It is not immediately evident that p is smooth, but it is clearly continuous. So we can partition $[0,1]$ into short intervals. On each sufficiently short interval $0 \leqslant a<b \leqslant 1, p(b)$ is near enough to $p(a)$ that the unique path of shortest distance between them is a geodesic by Proposition 16.4. It follows that p is a geodesic.

Theorem 16.2. Let G be a compact Lie group. There exists on G a Riemannian metric that is invariant under both left and right translation. In this metric, a geodesic is a translate (either left or right) of a map $t \longrightarrow \exp (t X)$ for some $X \in \operatorname{Lie}(G)$.

Proof. Let $\mathfrak{g}=\operatorname{Lie}(G)$. Since G is a compact group acting by Ad on the real vector space \mathfrak{g}, there exists an $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}. Regarding G as the tangent space to G at the identity, if $g \in G$, left translation induces an isomorphism $\mathfrak{g}=T_{e}(G) \longrightarrow T_{g}(G)$ and we may transfer this inner product to $T_{g}(G)$. This gives us an inner product on $T_{g}(G)$ and hence a Riemannian structure on G, which is invariant under left translation. Right translation by g induces a different isomorphism $\mathfrak{g}=T_{e}(G) \longrightarrow T_{g}(G)$, but these two isomorphisms differ by $\operatorname{Ad}(g): \mathfrak{g} \longrightarrow \mathfrak{g}$, and since the original inner product is invariant under $\operatorname{Ad}(g)$, we see that the Riemannian structure we have obtained is invariant under both left and right translation.

It remains to be shown that a geodesic is a translate of the exponential map. This is essentially a local statement. Indeed, it is sufficient to show that any short segment of a geodesic is of the form $t \longmapsto g \cdot \exp (t X)$ since any path that is of such a form on every short interval is globally of the same form. Moreover, since the Riemannian metric is translation-invariant, it is sufficient to show that a geodesic near the origin is of the form $t \longrightarrow \exp (t X)$.

First, we consider the case where G is a torus. In this case, $G \cong \mathbb{R}^{n} / \Lambda$, where Λ is a lattice. We identify the tangent space to \mathbb{R}^{n} at any point with \mathbb{R}^{n} itself. By a linear change of variables, we may assume that the inner product on $\mathbb{R}^{n}=T_{e}(G)$ corresponding to the Riemannian structure is the standard Euclidean inner product. Since the Riemannian structure is invariant under
translation it follows that $G \cong \mathbb{R}^{n} / \Lambda$ is a Riemannian manifold as well as a group. Geodesics are straight lines and so are translates of the exponential map.

We turn now to the general case. If $X \in \mathfrak{g}$, let $E_{X}:(-\epsilon, \epsilon) \longrightarrow G$ denote the geodesic through the origin tangent to $X \in \mathfrak{g}$. It is defined for sufficiently small ϵ (depending on X). If $\lambda \in \mathbb{R}$, then $t \longmapsto E_{X}(\lambda t)$ is the geodesic through the origin tangent to λX, so $E_{X}(\lambda t)=E_{\lambda X}(t)$. Thus, there is a neighborhood U of the origin in \mathfrak{g} and a map $E: U \longrightarrow G$ such that $E_{X}(t)=E(t X)$ for $X, t X \in U$. We must show that E coincides with the exponential map.

If $g \in G$, then translating $E(t X)$ on the left by g and on the right by g^{-1} gives another geodesic, which is tangent to $\operatorname{Ad}(g) X$. Thus, if $t X \in U$,

$$
\begin{equation*}
g E(t X) g^{-1}=E(t \operatorname{Ad}(g) X) \tag{16.9}
\end{equation*}
$$

We now fix $X \in \mathfrak{g}$. Let T be a maximal torus containing the one-parameter subgroup $\left\{e^{t X} \mid X \in \mathbb{R}\right\}$. It follows from (16.9) that $E(t X)$ commutes with $g \in H$ when $t X \in U$. Thus the path $t \longmapsto E(t X)$ runs through the centralizer $C(T)$ and a fortiori through $N(T)$. By Proposition 15.8, it follows that $E(t X) \in T$.

Now the translation-invariant Riemannian structure on G induces a trans-lation-invariant Riemannian structure on T, and since the geodesic path $t \longmapsto$ $E(t X)$ of G is contained in T, it is a geodesic path in T also. The result therefore follows from the special case of the torus, which we have already handled.

Theorem 16.3. Let G be a compact Lie group and \mathfrak{g} its Lie algebra. Then the exponential map $\mathfrak{g} \longrightarrow G$ is surjective.

Proof. Put a Riemannian structure on G as in Theorem 16.2. By Theorem 16.1, given $g \in G$, there exists a geodesic path from the identity to g. By Theorem 16.2 , this path is of the form $t \longmapsto e^{t X}$ for some $X \in \mathfrak{g}$, so $g=e^{X}$.

Theorem 16.4. Let G be a compact connected Lie group, and let T be a maximal torus. Let $g \in G$. Then there exists $k \in G$ such that $g \in k T k^{-1}$.

Proof. Let \mathfrak{g} and \mathfrak{t} be the Lie algebras of G and T, respectively. Let t_{0} be a generator of T. Using Theorem 16.3, find $X \in \mathfrak{g}$ and $H_{0} \in \mathfrak{t}$ such that $e^{X}=g$ and $e^{H_{0}}=t_{0}$.

Since G is a compact group acting by Ad on the real vector space \mathfrak{g}, there exists on \mathfrak{g} an $\operatorname{Ad}(G)$-invariant inner product for which we will denote the corresponding symmetric bilinear form as \langle,$\rangle . Choose k \in G$ so that the real value $\left\langle X, \operatorname{Ad}(k) H_{0}\right\rangle$ is maximal, and let $H=\operatorname{Ad}(k) H_{0}$. Thus, $\exp (H)=$ $k t_{0} k^{-1}$ generates $k T k^{-1}$.

If $Y \in \mathfrak{g}$ is arbitrary, then $\left\langle X, \operatorname{Ad}\left(e^{t Y}\right) H\right\rangle$ has a maximum when $t=0$, so using Proposition 8.2 we have

$$
0=\left.\frac{d}{d t}\left\langle X, \operatorname{Ad}\left(e^{t Y}\right) H\right\rangle\right|_{t=0}=\langle X, \operatorname{ad}(Y) H\rangle=-\langle X,[H, Y]\rangle
$$

By Proposition 10.2, this means that

$$
\langle[H, X], Y\rangle=0
$$

for all Y. Since an inner product is by definition positive definite, the bilinear form \langle,$\rangle is nondegenerate, which implies that [H, X]=0$. Now, by Proposition $15.2, e^{H}$ commutes with $e^{t X}$ for all $t \in \mathbb{R}$. Since e^{H} generates the maximal torus $k T k^{-1}$, it follows that the one-parameter subgroup $\left\{e^{t X}\right\}$ is contained in the centralizer of $k T k^{-1}$, and since $k T k^{-1}$ is a maximal torus, it follows that $\left\{e^{t X}\right\} \subset k T k^{-1}$. In particular, $g=e^{X} \in k T k^{-1}$.

Theorem 16.5. (E. Cartan) Let G be a compact connected Lie group, and let T be a maximal torus. Then every maximal torus is conjugate to T, and every element of G is contained in a conjugate of T.

Proof. The second statement is contained in Theorem 16.4. As for the first statement, let T^{\prime} be another maximal torus, and let t be a generator. Then t^{\prime} is contained in $k T k^{-1}$ for some k, so $T^{\prime} \subseteq k T k^{-1}$. Since both are maximal tori, they are equal.

Proposition 16.5. Let G be a compact connected Lie group, $S \subset G$ a torus (not necessarily maximal), and $g \in C_{G}(S)$ an element of its centralizer. Let H be the closure of the group generated by S and g. Then H has a topological generator. That is, there exists $h \in H$ such that the subgroup generated by h is dense in H.

Proof. Since H is closed and Abelian, its connected component H° of the identity is a torus by Proposition 15.2. Let h_{0} be a topological generator.

The group H / H° is compact and discrete and hence finite. Since $S \subseteq H^{\circ}$, and since S and g generate a dense subgroup of H, the finite group H / H° is cyclic and generated by $g H^{\circ}$. Let r be the order of H / H°. Then $g^{r} \in H^{\circ}$. Since the r-th power map $H^{\circ} \longrightarrow H^{\circ}$ is surjective, we can find $u \in H^{\circ}$ such that $(g u)^{r}=h_{0}$. Then the group generated by $h=u g$ contains both a generator h_{0} of H° and a generator $g H^{\circ}=(g u) H^{\circ}$ of H / H°. Clearly, it is a topological generator of H.

Proposition 16.6. If G is a Lie group and $u \in G$, then the centralizer $C_{G}(u)$ is a closed Lie subgroup, and its Lie algebra is $\{X \in \operatorname{Lie}(G) \mid \operatorname{Ad}(u) X=X\}$.

Proof. To show that $H=C_{G}(u)$ is a closed submanifold of G, it is sufficient to show that its intersection with a small neighborhood of the identity is a closed submanifold since translation by an element h of H will give a diffeomorphism of that neighborhood onto a neighborhood of h. In a neighborhood N of the origin in $\operatorname{Lie}(G)$, the exponential map is a diffeomorphism onto $\exp (N)$, and we see that the preimage of $C_{G}(u)$ in N is a vector subspace by recalling
that conjugation by u corresponds to the linear transformation $\operatorname{Ad}(u)$ of N. Particularly, $u e^{t X} u^{-1}=e^{t \operatorname{ad}(u) X}$, so $e^{t X} \in C_{G}(u)$ for all t if and only if $\operatorname{Ad}(u) X=X$.

Theorem 16.6. Let G be a compact connected Lie group and $S \subset G$ a torus (not necessarily maximal). Then the centralizer $C_{G}(S)$ is a closed connected Lie subgroup of G.

Proof. We first prove that $C_{G}(S)$ is connected. Let $g \in C_{G}(S)$. By Proposition 16.5 , there exists an element h of $C_{G}(S)$ that generates the closure H of the group generated by S and g. Let T be a maximal torus in G containing h. Then T centralizes S, so the closure of $T S$ is a connected compact Abelian group and hence a torus, and by the maximality of T it follows that $S \subseteq T$. Now clearly $T \subseteq C_{G}(S)$, and since T is connected, $T \subseteq C_{G}(S)^{\circ}$. Now $g \in H \subseteq$ $T \subset C_{G}(S)^{\circ}$. We have shown that $C_{G}(S)^{\circ}=C_{G}(S)$, so $C_{G}(S)$ is connected.

To show that $C_{G}(S)$ is a closed Lie subgroup, let $u \in S$ be a generator. Then $C_{G}(S)=C_{G}(u)$, and the statement follows by Proposition 16.6.

EXERCISES

Exercise 16.1. Give an example of a connected Riemannian manifold with two points P and Q such that no geodesic connects P and Q.

Exercise 16.2. Let G be a compact connected Lie group and let $g \in G$. Show that the centralizer $C_{G}(g)$ of g is connected.

Exercise 16.3. Show that the conclusion of Exercise 16.2 fails for the connected noncompact Lie group $\operatorname{SL}(2, \mathbb{R})$ by exhibiting an element whose centralizer is not connected.

If M and N are Riemannian manifolds of the same dimension, and if $f: M \longrightarrow$ N is a diffeomorphism, then f is called a conformal map if there exists a positive function ϕ on M such that if $x \in M$ and $y=f(x)$, and if we use the notation \langle, to denote the inner products in both $T_{x}(M)$ and $T_{y}(N)$, then

$$
\left\langle f_{*} X, f_{*} Y\right\rangle=\phi(x)\langle X, Y\rangle, \quad X, Y \in T_{x}(M)
$$

where $f_{*}: T_{x}(M) \longrightarrow T_{y}(N)$ is the induced map. Intuitively, a conformal map is one that preserves angles. If the function $\phi=1$, then f is called isometric.

Exercise 16.4. Show that if M and N are open subsets in \mathbb{C} and $f: M \longrightarrow N$ is a holomorphic map such that the inverse map $f^{-1}: N \longrightarrow M$ exists and is holomorphic (so f^{\prime} is never zero), then f is a conformal map.

The next exercises describe the geodesics for some familiar homogeneous spaces. Let $\mathfrak{D}=\{z \in \mathbb{C}| | z \mid<1\}$ be the complex disk in \mathbb{C}, and let $\mathfrak{R}=\mathbb{C} \cup\{\infty\}$ be the Riemann sphere. The group $\mathrm{SL}(2, \mathbb{C})$ acts on \mathfrak{R} by linear fractional transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): z \longmapsto \frac{a z+b}{c z+d}
$$

In this action, it is understood that ∞ is mapped to a / c and z is mapped to ∞ if $c z+d=0$. The map $z \longmapsto-1 / z$ is a chart near zero, and \mathfrak{R} is a complex analytic manifold. Let

$$
\begin{gathered}
A=\left\{\left(\begin{array}{cc}
a & b \\
0 & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}=1\right\},\right. \\
\mathrm{SU}(2)=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\},\right. \\
\mathrm{SU}(1,1)=\left\{\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\},\right.
\end{gathered}
$$

and

$$
K=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & \bar{a}
\end{array}\right)| | a\right|^{2}=1\right\} \cong U(1)
$$

It will be shown in Chapter 31 that the group $\operatorname{SU}(1,1)$ is conjugate in $\operatorname{SL}(2, \mathbb{C})$ to $\operatorname{SL}(2, \mathbb{R})$. Let G be one of the groups $\operatorname{SU}(2), A$, or $\operatorname{SU}(1,1)$. The stabilizer of $0 \in \mathfrak{R}$ is the group K, so we may identify the orbit of $0 \in \Re$ with the homogeneous space G / H by the bijection $g(0) \longleftrightarrow g H$. The orbit of 0 is given in the following table.

G	K	orbit of $0 \in \mathfrak{R}$
$\mathrm{SU}(1,1)$	$U(1)$	\mathfrak{D}
A	$U(1)$	\mathbb{C}
$\mathrm{SU}(2)$	$U(1)$	\mathfrak{H}

Exercise 16.5. Show that if G is one of the groups $\mathrm{SU}(1,1), A$, or $\mathrm{SU}(2)$, then the quotient G / K, which we may identify with \mathfrak{D}, \mathbb{C}, or \mathfrak{H}, has a unique G-invariant Riemannian structure.

Exercise 16.6. Show that the inclusions $\mathfrak{D} \longrightarrow \mathbb{C} \longrightarrow \mathfrak{R}$ are conformal maps but are not isometric.

A subset C of \mathfrak{R} is called a circle if either $C \subset \mathbb{C}$ and C is a circle in the Euclidean sense. In other words, C is the set of all solutions z to the equation $|z-\alpha|=r$ for $\alpha \in \mathbb{C}$, or else $C=L \cup\{\infty\}$, where L is a straight line. Let $\partial \mathfrak{D}=\{z| | z \mid=1\}$ be the unit circle.

Exercise 16.7. (i) Show that the group $\operatorname{SL}(n, \mathbb{C})$ preserves the set of circles. Show, however, that a linear fractional transformation $g \in \operatorname{SL}(n, \mathbb{C})$ may take a circle with center α to a circle with center different from $g(\alpha)$.
(ii) Show that if $M=\mathfrak{D}, \mathbb{C}$ or \mathfrak{R}, then every geodesic is a circle, but not every circle is a geodesic.
(iii) Show that the geodesics in \mathbb{C} are the straight lines and that the geodesics in \mathfrak{D} are the curves $C \cap \mathfrak{D}$, where C is a circle in \mathfrak{R} perpendicular to $\partial \mathfrak{D}$.
(iv) Show that $\partial \mathfrak{D}$ is a geodesic in \mathfrak{R}.

Topological Proof of Cartan's Theorem

We will give another proof of Cartan's Theorem 16.5. Since this was already proved in the last chapter, the reader can skip this chapter with no loss of continuity. As a by-product of this second proof, we will obtain some topological insight into the "flag manifold" G / T, where T is a maximal torus in the compact Lie group T, a topic that we will take up in the final chapter.

Suppose that M is a manifold of dimension n and $f: M \longrightarrow M$ a map. We define the Lefschetz number of f to be

$$
\Lambda(f)=\sum_{d=0}^{n}(-1)^{d} \operatorname{tr}\left(f \mid H^{d}(M, \mathbb{Q})\right)
$$

A fixed point of f is a solution to the equation $f(x)=x$. The fixed point x is isolated if it is the only fixed point in some neighborhood of x. According to the "Lefschetz fixed-point formula," if M is a compact manifold and f has only isolated fixed points, the Lefschetz number is the number of fixed points counted with multiplicity; see Dold [34].

Adams [1] followed Weil's 1935 topological proof of Cartan's theorem on the conjugacy of maximal tori, based on the Lefschetz fixed-point formula. We will give a modification of this argument based on a simplified version of the Lefschetz fixed-point formula for maps of finite order with no fixed points. By this approach, we will reduce the topological prerequisites.

We recall that a space is triangulable if it is homeomorphic to a simplicial complex, in which case its singular homology is equal to the simplicial homology of the complex. This well-known fact follows from Corollary 8.5 in Chapter V of Dold [35] or Chapter III of Eilenberg and Steenrod [40].

Proposition 17.1. Let M be a Hausdorff topological space, and let $f: M \longrightarrow$ M be an automorphism of finite order without fixed points such that the quotient of M by the action of f is triangulable. Then the Lefschetz number of f is zero.

Proof. Let M_{1} be the quotient of M by the cyclic group generated by f. The projection $M \longrightarrow M_{1}$ is a covering map. We triangulate M_{1}, choosing the triangulation so fine that each simplex in the triangulation is contained in a neighborhood over which the cover is trivial. Pulling this triangulation back to M, we obtain a triangulation \mathcal{T} of M that is invariant under f. We may now compute the rational homology of M using simplicial homology. The rational simplicial homology is the homology of a finite complex

$$
0 \longleftarrow C_{0} \stackrel{d_{1}}{\leftrightarrows} C_{1} \stackrel{d_{2}}{\leftrightarrows} C_{2} \stackrel{d_{3}}{\leftrightarrows} \ldots,
$$

where the C_{i} are finite-dimensional vector spaces over \mathbb{Q}, and $C_{q}=0$ if $q>\operatorname{dim}(M)$. Each C_{q} is the free vector space on the q-simplices in the triangulation. Moreover, f acts on the complex in each dimension by permuting these simplices, and no simplex is fixed by f, so the trace of f on C_{q} is zero in every dimension.

Now let $Z_{q}=\operatorname{ker}\left(d_{q}\right)$ and $B_{q}=\operatorname{im}\left(d_{q+1}\right)$, so the homology $H_{q}(M) \cong$ Z_{q} / B_{q}. We have a commutative diagram with exact rows:

$$
\begin{aligned}
& 0 \longrightarrow B_{q} \longrightarrow Z_{q} \longrightarrow H_{q} \longrightarrow 0 \\
& \downarrow f \\
& 0 \longrightarrow \downarrow f \\
& 0 \downarrow f \\
& B_{q} \longrightarrow Z_{q} \longrightarrow H_{q} \longrightarrow 0
\end{aligned}
$$

Thus

$$
\begin{equation*}
\operatorname{tr}\left(f \mid Z_{q}\right)=\operatorname{tr}\left(f \mid B_{q}\right)+\operatorname{tr}\left(f \mid H_{q}\right) \tag{17.1}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
& \begin{aligned}
& 0 \longrightarrow Z_{q} \longrightarrow \\
& \downarrow f \\
& C_{q} \xrightarrow{d} \xrightarrow{d} B_{q-1} \longrightarrow 0 \\
& \downarrow f
\end{aligned} \\
& 0 \longrightarrow Z_{q} \longrightarrow C_{q} \xrightarrow{d} B_{q-1} \longrightarrow 0
\end{aligned}
$$

Thus

$$
\begin{equation*}
0=\operatorname{tr}\left(f \mid C_{q}\right)=\operatorname{tr}\left(f \mid Z_{q}\right)+\operatorname{tr}\left(f \mid B_{q-1}\right) \tag{17.2}
\end{equation*}
$$

Now

$$
\begin{aligned}
\Lambda(f) & =\sum_{q}(-1)^{q} \operatorname{tr}\left(f \mid H_{q}\right)=\sum_{q}\left[(-1)^{q} \operatorname{tr}\left(f \mid Z_{q}\right)-(-1)^{q} \operatorname{tr}\left(f \mid B_{q}\right)\right] \\
& =\sum_{q}\left[(-1)^{q} \operatorname{tr}\left(f \mid Z_{q}\right)+(-1)^{q-1} \operatorname{tr}\left(f \mid B_{q-1}\right)\right]=0
\end{aligned}
$$

by (17.1) and (17.2).

Proposition 17.2. Let G be a compact Lie group. Then points of finite order are dense in G.

Proof. Let $g \in G$. The closure H of the cyclic subgroup generated by g is a compact Lie group by Theorem 15.2. Let H_{0} be the connected component of the identity in H. Then H_{0} is a compact Lie group and hence a torus. The quotient H / H_{0} is compact and discrete and hence finite.

Let r be the order of the image of g in the finite group H / H_{0}. Let U be a neighborhood of g in H. Then $\left\{x^{r} \mid x \in U\right\}$ contains an open neighborhood of g^{r} in the torus H_{0}. Since points of finite order are dense in a compact torus, x^{r} has finite order for some $x \in U$. This implies that x has finite order. We see that every neighborhood of g contains points of finite order.

Proposition 17.3. Let G be a compact connected Lie group, and let T be a maximal torus in G. Let $X=G / T$. Then X is even-dimensional and orientable. If $g \in G$, let $f_{g}: X \longrightarrow X$ be left translation by g, so $f_{g}(x T)=g x T$. The Lefschetz number of f_{g} is equal to the order $|W|$ of the Weyl group $W=N(T) / T$.

Proof. The Lefschetz number clearly depends only on the homotopy class of f, and since G is connected, this means that the Lefschetz number of f_{g} is the same for all g. First, suppose that $g=t_{0}$ is a generator t_{0} of T. In this case, we claim that there are exactly $|W|$ fixed points of g. Indeed, $x T$ is a fixed point of $f_{t_{0}}$ if and only if $t_{0} x T=x T$, that is, $x^{-1} t_{0} x \in T$. This is true if and only if $x \in N(T)$, so the number of fixed points equals $|N(T) / T|=|W|$.

Let $P_{1}, \cdots, P_{|W|}$ be the fixed points of t_{0} on $X=G / T$. We know that in a neighborhood of a fixed point P_{i} there exists a chart in which coordinates T acts by a direct sum of linear actions of the form (15.2). This means that the action of T is linear near P_{i} in these coordinates and $t \in T$ maps $\mathbb{R}^{2 m} \ni$ $x \mapsto R_{i}(t) x$, where $R_{i}(t)$ is the matrix

$$
\left(\begin{array}{ccc}
\begin{array}{|cc|}
\hline \cos \left(2 \pi \theta_{1}(t)\right) & \sin \left(2 \pi \theta_{1}(t)\right) \\
-\sin \left(2 \pi \theta_{1}(t)\right) \cos \left(2 \pi \theta_{1}(t)\right) \\
\hline
\end{array} & & \tag{17.3}\\
& \ddots & \\
& & \begin{array}{|cc|}
\hline \cos \left(2 \pi \theta_{m}(t)\right) \sin \left(2 \pi \theta_{m}(t)\right) \\
-\sin \left(2 \pi \theta_{m}(t)\right) \cos \left(2 \pi \theta_{m}(t)\right)
\end{array}
\end{array}\right)
$$

Here $\theta_{1}, \cdots, \theta_{m}$ are nonzero homomorphisms $T \longrightarrow \mathbb{R} / \mathbb{Z}$ and $2 m=\operatorname{dim}(X)$. In this coordinate system, $\sqrt{x_{1}^{2}+x_{2}^{2}} \leqslant \epsilon, \sqrt{x_{3}^{2}+x_{4}^{2}} \leqslant \epsilon, \cdots$ defines an open polydisk U_{i} around P_{i} that is stable under T.

As we have noted, the Lefschetz number of f_{g} is independent of the choice of g. Instead of a generator of T, we will take $g=t_{1} \in T$ to be an element of finite order such that the $\theta_{i}(t) \notin \mathbb{Z}$. Since we may approximate t_{0} by a point of finite order, and since the P_{i} are the only fixed points of a generator and X is compact, we may arrange that $f_{t_{1}}$ has only the P_{i} as fixed points.

We will apply Proposition 17.1 to $M=X-\bigcup_{i} U_{i}$. Both M and its quotient by the cyclic group generated by $f=f_{t_{1}}$ are manifolds with boundary and hence triangulizable. By construction, $f_{t_{1}}$ has no fixed points on M, and so the Lefschetz number of $f_{t_{1}}$ on M is zero.

Now we consider the exact sequence of the pair (X, M) :

$$
\ldots \longrightarrow H_{1}(X, M) \longrightarrow H_{0}(M) \longrightarrow H_{0}(X) \longrightarrow H_{0}(X, M) \longrightarrow 0 .
$$

The alternating sum of the traces of $f_{t_{1}}$ on these homology groups is zero, and since the Lefschetz number of M is zero, this means

$$
\Lambda\left(f_{t_{1}}\right)=\sum(-1)^{q} \mathrm{rm} \operatorname{tr}\left(f_{t_{1}} \mid H_{q}(X, M)\right)
$$

We may compute this by excision. Let V_{i} be a slightly larger polydisk around the P_{i}, and let Ω be the interior of $X-\bigcup V_{i}$. Thus Ω is an open subset of M and

$$
\Lambda\left(f_{t_{1}}\right)=\sum(-1)^{q} \operatorname{tr}\left(f_{t_{1}} \mid H_{q}(X-\Omega, M-\Omega)\right) .
$$

Now the pair ($X-\Omega, M-\Omega$) consists of $|W|$ disconnected pieces, namely the pairs $\left(\overline{V_{i}}, \bar{V}_{i}-U_{i}\right)$. Topologically $\overline{V_{i}}$ is homeomorphic to the ball $\mathbb{B}^{2 m}$ and $\bar{V}_{i}-U_{i}$ is a hollow shell. The inclusion $\left(\mathbb{B}^{2 m}, S^{2 m-1}\right) \longrightarrow\left(\overline{V_{i}}, \bar{V}_{i}-U_{i}\right)$ is a homotopy equivalence, so this piece has homology

$$
H_{q}\left(\overline{V_{i}}, \bar{V}_{i}-U_{i}\right) \cong H_{q}\left(\mathbb{B}^{2 m}, S^{2 m-1}\right) \cong\left\{\begin{array}{l}
\mathbb{Q} \text { if } q=2 m \\
0 \text { otherwise }
\end{array}\right.
$$

Moreover, the action of $f_{t_{1}}$ on this piece is homotopy-equivalent to the identity, so

$$
\Lambda\left(f_{t_{1}}\right)=\sum_{i} \sum_{q}(-1)^{q} \operatorname{tr}\left(f_{t_{1}} \mid H_{q}\left(\overline{V_{i}}, \bar{V}_{i}-U_{i}\right)\right)=\sum_{i} 1=|W| .
$$

We can now reprove Theorem 16.5.
Proof. Let $g \in G$. We will prove that g is conjugate to an element of T. This will prove that all maximal tori are conjugate to T, for if T^{\prime} is another torus, we can choose g to be a generator of T^{\prime}.

Let $X=G / T$ and consider the map $f_{g}: X \longrightarrow X$, which is left translation by g. It is sufficient to show that f has a fixed point, since if $g x T=x T$ then $x^{-1} g x \in T$.

If f_{g} has no fixed points in X, then since X is compact there exists a neighborhood N of g such that $f_{g^{\prime}}$ has no fixed points for $g^{\prime} \in N$. By Proposition 17.2, there are points of finite order in N, so we may assume that g has finite order. But the Lefschetz number of f_{g} is $|W|$ by Proposition 17.3, so f_{g} has fixed points. This is a contradiction.

Proposition 17.4. The Euler characteristic $\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(G / T)$ equals $|W|$.

Proof. Take $g=1$ in Proposition 17.3.

Remark 17.1. We have seen in Corollary 15.2 that the flag manifold X is even-dimensional, and by Proposition 15.10 it is orientable. These facts will be explained by Theorem 29.4, where we will see that X is actually a complex analytic manifold. Quite a bit more can be proven: $X=G / T$ has nonzero cohomology only in even dimensions, so $H^{*}(X)$ is actually a commutative ring of dimension equal to $|W|$. We will explain the reason for this in the final chapter.

The Weyl Integration Formula

Let G be a compact, connected Lie group, and let T be a maximal torus. Theorem 16.5 implies that every conjugacy class meets T. Thus, we should be able to compute the Haar integral of a class function (for example, the inner product of two characters) as an integral over the torus. The formula that allows this, the Weyl Integration Formula, is therefore fundamental in representation theory and in other areas, such as random matrix theory.

If G is a locally compact group and H a closed subgroup, then the quotient space G / H consisting of all cosets $g H$ with $g \in G$, given the quotient topology, is a locally compact Hausdorff space. (See Hewitt and Ross [57], Theorems 5.21 and 5.22 on p. 38.) Such a coset space is called a homogeneous space.

If X is a locally compact Haudorff space let $C_{c}(X)$ be the space of continuous, compactly supported functions on X. If X is a locally compact Hausdorff space, a linear functional I on $C_{c}(X)$ is called positive if $I(f) \geqslant 0$ if f is nonnegative. According to the Riesz representation theorem, every such I is of the form

$$
I(f)=\int_{X} f d \mu
$$

for some regular Borel measure $d \mu$. See Halmos [51], Section 56, or Hewitt and Ross [57], Corollary 11.37 on p. 129. (Regularity of the measure is discussed after Definition 11.34 on p. 127.)

Proposition 18.1. Let G be a locally compact group, and let H be a compact subgroup. Let $d \mu_{G}$ and $d \mu_{H}$ be left Haar measures on G and H, respectively. Then there exists a regular Borel measure $d \mu_{G / H}$ on G / H which is invariant under the action of G by left translation. The measure $d \mu_{G / H}$ may be normalized so that, for $f \in C_{c}(G)$, we have

$$
\int_{G / H} \int_{H} f(g h) d \mu_{H}(h) d \mu_{G / H}(g H)
$$

Here the function $g \longmapsto \int_{H} f(g h) d \mu_{H}$ is constant on the cosets $g H$, and we are therefore identifying it with a function on G / H.

Proof. We may choose the normalization of $d \mu_{H}$ so that H has total volume 1. We define a map $\lambda: C_{c}(G) \longrightarrow C_{c}(G / H)$ by

$$
(\lambda f)(g)=\int_{H} f(g h) d \mu_{H}(h)
$$

Note that λf is a function on G which is right invariant under translation by elements of H, so it may be regarded as a function on G / H. Since H is compact, λf is compactly supported. If $\phi \in C_{c}(G / H)$, regarding ϕ as a function on G, we have $\lambda \phi=\phi$ because

$$
(\lambda \phi)(g)=\int_{H} \phi(g h) d \mu_{H}(h)=\int_{H} \phi(g) d \mu_{H}(h)=\phi(g) .
$$

This shows that λ is surjective. We may therefore define a linear functional I on $C_{c}(G / H)$ by

$$
I(\lambda f)=\int_{G} f(g) d \mu_{G}(g), \quad f \in C_{c}(G)
$$

provided we check that this is well defined. We must show that if $\lambda f=0$ then

$$
\begin{equation*}
\int_{G} f(g) d \mu_{G}(g)=0 \tag{18.1}
\end{equation*}
$$

We note that the function $(g, h) \longmapsto f(g h)$ is compactly supported and continuous on $G \times H$, so if $\lambda f=0$ we may use Fubini's theorem to write

$$
0=\int_{G}(\lambda f)(g) d \mu_{G}(g)=\int_{H} \int_{G} f(g h) d \mu_{G}(g) d \mu_{H}(h)
$$

In the inner integral on the right-hand side we make the variable change $g \longmapsto g h^{-1}$. Recalling that $d \mu_{G}(g)$ is left Haar measure, this produces a factor of $\delta_{G}(h)$, where δ_{G} is the modular quasicharacter on G. Thus

$$
0=\int_{H} \delta_{G}(h) \int_{G} f(g) d \mu_{G}(g) d \mu_{H}(h) .
$$

Now the group H is compact, so its image under δ_{G} is a compact subgroup of \mathbb{R}_{+}^{\times}, which must be just $\{1\}$. Thus $\delta_{G}(h)=1$ for all $h \in H$ and we obtain (18.1), justifying the definition of the functional I. The existence of the measure on G / H now follows from the Riesz representation theorem.

We have seen in Proposition 15.9 that in the adjoint action on $\mathfrak{g}=\operatorname{Lie}(G)$, restricted to T, the Lie algebra \mathfrak{t} is an invariant subspace, complemented by a space \mathfrak{p}, which decomposes as the direct sum of nontrivial two-dimensional irreducible real representations as described in Proposition 15.5.

Let $W=N(T) / T$ be the Weyl group of G. The Weyl group acts on T by conjugation. Indeed, the elements of the Weyl group are cosets $w=n T$ for $n \in N(T)$. If $t \in T$, the element $n t n^{-1}$ depends only on w so by abuse of notation we denote it $w t w^{-1}$.

Theorem 18.1. (i) Two elements of T are conjugate in G if and only if they are conjugate in $N(T)$.
(ii) The inclusion $T \longrightarrow G$ induces a bijection between the orbits of W on T and the conjugacy classes of G.

Proof. Suppose that $t, u \in T$ are conjugate in G, say $g t g^{-1}=u$. Let $H=$ $C_{G}(u)^{\circ}$ be the connected component of the identity in the centralizer of u. It is a closed Lie subgroup of G by Proposition 16.6. Both T and $g T g^{-1}$ are contained in H since they are connected commutative groups containing u. As they are maximal tori in G, they are maximal tori in H, and so they are conjugate in the compact connected group H. If $h \in H$ such that $h T h^{-1}=$ $g T g^{-1}$, then $w=h^{-1} g \in N(T)$. Since $w t w^{-1}=h^{-1} u h=u$, we see that t and u are conjugate in $N(T)$.

Since G is the union of the conjugates of T, (ii) is a restatement of (i).
Proposition 18.2. The centralizer $C(T)=T$.
Proof. Since $C(T) \subset N(T), T$ is of finite index in $C(T)$ by Proposition 15.8. Thus, if $x \in C(T)$, we have $x^{n} \in T$ for some n. Let t_{0} be a generator of T. Since the n-th power map $T \longrightarrow T$ is surjective, there exists $t \in T$ such that $(x t)^{n}=t_{0}$. Now $x t$ is contained in a maximal torus T^{\prime}, which contains t_{0} and hence $T \subset T^{\prime}$. Since T is maximal, $T^{\prime}=T$ and $x \in T$.

Proposition 18.3. There exists a dense open set Ω of T such that the $|W|$ elements $w t w^{-1}(w \in W)$ are all distinct for $t \in \Omega$.

Proof. If $w \in W$, let $\Omega_{w}=\left\{t \in T \mid w t w^{-1} \neq t\right\}$. It is an open subset of T since its complement is evidently closed. If $w \neq 1$ and t is a generator of T, then $t \in \Omega_{w}$ because otherwise if $n \in N(T)$ represents w, then $n \in C(t)=C(T)$, so $n \in T$ by Proposition 18.2. This is a contradiction since $w \neq 1$. By Kronecker's Theorem 15.1, it follows that Ω_{w} is a dense open set. The finite intersection $\Omega=\bigcap_{w \neq 1} \Omega_{w}$ thus fits our requirements.
Theorem 18.2. (Weyl) If f is a class function, and if $d g$ and dt are Haar measures on G and T (normalized so that G and T have volume 1), then

$$
\int_{G} f(g) d g=\frac{1}{|W|} \int_{T} f(t) \operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right) d t
$$

Proof. Let $X=G / T$. We give X the measure d_{X} invariant under left translation by G such that X has volume 1. Consider the map

$$
\phi: X \times T \longrightarrow G, \quad \phi(x T, t)=x t x^{-1}
$$

Both $X \times T$ and G are orientable manifolds of the same dimension. Of course, G and T both are given the Haar measures such that G and T have volume 1.

We choose volume elements on the Lie algebras \mathfrak{g} and \mathfrak{t} of G and T, respectively, so that the Jacobians of the exponential maps $\mathfrak{g} \longrightarrow G$ and $\mathfrak{t} \longrightarrow T$ at the identity are 1 .

We compute the Jacobian $J \phi$ of ϕ. Parametrize a neighborhood of $x T$ in X by a chart based on a neighborhood of the origin in \mathfrak{p}. This chart is the map

$$
\mathfrak{p} \ni U \mapsto x e^{U} T
$$

We also make use of the exponential map to parametrize a neighborhood of $t \in T$. This is the chart $\mathfrak{t} \ni V \mapsto t e^{V}$. We therefore have the chart near the point $(x T, t)$ in $X \times T$ mapping

$$
\mathfrak{p} \times \mathfrak{t} \ni(U, V) \longrightarrow\left(x e^{U} T, t e^{V}\right) \in X \times T
$$

and, in these coordinates, ϕ is the map

$$
(U, V) \mapsto x e^{U} t e^{V} e^{-U} x^{-1}
$$

To compute the Jacobian of this map, we translate on the left by $t^{-1} x^{-1}$ and on the right by x. There is no harm in this because these maps are Haar isometries. We are reduced to computing the Jacobian of the map

$$
(U, V) \mapsto t^{-1} e^{U} t e^{V} e^{-U}=e^{\operatorname{Ad}\left(t^{-1}\right) U} e^{V} e^{-U}
$$

Identifying the tangent space of the real vector space $\mathfrak{p} \times \mathfrak{t}$ with itself (that is, with $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{t}$), the differential of this map is

$$
U+V \mapsto\left(\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right) U+V
$$

The Jacobian is the determinant of the differential, so

$$
\begin{equation*}
(J \phi)(x T, t)=\operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right) \tag{18.2}
\end{equation*}
$$

By Proposition 18.3, the map $\phi: X \times T \longrightarrow G$ is a $|W|$-fold cover over a dense open set and so, for any function f on G, we have

$$
\int_{G} f(g) d g=\frac{1}{|W|} \int_{X \times T} f(\phi(x T, t)) J(\phi(x T, t)) d x \times d t
$$

The integrand $f(\phi(x T, t)) J(\phi(x T, t))=f(t) \operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right)$ is independent of x since f is a class function, and the result follows.

An example may help make this result more concrete.
Proposition 18.4. Let $G=U(n)$, and let T be the diagonal torus. Writing

$$
t=\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) \in T
$$

and letting $\int_{T} d t$ be the Haar measure on T normalized so that its volume is 1, we have

$$
\int_{G} f(g) d g=\frac{1}{n!} \int_{T} f\left(\begin{array}{lll}
t_{1} & & \tag{18.3}\\
& \ddots & \\
& & t_{n}
\end{array}\right) \prod_{i<j}\left|t_{i}-t_{j}\right|^{2} d t
$$

Proof. This will follow from Theorem 18.2) once we check that

$$
\operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right)=\prod_{i<j}\left|t_{i}-t_{j}\right|^{2}
$$

To compute this determinant, we may as well consider the linear transformation induced by $\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}$ on the complexified vector space $\mathbb{C} \otimes \mathfrak{p}$. As in Proposition 11.4 , we may identify $\mathbb{C} \otimes \mathfrak{u}(n)$ with $\mathfrak{g l}(n, \mathbb{C})=\operatorname{Mat}_{n}(\mathbb{C})$. We recall that $\mathbb{C} \otimes \mathfrak{p}$ is spanned by the T-eigenspaces in $\mathbb{C} \otimes \mathfrak{u}(n)$ corresponding to nontrivial characters of T. These are spanned by the elementary matrices $E_{i j}$ with a 1 in the i, j-th position and zeros elsewhere, where $1 \leqslant i, j \leqslant n$ and $i \neq j$. The eigenvalue of t on $E_{i j}$ is $t_{i} t_{j}^{-1}$. Hence

$$
\operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right)=\prod_{i \neq j}\left(t_{i} t_{j}^{-1}-1\right)=\prod_{i<j}\left(t_{i} t_{j}^{-1}-1\right)\left(t_{j} t_{i}^{-1}-1\right)
$$

Since $\left|t_{i}\right|=\left|t_{j}\right|=1$, we have $\left(t_{i} t_{j}^{-1}-1\right)\left(t_{j} t_{i}^{-1}-1\right)=\left(t_{i}-t_{j}\right)\left(t_{i}^{-1}-t_{j}^{-1}\right)=$ $\left|t_{i}-t_{j}\right|^{2}$, proving (18.3).

EXERCISES

Exercise 18.1. Let $G=\mathrm{SO}(2 n+1)$. Choose the realization of Exercise 5.3. Show that

$$
\begin{gathered}
\int_{\mathrm{SO}(2 n+1)} f(g) d g=\frac{1}{2^{n} n!} \int_{\mathbb{T}^{n}} f\left(\begin{array}{ccccccc}
t_{1} & & & & & & \\
& \ddots & & & & & \\
& & & \\
& & t_{n} & & & & \\
& & & 1 & & & \\
& & & & t_{n}^{-1} & & \\
& & & & & \ddots & \\
& & & & & & t_{1}^{-1}
\end{array}\right) \times \\
\prod_{i<j}\left\{\left|t_{i}-t_{j}\right|^{2}\left|t_{i}-t_{j}^{-1}\right|^{2}\right\} \prod_{i}\left|t_{i}-1\right|^{2} d t_{1} \cdots d t_{n} .
\end{gathered}
$$

Exercise 18.2. Let $G=\mathrm{SO}(2 n)$. Choose the realization of Exercise 5.3. Show that

$$
\begin{gathered}
\int_{\mathrm{SO}(2 n)} f(g) d g=\frac{1}{2^{n-1} n!} \int_{\mathbb{T}^{n}} f\left(\begin{array}{cccccc}
t_{1} & & & & & \\
& \ddots & & & & \\
& & t_{n} & & & \\
& & & t_{n}^{-1} & & \\
& & & & \ddots & \\
& & & & & t_{1}^{-1}
\end{array}\right) \times \\
\prod_{i<j}\left\{\left|t_{i}-t_{j}\right|^{2}\left|t_{i}-t_{j}^{-1}\right|^{2}\right\} d t_{1} \cdots d t_{n}
\end{gathered}
$$

Exercise 18.3. Describe the Haar measure on $\mathrm{Sp}(2 n)$ as an integral over the diagonal maximal torus.

The Root System

A Euclidean space is a real vector space V endowed with an inner product, that is, a positive definite symmetric bilinear form. We denote this inner product by \langle,$\rangle . If 0 \neq \alpha \in V$, consider the transformation $s_{\alpha}: \mathcal{V} \longrightarrow \mathcal{V}$ given by

$$
\begin{equation*}
s_{\alpha}(x)=x-\frac{2\langle x, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha \tag{19.1}
\end{equation*}
$$

This is the reflection attached to α. Geometrically, it is the reflection in the plane perpendicular to α. We have $s_{\alpha}(\alpha)=-\alpha$, while any element of that plane (with $\langle x, \alpha\rangle=0$) is unchanged by s_{α}.

Definition 19.1. Let \mathcal{V} be a finite-dimensional real Euclidean space, $\Phi \subset \mathcal{V}$ a finite subset of nonzero vectors. Then Φ is called a root system if for all $\alpha \in \Phi, s_{\alpha}(\Phi)=\Phi$, and if $\alpha, \beta \in \Phi$ then $2\langle\alpha, \beta\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$. The root system is called reduced if $\alpha, \lambda \alpha \in \Phi, \lambda \in \mathbb{R}$ implies that $\lambda= \pm 1$.

The goal of this chapter is to associate a reduced root system with an arbitrary compact connected Lie group G.

Let G be a compact connected Lie group and T a maximal torus. The dimension r of T is called the rank of G. Let $\mathfrak{g}=\operatorname{Lie}(G)$ and $\mathfrak{t}=\operatorname{Lie}(T)$. Recall that \mathbb{T} is the Lie group of complex numbers of absolute value 1 . We can regard its Lie group as $i \mathbb{R}$. Thus, if $\lambda: T \longrightarrow \mathbb{T}$ is a character, let $d \lambda: \mathfrak{t} \longrightarrow i \mathbb{R}$ be the differential of λ, defined as usual by

$$
\begin{equation*}
d \lambda(H)=\left.\frac{d}{d t} \lambda\left(e^{t H}\right)\right|_{t=0}, \quad H \in \mathfrak{t} \tag{19.2}
\end{equation*}
$$

Note that it takes purely imaginary values.
Remark 19.1. Since $T \cong(\mathbb{R} / \mathbb{Z})^{r}$, its character group $X^{*}(T) \cong \mathbb{Z}^{r}$. We want to embed $X^{*}(T)$ into a real Euclidean space $\mathcal{V} \cong \mathbb{R}^{r}$. There are two natural ways of doing this. First, we may note that $X^{*}(T) \cong \mathbb{Z}^{r}$, so we can take $\mathcal{V}=\mathbb{R} \otimes_{\mathbb{Z}} X^{*}(T)$. Alternatively, $\lambda \longmapsto d \lambda$ gives an embedding $X^{*}(T)$ in
the space $\mathcal{V}^{\prime}=\operatorname{Hom}_{\mathbb{R}}(\mathfrak{t}, i \mathbb{R})$ of linear functionals on \mathfrak{t} taking purely imaginary values. We do not want to identify the spaces \mathcal{V} and \mathcal{V}^{\prime}. However, we note that they are canonically isomorphic, and we will occasionally need the extension of the map $\lambda \longrightarrow d \lambda$ of $X^{*}(T)$ into \mathcal{V}^{\prime} to a map $\mathcal{V} \longrightarrow \mathcal{V}^{\prime}$. If $\lambda \in \mathcal{V}$, we will denote its image $d \lambda$ in $\operatorname{Hom}(\mathfrak{t}, \mathbb{R})$ - or in $\operatorname{Hom}\left(\mathfrak{t}_{\mathbb{C}}, \mathbb{C}\right)$ - as $d \lambda$ even if λ is not in $X^{*}(T)$.

Now W acts on T by conjugation and hence on \mathcal{V}, and it will be convenient to give \mathcal{V} an inner product (that is, a positive definite symmetric bilinear form) that is W-invariant. We may of course do this for any finite group acting on a real vector space.

A root of G with respect to T is an element of $X^{*}(T)$ occurring in the representation of T on $\mathfrak{p}_{\mathbb{C}}$ induced by Ad, where \mathfrak{p} is as in the previous chapter. If α is a root, let $\mathfrak{X}_{\alpha} \subset \mathfrak{p}_{\mathbb{C}}$ be the α-eigenspace. We will denote by $\Phi \subset \mathcal{V}$ the set of roots of G with respect to T. We will show in Theorem 19.2 that Φ is a root system.

Because the proofs are somewhat long, it may be useful to have an example in mind. We consider the group $G=\operatorname{Sp}(4)$. This is a maximal compact subgroup of $\operatorname{Sp}(4, \mathbb{C})$, which we will take to be the group of $g \in \mathrm{GL}(4, \mathbb{C})$ that satisfy $g J^{t} g=J$, where

$$
J=\left(\begin{array}{lll}
& & \\
& & -1 \\
& & \\
1 & & \\
& &
\end{array}\right)
$$

This is not the same as the group introduced in Example 5.5, but it is conjugate to that group in $\mathrm{GL}(4, \mathbb{C})$. The group $\mathrm{Sp}(4)$ is the intersection of $\operatorname{Sp}(4, \mathbb{C})$ with $U(4)$. A maximal torus T can be taken to be the group of diagonal elements, and the roots are the eight characters

$$
T \ni t=\left(\begin{array}{rl}
t_{1} & \\
\alpha_{1}(t) & =t_{1} t_{2}^{-1} \\
t_{2}(t) & \\
& \\
& t_{2}^{-1} \\
& \\
& t_{1}^{-1}
\end{array}\right) \longmapsto\left\{\begin{aligned}
& \\
& \\
&\left(\alpha_{1}+\alpha_{2}\right)(t)=t_{1} t_{2} \\
&\left(2 \alpha_{1}+\alpha_{2}\right)(t)=t_{1}^{2} \\
&-\alpha_{1}(t)=t_{1}^{-1} t_{2} \\
&-\alpha_{2}(t)=t_{2}^{-2} \\
&-\left(\alpha_{1}+\alpha_{2}\right)(t)=t_{1}^{-1} t_{2}^{-1} \\
&-\left(2 \alpha_{1}+\alpha_{2}\right)(t)=t_{1}^{-2}
\end{aligned}\right.
$$

They form a configuration in \mathcal{V} that can be seen in Figure 20.4 of the next chapter. The reader can check that this forms a root system.

The complexified Lie algebra $\mathfrak{g}_{\mathbb{C}}$ consists of matrices of the form

$$
\left(\begin{array}{cccc}
t_{1} & x_{12} & x_{13} & x_{14} \\
x_{21} & t_{2} & x_{23} & x_{13} \\
x_{31} & x_{32} & -t_{2} & -x_{12} \\
x_{41} & x_{31} & -x_{21} & -t_{1}
\end{array}\right)
$$

To be in \mathfrak{g}, this matrix must be skew-Hermitian, which means that the t_{i} are purely imaginary, and $x_{i j}=-\overline{x_{j i}}$. The spaces $\mathfrak{X}_{\alpha_{1}}$ and $\mathfrak{X}_{-\alpha_{1}}$ are spanned by the vectors

$$
X_{\alpha_{1}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right), \quad X_{-\alpha_{1}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

and the spaces $\mathfrak{X}_{\alpha_{2}}$ and $\mathfrak{X}_{-\alpha_{2}}$ are spanned by

$$
X_{\alpha_{2}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad X_{-\alpha_{2}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

As you can see, $\operatorname{Ad}(t) X_{\alpha}=\alpha(t) X_{\alpha}$ when $\alpha=\alpha_{1}$ or α_{2}. This proves that α_{1} and α_{2} are roots, and the four others are handled similarly. Note that these X_{α} are elements not of \mathfrak{g} but of its complexification $\mathfrak{g}_{\mathbb{C}}$.

The proof that the set of roots of a compact Lie group form a root system involves constructing certain elements H_{α} of $\mathfrak{t}_{\mathbb{C}}$, called coroots. In this example

$$
H_{\alpha_{1}}=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right), \quad H_{\alpha_{2}}=\left(\begin{array}{llll}
0 & & & \\
& 1 & & \\
& & -1 & \\
& & & 0
\end{array}\right)
$$

Note that $H_{\alpha} \notin \mathfrak{t}$, but $-i H_{\alpha} \in \mathfrak{t}$, since the elements of \mathfrak{t} are diagonal and purely imaginary. The coroots satisfy

$$
\left[H_{\alpha}, X_{\alpha}\right]=2 X_{\alpha}, \quad\left[H_{\alpha}, X_{-\alpha}\right]=-2 X_{-\alpha}
$$

and they are elements of the intersection of $i t$ with the complex Lie algebra generated by X_{α} and $X_{-\alpha}$. We note that X_{α} and $X_{-\alpha}$ are only determined up to constant multiples by the description we have given, but H_{α} is fully characterized. The H_{α} will be constructed in Proposition 19.6 below. They form a root system that is dual to the one we want to construct - if α is a long root, then H_{α} is short, and conversely, in root systems where not all the roots have the same length. (See Exercise 19.2.)

A key step will be to construct an element of the Weyl group $W=N(T) / T$ corresponding to the reflection s_{α} in (19.1). In order to produce this, we will construct a homomorphism $i_{\alpha}: \mathrm{SU}(2) \longrightarrow G$. The Weyl group s_{α} will then be the image of $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ under i_{α}.

Let us offer a word about how one can get a grip on i_{α}. The centralizer $C\left(T_{\alpha}\right)$ of the kernel T_{α} of the homomorphism $\alpha: T \longrightarrow \mathbb{C}^{\times}$is a close relative of this group $i_{\alpha}(\mathrm{SU}(2))$. In fact, $C\left(T_{\alpha}\right)=i_{\alpha}(\mathrm{SU}(2)) \cdot T$. We will use
this circumstance to show that \mathfrak{X}_{α} is one-dimensional, after which it will be straightforward to construct the homomorphism i_{α}. Let us consider the groups $C\left(T_{\alpha}\right)$ and the homomorphisms i_{α} in the case at hand. The subgroup $T_{\alpha_{1}}$ of T is characterized by $t_{1}=t_{2}$, so its centralizer consists of elements of the form

$$
\left(\begin{array}{cccc}
a & b & & \\
c & d & & \\
& & * & * \\
& & * & *
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in U(2)
$$

where the elements marked $*$ are determined by the requirement that the matrix be in $\operatorname{Sp}(4)$. The homomorphism i_{α} is given by

$$
i_{\alpha_{1}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{llll}
a & b & & \\
c & d & & \\
& & a & -b \\
& & -c & d
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SU}(2)
$$

Similarly, $T_{\alpha_{2}}$ is characterized by $t_{2}=\{ \pm 1\}$, and

$$
i_{\alpha_{2}}\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cccc}
1 & & & \\
& a & b & \\
& d & c & \\
& & & 1
\end{array}\right)
$$

We turn now to the general case and to the proofs.
Proposition 19.1. A maximal Abelian subalgebra \mathfrak{h} of \mathfrak{g} is the Lie algebra of a conjugate of T. Its dimension is the rank r of G.

Proof. By Proposition 15.2, $\exp (\mathfrak{h})$ is a commutative group that is connected since it is the continuous image of a connected space. By Theorem 15.2 its closure H is a Lie subgroup of G, closed, connected and Abelian and therefore a torus. It is therefore contained in a maximal torus H^{\prime}. By maximality of $\mathfrak{h} \subseteq$ $\operatorname{Lie}\left(H^{\prime}\right)$ we must have $\mathfrak{h}=\operatorname{Lie}\left(H^{\prime}\right)$ and $H^{\prime}=H$. By Cartan's Theorem 16.5, H is a conjugate of T.

Lemma 19.1. Suppose that G is a compact Lie group with Lie algebra \mathfrak{g}, $\pi: G \longrightarrow \mathrm{GL}(V)$ a representation, and $d \pi: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ the differential. If $v \in V$ and $X \in \mathfrak{g}$ such that $d \pi(X)^{n} v=0$ for any $n>1$, then $d \pi(X) v=0$.

Proof. We may put a G-invariant positive definite inner product \langle,$\rangle on$ V. The inner product is then \mathfrak{g}-invariant, which means that $\langle d \pi(X) v, w\rangle=$ $-\langle v, d \pi(X) w\rangle$. Thus $d \pi(X)$ is skew-Hermitian, which by the spectral theorem implies that V has a basis with respect to which its matrix is diagonal. It is clear that, for a diagonal matrix $M, M^{n} v=0$ implies that $M v=0$.

We may write $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}+i \mathfrak{g}$. Let $c: \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{g}_{\mathbb{C}}$ be the conjugation with respect to \mathfrak{g}, that is, the real linear transformation $X+i Y \longrightarrow X-i Y(X$, $Y \in \mathfrak{g}$). Although c is not complex linear, it is an automorphism of $\mathfrak{g}_{\mathbb{C}}$ as a real Lie algebra. We have $c(a Z)=\bar{a} \cdot c(Z)$, so c is complex antilinear.

Let (π, V) be any finite-dimensional complex representation of G. If $\lambda \in$ $X^{*}(T)$, let $V(\lambda)=\{v \in V \mid \pi(t) v=\lambda(t) v\}$. Then V is the direct sum of the $V(\lambda)$. If $(\pi, V)=\left(\operatorname{ad}, \mathfrak{g}_{\mathbb{C}}\right)$ and $\lambda=\alpha$ is a root, then $V(\lambda)=\mathfrak{X}_{\alpha}$.

Proposition 19.2. (i) Let (π, V) be any irreducible representation of G. If $d \pi: \mathfrak{g} \longrightarrow \mathfrak{g l}(V)$ is the differential of π, then

$$
\begin{equation*}
d \pi(H) v=d \lambda(H) v, \quad H \in \mathfrak{t}, v \in V(\lambda) \tag{19.3}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\left[H, X_{\alpha}\right]=\operatorname{ad}(H) X_{\alpha}=d \alpha(H) X_{\alpha}, \quad H \in \mathfrak{t}, X_{\alpha} \in \mathfrak{X}_{\alpha} \tag{19.4}
\end{equation*}
$$

(iii) If (π, V) is a finite-dimensional complex representation of G and $v \in V(\lambda)$ for some $\lambda \in X^{*}(T)$, then $d \pi\left(X_{\alpha}\right) v \in V(\lambda+\alpha)$.

Proof. For (i), if $H \in \mathfrak{t}$ and $t \in \mathbb{R}$, then for $v \in V(\lambda)$ we have

$$
\pi\left(e^{t H}\right) v=\lambda\left(e^{t H}\right) v=e^{t d \lambda(H)} v
$$

Taking the derivative and setting $t=0$, using (19.2) we obtain (19.3). When $V=\mathfrak{g}_{\mathbb{C}}$ and $\pi=\mathrm{Ad}$, we have $\mathfrak{X}_{\alpha}=V(\lambda)$, so (19.4) is a special case of (19.3), and (ii) follows.

For (iii), we have, by (19.4),

$$
d \pi(H) d \pi\left(X_{\alpha}\right)-d \pi\left(X_{\alpha}\right) d \pi(H)=d \pi\left[H, X_{\alpha}\right]=d \alpha(H) X_{\alpha}
$$

Applying this to v and using (19.3) gives, with $w=d \pi\left(X_{\alpha}\right) v$,

$$
d \pi(H) w=(d \lambda(H)+d \alpha(H)) w
$$

so $w \in V(\lambda+\alpha)$.
Proposition 19.3. (i) We have $c\left(\mathfrak{X}_{\alpha}\right)=\mathfrak{X}_{-\alpha}$.
(ii) If $X_{\alpha} \in \mathfrak{X}_{\alpha}, X_{\beta} \in \mathfrak{X}_{\beta}, \alpha, \beta \in \Phi$, then

$$
\left[X_{\alpha}, X_{\beta}\right] \in\left\{\begin{array}{cc}
\mathfrak{t}_{\mathbb{C}} & \text { if } \beta=-\alpha \\
\mathfrak{X}_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi .
\end{array}\right.
$$

while $\left[X_{\alpha}, X_{\beta}\right]=0$ if $\beta \neq-\alpha$ and $\alpha+\beta \notin \Phi$.
(iii) If $0 \neq X_{\alpha} \in \mathfrak{X}_{\alpha}$, then $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]$ is a nonzero element of it, and $d \alpha\left(\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]\right) \neq 0$.

Proof. For (i), apply c to (19.4) using the complex antilinearity of c, and the fact that $d \alpha(H)$ is purely imaginary to obtain

$$
\left[H, c\left(X_{\alpha}\right)\right]=\left[c(H), c\left(X_{\alpha}\right)\right]=c\left[H, X_{\alpha}\right]=c\left(d \alpha(H) X_{\alpha}\right)=-d \alpha(H) c\left(X_{\alpha}\right)
$$

This shows that $c\left(X_{\alpha}\right) \in \mathfrak{X}_{-\alpha}$.
Part (ii) is the special case of Proposition 19.2 (iii) when $\pi=\mathrm{Ad}$ and $V=\mathfrak{g}_{\mathbb{C}}$ since $\mathfrak{t}_{\mathbb{C}}=V(0)$ while $\mathfrak{X}_{\alpha}=V(\alpha)$ when $\alpha \in \Phi$.

For (iii), we know that $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \in \mathfrak{t}_{\mathbb{C}}$, and applying c to $-i\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]$ gives $i\left[c\left(X_{\alpha}\right), X_{\alpha}\right]=-i\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]$ so $-i\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \in \mathfrak{t}$ and $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \in i t$. We show that $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \neq 0$. Let $\mathfrak{t}_{\alpha} \subset \mathfrak{t}$ be the kernel of $d \alpha$. It is of course a subspace of codimension 1. Let H_{1}, \cdots, H_{r-1} be a basis. If $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]=0$, then denoting

$$
\begin{equation*}
Y_{\alpha}=\frac{1}{2}\left(X_{\alpha}+c\left(X_{\alpha}\right)\right), \quad Z_{\alpha}=\frac{1}{2 i}\left(X_{\alpha}-c\left(X_{\alpha}\right)\right) \tag{19.5}
\end{equation*}
$$

Y_{α} and Z_{α} are c-invariant and hence in \mathfrak{g}, and

$$
H_{1}, \cdots, H_{r-1}, Y_{\alpha}, Z_{\alpha}
$$

are $r+1$ commuting elements of \mathfrak{g} that are linearly independent over \mathbb{R}. This contradicts Proposition 19.1, so $\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \neq 0$.

It remains to be shown that $d \alpha\left(\left[X_{\alpha}, c\left(X_{\alpha}\right)\right]\right) \neq 0$. If on the contrary this vanishes, then $\left[H_{0}, X_{\alpha}\right]=\left[H_{0}, X_{-\alpha}\right]=0$ by (19.4), where $H_{0}=$ $-i\left[X_{\alpha}, c\left(X_{\alpha}\right)\right] \in \mathfrak{t}$. With Y_{α} and Z_{α} as in (19.5), this implies that $\left[H_{0}, Y_{\alpha}\right]=$ $\left[H_{0}, Z_{\alpha}\right]=0$. Now

$$
\left[Y_{\alpha}, Z_{\alpha}\right]=-\frac{1}{2} H_{0}, \quad\left[Y_{\alpha}, H_{0}\right]=0
$$

Thus, $\operatorname{ad}\left(Y_{\alpha}\right)^{2} Z_{\alpha}=0$, yet $\operatorname{ad}\left(Y_{\alpha}\right) Z_{\alpha} \neq 0$, contradicting Lemma 19.1.
Proposition 19.4. If $\operatorname{dim}(T)=1$, then either $G=T$ or $\operatorname{dim}(G)=3$. If α is any root, then \mathfrak{X}_{α} is one-dimensional, and $\alpha,-\alpha$ are the only roots.

Proof. Since \mathfrak{t} is one-dimensional, let H be a basis vector. Assuming $G \neq T$, Φ is nonempty. The spaces \mathfrak{X}_{α} are just the eigenspaces of H on $\mathfrak{p}_{\mathbb{C}}$. Since T is one-dimensional, so is \mathcal{V}. Thus, if $\alpha \in \Phi$, all $\beta \in \Phi$ are of the form $\lambda \alpha$ for a nonzero constant. We choose α so that all $|\lambda| \geqslant 1$. Let $0 \neq X_{\alpha} \in \mathfrak{X}_{\alpha}$, and let $X_{-\alpha}=c\left(X_{\alpha}\right)$. We consider the vector space

$$
V=\mathbb{R} X_{-\alpha} \oplus \mathfrak{t} \oplus \bigoplus_{\substack{\lambda \alpha \in \Phi \\ \lambda>0}} \mathfrak{X}_{\lambda \alpha}
$$

We compute the eigenvalue of $\operatorname{ad}(H)$ on V. By Proposition 19.3, each component space is mapped into another by $\operatorname{ad}\left(X_{\alpha}\right)$ and $\operatorname{ad}\left(X_{-\alpha}\right)$. Indeed, $\operatorname{ad}\left(X_{-\alpha}\right)$ kills $X_{-\alpha}$, shifts \mathfrak{t} into $\mathbb{R} X_{-\alpha}$, and shifts $\mathfrak{X}_{\lambda \alpha}$ into \mathfrak{t} if $\lambda=1$ or $\mathfrak{X}_{(\lambda-1) \alpha}$ if $\lambda \neq 1$. The case of $\operatorname{ad}\left(X_{\alpha}\right)$ is similar. Moreover, $\left[X_{\alpha}, X_{-\alpha}\right]$ is a nonzero multiple of
H, so $\operatorname{ad}(H)$ is a nonzero multiple of $\operatorname{ad}\left(X_{\alpha}\right) \operatorname{ad}\left(X_{-\alpha}\right)-\operatorname{ad}\left(X_{-\alpha}\right) \operatorname{ad}\left(X_{\alpha}\right)$. Its trace on V is therefore zero.

On the other hand, denoting $C=d \alpha(H)$, the trace of $\operatorname{ad}(H)$ on $\mathfrak{X}_{\lambda \alpha}$ equals $\lambda C \operatorname{dim}\left(\mathfrak{X}_{\lambda \alpha}\right)$, while the trace of $\operatorname{ad}(H)$ on $\mathbb{R} X_{-\alpha}$ is $-C$, and the trace of $\operatorname{ad}(H)$ on \mathfrak{t} is zero. We see that the trace is $-C+\sum_{\lambda \geqslant 1} \lambda C \operatorname{dim}\left(\mathfrak{X}_{\lambda \alpha}\right)$. Since this is zero, there can be only one $\mathfrak{X}_{\lambda \alpha}$ with $\lambda>0$, namely \mathfrak{X}_{α}, and $\operatorname{dim}\left(\mathfrak{X}_{\alpha}\right)=1$. Now $\mathfrak{g}=\mathbb{R} H \oplus \mathbb{R} X_{\alpha} \oplus \mathbb{R} X_{-\alpha}$ is three-dimensional.

We return now to the general case. If $\alpha \in \Phi$, let $T_{\alpha} \subset T$ be the kernel of α. This closed subgroup of T may or may not be connected. Its Lie algebra is the kernel \mathfrak{t}_{α} of $d \alpha$.

Proposition 19.5. (i) If $\alpha \in \Phi$, then $\operatorname{dim}\left(\mathfrak{X}_{\alpha}\right)=1$.
(ii) If $\alpha, \beta \in \Phi$ and $\alpha=\lambda \beta, \lambda \in \mathbb{R}$, then $\lambda= \pm 1$.

Proof. The group $H=C_{G}\left(T_{\alpha}\right)$ is a closed connected Lie subgroup by Theorem 16.6. It has T_{α} as a normal subgroup. The Lie algebra of H is the centralizer \mathfrak{h} in \mathfrak{g} of \mathfrak{t}_{α}, so

$$
\mathfrak{h}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\substack{\lambda \alpha \in \Phi \\ \lambda \in \mathbb{R}}} \mathfrak{X}_{\lambda \alpha}
$$

Thus H / T_{α} is a rank 1 group with maximal torus T / T_{α}. Its complexified Lie algebra is therefore three-dimensional by Proposition 19.4. However, $\bigoplus \mathfrak{X}_{\lambda \alpha}$ is embedded injectively in this complexified Lie algebra, so $\lambda= \pm 1$ are the only λ, and $\mathfrak{X}_{ \pm \alpha}$ are one-dimensional.
Proposition 19.6. Let $\alpha \in \Phi$ and let $0 \neq X_{\alpha} \in \mathfrak{X}_{\alpha}$. Let $X_{-\alpha}=c\left(X_{\alpha}\right) \in$ $\mathfrak{X}_{-\alpha}$.The spaces X_{α} and $X_{-\alpha}$ generate a complex Lie subalgebra $\mathfrak{g}_{\alpha, \mathbb{C}}$ of $\mathfrak{g}_{\mathbb{C}}$ isomorphic to $\mathfrak{s l}(2, \mathbb{C})$. Its intersection $\mathfrak{g}_{\alpha}=\mathfrak{g} \cap \mathfrak{g}_{\alpha, \mathbb{C}}$ is isomorphic to $\mathfrak{s u}(2)$. We may choose X_{α} and the isomorphism $i_{\alpha}: \mathfrak{s l}(2, \mathbb{C}) \longrightarrow \mathfrak{g}_{\alpha, \mathbb{C}}$ so that

$$
i_{\alpha}\left(\begin{array}{cc}
1 & \tag{19.6}\\
& -1
\end{array}\right)=H_{\alpha}, \quad i_{\alpha}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=X_{\alpha}, \quad i_{\alpha}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=X_{-\alpha}
$$

where $H_{\alpha}=\left[X_{\alpha},-X_{\alpha}\right]$. In this case, $H_{\alpha} \in i t$ and

$$
\begin{equation*}
\left[X_{\alpha}, X_{-\alpha}\right]=H_{\alpha}, \quad\left[H_{\alpha}, X_{\alpha}\right]=2 X_{\alpha}, \quad\left[H_{\alpha}, X_{-\alpha}\right]=-2 X_{-\alpha} \tag{19.7}
\end{equation*}
$$

Proof. Let $H_{\alpha}=\left[X_{\alpha}, X_{-\alpha}\right]$. By Proposition 19.3 (iii), H_{α} is a nonzero element of i not in $i \mathrm{t}_{\alpha}$. By Proposition 19.3 (iii) and (19.4), we have $\left[H_{\alpha}, X_{\alpha}\right]=$ $2 \lambda X_{\alpha}$, where λ is a nonzero real constant. Applying c and using $c\left(H_{\alpha}\right)=$ $-H_{\alpha}$, we have $\left[H_{a}, X_{-\alpha}\right]=-2 \lambda X_{-\alpha}$. Now replacing $X_{\alpha}, X_{-\alpha}$ and H_{α} by $\lambda^{-1} X_{\alpha}, \lambda^{-1} X_{-\alpha}$, and $\lambda^{-2} H_{\alpha}$, we may arrange that (19.7) be satisfied. Since the three matrices in $\mathfrak{s l}(2, \mathbb{C})$ in (19.6) satisfy the same relations, we have an isomorphism $i_{\alpha}: \mathfrak{s l}(2, \mathbb{C}) \longrightarrow \mathfrak{g}_{\alpha, \mathbb{C}}$ such that (19.6) is true. Since the effect of the conjugation c on the basis elements $X_{\alpha}, X_{-\alpha}$, and H_{α} is known, it is easy to check that the \mathbb{C}-fixed subalgebra \mathfrak{g}_{α} of $\mathfrak{g}_{\alpha, \mathbb{C}}$ is mapped to $\mathfrak{s u}(2)$ by i_{α}.

Since \mathfrak{X}_{α} is one-dimensional, the group \mathfrak{g}_{α} does not depend on the choice of X_{α}.

Proposition 19.7. If $X \in \mathfrak{t}_{\alpha}=\operatorname{ker}(d \alpha)$, then $\left[X, \mathfrak{g}_{\alpha}\right]=0$.
Proof. H centralizes X_{α} and $X_{-\alpha}$ by (19.4); that is, $\left[H, X_{\alpha}\right]=\left[H, X_{-\alpha}\right]=0$, and it follows that $[H, X]=0$ for all $X \in \mathfrak{g}_{\alpha}$.

In particular, we gave the ambient vector space \mathcal{V} of the set Φ of roots an inner product (Euclidean structure) invariant under W. The Weyl group acts on T by conjugation and hence it acts on $X^{*}(T)$. It acts on \mathfrak{p} by the adjoint representation (induced from conjugation) so it permutes the roots. All the Weyl group elements are realized as orthogonal motions with respect to this metric.

We may now give a method of constructing Weyl group elements. Let $\alpha \in \Phi$. Let $T_{\alpha}=\{t \in T \mid \alpha(t)=1\}$.

Theorem 19.1. Let $\alpha \in \Phi$. There exists a homomorphism $i_{\alpha}: \mathrm{SU}(2) \longrightarrow$ $C\left(T_{\alpha}\right)^{\circ} \subset G$ such that the image of the differential di$i_{\alpha}: \mathfrak{s u}(2) \longrightarrow \mathfrak{g}$ is the Lie algebra homomorphism of Proposition 19.6. If

$$
\begin{equation*}
w_{\alpha}=i_{\alpha}\left(1^{-1}\right) \tag{19.8}
\end{equation*}
$$

then $w_{\alpha} \in N(T)$ and w_{α} induces s_{α} in its action on $X^{*}(T)$.
Proof. Since $\mathrm{SU}(2)$ is simply-connected, it follows from Theorem 14.2 that the Lie algebra homomorphism $\mathfrak{s u}(2) \longrightarrow \mathfrak{g}$ of Proposition 19.6 is the differential of a homomorphism $i_{\alpha}: \mathrm{SU}(2) \longrightarrow G$. By Proposition 19.7, \mathfrak{g}_{α} centralizes \mathfrak{t}_{α}, and since $\mathrm{SU}(2)$ is connected, it follows that $i_{\alpha}(\mathrm{SU}(2)) \subseteq C\left(T_{\alpha}\right)^{\circ}$.

By Proposition 19.3, $-i H_{\alpha} \notin \mathfrak{t}_{\alpha}$, so \mathfrak{t} is generated by its codimensionone subspace \mathfrak{t}_{α} and $i_{\alpha}(\mathfrak{s u}(2)) \cap \mathfrak{t}$. Since $\operatorname{Lie}\left(T_{\alpha}\right)=\mathfrak{t}_{\alpha}$, it follows that T is generated by T_{α} and $T \cap i_{\alpha}(\mathrm{SU}(2))$. By construction, w_{α} normalizes

$$
T \cap i_{\alpha}(\mathrm{SU}(2))=i_{\alpha}\left\{\binom{y}{y^{-1}}|y \in \mathbb{C},|y|=1\}\right.
$$

and since $i_{\alpha}(\mathrm{SU}(2)) \subseteq C\left(T_{\alpha}\right)^{\circ}, w_{\alpha}$ also normalizes T_{α}.
Since we chose a W-invariant inner product, any element of the Weyl group acts by a Euclidean motion. Since w_{α} centralizes T_{α}, it acts trivially on \mathfrak{t}_{α} and thus fixes a codimension-one subspace in \mathcal{V}. It also maps $\alpha \longrightarrow-\alpha$, and these two properties characterize s_{α}.

Proposition 19.8. Let (π, V) be a finite-dimensional representation of G, and let $\lambda \in X^{*}(T)$ such that $V(\lambda) \neq 0$. Then $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$.

Proof. Let

$$
W=\bigoplus_{k \in \mathbb{Z}} V(\lambda+k \alpha)
$$

By Proposition 19.3, this subspace is stable under $d \pi\left(X_{\alpha}\right)$ and $d \pi\left(X_{-\alpha}\right)$. It is therefore invariant under the Lie algebra $\mathfrak{g}_{\alpha, \mathbb{C}}$ that they generate and its subalgebra \mathfrak{g}_{α}. Thus, it is invariant under $i_{\alpha}(\mathrm{SU}(2))$, in particular by w_{α} in Theorem 19.1. It follows that the set $\left\{\lambda+k \alpha \in X^{*}(T) \mid k \in \mathbb{Z}\right\}$ is invariant under s_{α}. By (19.1), this implies that the number $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$.

Theorem 19.2. If Φ is the set of roots associated with a compact Lie group and its maximal torus T, then Φ is a reduced root system.

Proof. Clearly, Φ is a set of nonzero vectors in a Euclidean space \mathcal{V}. The fact that Φ is invariant under $s_{\alpha}, \alpha \in \Phi$ follows from the construction of $w_{\alpha} \in N(T)$, whose conjugation induces s_{α} in Theorem 19.1. The fact that the integers $2\langle\beta, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for $\alpha, \beta \in \Phi$ follows from applying Proposition 19.8 to $\left(\mathrm{Ad}, \mathfrak{g}_{\mathbb{C}}\right)$. Thus Φ is a root system. It is reduced by Proposition 19.5.

Proposition 19.9. Let $\lambda \in X^{*}(T)$. Then there exists a finite-dimensional complex representation (π, V) of G such that $V(\lambda) \neq 0$.

Proof. Consider the subspace $L(\lambda)$ of $L^{2}(G)$ of functions f satisfying

$$
f(t g)=\lambda(t) f(g)
$$

for $t \in T$. Let G act on $L(\lambda)$ by right translation: $\rho: G \longrightarrow \operatorname{End}(V)$ is the map $\rho(g) f(x)=f(x g)$. Clearly, $L(\lambda)$ is an invariant subspace under this action, and by Theorem 4.3 it decomposes into a direct sum of finite-dimensional irreducible invariant subspaces. Let V be one of these subspaces, and let π be the representation of G on V. Every linear functional on V has the form $x \longrightarrow\left\langle x, f_{0}\right\rangle$, where f_{0} is a vector and \langle,$\rangle is the L^{2}$ inner product. Thus, there exists an $f_{0} \in V$ such that $f(1)=\left\langle f, f_{0}\right\rangle$ for all $f \in V$. Clearly, $f_{0} \neq 0$. We have
$\left\langle f, \pi(t) f_{0}\right\rangle=\left\langle\pi\left(t^{-1}\right) f, f_{0}\right\rangle=\pi\left(t^{-1}\right) f(1)=f\left(t^{-1}\right)=\lambda(t)^{-1} f(1)=\left\langle f, \lambda(t) f_{0}\right\rangle$.
Therefore $\pi(t) f_{0}=\lambda(t) f_{0}$ and so $V(\lambda) \neq 0$.
We call an element λ of \mathcal{V} a weight if $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$.
Theorem 19.3. Every element of $X^{*}(T)$ is a weight.
Proof. This follows from Proposition 19.8 and Proposition 19.9.

EXERCISES

Exercise 19.1. Show that if $\Phi \subset V$ is a root system, then $\Phi^{\prime}=\{x /\langle x, x\rangle \mid x \in \Phi\}$ is also a root system. Note that long roots in Φ correspond to short roots in Φ^{\prime}, since we are dividing by the square of the length. (Hint: Prove this first for rank two root systems, then note that if $\alpha, \beta \in \Phi$ are linearly independent roots the intersection of Φ with their span is a root system.)

Exercise 19.2. Show that the coroots H_{α} form a root system in i t. As in the last exercise, long roots in Φ correspond to short vectors in the root system $\left\{H_{\alpha}\right\}$ of coroots.

Examples of Root Systems

It may be easiest to read the next chapter with examples in mind. In this chapter we will describe various root systems and illustrate the rank 2 root systems.

In the next chapter, we will introduce various structures in the context of an abstract root system whose significance will not yet be clear. Nevertheless we describe them now since they appear in the figures. We will assume in this chapter that the roots span their ambient vector space \mathcal{V}, which in the rank 2 examples is a two-dimensional Euclidean space.

The set Φ of roots will be partitioned into two parts, called Φ^{+}and Φ^{-}. Exactly half the roots will be in Φ^{+}and the other half in Φ^{-}. Indeed, $\Phi^{-}=$ $\left\{-\alpha \mid \alpha \in \Phi^{+}\right\}$. The roots in Φ^{+}will be called positive. In the figures of this chapter, the positive roots are labeled \bullet, and the negative roots are labeled \circ.

The roots in Φ^{+}that cannot be expressed as sums of other positive roots are called simple. They are linearly independent and span \mathcal{V}. The lattice spanned by Φ is the same as the lattice spanned by the set Σ of simple positive roots. It is called the root lattice and denoted $\Lambda_{\text {root }}$. On the other hand, the lattice of all $\lambda \in \mathcal{V}$ that satisfy $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$ is called the weight lattice, denoted Λ, and its elements are called weights. If $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ are the simple positive roots then let $\left\{\varpi_{1}, \cdots, \varpi_{r}\right\}$ be the fundamental dominant weights, characterized by

$$
2 \frac{\left\langle\varpi_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}=\delta_{i j} \quad(\text { Kronecker } \delta)
$$

These span the lattice Λ. An important particular weight is ρ, the sum of the fundamental dominant weights. It is equal to half the sum of the positive roots. (See Proposition 21.16.)

The root system of type A_{n} can be conveniently realized in the subspace of codimension one in \mathbb{R}^{n+1} consisting of vectors $\left(x_{0}, \cdots, x_{n}\right)$ satisfying $\sum_{i} x_{i}=$ 0 . Let $\boldsymbol{e}_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ be the standard basis of \mathbb{R}^{n+1}. The root system consists of the $n(n-1)$ vectors

$$
\begin{equation*}
\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, \quad i \neq j \tag{20.1}
\end{equation*}
$$

having exactly two nonzero entries, one being 1 and the other -1 . This is the root system attached to the group $\mathrm{SU}(n+1)$. To see why, choose the maximal torus T^{\prime} of $U(n)$ consisting of diagonal matrices, and let $T=T^{\prime} \cap \mathrm{SU}(n+1)$. We have $X^{*}\left(T^{\prime}\right) \cong \mathbb{Z}^{n+1}$, in which the n-tuple (a_{0}, \cdots, a_{n}) corresponds to the character

$$
\left(\begin{array}{ccc}
t_{0} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) \longmapsto t_{0}^{a_{0}} \cdots t_{n}^{a_{n}}
$$

so $\mathbb{R} \otimes X^{*}\left(T^{\prime}\right) \cong \mathbb{R}^{n+1}$. The restriction of this character to T annihilates the one-dimensional subspace spanned by the vector $v_{0}=(1, \cdots, 1)$, so we may identify $X^{*}(T)$ with $\mathbb{Z}^{n+1} /\left(\mathbb{Z} v_{0}\right)$ and $\mathcal{V}=\mathbb{R} \otimes X^{*}(T)$ with $\mathbb{R}^{n+1} /\left(\mathbb{R} v_{0}\right)$. Any element of \mathbb{R}^{n+1} is congruent modulo $\mathbb{R} v_{0}$ to a unique element of the subspace of codimension one in \mathbb{R}^{n+1} consisting of vectors $\left(x_{0}, \cdots, x_{n}\right)$ satisfying $\sum_{i} x_{i}=0$, so we may alternatively regard the root system as living in this space.

Let us check that (20.1) are indeed the roots of $\mathrm{SU}(n)$. By Proposition 11.4, the complexified Lie algebra of $\mathrm{SU}(n)$ is $\mathfrak{s l}(n, \mathbb{C})$. If $\alpha=\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$, the onedimensional vector space \mathfrak{X}_{α} spanned by the matrix $E_{i j}$ with a 1 in the i, j position and 0's everywhere else is an eigenspace for T affording the character α, and these eigenspaces, together with the Lie algebra of T, span V. So the $\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$ are precisely the roots of $\mathrm{SU}(n)$.

For example, the root system of type A_{2}, pictured in Figure 20.1, consists of

$$
\begin{array}{rrr}
\alpha_{1}=(1,-1,0), & \alpha_{2}=(0,1,-1), & (1,0,-1) \\
(-1,1,0), & (0,-1,1), & (-1,0,1)
\end{array}
$$

Taking T to be the diagonal torus of $\mathrm{SU}(3), \alpha_{1}$ and $\alpha_{2} \in X^{*}(T)$ are the roots

$$
\alpha_{1}(t)=t_{1} t_{2}^{-1}, a_{2}(t)=t_{2} t_{3}^{-1}, t=\left(\begin{array}{ccc}
t_{1} & & \\
& t_{2} & \\
& & t_{3}
\end{array}\right) \in T
$$

The corresponding eigenspaces are spanned by

$$
E_{12}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{X}_{\alpha_{1}}, \quad E_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{X}_{\alpha_{2}}
$$

The fundamental dominant weights ϖ_{1} and ϖ_{2} are, respectively, $\varpi_{1}(t)=t_{1}$ and $\varpi_{2}(t)=t_{3}^{-1}$. These are represented in $\mathbb{R}^{3} /\left(\mathbb{R} v_{0}\right)$ by the cosets of $(1,0,0)$ and $(0,0,-1)$, or in the subspace of codimension one in \mathbb{R}^{3} consisting of vectors (x_{0}, x_{1}, x_{2}) satisfying $\sum_{i} x_{i}=0$ by $\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right)$ and ($\frac{1}{3}, \frac{1}{3},-\frac{2}{3}$), respectively.

Fig. 20.1. The root system of type A_{2}.

Figure 20.1 shows the root system of type A_{2} associated with the Lie group $\mathrm{SU}(3)$. The shaded region in Figure 20.1 is the positive Weyl chamber \mathcal{C}_{+}, which consists of $\left\{x \in \mathcal{V} \mid\langle x, \alpha\rangle \geqslant 0\right.$ for all $\left.\alpha \in \Phi^{+}\right\}$. It is a fundamental domain for the Weyl group.

0
0

Fig. 20.2. The partial order.

A role will also be played by a partial order on \mathcal{V}. We define $x \succcurlyeq y$ if $x-y \succcurlyeq 0$, where $x \succcurlyeq 0$ if x is a linear combination, with nonnegative coefficients, of the elements of Σ. The shaded region in Figure 20.2 is the set of x such that $x \succcurlyeq 0$ for the root system of type A_{2}.

Next we turn to the classical root systems. The root system of type B_{n} is associated with the odd orthogonal group $\mathrm{SO}(2 n+1)$ or with its double cover $\operatorname{spin}(2 n+1)$. The root system of type C_{n} is associated with the symplectic group $\operatorname{Sp}(2 n)$. Finally, the root system of type D_{n} is associated with the even orthogonal group $\mathrm{SO}(2 n)$ or its double cover $\operatorname{spin}(2 n)$. We will now describe these root systems but postpone an explanation of how they are related to the orthogonal and symplectic groups. Let $\boldsymbol{e}_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ be the standard basis of \mathbb{R}^{n}.

The root system of type B_{n} can be embedded in \mathbb{R}^{n}. The roots are not all of the same length. There are $2 n$ short roots

$$
\pm \boldsymbol{e}_{i} \quad(1 \leqslant i \leqslant n)
$$

and $2\left(n^{2}-n\right)$ long roots

$$
\pm e_{i} \pm e_{j} \quad(i \neq j)
$$

The simple positive roots are

$$
\alpha_{1}=\boldsymbol{e}_{1}-\boldsymbol{e}_{2}, \quad \alpha_{2}=\boldsymbol{e}_{2}-\boldsymbol{e}_{3}, \quad \cdots \quad \alpha_{n-1}=\boldsymbol{e}_{n-1}-\boldsymbol{e}_{n}, \quad \alpha_{n}=\boldsymbol{e}_{n}
$$

To see that this is the root system of $\mathrm{SO}(2 n+1)$, it is most convenient to use the representation of $\mathrm{SO}(2 n+1)$ in Exercise 5.3. Thus, we replace the usual realization of $\mathrm{SO}(2 n+1)$ as a group of real matrices by the subgroup of all $g \in U(2 n+1)$ that satisfy $g J^{t} g=J$, where

$$
J=\left(._{1} . \cdot 1\right)
$$

A maximal torus consists of all diagonal elements, which have the form (when $n=4$, for example)

$$
t=\left(\begin{array}{lllllllll}
t_{1} & & & & & & & & \\
& t_{2} & & & & & & & \\
& & t_{3} & & & & & & \\
& & & t_{4} & & & & & \\
& & & & 1 & & & & \\
& & & & & t_{4}^{-1} & & & \\
& & & & & & & \\
& & & & & & t_{3}^{-1} & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & \\
\hline
\end{array}\right)
$$

The Lie algebra \mathfrak{g} consists of all skew-Hermitian matrices X satisfying $X J+$ $J^{t} X=0$. Now we claim that the complexification of \mathfrak{g} just consists of all complex matrices satisfying $X J+J^{t} X=0$. Indeed, by Proposition 11.4, any complex matrix X can be written uniquely as $X_{1}+i X_{2}$ with X_{1} and X_{2} skewHermitian, and it is easy to see that $X J+J^{t} X=0$ if and only if X_{1} and X_{2}
satisfy the same identity. Thus, $\mathfrak{g} \oplus i \mathfrak{g}=\left\{X \in \mathfrak{g l}(n, \mathbb{C}) \mid X J+J^{t} X=0\right\}$. It now follows from Proposition 11.3 (iii) that this is the complexification. This Lie algebra is shown in Figure 20.3 when $n=4$.

$$
\left(\begin{array}{ccccccccc}
t_{1} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} & 0 \\
x_{21} & t_{2} & x_{23} & x_{24} & x_{25} & x_{26} & x_{27} & 0 & -x_{18} \\
x_{31} & x_{32} & t_{3} & \underbrace{}_{x_{34}} & x_{35} & x_{36} & 0 & -x_{27} & -x_{17} \\
x_{41} & x_{42} & x_{43} & t_{4} & x_{45} & 0 & -x_{36} & -x_{26} & -x_{16} \\
x_{51} & x_{52} & x_{53} & x_{54} & 0 & -x_{45} & -x_{35} & -x_{25} & -x_{15} \\
x_{61} & x_{62} & x_{63} & 0 & -x_{54} & -t_{4} & -x_{34} & -x_{24} & -x_{14} \\
x_{71} & x_{72} & 0 & -x_{63} & -x_{53} & -x_{43} & -t_{3} & -x_{23} & -x_{13} \\
x_{81} & 0 & -x_{72} & -x_{62} & -x_{52} & -x_{42} & -x_{32} & -t_{2} & -x_{12} \\
0 & -x_{81} & -x_{71} & -x_{61} & -x_{51} & -x_{41} & -x_{31} & -x_{21} & -t_{1}
\end{array}\right)
$$

Fig. 20.3. The Lie algebra $\mathfrak{s o}(9)$.

We order the roots so the root spaces \mathfrak{X}_{α} with $\alpha \in \Phi^{+}$are upper triangular. In particular, the simple roots are $\alpha_{1}(t)=t_{1} t_{2}^{-1}$, acting on $\mathfrak{X}_{\alpha_{1}}$, the space of matrices in which all entries are zero except $x_{12} ; \alpha_{2}(t)=t_{2} t_{3}^{-1}$, with root space corresponding to $x_{23} ; \alpha_{3}(t)=t_{3} t_{4}^{-1}$ corresponding to $x_{34} ;$ and $a_{4}(t)=t_{4}$, corresponding to x_{35}. We have circled these positions. Note, however that (for example) x_{12} appears in a second place which has not been circled. The lines connecting the circles, one of them double, map out the Dynkin diagram, which will not be explained until Chapter 28 . Suffice it to say that simple roots are connected in the Dynkin diagram if they are not perpendicular. Now if we take $\boldsymbol{e}_{i} \in X^{*}(T)$ to be the character $\boldsymbol{e}_{i}(t)=t_{i}$, then it is clear that the root system consists of the $2 n^{2}$ roots $\pm \boldsymbol{e}_{i}$ and $\pm \boldsymbol{e}_{i} \pm e_{j}(i \neq j)$, as claimed.

The root system of type C_{n} is similar, but the long and short roots are reversed. Now there are $2 n$ long roots

$$
\pm 2 \boldsymbol{e}_{i} \quad(1 \leqslant i \leqslant n)
$$

and $2\left(n^{2}-n\right)$ short roots

$$
\pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j} \quad(i \neq j)
$$

The simple positive roots are

$$
\alpha_{1}=e_{1}-e_{2}, \quad \alpha_{2}=e_{2}-e_{3}, \quad \cdots \quad \alpha_{n-1}=e_{n-1}-e_{n}, \quad \alpha_{n}=2 e_{n}
$$

We leave it to the reader to show that C_{n} is the root system of $\operatorname{Sp}(2 n)$ in Exercise 20.2. (Figure 33.15 may help with this.)

The root system of type D_{n} consists of just the long roots in the root system of type B_{n}. There are $2\left(n^{2}-n\right)$ roots, all of the same length:

$$
\pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j} \quad(i \neq j) .
$$

The simple positive roots are

$$
\alpha_{1}=\boldsymbol{e}_{1}-\boldsymbol{e}_{2}, \quad \alpha_{2}=\boldsymbol{e}_{2}-\boldsymbol{e}_{3}, \quad \cdots \quad \alpha_{n-1}=\boldsymbol{e}_{n-1}-\boldsymbol{e}_{n}, \quad \alpha_{n}=\boldsymbol{e}_{n-1}+\boldsymbol{e}_{n} .
$$

To see that D_{n} is the root system of $\mathrm{SO}(2 n)$, one may again use the realization of Exercise 5.3. We leave this verification to the reader in exercise 20.2. (Figure 33.1 may help with this.)

Fig. 20.4. The root system of type C_{2}, which coincides with type B_{2}.

It happens that $\operatorname{spin}(5) \cong \operatorname{Sp}(4)$, so the root systems of types B_{2} and C_{2} coincide. These are shown in Figure 20.4. The shaded region is the positive Weyl chamber. (We have labeled the roots so that the order coincides with the root system C_{2} in the notations of Bourbaki [15], Planche III at the back of the book. For type B_{2}, the roots α_{1} and α_{2} would be switched.)

There is a nonreduced root system whose type is called $B C_{n}$. The root system of type $B C_{n}$ can be realized as all elements of the form

$$
\pm e_{i} \pm e_{j}(i<j), \quad \pm e_{i}, \quad \pm 2 e_{i},
$$

Fig. 20.5. The nonreduced root system $B C_{2}$.
where \boldsymbol{e}_{i} are standard basis vectors of \mathbb{R}^{n}. Nonreduced root systems do not occur as root systems of compact Lie groups, but they occur as relative root systems. The root system of type $B C_{2}$ may be found in Figure 20.5.

In addition to the infinite families of Lie groups in the Cartan classification are five exceptional groups, of types $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. The root system of type G_{2} is shown in Figure 20.6.

In addition to the three root systems we have just considered there is another rank two reduced root system. This is called $A_{1} \times A_{1}$, and it is illustrated in Figure 20.7. Unlike the others listed here, this one is reducible. If $\mathcal{V}=\mathcal{V}_{1} \oplus \mathcal{V}_{2}$ (orthogonal direct sum), and if Φ_{1} and Φ_{2} are root systems in \mathcal{V}_{1} and \mathcal{V}_{2}, then $\Phi=\Phi_{1} \cup \Phi_{2}$ is a root system in \mathcal{V} such that every root in Φ_{1} is orthogonal to every root in Φ_{2}. The root system Φ is reducible if it decomposes in this way.

We leave two other rank 2 root systems, which are neither reduced nor irreducible, to the imagination of the reader. Their types are $A_{1} \times B C_{1}$ and $B C_{1} \times B C_{1}$.

Fig. 20.6. The root system of type G_{2}.

Fig. 20.7. The reducible root system $A_{1} \times A_{1}$.

EXERCISES

Exercise 20.1. Show that any irreducible rank 2 root system is isomorphic to one of those described in this chapter, of type A_{2}, B_{2}, G_{2} or $B C_{2}$.

Exercise 20.2. Verify, as we did for type $\operatorname{SO}(2 n+1)$, that the root system of the Lie group $\mathrm{SO}(2 n)$ is of type D_{n} and that the root system of $\mathrm{Sp}(2 n)$ is of type C_{n}.

Exercise 20.3. Let $\boldsymbol{e}_{i}(i=1,2,3,4)$ be the standard basis elements of \mathbb{R}^{4}. Show that the 48 vectors

$$
\pm e_{i}(1 \leqslant i \leqslant 4), \quad \pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j}(1 \leqslant i<j \leqslant 4), \quad \frac{1}{2}\left(\pm \boldsymbol{e}_{1} \pm \boldsymbol{e}_{2} \pm \boldsymbol{e}_{3} \pm \boldsymbol{e}_{4}\right)
$$

form a root system. This is the root system of Cartan type F_{4}. Compute the order of the Weyl group. Show that this root system contains smaller root systems of types B_{3} and C_{3}.

Abstract Weyl Groups

In this chapter, we will associate a Weyl group with an abstract root system, and develop some of its properties.

Let \mathcal{V} be a Euclidean space and $\Phi \subset \mathcal{V}$ a reduced root system. (At the end we will remove the assumption that Φ is reduced, but many of the results of this chapter are false without it.)

Since Φ is a finite set of nonzero vectors, we may choose $\rho_{0} \in \mathcal{V}$ such that $\left\langle\alpha, \rho_{0}\right\rangle \neq 0$ for all $\alpha \in \Phi$. Let Φ^{+}be the set of roots α such that $\left\langle\alpha, \rho_{0}\right\rangle>0$. This consists of exactly half the roots since evidently a root $\alpha \in \Phi^{+}$if and only if $-\alpha \notin \Phi^{+}$. Elements of Φ^{+}are called positive roots. Elements of set $\Phi^{-}=\Phi-\Phi^{+}$are called negative roots.

If $\alpha, \beta \in \Phi^{+}$and $\alpha+\beta \in \Phi$, then evidently $\alpha+\beta \in \Phi^{+}$. Let Σ be the set of elements in Φ^{+}that cannot be expressed as a sum of other elements of Φ^{+}. If $\alpha \in \Sigma$, then we call α a simple positive root, or sometimes just a simple root and we call s_{α} defined by (19.1) a simple reflection.

Proposition 21.1. (i) The elements of Σ are linearly independent.
(ii) If $\alpha \in \Sigma$ and $\beta \in \Phi^{+}$, then either $\beta=\alpha$ or $s_{\alpha}(\beta) \in \Phi^{+}$.
(iii) If α and β are distinct elements of Σ, then $\langle\alpha, \beta\rangle \leqslant 0$.
(iv) Every element $\alpha \in \Phi$ can be expressed uniquely as a linear combination

$$
\alpha=\sum_{\beta \in \Sigma} n_{\beta} \cdot \beta
$$

in which each $n_{\beta} \in \mathbb{Z}$ and either all $n_{\beta} \geqslant 0$ (if $\beta \in \Phi^{+}$) or all $n_{\beta} \leqslant 0$ (if $\beta \in \Phi^{-}$).

Proof. Let Σ^{\prime} be a subset of Φ^{+}that is minimal with respect to the property that every element of Φ^{+}is a linear combination with nonnegative coefficients of elements of Σ^{\prime}. (Subsets with this property clearly exists - for example Σ^{\prime} itself.) We will eventually show that $\Sigma^{\prime}=\Sigma$.

First, we show that if $\alpha \in \Sigma^{\prime}$ and $\beta \in \Phi^{+}$, then either $\beta=\alpha$ or $s_{\alpha}(\beta) \in \Phi^{+}$. Otherwise $-s_{\alpha}(\beta) \in \Phi^{+}$, and

$$
2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha=\beta+\left(-s_{\alpha}(\beta)\right)
$$

is a sum of two positive roots β and $-s_{\beta}(\alpha)$. Both β and $-s_{\beta}(\alpha)$ can be expressed as linear combinations of the elements of Σ^{\prime} with nonnegative coefficients, and therefore

$$
2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha=\sum_{\gamma \in \Sigma^{\prime}} n_{\gamma} \cdot \gamma, \quad n_{\gamma} \geqslant 0
$$

Write

$$
\left(2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}-n_{\alpha}\right) \alpha=\sum_{\substack{\gamma \in \Sigma^{\prime} \\ \gamma \neq \alpha}} n_{\gamma} \cdot \gamma
$$

Because $\beta \neq \alpha$, and because Φ is assumed to be reduced, β is not a multiple of α. Therefore, at least one of the coefficients n_{γ} with $\gamma \neq \alpha$ is positive. Taking the inner product with ρ_{0} shows that the coefficient on the left-hand side is strictly positive; dividing by this positive constant, we see that α may be expressed as a linear combination of the elements $\gamma \in \Sigma^{\prime}$ distinct from α, and so α may be omitted from Σ^{\prime}, contradicting its assumed minimality. This contradiction shows that $s_{\alpha}(\beta) \in \Phi^{+}$.

Next we show that if α and β are distinct elements of Σ^{\prime}, then $\langle\alpha, \beta\rangle \leqslant 0$. We have already shown that $s_{\alpha}(\beta) \in \Phi^{+}$. If $\langle\alpha, \beta\rangle>0$, then write

$$
\begin{equation*}
\beta=s_{\alpha}(\beta)+2 \frac{\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha \tag{21.1}
\end{equation*}
$$

Writing $s_{\alpha}(\beta)$ as a linear combination with nonnegative coefficients of the elements of Σ^{\prime}, and noting that the coefficient of α on the right-hand side of (21.1) is strictly positive, we may write

$$
\beta=\sum_{\gamma \in \Sigma^{\prime}} n_{\gamma} \cdot \gamma
$$

where $n_{\alpha}>0$. We rewrite this

$$
\left(1-n_{\beta}\right) \cdot \beta=\sum_{\substack{\gamma \in \Sigma^{\prime} \\ \gamma \neq \beta}} n_{\gamma} \cdot \gamma
$$

At least one coefficient $n_{\alpha}>0$ on the right, so taking the inner product with ρ_{0} we see that $1-n_{\beta}>0$. Thus β is a linear combination with nonnegative coefficients of other elements of Σ^{\prime} and hence may be omitted, contradicting the minimality of Σ^{\prime}.

Now let us show that the elements of Σ^{\prime} are \mathbb{R}-linearly independent. In a relation of algebraic dependence, we move all the negative coefficients to the other side of the identity and obtain a relation of the form

$$
\begin{equation*}
\sum_{\alpha \in \Sigma_{1}} c_{\alpha} \cdot \alpha=\sum_{\beta \in \Sigma_{2}} d_{\beta} \cdot \beta \tag{21.2}
\end{equation*}
$$

where Σ_{1} and Σ_{2} are disjoint subsets of Σ^{\prime} and the coefficients c_{α}, d_{β} are all positive. Call this vector v. We have

$$
\langle v, v\rangle=\sum_{\substack{\alpha \in \Sigma_{1} \\ \beta \in \Sigma_{2}}} c_{\alpha} d_{\beta}\langle\alpha, \beta\rangle \leqslant 0
$$

since we have already shown that the inner products $\langle\alpha, \beta\rangle \leqslant 0$. Therefore, $v=0$. Now taking the inner product of the left-hand side in (21.2) with ρ_{0} gives

$$
0=\sum_{\alpha \in \Sigma_{1}} c_{\alpha}\left\langle\alpha, \rho_{0}\right\rangle
$$

Since $\left\langle\alpha, \rho_{0}\right\rangle>0$ and $c_{\alpha}>0$, this is a contradiction. This proves the linear independence of the elements of Σ^{\prime}.

Next let us show that every element of Φ^{+}may be expressed as a linear combination of elements of Σ^{\prime} with integer coefficients. We define a function h from Φ^{+}to the positive real numbers as follows. If $\alpha \in \Phi^{+}$we may write

$$
\alpha=\sum_{\beta \in \Sigma^{\prime}} n_{\beta} \cdot \beta, \quad n_{\beta} \geqslant 0
$$

The coefficients n_{β} are uniquely determined since the elements of Σ^{\prime} are linearly independent. We define

$$
\begin{equation*}
h(\alpha)=\sum n_{\beta} . \tag{21.3}
\end{equation*}
$$

Evidently $h(\alpha)>0$. We want to show that the coefficients n_{β} are integers. Assume a counterexample with $h(\alpha)$ minimal. Evidently, $\alpha \notin \Sigma^{\prime}$ since if $\alpha \in \Sigma^{\prime}$, then $n_{\alpha}=1$ while all other $n_{\beta}=0$, so such an α has all $n_{\beta} \in \mathbb{Z}$. Since

$$
\begin{equation*}
0<\langle\alpha, \alpha\rangle=\sum_{\beta \in \Sigma^{\prime}} n_{\beta}\langle\alpha, \beta\rangle \tag{21.4}
\end{equation*}
$$

it is impossible that $\langle\alpha, \beta\rangle \leqslant 0$ for all $\beta \in \Sigma^{\prime}$. Thus, there exists $\gamma \in \Sigma^{\prime}$ such that $\langle\alpha, \gamma\rangle>0$. Then by what we have already proved, $\alpha^{\prime}=s_{\gamma}(\alpha) \in \Phi^{+}$, and by (19.1) we see that

$$
\alpha^{\prime}=\sum_{\beta \in \Sigma^{\prime}} n_{\beta}^{\prime} \cdot \beta
$$

where

$$
n_{\beta}^{\prime}=\left\{\begin{array}{cc}
n_{\beta} & \text { if } \beta \neq \gamma, \\
n_{\gamma}-2 \frac{\langle\gamma, \alpha\rangle}{\langle\gamma, \gamma\rangle} & \text { if } \beta=\gamma
\end{array}\right.
$$

Since $\langle\gamma, \alpha\rangle>0$, we have

$$
h\left(\alpha^{\prime}\right)<h(\alpha),
$$

so by induction we have $n_{\beta}^{\prime} \in \mathbb{Z}$. Since Φ is a root system, $2\langle\gamma, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$, so $n_{\beta} \in \mathbb{Z}$ for all $\beta \in \Sigma^{\prime}$. This is a contradiction.

Finally, let us show that $\Sigma=\Sigma^{\prime}$.
If $\alpha \in \Sigma$, then by definition of Σ, α cannot be expressed as a linear combination with integer coefficients of other elements of Φ^{+}. Hence α cannot be omitted from Σ^{\prime}. Thus $\Sigma \subset \Sigma^{\prime}$.

On the other hand, if $\alpha \in \Sigma^{\prime}$, then we claim that $\alpha \in \Sigma$. Otherwise, we may write $\alpha=\beta+\gamma$ with $\beta, \gamma \in \Phi^{+}$, and β and γ may both be written as linear combinations of elements of Σ^{\prime} with positive integer coefficients, and thus $h(\beta), h(\gamma) \geqslant 1$, so $h(\alpha)=h(\beta)+h(\gamma)>1$. But evidently $h(\alpha)=1$ since $\alpha \in \Sigma^{\prime}$. This contradiction shows that $\Sigma^{\prime} \subset \Sigma$.

Let W be the group generated by the simple reflections s_{α} with $\alpha \in \Sigma$. If $w \in W$, let the length $l(w)$ be defined to be the smallest k such that w admits a factorization $w=s_{1} \cdots s_{k}$ into simple reflections, or $l(w)=0$ if $w=1$. Let $l^{\prime}(w)$ be the number of $\alpha \in \Phi^{+}$such that $w(\alpha) \in \Phi^{-}$. We will eventually show that the functions l and l^{\prime} are the same.

Proposition 21.2. Let $s=s_{\alpha}(\alpha \in \Sigma)$ be a simple reflection, and let $w \in W$. We have

$$
l^{\prime}(s w)=\left\{\begin{array}{l}
l^{\prime}(w)+1 \text { if } w^{-1}(\alpha) \in \Phi^{+} \tag{21.5}\\
l^{\prime}(w)-1 \text { if } w^{-1}(\alpha) \in \Phi^{-}
\end{array}\right.
$$

and

$$
l^{\prime}(w s)=\left\{\begin{array}{l}
l^{\prime}(w)+1 \text { if } w(\alpha) \in \Phi^{+} \tag{21.6}\\
l^{\prime}(w)-1 \text { if } w(\alpha) \in \Phi^{-}
\end{array}\right.
$$

Proof. Since $s\left(\Phi^{-}\right)$is obtained from Φ^{-}by deleting $-\alpha$ and adding α, we see that $(s w)^{-1} \Phi^{-}=w^{-1}\left(s \Phi^{-}\right)$is obtained from $w^{-1} \Phi^{-}$by deleting $-w^{-1}(\alpha)$ and adding $w^{-1}(\alpha)$. Since $l^{\prime}(w)$ is the cardinality of $\Phi^{+} \cap w^{-1} \Phi^{-}$, we obtain (21.5). To prove (21.6), we note that $l^{\prime}(w s)$ is the cardinality of $\Phi^{+} \cap(w s)^{-1} \Phi^{-}$, which equals the cardinality of $s\left(\Phi^{+} \cap(w s)^{-1} \Phi^{-}\right)=s \Phi^{+} \cap w^{-1} \Phi^{-}$, and since $s \Phi^{+}$is obtained from Φ^{+}by deleting the element α and adjoining $-\alpha,(21.6)$ is evident.

If w is any orthogonal linear endomorphism of \mathcal{V}, then evidently $w s_{\alpha} w^{-1}$ is the reflection in the hyperplane perpendicular to $w(\alpha)$, so

$$
\begin{equation*}
w s_{\alpha} w^{-1}=s_{w(\alpha)} \tag{21.7}
\end{equation*}
$$

Proposition 21.3. Suppose that $\alpha_{1}, \cdots, \alpha_{k}$ and α are elements of Σ, and let $s_{i}=s_{\alpha_{i}}$. Suppose that

$$
s_{1} s_{2} \cdots s_{k}(\alpha) \in \Phi^{-}
$$

Then there exists a $1 \leqslant j \leqslant k$ such that

$$
\begin{equation*}
s_{1} s_{2} \cdots s_{k}=s_{1} s_{2} \cdots \hat{s}_{j} \cdots s_{k} s_{\alpha} \tag{21.8}
\end{equation*}
$$

where the "hat" on the right signifies the omission of the single element s_{j}.

Proof. Let $1 \leqslant j \leqslant k$ be minimal such that $s_{j+1} \cdots s_{k}(\alpha) \in \Phi^{+}$. Then $s_{j} s_{j+1} \cdots s_{k}(\alpha) \in \Phi^{-}$. Since α_{j} is the unique element of Φ^{+}mapped into Φ^{-}by s_{j}, we have

$$
s_{j+1} \cdots s_{k}(\alpha)=\alpha_{j}
$$

and by (21.7) we have

$$
\left(s_{j+1} \cdots s_{k}\right) s_{\alpha}\left(s_{j+1} \cdots s_{k}\right)^{-1}=s_{j}
$$

or

$$
s_{j+1} \cdots s_{k} s_{\alpha}=s_{j} s_{j+1} \cdots s_{k}
$$

This implies (21.8).
Proposition 21.4. Suppose that $\alpha_{1}, \cdots, \alpha_{k}$ are elements of Σ, and let $s_{i}=$ $s_{\alpha_{i}}$. Suppose that $l^{\prime}\left(s_{1} s_{2} \cdots s_{k}\right)<k$. Then there exist $1 \leqslant i<j \leqslant k$ such that

$$
\begin{equation*}
s_{1} s_{2} \cdots s_{k}=s_{1} s_{2} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k} \tag{21.9}
\end{equation*}
$$

where the "hats" on the right signify omission of the elements s_{i} and s_{j}.
Proof. Evidently there is a first j such that $l^{\prime}\left(s_{1} s_{2} \cdots s_{j}\right)<j$, and (since $l^{\prime}\left(s_{1}\right)=1$) we have $j>1$. Then $l^{\prime}\left(s_{1} s_{2} \cdots s_{j-1}\right)=j-1$, and by Proposition 21.2 we have $s_{1} s_{2} \cdots s_{j-1}\left(\alpha_{j}\right) \in \Phi^{-}$. The existence of i satisfying $s_{1} \cdots s_{j-1}=$ $s_{1} \cdots \hat{s}_{i} \cdots s_{j-1} s_{j}$ now follows from Proposition 21.3, which implies (21.9).

Proposition 21.5. If $w \in W$, then $l(w)=l^{\prime}(w)$.
Proof. The inequality

$$
l^{\prime}(w) \leqslant l(w)
$$

follows from Proposition 21.2 because we may write $w=s w_{1}$, where s is a simple reflection and $l\left(w_{1}\right)=l(w)-1$, and by induction on $l\left(w_{1}\right)$ we may assume that $l^{\prime}\left(w_{1}\right) \leqslant l\left(w_{1}\right)$, so $l^{\prime}(w) \leqslant l^{\prime}\left(w_{1}\right)+1 \leqslant l\left(w_{1}\right)+1=l(w)$.

Let us show that

$$
l^{\prime}(w) \geqslant l(w)
$$

Indeed, let $w=s_{1} \cdots s_{k}$ be a counterexample with $l(w)=k$, where each $s_{i}=s_{\alpha_{i}}$ with $\alpha_{i} \in \Sigma$. Thus $l^{\prime}\left(s_{1} \cdots s_{k}\right)<k$. Then, by Proposition 21.4 there exist i and j such that

$$
w=s_{1} s_{2} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k}
$$

This expression for w as a product of $k-2$ simple reflections contradicts our assumption that $l(w)=k$.

Proposition 21.6. If $w\left(\Phi^{+}\right)=\Phi^{+}$, then $w=1$.
Proof. If $w\left(\Phi^{+}\right)=\Phi^{+}$, then $l^{\prime}(w)=0$, so $l(w)=0$, that is, $w=1$.

Proposition 21.7. If $\alpha \in \Phi$, there exists an element $w \in W$ such that $w(\alpha) \in$ Σ.

Proof. First, assume that $\alpha \in \Phi^{+}$. We will argue by induction on $h(\alpha)$, which is defined by (21.3). In view of Proposition 21.1 (iv), we know that $h(\alpha)$ is a positive integer, and if $\alpha \notin \Sigma$ (which we may as well assume), then $h(\alpha)>1$. As in the proof of Proposition 21.1, (21.4) implies that $\langle\alpha, \beta\rangle>0$ for some $\beta \in \Sigma$, and then with $\alpha^{\prime}=s_{\beta}(\alpha)$ we have $h\left(\alpha^{\prime}\right)<h(\alpha)$. On the other hand, $\alpha^{\prime} \in \Phi^{+}$since $\alpha \neq \beta$ by Proposition 21.1 (ii). By our inductive hypothesis, $w^{\prime}\left(\alpha^{\prime}\right) \in \Sigma$ for some $w^{\prime} \in W$. Then $w(\alpha)=w^{\prime}\left(\alpha^{\prime}\right)$ with $w=w^{\prime} s_{\beta} \in W$. This shows that if $\alpha \in \Phi^{+}$, then there exists $w \in W$ such that $w(\alpha) \in \Sigma$.

If, on the other hand, $\alpha \in \Phi^{-}$, then $-\alpha \in \Phi^{+}$so we may find $w_{1} \in W$ such that $w_{1}(-\alpha) \in \Sigma$. Letting $w_{1}(-\alpha)=\beta$ we have $w(\alpha)=\beta$ with $w=s_{\beta} w_{1}$.

In both cases, $w(\alpha) \in \Sigma$ for some $w \in W$.
Proposition 21.8. The group W contains s_{α} for every $\alpha \in \Phi$.
Proof. Indeed, $w(\alpha) \in \Sigma$ for some $w \in W$, so $s_{w(\alpha)} \in W$ and s_{α} is conjugate in W to $s_{w(\alpha)}$ by (21.7). Therefore $s_{\alpha} \in W$.
Proposition 21.9. The group W is finite.
Proof. By Proposition 21.6, $w \in W$ is determined by $w\left(\Phi^{+}\right) \subset \Phi$. Since Φ is finite, W is finite.

Proposition 21.10. Suppose that $w \in W$ such that $l(w)=k$. Write $w=$ $s_{1} \cdots s_{k}$, where $s_{i}=s_{\alpha_{i}}, \alpha_{1}, \cdots, \alpha_{k} \in \Sigma$. Then
$\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\}=\left\{\alpha_{k}, s_{k}\left(\alpha_{k-1}\right), s_{k} s_{k-1}\left(\alpha_{k-2}\right), \cdots, s_{k} s_{k-1} \cdots s_{2}\left(\alpha_{1}\right)\right\}$.
Proof. By Proposition 21.5, the cardinality of $\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\}$is k, so the result will be established if we show that the described elements are distinct and in the set. Let $w=s_{1} w_{1}$, where $w_{1}=s_{2} \cdots s_{k}$, so that $l\left(w_{1}\right)=l(w)-1$. By induction, we have
$\left\{\alpha \in \Phi^{+} \mid w_{1}(\alpha) \in \Phi^{-}\right\}=\left\{\alpha_{k}, s_{k}\left(\alpha_{k-1}\right), s_{k} s_{k-1}\left(\alpha_{k-2}\right), \cdots, s_{k} s_{k-1} \cdots s_{3}\left(\alpha_{2}\right)\right\}$, and the elements on the right are distinct. We claim that

$$
\begin{equation*}
\left\{\alpha \in \Phi^{+} \mid w_{1}(\alpha) \in \Phi^{-}\right\} \subset\left\{\alpha \in \Phi^{+} \mid s_{1} w_{1}(\alpha) \in \Phi^{-}\right\} \tag{21.10}
\end{equation*}
$$

Otherwise, let $\alpha \in \Phi^{+}$such that $w_{1}(\alpha) \in \Phi^{-}$, while $s_{1} w_{1}(\alpha) \in \Phi^{+}$. Let $\beta=-w_{1}(\alpha)$. Then $\beta \in \Phi^{+}$, while $s_{1}(\beta) \in \Phi^{-}$. By Proposition 21.1 (ii), this implies that $\beta=\alpha_{1}$. Therefore $\alpha=-w_{1}^{-1}\left(\alpha_{1}\right)$. By Proposition 21.2, since $l\left(s_{1} w_{1}\right)=k=l\left(w_{1}\right)+1$, we have $-\alpha=w_{1}^{-1}\left(\alpha_{1}\right) \in \Phi^{+}$. This contradiction proves (21.10).

We will be done if we show that the last remaining element $s_{k} \cdots s_{2}\left(\alpha_{1}\right)$ is in $\left\{\alpha \in \Phi^{+} \mid s_{1} w_{1}(\alpha) \in \Phi^{-}\right\}$but not $\left\{\alpha \in \Phi^{+} \mid w_{1}(\alpha) \in \Phi^{-}\right\}$since that will guarantee that it is distinct from the other elements listed. This is clear since if $\alpha=s_{k} \cdots s_{2}\left(\alpha_{1}\right)$ we have $w_{1}(\alpha)=\alpha_{1} \notin \Phi^{-}$, while $s_{1} w_{1}(\alpha)=-\alpha_{1} \in \Phi^{-}$.

A connected component of the complement of the union of the hyperplanes

$$
\{x \in \mathcal{V} \mid\langle x, \alpha\rangle=0 \text { for all } \alpha \in \Phi\}
$$

is called an open Weyl chamber. The closure of an open Weyl chamber is called a Weyl chamber. For example, $\mathcal{C}_{+}=\{x \in \mathcal{V} \mid\langle x, \alpha\rangle \geqslant 0$ for all $\alpha \in \Sigma\}$ is called the positive Weyl chamber. Since every element of Φ^{+}is a linear combination of elements of \mathcal{C} with positive coefficients, $\mathcal{C}_{+}=\{x \in$ $\mathcal{V} \mid\langle x, \alpha\rangle \geqslant 0$ for all $\left.\alpha \in \Phi^{+}\right\}$. The interior

$$
\mathcal{C}_{+}^{\circ}=\{x \in \mathcal{V} \mid\langle x, \alpha\rangle>0 \text { for all } \alpha \in \Sigma\}=\left\{x \in \mathcal{V} \mid\langle x, \alpha\rangle>0 \text { for all } \alpha \in \Phi^{+}\right\}
$$

is an open Weyl chamber.
If $y \in \mathcal{V}$, let $W(y)$ be the stabilizer $\{w \in W \mid w(y)=y\}$.
Proposition 21.11. Suppose that $w \in W$ such that $l(w)=k$. Write $w=$ $s_{1} \cdots s_{k}$, where $s_{i}=s_{\alpha_{i}}, \alpha_{1}, \cdots, \alpha_{k} \in \Sigma$. Assume that $x \in \mathcal{C}_{+}$such that $w x \in \mathcal{C}_{+}$also.
(i) We have $\left\langle x, \alpha_{i}\right\rangle=0$ for $1 \leqslant i \leqslant k$.
(ii) Each $s_{i} \in W(x)$.
(iii) We have $w(x)=x$.

Proof. If $\alpha \in \Phi^{+}$and $w \alpha \in \Phi^{-}$, then we have $\langle x, \alpha\rangle=0$. Indeed, $\langle x, \alpha\rangle \geqslant 0$ since $\alpha \in \Phi^{+}$and $x \in \mathcal{C}_{+}$, and $\langle x, \alpha\rangle=\langle w x, w \alpha\rangle \leqslant 0$ since $w x \in \mathcal{C}_{+}$and $w \alpha \in \Phi^{-}$.

The elements of $\left\{\alpha \in \Phi^{+} \mid w \alpha \in \Phi^{-}\right\}$are listed in Proposition 21.10. Since α_{k} is in this set, we have $s_{k}(x)=x-\left(2\left\langle x, \alpha_{k}\right\rangle /\left\langle\alpha_{k}, \alpha_{k}\right\rangle\right) \alpha_{k}=x$. Thus $s_{k} \in W(x)$. Now since $s_{k}\left(\alpha_{k-1}\right) \in\left\{\alpha \in \Phi^{+} \mid w \alpha \in \Phi^{-}\right\}$, we have $0=\left\langle x, s_{k}\left(\alpha_{k-1}\right)\right\rangle=\left\langle s_{k}(x), \alpha_{k-1}\right\rangle=\left\langle x, \alpha_{k-1}\right\rangle$, which implies $s_{k-1}(x)=$ $x-2\left\langle x, \alpha_{k-1}\right\rangle /\left\langle\alpha_{k-1}, \alpha_{k-1}\right\rangle=x$. Proceeding in this way, we prove (i) and (ii) simultaneously. Of course, (ii) implies (iii).

Theorem 21.1. The set \mathcal{C}_{+}is a fundamental domain for the action of W on \mathcal{V}. More precisely, let $x \in \mathcal{V}$.
(i) There exists $w \in W$ such that $w(x) \in \mathcal{C}_{+}$.
(ii) If $w, w^{\prime} \in W$ and $w(x) \in \mathcal{C}_{+}, w^{\prime}(x) \in \mathcal{C}_{+}^{\circ}$, then $w=w^{\prime}$.
(iii) If $w, w^{\prime} \in W$ and $w(x) \in \mathcal{C}_{+}, w^{\prime}(x) \in \mathcal{C}_{+}$, then $w(x)=w^{\prime}(x)$.

Proof. Let $w \in W$ be chosen so that the cardinality of

$$
S=\left\{\alpha \in \Phi^{+} \mid\langle w(x), \alpha\rangle<0\right\}
$$

is as small as possible. We claim that S is empty. If not, then there exists an element of $\beta \in \Sigma \cap S$. We have $\langle w(x),-\beta\rangle>0$, and since s_{β} preserves Φ^{+} except for β, which it maps to $-\beta$, the set

$$
S^{\prime}=\left\{\alpha \in \Phi^{+} \mid\left\langle w(x), s_{\beta}(\alpha)\right\rangle<0\right\}
$$

is smaller than S by one. Since $S^{\prime}=\left\{\alpha \in \Phi^{+} \mid\left\langle s_{\beta} w(x), \alpha\right\rangle<0\right\}$ this contradicts the minimality of $|S|$. Clearly, $w(x) \in \mathcal{C}_{+}$. This proves (i).

We prove (ii). We may assume that $w^{\prime}=1$, so $x \in \mathcal{C}_{+}^{\circ}$. Since $\langle x, \alpha\rangle>0$ for all $\alpha \in \Phi^{+}$, we have $\Phi^{+}=\{\alpha \in \Phi \mid\langle x, \alpha\rangle>0\}=\{\alpha \in \Phi \mid\langle x, \alpha\rangle \geqslant 0\}$. Since $w^{\prime}(x) \in \mathcal{C}_{+}$, if $\alpha \in \Phi^{+}$, we have $\left\langle w^{-1}(\alpha), x\right\rangle=\langle\alpha, w(x)\rangle \geqslant 0$ so $w^{-1}(\alpha) \in \Phi^{+}$. By Proposition 21.6, this implies that $w^{-1}=1$, whence (ii).

Part (iii) follows from Proposition 21.11 (iii).
Proposition 21.12. The function $w \longmapsto(-1)^{l(w)} \in\{ \pm 1\}$ is a character of W. If $\alpha \in \Phi$, then $(-1)^{l\left(s_{\alpha}\right)}=-1$.

Proof. If $l(w)=k$ and $l\left(w^{\prime}\right)=k^{\prime}$, write $w=s_{1} \cdots s_{k}$ and $w^{\prime}=s_{1}^{\prime} \cdots s_{k^{\prime}}^{\prime}$ as products of simple reflections. It follows from Proposition 21.4 that we may obtain a decomposition of $w w^{\prime}$ into a product of simple reflections of minimal length from $w w^{\prime}=s_{1} \cdots s_{k} s_{1}^{\prime} \cdots s_{k^{\prime}}^{\prime}$ by discarding elements in pairs until the result is reduced. Therefore $l\left(w w^{\prime}\right) \equiv l(w)+l\left(w^{\prime}\right)$ modulo 2 , so $w \longmapsto(-1)^{l(w)}$ is a character. (One may argue alternatively by showing that $(-1)^{l(w)}$ is the determinant of w in its action on \mathcal{V}.)

If $\alpha \in \Phi$, then by Proposition 21.7 there exists $w \in W$ such that $w(\alpha) \in$ Σ. By (21.7), we have $w s_{\alpha} w^{-1}=s_{w(\alpha)}$, and $l\left(s_{w(\alpha)}\right)=1$. It follows that $(-1)^{s_{\alpha}}=-1$.

Proposition 21.13. Let \tilde{w} be a linear transformation of \mathcal{V} that maps Φ to itself. Then there exists $w \in W$ such that $\tilde{w}\left(\mathcal{C}_{+}\right)=w \mathcal{C}_{+}$. The transformation $w^{-1} \tilde{w}$ of \mathcal{V} permutes the elements of Φ^{+}and of Σ.

It is possible that $w^{-1} \tilde{w}$ is not the identity. (See Exercise 28.2.)
Proof. It is sufficient to show that $w^{-1} \tilde{w}\left(\mathcal{C}_{+}^{\circ}\right)=\mathcal{C}_{+}^{\circ}$. Let $x \in \mathcal{C}_{+}^{\circ}$. Since the open Weyl chambers are defined to be the connected components of the complement of the set of hyperplanes perpendicular to the roots, and since \tilde{w} permutes the roots, $\tilde{w}\left(\mathcal{C}_{+}^{\circ}\right)$ is an open Weyl chamber. By Theorem 21.1 there is an element $w \in W$ such that $w^{-1} \tilde{w}(x) \in \mathcal{C}_{+}$, and $w^{-1} \tilde{w}(x)$ must be in the interior \mathcal{C}_{+}° since x lies in an open Weyl chamber, and these are permuted by W as well as by \tilde{w}. Now $w^{-1} \tilde{w}\left(\mathcal{C}_{+}^{\circ}\right)$ and \mathcal{C}_{+}° are open Weyl chambers intersecting nontrivially in x, so they are equal.

The positive roots are characterized by the condition that $\alpha \in \Phi^{+}$if and only if $\langle\alpha, x\rangle>0$ for $x \in \mathcal{C}_{+}^{\circ}$. It follows that $w^{-1} \tilde{w}$ permutes the elements of Φ^{+}. Since the Σ are determined by Φ^{+}, these too are permuted by $w^{-1} \tilde{w}$.

For the remainder of this chapter, we will assume that the set of roots spans \mathcal{V} as a vector space. As in the previous chapter, we define a weight to be an element λ of \mathcal{V} such that $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$. Let $\Lambda_{\text {root }}$ be the lattice spanned by the roots, and let Λ be the lattice of weights.

Proposition 21.14. If λ is a weight, then $\lambda-w(\lambda) \in \Lambda_{\text {root }}$.

Proof. This is true if w is a simple reflection by (19.1). The general case follows, since if $w=s_{1} \cdots s_{r}$, where the s_{i} are simple reflections, we may write $\lambda-w(\lambda)=\left(\lambda-s_{r}(\lambda)\right)+\left(s_{r}(\lambda)-s_{r-1}\left(s_{r}(\lambda)\right)+\ldots\right.$.

A weight λ is called dominant if $\lambda \in \mathcal{C}^{+}$. We see that every weight is equivalent by the action of W to a unique dominant weight. The simple positive roots are linearly independent. Let \mathcal{V}_{0} be the subspace of \mathcal{V} that they span. Then elements of the dual basis of \mathcal{V}_{0} with respect to the linear forms $\lambda \longrightarrow 2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle$ are called the fundamental dominant weights. Thus, if the simple roots are $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{h}\right\}$, then the fundamental dominant weights are $\left\{\varpi_{1}, \cdots, \varpi_{h}\right\}$, where

$$
\left.2 \frac{\left\langle\varpi_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}=\delta_{i j} \quad \text { (Kronecker } \delta .\right)
$$

It is easy to see that a weight in \mathcal{V}_{0} is dominant if and only if it is a linear combination, with nonnegative integer coefficients, of the ϖ_{i}.

An important particular element of \mathcal{V} is

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha
$$

Proposition 21.15. If $w \in W$, then

$$
\begin{equation*}
w(\rho)=\rho-\sum_{\substack{\alpha \in \Phi^{+} \\ w^{-1}(\alpha) \in \Phi^{-}}} \alpha \tag{21.11}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
s_{\alpha}(\rho)=\rho-\alpha, \quad \alpha \in \Sigma \tag{21.12}
\end{equation*}
$$

Proof. Evidently, $w(\rho)$ is half the sum of the set of $w(\alpha)$, where $\alpha \in \Phi^{+}$. Like Φ^{+}, this is a set of exactly half the roots, containing each root or its negative but not both. More precisely, this set is obtained from Φ^{+}by replacing each $\alpha \in \Phi^{+}$such that $w^{-1}(\alpha) \in \Phi^{+}$by its negative. Now (21.11) is evident, and (21.12) is a special case.

Proposition 21.16. We have $\rho=\varpi_{1}+\ldots+\varpi_{h}$. In particular, ρ is a dominant weight. It lies in \mathcal{C}_{+}°.

Proof. Let $\alpha=\alpha_{i} \in \Sigma$. By (21.12), we have

$$
2 \frac{\langle\rho, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha=\rho-s_{\alpha}(\rho)=\alpha
$$

Thus $2\left\langle\rho, \alpha_{i}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle=1$ for each $\alpha_{i} \in \Sigma$. It follows that ρ is the sum of the fundamental dominant weights. Since $\left\langle\rho, \alpha_{i}\right\rangle>0, \rho$ lies in the interior of \mathcal{C}_{+}.

Up until now we have assumed that Φ is a reduced root system, and much of the foregoing is false without this assumption. In Chapter 19, the root systems are reduced, so this is enough for now. Later, however, we will encounter relative root systems, which may not be reduced, so let us say a few words about them. If $\Phi \subset \mathcal{V}$ is not reduced, then we may still choose v_{0} and partition Φ into positive and negative roots. We call a positive root simple if it cannot be expressed as a linear combination (with nonnegative coefficients) of other positive roots.

Proposition 21.17. Let (Φ, \mathcal{V}) be a root system that is not necessarily reduced. If α and $\lambda \alpha \in \Phi$ with $\lambda>0$, then $\lambda=1,2$ or $\frac{1}{2}$. Partition Φ into positive and negative roots, and let Σ be the set of simple roots. The elements of Σ are linearly independent. Any positive root may be expressed as a linear combination of elements of Σ with nonnegative integer coefficients.

Proof. If α and β are proportional roots, say $\beta=\lambda \alpha$, then $2\langle\beta, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ implies that 2λ is an integer and, by symmetry, so is $2 \lambda^{-1}$. The first assertion is therefore clear. Let Ψ be the set of all roots that are not the double of another root. Then it is clear that Ψ is another root system with the same Weyl group as Φ. Let $\Psi^{+}=\Phi^{+} \cap \Psi$. With our definitions, the set Σ of simple positive roots of Ψ^{+}is precisely the set of simple positive roots of Φ. They are linearly independent by Proposition 21.1. If $\alpha \in \Phi^{+}$, we need to know that α can be expressed as a linear combination, with integer coefficients, of the elements of Σ. If $\alpha \in \Psi$, this follows from Proposition 21.1, applied to Ψ. Otherwise, $\alpha / 2 \in \Psi$, so $\alpha / 2$ is a linear combination of the elements of Σ with integer coefficients, and therefore so is α.

EXERCISES

Exercise 21.1. Suppose that S is any subset of Φ such that if $\alpha \in \Phi$, then either $\alpha \in \Phi^{+}$or $-\alpha \in \Phi^{+}$. Show that there exists $w \in W$ such that $w(S) \subseteq \Phi^{+}$. If either $\alpha \in \Phi^{+}$or $-\alpha \in \Phi^{+}$but never both, then w is unique.

The Fundamental Group

In this chapter, we will look more closely at the fundamental group of a compact Lie group G. We will show that it is a finitely generated Abelian group and that every loop in G can be deformed into any given maximal torus. The key arguments are topological and are adapted from Adams [1].

Proposition 22.1. Let G be a connected topological group and Γ a discrete normal subgroup. Then $\Gamma \subset Z(G)$.

Proof. Let $\gamma \in \Gamma$. Then $g \longrightarrow g \gamma g^{-1}$ is a continuous map $G \longrightarrow \Gamma$. Since G is connected and Γ discrete, it is constant, so $g \gamma g^{-1}=\gamma$ for all g. Therefore, $\gamma \in Z(G)$.

Proposition 22.2. If G is a connected Lie group, then the fundamental group $\pi_{1}(G)$ is Abelian.

Proof. Let $p: \tilde{G} \longrightarrow G$ be the universal cover. We identify the kernel $\operatorname{ker}(p)$ with $\pi_{1}(G)$. This is a discrete normal subgroup of \tilde{G} and hence central in \tilde{G} by Proposition 22.1. In particular, it is Abelian.

For the remainder of this chapter, let G be a compact connected Lie group and T a maximal torus. Other notations will be as in Chapter 19. We recall that if α is a root of G, then $T_{\alpha} \subset T$ is the kernel of α. An element $t \in G$ is called regular if t is contained in a unique maximal torus. Clearly, a generator of a maximal torus is regular. An element of G is singular if it is not regular. Let $G_{\text {reg }}$ and $G_{\text {sing }}$ be the subsets of regular and singular elements of G, respectively.

Proposition 22.3. (i) $\bigcap_{\alpha \in \Phi} T_{\alpha}$ is the center $Z(G)$.
(ii) $\bigcup_{\alpha \in \Phi} T_{\alpha}$ is the set of singular elements of T.

Of course, $T_{\alpha}=T_{-\alpha}$, so we could equally well write $Z(G)=\bigcap_{\alpha \in \Phi^{+}} T_{\alpha}$.

Proof. For (i), any element of G is conjugate to an element of T. If it is in $Z(G)$, conjugation does not move it, so $Z(G) \subset T . G$ is generated by T together with the subgroups $i_{\alpha}(\mathrm{SU}(2))$ as α runs through the roots of G because the Lie algebras of these groups generate the Lie algebra of \mathfrak{g}, and G is connected. Hence $x \in T$ is in $Z(G)$ if and only if it commutes with each of these subgroups. From the construction of the groups $i_{\alpha}(\mathrm{SU}(2))$, this is true if and only if x is in the kernel of the representation induced by Ad on the two-dimensional T-invariant subspace $\mathfrak{X}_{\alpha} \oplus \mathfrak{X}_{-\alpha}$. This kernel is T_{α}, for every root α. Thus, the center of G is the intersection of the T_{α}.

For (ii), suppose that T and T^{\prime} are distinct maximal tori containing t. Then both are contained in the connected centralizer $C(t)^{\circ}$, and so by Theorem 16.5 applied to this connected Lie group, they are conjugate in $C(t)^{\circ}$. The complexified Lie algebra of $C(t)^{\circ}$ must contain \mathfrak{X}_{α} for some α since otherwise $C(t)^{\circ}$ would be a compact connected Lie group with no roots and hence a torus, contradicting the assumption that $T \neq T^{\prime}$. Thus $t \in T_{\alpha}$. Conversely, if $t \in T_{\alpha}$, it is contained in every maximal torus in $C\left(T_{\alpha}\right)^{\circ}$, which is nonAbelian, so there are more than one of these.

Proposition 22.4. The set $G_{\text {sing }}$ is a finite union of submanifolds of G, each of codimension at least 3 .

Proof. We first show that $G_{\text {sing }}$ is the finite union of smooth images of manifolds of dimensions $\leqslant \operatorname{dim}(G)-3$ and then discuss how the more precise statement is obtained. Let $\alpha \in \Phi$. The set of conjugates of T_{α} is the image of $G / C_{G}\left(T_{\alpha}\right) \times T_{\alpha}$ under the smooth map $\left(g C_{G}\left(T_{\alpha}\right), u\right) \mapsto g u g^{-1}$. The dimension of $C_{G}\left(T_{\alpha}\right)$ is at least $r+2$ since its complexified Lie algebra contains $\mathfrak{t}_{\mathbb{C}}, \mathfrak{X}_{\alpha}$, and $\mathfrak{X}_{-\alpha}$. Thus, the dimension of this manifold is at most $\operatorname{dim}(G)-(r+2)+(r-1)=\operatorname{dim}(G)-3$.

To prove the more precise statement, if $S \subset \Phi$ is any nonempty subset, let $U_{S}=\bigcap\left\{T_{\alpha} \mid \alpha \in S\right\}$. Let V_{S} be the open subset of U_{S} consisting of elements not contained in $U_{S^{\prime}}$ for any larger S^{\prime}. It is easily checked along the lines of (18.2) that the Jacobian of the map

$$
\left(g C_{G}\left(U_{S}\right), u\right) \mapsto g u g^{-1}, \quad G / C_{G}\left(U_{S}\right) \times V_{S} \longrightarrow G
$$

is nonvanishing, so its image is a submanifold of G by the Inverse Function Theorem. The union of these submanifolds is $G_{\text {sing }}$, and each has dimension $\leqslant \operatorname{dim}(G)-3$.

Lemma 22.1. Let X and Y be Hausdorff topological spaces and $f: X \longrightarrow Y$ a local homeomorphism. Suppose that $U \in X$ is a dense open set and that the restriction of f to U is injective. Then f is injective.

Proof. If $x_{1} \neq x_{2}$ are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, find open neighborhoods V_{1} and V_{2} of x_{1} and x_{2}, respectively, that are disjoint, and such that f induces a homeomorphism $V_{i} \longrightarrow f\left(V_{i}\right)$. Note that $U \cap V_{i}$ is a dense open subset of V_{i}, so $f\left(U \cap V_{i}\right)$ is a dense open subset of $f\left(V_{i}\right)$.

Since $f\left(V_{1}\right) \cap f\left(V_{2}\right) \neq \varnothing$, it follows that $f\left(U \cap V_{1} \cap V_{2}\right)$ is nonempty. If $z \in$ $f\left(U \cap V_{1} \cap V_{2}\right)$, then there exist elements $y_{i} \in U \cap V_{i}$ such that $f\left(y_{i}\right)=z$. Since V_{i} are disjoint $y_{1} \neq y_{2}$; yet $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction since $f \mid U$ is injective.

We define a map $\phi: G / T \times T_{\text {reg }} \longrightarrow G_{\text {reg }}$ by $\phi(g T, t)=g t g^{-1}$. It is the restriction to the regular elements of the map studied in Chapter 18.

Proposition 22.5. (i) The map ϕ is a covering map of degree $|W|$.
(ii) If $t \in T_{\mathrm{reg}}$, then the $|W|$ elements $w t w^{-1}, w \in W$ are all distinct.

Proof. For $t \in T_{\text {reg }}$, the Jacobian of this map, computed in (18.2), is nonzero. Thus the map ϕ is a local homeomorphism.

We define an action of $W=N(T) / T$ on $G / T \times T_{\text {reg }}$ by

$$
w:(g T, t) \longrightarrow\left(g n^{-1} T, n g n^{-1}\right), \quad w=n T \in W
$$

W acts freely on G / T, so the quotient map $G / T \times T_{\text {reg }} \longrightarrow W \backslash\left(G / T \times T_{\text {reg }}\right)$ is a covering map of degree $|W|$. The map ϕ factors through $W \backslash(G / T \times$ $\left.T_{\text {reg }}\right)$. Consider the induced map $\psi: W \backslash\left(G / T \times T_{\text {reg }}\right) \longrightarrow G_{\text {reg }}$. We have a commutative diagram:

Both ϕ and the horizontal arrow are local homeomorphisms, so ψ is a local homeomorphism. By Proposition 18.3, the elements $w t w^{-1}$ are all distinct for t in a dense subset of $T_{\text {reg }}$. Thus ψ is injective on a dense subset of $W \backslash(G / T \times$ $T_{\text {reg }}$), and since it is a local homeomorphism, it is therefore injective by Lemma 22.1. This proves both (i) and (ii).

Proposition 22.6. Let $p: X \longrightarrow Y$ be a covering map. Then the induced map $\pi_{1}(X) \longrightarrow \pi_{1}(Y)$ is injective.

Proof. Suppose that p_{0} and p_{1} are loops in X whose images in Y are pathhomotopic. It is an immediate consequence of Proposition 13.2 that p_{0} and p_{1} are themselves path-homotopic.

Proposition 22.7. The inclusion $G_{\mathrm{reg}} \longrightarrow G$ induces an isomorphism of fundamental groups: $\pi_{1}\left(G_{\mathrm{reg}}\right) \cong \pi_{1}(G)$.

Proof. Of course, we usually take the base point of G to be the identity, but that is not in $G_{\text {reg. }}$. Since G is connected, the isomorphism class of its fundamental group does not change if we move the base point P into $G_{\text {reg }}$.

First, if $p:[0,1] \longrightarrow G$ is a loop beginning and ending at P, the path may intersect $G_{\text {sing }}$. We may replace the path by a smooth path. Since $G_{\text {sing }}$ is a finite union of submanifolds of codimension at least 3, we may move the path slightly and avoid $G_{\text {sing }}$. (For this we only need codimension 2.) Therefore, the induced $\operatorname{map} \pi_{1}\left(G_{\text {reg }}\right) \longrightarrow \pi_{1}(G)$ is surjective.

Now suppose that p_{0} and p_{1} are two paths in $G_{\text {reg }}$ that are path-homotopic in G. We may assume that both the paths and the homotopy are smooth. Since $G_{\text {sing }}$ is a finite union of submanifolds of codimension at least 3 , we may perturb the homotopy to avoid it, so p_{0} and p_{1} are homotopic in $G_{\text {reg }}$. Thus, the map $\pi_{1}\left(G_{\text {reg }}\right) \longrightarrow \pi_{1}(G)$ is injective.

Proposition 22.8. We have $\pi_{1}(G / T)=1$.
Proof. Let $t_{0} \in T_{\text {reg }}$ and consider the map $f_{0}: G / T \longrightarrow G, f_{0}(g T)=g t_{0} g^{-1}$. We will show that the map $\pi_{1}(G / T) \longrightarrow \pi_{1}(G)$ induced by f_{0} is injective. We may factor f_{0} as

$$
G / T \xrightarrow{v} G / T \times T_{\mathrm{reg}} \xrightarrow{\phi} G_{\mathrm{reg}} \longrightarrow G,
$$

where the first map v sends $g T \longrightarrow\left(g T, t_{0}\right)$. We will show that each induced map

$$
\begin{equation*}
\pi_{1}(G / T) \xrightarrow{v} \pi_{1}\left(G / T \times T_{\mathrm{reg}}\right) \xrightarrow{\phi} \pi_{1}\left(G_{\mathrm{reg}}\right) \longrightarrow \pi_{1}(G) \tag{22.1}
\end{equation*}
$$

is injective. It should be noted that $T_{\text {reg }}$ might not be connected, so $G / T \times T_{\text {reg }}$ might not be connected, and $\pi_{1}\left(G / T \times T_{\text {reg }}\right)$ depends on the choice of a connected component for its base point. We choose the base point to be (T, t_{0}).

We can factor the identity $\operatorname{map} G / T$ as $G / T \xrightarrow{v} G / T \times T_{\text {reg }} \longrightarrow G / T$, where the second map is the projection. Applying the functor π_{1}, we see that $\pi_{1}(v)$ has a left inverse and is therefore injective. Also $\pi_{1}(\phi)$ is injective by Propositions 22.5 and 22.6 , and the third map is injective by Proposition 22.7. Thus, the map induced by f_{0} injects $\pi_{1}(G / T) \longrightarrow \pi_{1}(G)$. On the other hand this map is homotopic to the identity map, as we can see by moving t_{0} to $1 \in G$. Thus f_{0} induces the trivial map $\pi_{1}(G / T) \longrightarrow \pi_{1}(G)$ and so $\pi_{1}(G / T)=1$.

Theorem 22.1. The induced map $\pi_{1}(T) \longrightarrow \pi_{1}(G)$ is surjective. The group $\pi_{1}(G)$ is finitely generated and Abelian.

Proof. We use have the exact sequence

$$
\pi_{1}(T) \longrightarrow \pi_{1}(G) \longrightarrow \pi_{1}(G / T)
$$

of the fibration $G \longrightarrow G / T$. It follows using Proposition 22.8 that $\pi_{1}(T) \longrightarrow$ $\pi_{1}(G)$ is surjective. Concretely, given any loop in G, its image in G / T can be deformed to the identity, and lifting this homotopy to G deforms the original path to a path lying entirely in T. As a quotient of a finitely generated Abelian group, $\pi_{1}(G)$ is finitely generated and Abelian.

Semisimple Compact Groups

A Lie algebra is semisimple if it has no Abelian ideals. A compact Lie group is semisimple if its Lie algebra is semisimple. For example, $\mathrm{SU}(n)$ and $O(n)$ are semisimple, but $U(n)$ is not, since the scalar matrices in $\mathfrak{u}(n)$ form an Abelian ideal. More generally, we define a Lie group to be semisimple if its Lie algebra is semisimple and it has a faithful finite-dimensional complex representation. (This criterion excludes groups such as the universal cover of $\operatorname{SL}(2, \mathbb{R})$, all of whose finite-dimensional complex representations factor through $\operatorname{SL}(2, \mathbb{R})$ and are hence not faithful; see Exercise 13.1.)

If \mathfrak{g} is a Lie algebra, the center of \mathfrak{g} is $\{X \in \mathfrak{g} \mid[X, Y]=0$ for all $Y \in \mathfrak{g}\}$. It is an ideal of \mathfrak{g}. On the other hand, if G is a connected Lie group, then the center $Z(G)$ is a Lie group by Theorem 15.2.

Proposition 23.1. If G is a connected Lie group and $\mathfrak{g}=\operatorname{Lie}(G)$, then the center of \mathfrak{g} is the Lie algebra of $Z(G)$.

Proof. Let $X \in \mathfrak{g}$. Then X is in the center of \mathfrak{g} if and only if $\operatorname{ad}(Y) X=0$ for all Y, which implies that $\operatorname{Ad}\left(e^{t Y}\right) X=X$ by Proposition 8.2. This means $\operatorname{Ad}(g) X=X$ for all g in a neighborhood of the identity, and since G is connected, for all $g \in G$. This means that $g e^{X} g^{-1}=e^{X}$, so X is in the Lie algebra of the center.

Proposition 23.2. Let \mathfrak{g} be the Lie algebra of a compact Lie group G. If \mathfrak{a} is an Abelian ideal, then \mathfrak{a} is contained in the center of \mathfrak{g}.

This statement is false without the assumption that \mathfrak{g} is the Lie algebra of a compact Lie group. For example, let

$$
\mathfrak{g}=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

and let \mathfrak{a} be the subalgebra with $c=0$. Then \mathfrak{a} is an Abelian ideal in \mathfrak{g}, but it is not contained in the center.

Proof. Let $A_{0}=\left\{e^{X} \mid X \in \mathfrak{a}\right\}$. By Proposition 15.2, A_{0} is an Abelian group, so its closure A is also. Moreover, A_{0} is the continuous image of a connected set and hence connected, and so A is a connected Abelian subgroup of G. By Theorem 15.2 , it is a torus.

Since \mathfrak{a} is an ideal, $\operatorname{Ad}(G) \mathfrak{a}=\mathfrak{a}$. Remembering that $\operatorname{Ad}: G \longrightarrow \operatorname{GL}(\mathfrak{g})$ is the representation induced by the conjugation action of G on itself, it follows that A_{0}, and hence A, are normal subgroups. By Proposition 15.7, the conjugation action of G on A is actually trivial, so A is contained in the center of G. Therefore, \mathfrak{a} is contained in the center of \mathfrak{g}.

Proposition 23.3. Let G be a compact connected Lie group. Then G is semisimple if and only if the center of G is finite.

Proof. By Proposition 23.2, G is semisimple if and only if \mathfrak{g} has a trivial center. Since by Proposition 23.1 the center of \mathfrak{g} is the Lie algebra of $Z(G)$, a necessary and sufficient condition is for $Z(G)$ to be finite.

In this chapter, let G be a compact connected Lie group and T a maximal torus. Let $\mathcal{V}=\mathbb{R} \otimes X^{*}(T)$ and other notations be as in Chapter 19. Particularly, let $\Phi \subset \mathcal{V}$ be the set of roots with respect to T.

Although the title of this chapter seems to imply that semisimple compact Lie groups are our current subject matter, we do not assume that G is semisimple in this chapter except where we explicitly impose that assumption.

We will show presently that G is semisimple if and only if \mathcal{V} is spanned by Φ. Whether or not this is true, we will denote by Λ the set of weights of G with respect to T. These are the elements λ of \mathcal{V} that satisfy

$$
\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z} \quad \text { for all } \alpha \in \Phi
$$

If Φ spans \mathcal{V}, these form a lattice. Otherwise, instead of a lattice, Λ is a set of affine subspaces of dimension >0. Let $\Lambda_{\text {root }} \subset \mathcal{V}$ be the lattice spanned by the roots.

If Φ spans \mathcal{V}, then both Λ and $\Lambda_{\text {root }}$ are spanning lattices in \mathcal{V} and, since $\Lambda \supseteq \Lambda_{\text {root }}$, the index [$\Lambda: \Lambda_{\text {root }}$] is finite. It is occasionally true that $\Lambda=\Lambda_{\text {root }}$ (e.g. with the exceptional group G_{2}), but usually this is not the case. We find that $\Lambda \supseteq X^{*}(T) \supseteq \Lambda_{\text {root }}$. It is possible that $X^{*}(T)=\Lambda$ or that $X^{*}(T)=\Lambda_{\text {root }}$, or it can be any lattice in between. It may be shown that if G is semisimple and simply-connected, then $X^{*}(T)=\Lambda$.

Let us ponder the example of a group that is not semisimple, say $G=U(n)$. The center of $Z(G)$ consists of the scalar matrices in $U(n)$ and is a onedimensional torus. (It happens to be connected but in general it may not be.) On the other hand, the commutator subgroup of G is $G^{\prime}=\mathrm{SU}(n)$. The groups $Z(G)$ and $\mathrm{SU}(n)$ are both normal. They are not disjoint, but their intersection is finite. The groups $G / Z(G)$ and G^{\prime} are both semisimple. The Lie algebra of G is the direct sum of the Lie algebras of G^{\prime} and $Z(G)$. The Lie algebras of $G / Z(G)$ and G^{\prime} are isomorphic.

We will show in this chapter that this simple picture remains true for an arbitrary compact connected Lie group G : the center $Z(G)$ and the derived group G^{\prime} are normal closed Lie subgroups with finite intersection, their Lie algebras are complementary in G, and both $G / Z(G)$ and G^{\prime} are semisimple Lie groups. The Lie algebras of $G / Z(G)$ and G^{\prime} are isomorphic.

Proposition 23.4. If H_{α} is as in Proposition 19.6 and $w_{\alpha} \in N(T)$ is as in Theorem 19.1, then $\operatorname{ad}\left(w_{\alpha}\right) H_{\alpha}=-H_{\alpha}$.

Proof. Since w_{α} lies in $i_{\alpha}(\mathrm{SU}(2))$, and since by Proposition 19.6 the element $-i H_{\alpha}$ lies in the image of the Lie algebra of $\mathrm{SU}(2)$ under the differential of i_{α}, we may work in $\mathrm{SU}(2)$ to confirm this. The result follows from (19.6) and (19.8).

Proposition 23.5. Let $\lambda \in \mathcal{V}$ and $\alpha \in \Phi$. Then λ and α are orthogonal if and only if $d \lambda\left(H_{\alpha}\right)=0$ with H_{α} as in Proposition 19.3.
(See Remark 19.1 about the notation $d \lambda$.)
Proof. To show that the orthogonal complement in \mathcal{V} of the space spanned by α is the kernel of the linear functional $\lambda \longrightarrow d \lambda\left(H_{\alpha}\right)$, it is sufficient to show that the orthogonal complement of α is contained in the kernel of this functional since both are subspaces of codimension 1.

Assuming therefore that α and λ are orthogonal, $s_{\alpha}(\lambda)=\lambda$, and since the action of W on $X^{*}(T)$ and $\mathcal{V}=\mathbb{R} \otimes X^{*}(T)$ is induced by the action of W on T by conjugation, whose differential is the action of W on \mathfrak{t} via Ad, we have

$$
d \lambda\left(H_{\alpha}\right)=d \lambda\left(\operatorname{Ad}\left(w_{\alpha}\right) H_{\alpha}\right)=-d \lambda\left(H_{\alpha}\right)
$$

by Proposition 23.4. The result is now proved.
It follows from Proposition 23.5 that the linear forms $\lambda \mapsto\langle\lambda, \alpha\rangle$ and $d \lambda\left(-i H_{\alpha}\right)$ are proportional. Thus, there exists a real scalar multiple h_{α} of H_{α} such that

$$
\begin{equation*}
\langle\alpha, \lambda\rangle=d \lambda\left(h_{\alpha}\right) \tag{23.1}
\end{equation*}
$$

for all $\lambda \in \mathcal{V}$, and for some purposes this is a more convenient basis. If α and $\beta \in \Phi$ such that $\alpha+\beta \in \Phi$ also, then (23.1) implies that $d \lambda$ annihilates $h_{\alpha}+h_{\beta}-h_{\alpha+\beta}$ for every $\lambda \in \mathcal{V}$ and therefore

$$
\begin{equation*}
h_{\alpha}+h_{\beta}=h_{\alpha+\beta} \tag{23.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
h_{-\alpha}=-h_{\alpha} . \tag{23.3}
\end{equation*}
$$

Proposition 23.6. The roots Φ span \mathcal{V} if and only if the $-i H_{\alpha}$ span \mathfrak{t} as a real vector space. More precisely, Φ spans a vector subspace of \mathcal{V} of the same dimension as the vector subspace of \mathfrak{t} spanned by the $-i H_{\alpha}$.

Proof. The second assertion implies the first because $\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\mathfrak{t})$. We will prove the result by considering the vector space of those $\lambda \in \mathcal{V}$ that are perpendicular to the roots α. The dimension of this space is $\operatorname{dim}(\mathcal{V})$ minus the dimension of the subspace spanned by Φ. By Proposition 23.5, this is the same as the space of linear forms on t that annihilate the $-i H_{\alpha}$, and the result follows.

Lemma 23.1. Let U be a compact Abelian group and U_{1}, \cdots, U_{n} closed subgroups. A character $\chi \in X^{*}(U)$ vanishes on $\bigcap U_{i}$ if and only if it is in the subgroup of $X^{*}(U)$ generated by the images of the $X^{*}\left(U / U_{i}\right)$.

Proof. The general case follows easily from the special case where $n=2$. We therefore assume that $n=2$ and prove

$$
X^{*}\left(U /\left(U_{1} \cap U_{2}\right)\right)=X^{*}\left(U / U_{1}\right)+X^{*}\left(U / U_{2}\right)
$$

We are identifying $X^{*}(U / W)$ with its image in $X^{*}(U)$, where W is a closed subgroup. Let $V=U /\left(U_{1} \cap U_{2}\right), V_{1}=U_{1} /\left(U_{1} \cap U_{2}\right)$, and $V_{2}=U_{2} /\left(U_{1} \cap U_{2}\right)$. It is clearly sufficient to show that if $V_{1} \cap V_{2}$ is trivial, then

$$
X^{*}(V)=X^{*}\left(V / V_{1}\right)+X^{*}\left(V / V_{2}\right)
$$

Let $\chi \in X^{*}(V)$. Since $V_{1} \cap V_{2}=\{0\}$, the sum $V_{1}+V_{2}$ is direct. Therefore, there exist characters χ_{1} and χ_{2} of $V_{1}+V_{2}$ such that χ_{i} vanishes on V_{i} and the restriction of χ to $V_{1}+V_{2}$ is $\chi_{1}+\chi_{2}$. We extend χ_{1} arbitrarily to a character of V. We extend χ_{2} to V by the definition $\chi_{2}=\chi-\chi_{1}$.

Lemma 23.2. Let λ be a nontrivial character of a compact torus T, and let T_{λ} be the kernel of λ. Then λ generates the image of $X^{*}\left(T / T_{\lambda}\right)$ in $X^{*}(T)$.
Proof. T / T_{λ} is a one-dimensional torus, so its character group is infinite cyclic. If μ is a generator, then λ is a nonzero element of $X^{*}\left(T / T_{\lambda}\right)$, so $\lambda=n \mu$ for some nonzero integer n. Since $\mu \in X^{*}\left(T / T_{\lambda}\right)$, the character μ vanishes on T_{λ}, so $T_{\lambda} \subseteq T_{\mu}$. The other inclusion $T_{\mu} \subseteq T_{\lambda}$ is also clear since $\lambda=n \mu$ implies that wherever μ vanishes, so does λ. Therefore $T_{\mu}=T_{\lambda}$ and $n=\left[T_{\lambda}: T_{\mu}\right]=1$. Thus λ generates $X^{*}\left(T / T_{\lambda}\right)$.

Proposition 23.7. We have

$$
\begin{equation*}
X^{*}(T / Z(G))=\Lambda_{\mathrm{root}} \tag{23.4}
\end{equation*}
$$

In other words, $\chi \in X^{*}(T)$ is trivial on $Z(G)$ if and only if $\chi \in \Lambda_{\text {root }}$.
Proof. Since $Z(G) \subset T,|Z(G)|$ is the index in $X^{*}(T)$ of the subgroup of characters vanishing on $Z(G)=\bigcap_{\alpha \in \Phi^{+}} T_{\alpha}$ (Proposition 22.3). By Lemmas 23.1 and 23.2 , this subgroup equals

$$
\sum_{\alpha \in \Phi^{+}} X^{*}\left(T / T_{\alpha}\right)=\sum_{\alpha \in \Phi^{+}} \mathbb{Z} \alpha=\Lambda_{\mathrm{root}}
$$

This proves (23.4).

Proposition 23.8. If G is a compact connected Lie group, then G is semisimple if and only if Φ spans \mathcal{V}.

Proof. If Φ spans \mathcal{V}, then $\left[\Lambda: \Lambda_{\text {root }}\right]$ is finite and, by Proposition 23.7,

$$
|Z(G)|=\left[X^{*}(T): \Lambda_{\mathrm{root}}\right] .
$$

Thus $|Z(G)|$ is finite if and only if Λ_{root} is a lattice of maximal rank in $X^{*}(T)$, which is equivalent to its spanning $\mathbb{R} \otimes X^{*}(T)=\mathcal{V}$.

Theorem 23.1. If G is a semisimple compact connected Lie group, then both the center $Z(G)$ and the fundamental group $\pi_{1}(G)$ are finite Abelian groups. The orders of both are bounded by $\left[\Lambda: \Lambda_{\mathrm{root}}\right]$.

Proof. Since G is semisimple, [$\left.\Lambda: \Lambda_{\text {root }}\right]$ is finite and, by Proposition 23.7,

$$
|Z(G)|=\left[X^{*}(T): \Lambda_{\text {root }}\right] \leqslant\left[\Lambda: \Lambda_{\text {root }}\right]
$$

Now let us consider the fundamental group. We do not as yet know that it is finite. However, we know by Theorem 22.1 that it is a finitely generated Abelian group. Let $p: \tilde{G} \longrightarrow G$ be the universal cover. Identifying $\operatorname{ker}(p)=$ $\pi_{1}(G)$, unless $\left|\pi_{1}(G)\right| \leqslant\left[\Lambda: \Lambda_{\text {root }}\right]$, there will be a subgroup Γ of finite index $N>\left[\Lambda: \Lambda_{\text {root }}\right]$. The quotient $G^{\prime}=\Gamma \backslash \tilde{G}$ is then a finite cover of G and hence compact. The projection map $p^{\prime}: G^{\prime} \longrightarrow G$ is a covering map and hence a local homeomorphism. It induces an isomorphism of Lie algebras $\operatorname{Lie}\left(G^{\prime}\right) \cong \operatorname{Lie}(G)$, so the roots of G^{\prime} are the same as the roots of G. It follows that G^{\prime} is semisimple, and $\left[\Lambda: \Lambda_{\text {root }}\right]$ is not changed if we replace G by G^{\prime}. The kernel of p^{\prime} is contained in $Z\left(G^{\prime}\right)$ by Proposition 22.1, so $\left|Z\left(G^{\prime}\right)\right| \geqslant\left|\operatorname{ker}\left(p^{\prime}\right)\right|=$ $N>\left[\Lambda: \Lambda_{\text {root }}\right]$, and this contradicts what we have already proved.

Let \mathfrak{z} be the Lie algebra of $Z(G)$, and let \mathfrak{t}^{\prime} be the linear span of the $-i H_{\alpha}$ or, equivalently of the $-i h_{\alpha}$.

Proposition 23.9. We have $\mathfrak{t}=\mathfrak{t}^{\prime} \oplus \mathfrak{z}$.
Proof. The codimension of \mathfrak{z} in \mathfrak{t} is the codimension of $Z(G)$ in T, that is, the rank of the free Abelian group $X^{*}(T / Z(G))$. By Proposition 23.7, this equals the rank of $\Lambda_{\text {root }}$ or, equivalently, the dimension of the vector space \mathfrak{t}^{\prime} that it spans in \mathcal{V}. Thus $\operatorname{dim}(\mathfrak{t})=\operatorname{dim}\left(\mathfrak{t}^{\prime}\right)+\operatorname{dim}(\mathfrak{z})$.

We will show that $\mathfrak{t}^{\prime} \cap \mathfrak{z}=\{0\}$, and the result will follow. Let us partition the roots into positive and negative roots as in Chapter 21, and let Σ denote the simple positive roots. Every root is a linear combination with integer coefficients of the $\alpha \in \Sigma$, by Proposition 21.1, so by (23.2) and (23.3) the h_{α} with $\alpha \in \Sigma$ span \mathfrak{t}^{\prime}. Suppose that

$$
H=\sum_{\alpha \in \Sigma} c_{\alpha} h_{\alpha} \in \mathfrak{z}
$$

Then $\operatorname{ad}(H)=0$. If $X_{\beta} \in \mathfrak{X}_{\beta}$ for $\beta \in \Phi$, then

$$
0=\operatorname{ad}(H) X_{\beta}=\left(\sum_{\alpha \in \Sigma} c_{\alpha} d \beta\left(h_{\alpha}\right)\right) X_{\beta}
$$

By (23.1), this implies that

$$
\left\langle\sum_{\alpha \in \Sigma} c_{\alpha} \alpha, \beta\right\rangle=0
$$

for all $\beta \in \Phi$. Therefore $\sum c_{\alpha} \alpha=0$, and since the $\alpha \in \Sigma$ are linearly independent, it follows that the coefficients c_{α} all vanish.

Proposition 23.10. Let $\mathfrak{g}_{\mathbb{C}}^{\prime}$ be the direct sum of $\mathfrak{t}_{\mathbb{C}}^{\prime}$ with the $\mathfrak{X}_{\alpha}, \alpha \in \Phi$. Then $\mathfrak{g}_{\mathbb{C}}^{\prime}$ is a complex Lie algebra. It is an ideal of $\mathfrak{g}_{\mathbb{C}}$. If $\mathfrak{g}^{\prime}=\mathfrak{g}_{\mathbb{C}}^{\prime} \cap \mathfrak{g}$, then \mathfrak{g}^{\prime} is isomorphic to the Lie algebra of $G / Z(G)$, which is a semisimple Lie group. Moreover, $\mathfrak{g}=\mathfrak{g}^{\prime} \oplus \mathfrak{z}$.

Proof. It follows from Proposition 19.3 (ii) that if $X_{\alpha} \in \mathfrak{X}_{\alpha}$ and $X_{\beta} \in \mathfrak{X}_{\beta}$ then the commutator $\left[X_{\alpha}, X_{\beta}\right]$ is in $\mathfrak{g}_{\mathbb{C}}^{\prime}$, since $\left[X_{\alpha}, X_{\beta}\right]$ is zero if $\alpha+\beta$ is nonzero or not a root, is in $\mathfrak{X}_{\alpha+\beta}$ if $\alpha+\beta$ is a root, and is in $\mathbb{C} H_{\alpha} \subseteq \mathfrak{t}_{\mathbb{C}}^{\prime}$ if $\beta=-\alpha$. It is equally clear that $\left[H_{\alpha}, X_{\beta}\right]$ and $\left[H_{\alpha}, H_{\beta}\right]$ are in $\mathfrak{g}_{\mathbb{C}}^{\prime}$. Thus $\mathfrak{g}_{\mathbb{C}}^{\prime}$ is a complex Lie algebra. Since that $\mathfrak{g}_{\mathbb{C}}$ is spanned by the \mathfrak{t} and the \mathfrak{X}_{α}, and since $\left[X, \mathfrak{g}_{\mathbb{C}}^{\prime}\right] \subset \mathfrak{g}_{\mathbb{C}}^{\prime}$ when $X \in \mathfrak{t}$ or $X \in \mathfrak{X}_{\alpha}, \mathfrak{g}_{\mathbb{C}}^{\prime}$ is an ideal of $\mathfrak{g}_{\mathbb{C}}$ and \mathfrak{g}^{\prime} is an ideal of \mathfrak{g}.

The Lie algebra of $G / Z(G)$ is $\mathfrak{g} / \mathfrak{z}$. It is clear from Proposition 23.9 that this is isomorphic to \mathfrak{g}^{\prime}, and in fact $\mathfrak{g}=\mathfrak{g}^{\prime} \oplus \mathfrak{z}$. That $G / Z(G)$ is semisimple is clear from the criterion of Proposition 23.6.

We will denote by G^{\prime} or $[G, G]$ the commutator subgroup or derived group of G. It is the closure of the group generated by commutators $x y x^{-1} y^{-1}$, $x, y \in G$.

Theorem 23.2. The commutator subgroup G^{\prime} of the compact connected Lie group G is a semisimple compact connected Lie group with Lie algebra \mathfrak{g}^{\prime}. Its intersection with $Z(G)$ is finite. If G is semisimple, then $G=G^{\prime}$.

Proof. Since $G / Z(G)$ is a semisimple Lie group with Lie algebra isomorphic to \mathfrak{g}^{\prime} by Proposition 23.10, its fundamental group is finite by Proposition 23.1, so its universal cover is a compact Lie group \tilde{G}_{1} with Lie algebra isomorphic to \mathfrak{g}^{\prime}. By Theorem 14.2, there exists a Lie group homomorphism $\tilde{G}_{1} \longrightarrow G$ that induces the isomorphism $\operatorname{Lie}\left(\tilde{G}_{1}\right) \cong \mathfrak{g}^{\prime}$. Let G_{1} be the image of this homomorphism. Then G_{1} is a compact connected Lie subgroup of G with Lie algebra \mathfrak{g}^{\prime}. The result will follow easily from the existence of such a subgroup. We have only to show that $G_{1}=G^{\prime}$.

The Lie algebra of G / G_{1} is $\mathfrak{g} / \mathfrak{g}^{\prime} \cong \mathfrak{z}$, so G / G_{1} is Abelian, and therefore G_{1} contains the commutator subgroup G^{\prime}. On the other hand, the Lie algebra of G^{\prime} contains the Lie algebras of the $i_{\alpha}(\mathrm{SU}(2))$, and it is easy to see that the sum of these Lie algebras is just \mathfrak{g}^{\prime}, so G^{\prime} contains G_{1}.

EXERCISES

Exercise 23.1. Let (π, V) be a finite-dimensional representation of the universal cover $\widetilde{\mathrm{SL}}(2, \mathbb{R})$ of $\mathrm{SL}(2, \mathbb{R})$. Show that π factors through $\mathrm{SL}(2, \mathbb{R})$ and is therefore not faithful.

Exercise 23.2. If \mathfrak{g} is a Lie algebra let $[\mathfrak{g}, \mathfrak{g}]$ be the vector space spanned by $[X, Y]$ with $X, Y \in \mathfrak{g}$. Show that $[\mathfrak{g}, \mathfrak{g}]$ is an ideal of \mathfrak{g}.

Exercise 23.3. Suppose that \mathfrak{g} is a real or complex Lie algebra. Assume that there exists an invariant inner product $B: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{C}$. Thus B is positive definite symmetric or Hermitian and satisfies the ad-invariance property (10.1). Let \mathfrak{z} be the center of \mathfrak{g}. Show that the orthogonal complement of \mathfrak{g} is $[\mathfrak{g}, \mathfrak{g}]$.

Exercise 23.4. In the setting of Theorem 23.2, show that the Lie algebra of G^{\prime} is $[\mathfrak{g}, \mathfrak{g}]$.

Highest-Weight Vectors

If G is a compact connected Lie group, we will show in Chapter 25 that its irreducible representations are parametrized uniquely by their highest-weight vectors. In this chapter, we will explain what this means and give some illustrative examples. The proofs will be postponed until later chapters, mostly Chapter 25.

We return to the figures in Chapter 20 (which the reader should review). Let T be a maximal torus in G, with $X^{*}(T)$ embedded as a lattice in the Euclidean space $\mathcal{V}=\mathbb{R} \otimes X^{*}(T)$. Let $\Lambda_{\text {root }} \subseteq X^{*}(T)$ be the lattice spanned by the roots. We will assume in this section that G is semisimple, which for compact connected G boils down to the assumption that $\Lambda_{\text {root }}$ spans \mathcal{V}. Let Λ be the weight lattice, which is spanned by the fundamental dominant weights.

For example, if $G=\mathrm{SU}(3)$, the lattices Λ and its sublattice $\Lambda_{\text {root }}$ (of index 3) are marked in Figure 24.1. We have marked the positive Weyl chamber. The weight lattice Λ is marked with light dots and the root sublattice with darker ones. We have also marked the positive Weyl chamber, which is a fundamental group for the Weyl group W, acting by simple reflections.

Fig. 24.1. The weight and root lattices for $\operatorname{SU}(2)$.

Let (π, V) be an irreducible complex representation of G. Then the restriction of π to T is a representation of T that will not be irreducible if π is not one-dimensional (since the irreducible representations of T are onedimensional). It can be decomposed into a direct sum of one-dimensional irreducible subspaces of T corresponding to the characters of T. Some characters may occur with multiplicity greater than one. If $\lambda \in X^{*}(T)$, let $m(\lambda)$ be the multiplicity of λ in the decomposition of π over T. If $m(\lambda) \neq 0$, we say that λ is a "weight" of the representation.

For example, let $G=\mathrm{SU}(3)$, and let T be the diagonal torus. Let ϖ_{1}, ϖ_{2} : $T \longrightarrow \mathbb{C}$ be the fundamental dominant weights, labeled as in Chapter 20. The standard representation of $\mathrm{SU}(3)$ is just the usual embedding $\mathrm{SU}(3) \longrightarrow$ $\mathrm{GL}(3, \mathbb{C})$. The three one-dimensional subspaces spanned by the standard basis vectors afford the characters $\varpi_{1},-\varpi_{1}+\varpi_{2}$, and $-\varpi_{2}$. These are the weights of the standard representation. Each occurs with multiplicity one. On the other hand, the contragredient of the standard representation is its composition with the transpose-inverse automorphism of $\mathrm{GL}(3, \mathbb{C})$. The standard basis vectors in this dual representation afford the characters $-\varpi_{1}, \varpi_{1}-\varpi_{2}$, and ϖ_{2}.

In Figure 24.1 (left), we have labeled the three weights in the standard representation with their multiplicities. (For this example each multiplicity is one.) In Figure 24.1 (right), we have labeled the three weights in the dual of the standard representation. Such a diagram, illustrating the weights of an irreducible representation, is called a weight diagram.

In each irreducible representation, there is always a weight λ in the positive Weyl chamber such that if μ is another weight then $\lambda \succcurlyeq \mu$ in the partial order. This weight is called the highest-weight vector of the representation. We have circled the highest-weight vectors in Figure 24.2.

Fig. 24.2. Left: The standard representation; right: its dual.

The highest-weight vector can be any element of $\Lambda \cap \mathcal{C}^{+}$. In fact, there is a bijection between $\Lambda \cap \mathcal{C}^{+}$and the irreducible representations of G. (This is true if G is simply-connected, in particular for $\mathrm{SU}(3)$, the case at hand - see Remark 25.1.) So we will denote $\pi=\pi(\lambda)$ if λ is the highest-weight vector
of π. For example, if $\lambda=3 \varpi_{1}+6 \varpi_{2}$, the weight diagram of π is shown in Figure 24.3.

Fig. 24.3. The irreducible representation $\pi\left(3 \varpi_{1}+6 \varpi_{2}\right)$ of $\operatorname{SU}(2)$.

From this we can see several features of the general situation. The set of weights can be characterized as follows. First, if μ is a weight of $\pi(\lambda)$ then $\lambda \succcurlyeq \mu$ in the partial order. In Figure 24.3, this puts λ in a wedge below and to the left of λ. (Note that $\lambda=3 \varpi_{1}+6 \varpi_{2}$ is marked with a circle.) But since the set of weights is invariant under the Weyl group W, we can actually say that $\lambda \succcurlyeq w(\mu)$ for all $w \in W$. In Figure 24.3, this puts λ in the hexagonal region with vertices $\{w(\lambda) \mid w \in W\}$. This region is marked with dashed lines.

It will be noted that not every element of Λ inside the hexagon is a weight of $\pi(\lambda)$. Indeed, if μ is a weight of Λ then $\lambda-\mu \in \Lambda_{\text {root }}$. In the particular example of Figure 24.3, λ is itself in $\Lambda_{\text {root }}$, so the weights of $\pi(\lambda)$ are elements of the weight lattice.

Next let $G=\operatorname{Sp}(4)$. The root system is of type C_{2}. The weight lattice and root lattice are illustrated in Figure 24.4.

As in Figure 24.1, the weight lattice Λ is marked with light dots and the root sublattice with darker ones. We have also marked the positive Weyl chamber, which is a fundamental group for the Weyl group W, acting by simple reflections.

Fig. 24.4. The root and weight lattices of the C_{2} root system.

The group $\operatorname{Sp}(4)$ admits a homomorphism $\mathrm{Sp}(4) \longrightarrow \mathrm{SO}(5)$, so it has a four-dimensional as well as a five-dimensional irreducible representation. These are $\pi\left(\varpi_{1}\right)$ and $\pi\left(\varpi_{2}\right)$, respectively. Their root diagrams may be found in Figure 24.5.

1

Fig. 24.5. The fundamental representations of $\mathrm{Sp}(4)$.

The weight diagram of the irreducible representation $\pi\left(2 \varpi_{1}+3 \varpi_{2}\right)$ of $\mathrm{Sp}(4)$ is shown in Figure 24.6.

Fig. 24.6. The irreducible representation $\pi\left(2 \varpi_{1}+3 \varpi_{2}\right)$ of $\operatorname{Sp}(4)$.

EXERCISES

Exercise 24.1. Consider the adjoint representation of $\operatorname{SU}(3)$ acting on the eightdimensional Lie algebra \mathfrak{g} of $\operatorname{SU}(3)$. (It may be shown to be irreducible.) Show that the highest-weight vector is $\varpi_{1}+\varpi_{2}$, and construct a weight diagram.

Exercise 24.2. Construct a weight diagram for the adjoint representation of $\operatorname{Sp}(4)$ or, equivalently, $\mathrm{SO}(5)$.

Exercise 24.3. Consider the symmetric square of the standard representation of $\mathrm{SU}(3)$. Show that this representation has dimension six, and that its highest-weight vector is $2 \varpi_{1}$. Construct its weight diagram.

Exercise 24.4. Consider the tensor product of the contragredient of the standard representation of $\mathrm{SU}(3)$, having highest-weight vector ϖ_{2}, with the adjoint representation, having highest-weight vector $\varpi_{1}+\varpi_{2}$. We will see later in Exercise 25.4 that this tensor product has three irreducible constituents. They are the contragredient of the standard representation, the symmetric square of the standard representation, and another piece, which we will call $\pi_{\varpi_{1}+2 \varpi_{2}}$. The first two pieces are known, and the third can be obtained by subtracting the two others. Accepting for now the validity of this decomposition, construct the weight diagram for the irreducible representation $\pi_{\omega_{1}+2 \omega_{2}}$.

The Weyl Character Formula

The character formula of Weyl [129] is the gem of the representation theory of compact Lie groups.

Let G be a compact connected Lie group and T a maximal torus. Most notations will be as in Chapter 19 and Chapter 21. We will assume for simplicity that G is semisimple, then discuss at the end the minor modifications needed in the general case.

As in Chapter 23, let Λ be the set of weights in \mathcal{V}, and let $\Lambda_{\text {root }}$ be the lattice spanned by the roots. We recall from Chapter 23 that for G semisimple we have

$$
\Lambda \supseteq X^{*}(T) \supseteq \Lambda_{\text {root }}
$$

and each of these is a spanning lattice of \mathcal{V}.
If G is not semisimple, then the roots do not span \mathcal{V}. We still define a weight, as in the semisimple case, to be a $\lambda \in \mathcal{V}$ such that $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$, but then the set Λ of weights defined this way is not a discrete subset. We still have $\Lambda \supset X^{*}(T) \supset \Lambda_{\text {root }}$, but in this case $\left[\Lambda: X^{*}(T)\right]$ and $\left[X^{*}(T): \Lambda_{\text {root }}\right]$ are infinite. As we have noted, we will assume that G is semisimple for most of the chapter.

Theorem 25.1. Let G be a compact connected semisimple Lie group and T a maximal torus in G. Let $W=N(T) / T$ be the Weyl group and Φ the root system, as in Chapter 19. Then W is generated by the $w_{\alpha}(\alpha \in \Phi)$ defined in Proposition 19.1.

This means that we may identify W with the Weyl group of Φ as studied in Chapter 21.

Proof. Let $W^{\prime} \subset W$ be the subgroup of W generated by $w_{\alpha}(\alpha \in \Phi)$. Then W^{\prime} is the Weyl group as defined in Chapter 19, and we will show that $W=W^{\prime}$. Except that the group denoted W in Chapter 21 will be denoted temporarily as W^{\prime}, we will follow the notations of that chapter. In particular, we choose an ordering of the roots and denote by Φ^{+}the positive roots, by Σ the simple positive roots, and by \mathcal{C}_{+}° the positive Weyl chamber.

Let $\tilde{w} \in W$. By Proposition 21.13 there exists $w \in W^{\prime}$ such that $w^{-1} \tilde{w}$ permutes the elements of Φ^{+}and Σ. We will show that $w=\tilde{w}$. We note that if ρ denotes half the sum of the positive roots, as in Chapter 21, then ρ is in the interior of the positive Weyl chamber by Proposition 21.16. It is fixed by $w^{-1} \tilde{w}$.

Let $n \in N(T)$ represent $w^{-1} \tilde{w} \in W=N(T) / T$.

$$
h_{\rho}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} h_{\alpha}
$$

where the $h_{\alpha} \in \operatorname{Lie}(T)$ are as in Chapter 23. In view of (23.2), we see that $\operatorname{Ad}(n)$ fixes h_{ρ}. On the other hand, since ρ is in the interior of the positive Weyl chamber, h_{ρ} is not fixed by $\operatorname{Ad}\left(w_{\alpha}\right)$ for any ρ. Thus, in the notation of Proposition 22.3, it is not contained in the Lie algebra \mathfrak{t}_{α} of any T_{α}. Hence, by that proposition, the one-parameter subgroup $S=\left\{\exp \left(t h_{\rho}\right) \mid t \in \mathbb{R}\right\} \subset T$ contains regular elements. This means that T is the unique torus that contains S and so the centralizer $C_{G}(S)$ is contained in the normalizer $N_{G}(T)$. The group $C_{G}(S)$ is connected by Theorem 16.6 , so $n \in C_{G}(S) \subseteq N_{G}(T)^{\circ}=T$ by Proposition 15.8. Therefore $w=\tilde{w}$, as required.

We have written the characters of T additively. Sometimes we want to write them multiplicatively, however, so we introduce symbols e^{λ} for $\lambda \in \mathcal{V}$ subject to the rule $e^{\lambda} e^{\mu}=e^{\lambda+\mu}$. More formally, let $\Lambda \supset X^{*}(T)$ be the additive group of weights. If R is a commutative ring, let $\mathcal{E}(R)$ denote the free R-module on the set of symbols $\left\{e^{\lambda} \mid \lambda \in \Lambda\right\}$. It consists of all formal sums $\sum_{\lambda \in \Lambda} n_{\lambda} e^{\lambda}$ with $n_{\lambda} \in R$ such that $n_{\lambda}=0$ for all but finitely many λ. It is a ring with the multiplication

$$
\begin{equation*}
\left(\sum_{\lambda \in \Lambda} n_{\lambda} \cdot e^{\lambda}\right)\left(\sum_{\mu \in \Lambda} m_{\mu} \cdot e^{\mu}\right)=\sum_{\nu \in \Lambda}\left(\sum_{\lambda+\mu=\nu} n_{\lambda} m_{\mu}\right) \cdot e^{\nu} \tag{25.1}
\end{equation*}
$$

This makes sense because only finitely many n_{λ} and only finitely many m_{μ} are nonzero. Of course, $\mathcal{E}(R)$ is just the group algebra over R of Λ. The Weyl group acts on $\mathcal{E}(R)$, and we will denote by $\mathcal{E}(R)^{W}$ the subring of W-invariant elements. Usually, we are interested in the case $R=\mathbb{Z}$, and we will denote $\mathcal{E}=\mathcal{E}(\mathbb{Z}), \mathcal{E}^{W}=\mathcal{E}(\mathbb{Z})^{W}$.

If $\xi=\sum_{\lambda} n_{\lambda} \cdot e^{\lambda}$, we will sometimes denote $m(\xi, \lambda)=n_{\lambda}$, the multiplicity of λ in ξ. We will denote by $\bar{\xi}=\sum_{\lambda} n_{\lambda} \cdot e^{-\lambda}$ the conjugate of ξ.

By Theorem 18.1, class functions on G are the same thing as W-invariant functions on T. In particular, if χ is the character of a representation of G, then its restriction to T is a sum of characters of T and is invariant under the action of W. Thus, if $\lambda \in X^{*}(T) \subseteq \Lambda$, let $n_{\lambda}(\chi)$ denote the multiplicity of λ in this restriction. We associate with χ the element

$$
\sum_{\lambda} n_{\lambda}(\chi) e^{\lambda} \in \mathcal{E}^{W}
$$

We will identify χ with this expression. We thus regard characters χ as elements of \mathcal{E}^{W}. The operation of conjugation that we have defined corresponds to the conjugation of characters. The conjugate of a character is a character by Proposition 2.6.

Remark 25.1. Although characters of G can thus be represented as elements of \mathcal{E}^{W}, not every element of \mathcal{E}^{W} is well-defined as a function on G if $\Lambda \neq X^{*}(T)$. It may be shown that $\Lambda=X^{*}(T)$ if and only if G is simply-connected, so an element of \mathcal{E}^{W} can always be regarded as a class function on the universal cover of G. However, there is no need to do this. No problems will arise from working with a ring some of whose elements - including those we are really interested in, the characters of G - are well-defined functions on G and others are not. It is sometimes convenient to enlarge \mathcal{E} a bit more: let \mathcal{E}_{2} be the free \mathbb{Z}-module on the set of symbols $\left\{e^{\lambda} \left\lvert\, \lambda \in \frac{1}{2} \Lambda\right.\right\}$.

Let $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be the simple roots and let $\left\{\varpi_{1}, \cdots, \varpi_{r}\right\}$ be the fundamental dominant weights. Let $e_{i}=e^{\varpi_{i}}$. Then $\mathcal{E}(\mathbb{Z})$ is the ring of Laurent polynomials with integer coefficients:

$$
\mathcal{E}=\mathbb{Z}\left[e_{1}, \cdots, e_{r}, e_{1}^{-1}, \cdots e_{r}^{-1}\right] .
$$

It is the localization $S^{-1} \mathbb{Z}\left[e_{1}, \cdots, e_{r}\right]$, where S is the multiplicative subset of $\mathbb{Z}\left[e_{1}, \cdots, e_{r}\right]$ generated by $\left\{e_{1}^{-1}, \cdots, e_{r}^{-1}\right\}$. As such, it is a unique factorization domain. (See Lang [90], Exercise 5 on p. 115.)

We will denote by $\Delta \in \mathcal{E}$ the element

$$
e^{-\rho} \prod_{\alpha \in \Phi^{+}}\left(1-e^{\alpha}\right)
$$

Proposition 25.1. We have $w(\Delta)=(-1)^{l(w)} \Delta$ for all $w \in W$.
Proof. Applying w to Δ gives

$$
\begin{aligned}
& e^{-w(\rho)} \prod_{\substack{\alpha \in \Phi^{+} \\
w(\alpha) \in \Phi^{+}}}\left(1-e^{w(\alpha)}\right) \prod_{\substack{\alpha \in \Phi^{+} \\
w(\alpha) \in \Phi^{-}}}\left(1-e^{w(\alpha)}\right)= \\
& e^{-w(\rho)} \prod_{\substack{\alpha \in \Phi^{+} \\
w^{-1}(\alpha) \in \Phi^{+}}}\left(1-e^{\alpha}\right) \prod_{\substack{\alpha \in \Phi^{+} \\
w^{-1}(\alpha) \in \Phi^{-}}}\left(1-e^{-\alpha}\right)= \\
& e^{-w(\rho)} \prod_{\alpha \in \Phi^{+}}\left(1-e^{\alpha}\right) \prod_{\substack{\alpha \in \Phi^{+} \\
w^{-1}(\alpha) \in \Phi^{-}}}\left(-e^{-\alpha}\right) .
\end{aligned}
$$

By (21.11) and the fact that the cardinality of $\left\{w \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\}$equals $l(w)$, this equals $(-1)^{l(w)} \Delta$.

This proof can be made more transparent by writing

$$
\begin{equation*}
\Delta=\prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right) \tag{25.2}
\end{equation*}
$$

However, $\alpha / 2$ may not be an element of Λ, so each individual factor on the right is not really an element of \mathcal{E} but of the larger ring \mathcal{E}_{2}. Proposition 25.1 follows by noting that by Proposition 21.1 (ii) every simple reflection alters the sign of exactly one term in (25.2), and the result follows.

Proposition 25.2. If $\xi \in \mathcal{E}$ satisfies $w(\xi)=(-1)^{l(w)} \xi$ for all $w \in W$, then ξ is divisible by Δ in \mathcal{E}.

Proof. In the ring \mathcal{E}, by Proposition $25.1, \Delta$ is a product of distinct irreducible elements $1-e^{\alpha}$, where α runs through Φ^{+}, times a unit $e^{-\rho}$. It is therefore sufficient to show that ξ is divisible by each $1-e^{\alpha}$. By Proposition 21.12, we have $s_{\alpha}(\xi)=-\xi$. Write $\xi=\sum_{\lambda \in \Lambda} n_{\lambda} \cdot l$. Since $s_{\alpha}(\xi)=-\xi$, we have $n_{s_{\alpha}(\lambda)}=-n_{\lambda}$. Noting that $s_{\alpha}(\lambda)=\lambda-k \alpha$ where $k \in \mathbb{Z}$, we see that

$$
\xi=\sum_{\substack{\lambda \in \Lambda \\ \lambda \bmod \left\langle s_{\alpha}\right\rangle}} n_{\lambda}\left(e^{\lambda}-e^{\lambda-k \alpha}\right)
$$

The notation means that we choose only one representative for each s_{α} orbit of Λ. (If $s_{\alpha}(\lambda)=\lambda$, then $n_{\lambda}=0$.) Since

$$
e^{\lambda}-e^{\lambda-k \alpha}=\left(1-e^{\alpha}\right)\left(-e^{\lambda-\alpha}-e^{\lambda-2 \alpha}-\ldots-e^{\lambda-k \alpha}\right)
$$

this is divisible by Δ.
If $\lambda \in \Lambda \cap \mathcal{C}_{+}$, let

$$
\begin{equation*}
\chi(\lambda)=\Delta^{-1} \sum_{w \in W}(-1)^{w} e^{w(\lambda+\rho)} \tag{25.3}
\end{equation*}
$$

Strictly speaking, we are only interested in $\chi(\lambda)$ when $\lambda \in X^{*}(T)$, but we make this definition for all weights. By Proposition 25.2, $\chi(\lambda) \in \mathcal{E}$. Moreover, applying $w \in W$ multiplies both $\sum_{w \in W}(-1)^{w} e^{w(\lambda+\rho)}$ and Δ by $(-1)^{w}$, so $\chi(\lambda)$ is actually in \mathcal{E}^{W}.

We will eventually prove that if $\lambda \in X^{*}(T) \cap \mathcal{C}_{+}$this is an irreducible character of G. Then (25.3) is called the Weyl character formula.

If $\xi=\sum n_{\lambda} e^{\lambda} \in \mathcal{E}$, we define the support of ξ to be the finite set $\operatorname{supp}(\xi)=$ $\left\{\lambda \in L \mid n_{\lambda} \neq 0\right\}$. We define a partial order on \mathcal{V} by $\lambda \preccurlyeq \mu$ if $\lambda=\mu+\sum_{\alpha \in \Sigma} c_{\alpha} \alpha$, where $c_{\alpha} \geqslant 0$.

Proposition 25.3. If $\lambda \in \mathcal{C}_{+}$, then $\lambda \succcurlyeq w(\lambda)$ for $w \in W$. If $\lambda \in \mathcal{C}_{+}^{\circ}$ and $w \neq 1$, then $w(\lambda) \succ \lambda$.

Proof. It is easy to see that, for $x \in \mathcal{V}, x \succcurlyeq 0$ if and only if $\langle x, v\rangle \geqslant 0$ for all $v \in \mathcal{C}_{+}^{\circ}$. So if $\lambda \in \mathcal{C}_{+}$and $\lambda \nexists w(\lambda)$, then there exists $v \in \mathcal{C}_{+}^{\circ}$ such that $\langle\lambda-w(\lambda), v\rangle<0$. We choose w to maximize $\langle w(\lambda), v\rangle$. Since $w(\lambda) \neq \lambda$ and $\lambda \in \mathcal{C}_{+}$, it follows from Theorem 21.1 that $w(\lambda) \notin \mathcal{C}_{+}$. Therefore, there exists $\alpha \in \Sigma$ such that $\langle w(\lambda), \alpha\rangle<0$. Now

$$
\begin{aligned}
& \left\langle s_{\alpha} w(\lambda), v\right\rangle=\left\langle w(\lambda)-2 \frac{\langle w(\lambda), \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha, v\right\rangle= \\
& \langle w(\lambda), v\rangle-2 \frac{\langle w(\lambda), \alpha\rangle}{\langle\alpha, \alpha\rangle}\langle\alpha, v\rangle>\langle w(\lambda), v\rangle
\end{aligned}
$$

The maximality of $\langle w(\lambda), v\rangle$ is contradicted.
Proposition 25.4. Let $\lambda \in \mathcal{C}_{+}$. Then $\lambda \in \operatorname{supp} \chi(\lambda)$. Indeed, writing $\chi(\lambda)=$ $\sum_{\mu} n_{\mu} \cdot \mu$, we have $n_{\lambda}=1$. Moreover, if $\mu \in \operatorname{supp} \chi(\lambda)$, then $\lambda \succcurlyeq \mu$, and $\lambda-\mu \in \Lambda_{\text {root }}$. In particular, λ is the largest weight in the support of $\chi(\lambda)$.
Proof. We enlarge the ring \mathcal{E} as follows. Let $\hat{\mathcal{E}}$ be the "completion" consisting of all formal sums $\sum_{\lambda \in \Lambda} n_{\lambda} \cdot \lambda$, where we now allow $n_{\lambda} \neq 0$ for an infinite number of λ. However, we ask that there be a $v \in \mathcal{V}$ such that $n_{\lambda} \neq 0$ implies that $\lambda \preccurlyeq v$. This means that, in the product (25.1), only finitely many terms will be nonzero, so $\hat{\mathcal{E}}$ is a ring. We can write

$$
\Delta=e^{\rho} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)
$$

so in $\hat{\mathcal{E}}$ we have

$$
\Delta^{-1}=e^{-\rho} \prod_{\alpha \in \Phi^{+}}\left(1+e^{-\alpha}+e^{-2 \alpha}+\ldots\right)
$$

Therefore,

$$
\begin{equation*}
\chi(\lambda)=e^{\lambda} \prod_{\alpha \in \Phi^{+}}\left(1+e^{-\alpha}+e^{-2 \alpha}+\ldots\right) \sum_{w \in W}(-1)^{w} e^{w(\lambda+\rho)-(\lambda+\rho)} \tag{25.4}
\end{equation*}
$$

Each factor in the product is $\prec 0$ except 1 , and by Proposition 25.3 every term in the sum is $\prec 0$ except that corresponding to $w=1$. Hence, every term in the expansion is $\preccurlyeq \lambda$, and exactly one term contributes λ itself.

It remains to be seen that if e^{μ} appears in the expansion of the right-hand side of (25.4), then $\lambda-\mu$ is an element of $\Lambda_{\text {root }}$. We note that $w(\lambda+\rho)-(\lambda+\rho) \in$ $\Lambda_{\text {root }}$ by Proposition 21.14, and of course all the contributions coming from the product over $\alpha \in \Phi^{+}$are roots, and the result follows.

Now let us write the Weyl integration formula in terms of Δ.
Theorem 25.2. If f is a class function on G, we have

$$
\begin{equation*}
\int_{G} f(g) d g=\frac{1}{|W|} \int_{T} f(t)|\Delta(t)|^{2} d t \tag{25.5}
\end{equation*}
$$

Here there is an abuse of notation since Δ is itself only an element of \mathcal{E}, not even W-invariant, so it is not identifiable as a function on the group. (See Remark 25.1.) However, it will follow from the proof that $\Delta \bar{\Delta}$ is always a function on the group, and we will naturally denote $\Delta \bar{\Delta}$ as $|\Delta|^{2}$.

Proof. We will show that

$$
\begin{equation*}
\operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right)=\Delta \bar{\Delta} \tag{25.6}
\end{equation*}
$$

Indeed, since the complexification of \mathfrak{p} is the direct sum of the spaces \mathfrak{X}_{α} on each of which $t \in T$ acts by $\alpha(t)$ in the adjoint representation,

$$
\operatorname{det}\left(\left[\operatorname{Ad}\left(t^{-1}\right)-I_{\mathfrak{p}}\right] \mid \mathfrak{p}\right)=\prod_{\alpha \in \Phi}\left(\alpha(t)^{-1}-1\right)=\left|\prod_{\alpha \in \Phi^{+}}(\alpha(t)-1)\right|^{2}
$$

In \mathcal{E}, this becomes the element

$$
\left[e^{-\rho} \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha}-1\right)\right] \overline{\left[e^{-\rho} \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha}-1\right)\right]}=\Delta \bar{\Delta}
$$

Now (25.5) is just the Weyl integration formula, Theorem 18.2.
We now introduce an inner product on \mathcal{E}^{W}. If $\xi, \eta \in \mathcal{E}^{W}$, let

$$
\begin{equation*}
\langle\xi, \eta\rangle=\frac{1}{|W|} m((\xi \Delta) \overline{(\eta \Delta)}, 0) \tag{25.7}
\end{equation*}
$$

That is, it is the multiplicity of the zero weight in $(\xi \Delta) \overline{(\eta \Delta)}$ divided by $|W|$.
Theorem 25.3. If ξ and η are characters of G, identified with elements of \mathcal{E}, then the inner product (25.7) agrees with the L^{2} inner product of the characters.

Proof. The L^{2} inner product of ξ and η is just the integral of $\xi \cdot \bar{\eta}$ over the group and, using (25.5), this is just W^{-1} times the multiplicity of 0 in $(\xi \Delta) \overline{(\eta \Delta)}$.

Proposition 25.5. If λ and μ are weights in \mathcal{C}_{+}, we have

$$
\langle\chi(\lambda), \chi(\mu)\rangle=\left\{\begin{array}{l}
1 \text { if } \lambda=\mu \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. Using (25.7), this inner product is the multiplicity of 0 in

$$
\frac{1}{|W|}\left[\sum_{w \in W}(-1)^{w} e^{w(\rho+\lambda)}\right]\left[\sum_{w^{\prime} \in W}(-1)^{w^{\prime}} e^{w^{\prime}(\rho+\mu)}\right]=
$$

$$
\frac{1}{|W|}\left[\sum_{w, w^{\prime} \in W}(-1)^{w+w^{\prime}} e^{w(\rho+\lambda)-w^{\prime}(\rho+\mu)}\right]
$$

We must therefore ask, with both λ and $\mu \in \mathcal{C}_{+}$, under what circumstances $w(\rho+\lambda)-w^{\prime}(\rho+\mu)=0$ can vanish. Then $\rho+\lambda=w^{-1} w^{\prime}(\rho+\mu)$. Since both $\rho+\lambda$ and $\rho+\mu$ are in \mathcal{C}_{+}°, it follows from Theorem 21.1 that w must equal w^{\prime} and so λ must equal μ. The number of solutions is thus $|W|$ if $\lambda=\mu$ and zero otherwise.

Proposition 25.6. The set of $\chi(\lambda), \lambda \in \Lambda \cap \mathcal{C}_{+}^{\circ}$, is an algebraic basis of the free \mathbb{Z}-module \mathcal{E}^{W}.

Proof. The linear independence of the $\chi(\lambda)$ follows from their orthogonality. We must show that they span. Clearly, \mathcal{E}^{W} is spanned by elements of the form

$$
B(\lambda)=\sum_{\mu \in W \cdot \lambda} e^{\mu}, \quad l \in \Lambda \cap \mathcal{C}_{+}
$$

where $W \cdot \lambda$ is the orbit of λ under the action of W. It is sufficient to show that $B(\lambda)$ is in the \mathbb{Z}-linear span of the $\chi(\lambda)$. It follows from Proposition 25.4 that when we expand $B(\lambda)-\chi(\lambda)$ in terms of the $B(\mu)$, only $\mu \in \Lambda$ with $\mu \prec \lambda$ can occur and, by induction, these are in the span of the $\chi(\mu)$.

Theorem 25.4. (Weyl) Assume that G is semisimple. If $\lambda \in X^{*}(T) \cap \mathcal{C}_{+}$, then $\chi(\lambda)$ is the character of an irreducible representation of G, and every irreducible representation is obtained this way.

We will denote by $\pi(\lambda)$ the irreducible representation of G with character χ_{λ}.
Proof. Let χ be an irreducible representation of G. Regarding χ as an element of \mathcal{E}^{W}, we may expand χ in terms of the $\chi(\lambda)$ by Proposition 25.6. We write

$$
\chi=\sum_{\lambda \in \Lambda \cap \mathcal{C}_{+}} n_{\lambda} \cdot \chi(\lambda), \quad n_{\lambda} \in \mathbb{Z}
$$

We have

$$
1=\langle\chi, \chi\rangle=\sum_{\lambda} n_{\lambda}^{2}
$$

Therefore, exactly one n_{λ} is nonzero, and that has value ± 1. Thus, either $\chi(\lambda)$ or its negative is an irreducible character of G. To see that $-\chi(\lambda)$ is not a character, consider its restriction to T. By Proposition 25.4, the multiplicity of the character λ in $-\chi(\lambda)$ is -1 , which is impossible if $-\chi(\lambda)$ is a character. Hence $\chi(\lambda)=\chi$ is an irreducible character of G.

We have shown that every irreducible character of G is a $\chi(\lambda)$. It remains to be shown that every $\chi(\lambda)$ is a character. Since the class functions on G are identical to the W-invariant functions on T, the closure in $L^{2}(G)$ of $\mathcal{E}(\mathbb{C})^{W}$ is identified with the space of all class functions on G. By Proposition 25.6, the
$\chi(\lambda)$ form an L^{2}-basis of $\mathcal{E}(\mathbb{C})^{W}$. Since by the Peter-Weyl Theorem the set of irreducible characters of G are an L^{2} basis of the space of class functions, the characters of G cannot be a proper subset of the set of $\chi(\lambda)$.

Now let us step back and see what we have established. We know that in group representation theory there is a duality between the irreducible characters of a group and its conjugacy classes. We can study both the conjugacy classes and the irreducible representations of a compact Lie group by restricting them to T. We find that the conjugacy classes of G are in one-to-one correspondence with the W-orbits of T. Dually, the irreducible representations of G are parametrized by the orbits of W on $X^{*}(T)$.

We study these orbits by embedding $X^{*}(T)$ in a Euclidean space \mathcal{V}. The positive Weyl chamber \mathcal{C}_{+}is a fundamental domain for the action of W on \mathcal{V}, and so the dominant weights - those in $\mathcal{C}_{+}-$are thus used to parametrize the irreducible representations. Of the weights that appear in the parametrized representation $\chi(\lambda)$, the parametrizing weight $\lambda \in \mathcal{C}_{+} \cap X^{*}(T)$ is maximal with respect to the partial order. We therefore call it the highest-weight vector of the representation.

Proposition 25.7. We have

$$
\begin{equation*}
\Delta=\sum_{w \in W}(-1)^{l(w)} e^{w(\rho)} \tag{25.8}
\end{equation*}
$$

Proof. The irreducible representation $\chi(0)$ with highest-weight vector 0 is obviously the trivial representation. Therefore $\chi(0)=e^{0}=1$. The formula now follows from (25.3).

Weyl gave a formula for the dimension of the irreducible representation with character χ_{λ}. Of course, this is the value χ_{λ} at the identity element of G, but we cannot simply plug the identity into the Weyl character formula since the numerator and denominator both vanish there. Naturally, the solution is to use L'Hôpital's rule, which can be formulated purely algebraically in this context.

Theorem 25.5. (Weyl) The dimension of $\pi(\lambda)$ is

$$
\begin{equation*}
\frac{\prod_{\alpha \in \Phi^{+}}\langle\lambda+\rho, \alpha\rangle}{\prod_{\alpha \in \Phi^{+}}\langle\rho, \alpha\rangle} \tag{25.9}
\end{equation*}
$$

Proof. Let $\Omega: \mathcal{E}_{2} \longrightarrow \mathbb{Z}$ be the map

$$
\Omega\left(\sum_{\lambda \in \Lambda} n_{\lambda} \cdot e^{\lambda}\right)=\sum_{\lambda \in \Lambda} n_{\lambda}
$$

The dimension we wish to compute is $\Omega\left(\chi_{\lambda}\right)$.

If $\alpha \in \Phi$, let $\partial_{\alpha}: \mathcal{E}_{2} \longrightarrow \mathcal{E}_{2}$ be the map

$$
\partial_{\alpha}\left(\sum_{\lambda \in \Lambda} n_{\lambda} \cdot e^{\lambda}\right)=\sum_{\lambda \in \Lambda} n_{\lambda}\langle\lambda, \alpha\rangle \cdot e^{\lambda}
$$

It is straightforward to check that ∂_{α} is a derivation and that the operators ∂_{α} commute with each other. Let $\partial=\prod_{\alpha \in \Phi^{+}} \partial_{\alpha}$.

We show that if $w \in W$ and $f \in \mathcal{E}_{2}$, we have

$$
\begin{equation*}
w \partial(f)=(-1)^{l(w)} \partial w(f) \tag{25.10}
\end{equation*}
$$

We note first that

$$
\begin{equation*}
\partial_{w(\alpha)} \circ w=w \circ \partial_{\alpha} \tag{25.11}
\end{equation*}
$$

since applying the operator on the left-hand side to e^{λ} gives $\langle w(\lambda), w(\alpha)\rangle e^{w(\lambda)}$, while the second gives $\langle\lambda, \alpha\rangle e^{\lambda}$, and these are equal. Now, to prove (25.10), we may assume that $w=s_{\beta}$ is a simple reflection. By (25.11), we have

$$
w \circ\left(\prod_{\alpha \in \Phi^{+}} \partial_{w(\alpha)}\right)=\partial \circ w
$$

But by Proposition 21.1 (ii), the set of $w(\alpha)$ consists of Φ^{+}with just one element, namely β, replaced by its negative. So (25.10) is proved.

We consider now what happens when we apply $e \circ \partial$ to both sides of the identity

$$
\begin{equation*}
\sum_{w \in W}(-1)^{\lambda} e^{w(\lambda+\rho)}=\chi_{\lambda} \cdot \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right) \tag{25.12}
\end{equation*}
$$

On the left-hand side, by (25.10), applying ∂ gives

$$
\sum_{w \in W} w\left(\partial e^{\lambda+\rho}\right)=\sum_{w \in W}\left(\prod_{\alpha \in \Phi^{+}}\langle\lambda+\rho, \alpha\rangle e^{\lambda+\rho}\right) .
$$

Now applying Ω gives $|W| \prod_{\alpha \in \Phi^{+}}\langle\lambda+\rho, \alpha\rangle$.
On the other hand, we apply $\partial=\prod \partial_{\beta}$ one derivation at a time to the right-hand side of (25.12), expanding by the Leibnitz product rule to obtain a sum of terms, each of which is a product of χ_{λ} and the terms $e^{\alpha / 2}-e^{-\alpha / 2}$, with various subsets of the ∂_{β} applied to each factor. When we apply Ω, any term in which a $e^{\alpha / 2}-e^{-\alpha / 2}$ is not hit by at least one ∂_{β} will be killed. Since the number of operators ∂_{β} and the number of factors $e^{\alpha / 2}-e^{-\alpha / 2}$ are equal, only the terms in which each $e^{\alpha / 2}-e^{-\alpha / 2}$ is hit by exactly one ∂_{β} survive. Of course, χ_{λ} is not hit by a ∂_{β} in any such term. In other words,

$$
\Omega \circ \partial\left(\chi_{\lambda} \cdot \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)\right)=\theta \cdot \Omega\left(\chi_{\lambda}\right)
$$

where

$$
\theta=\Omega \circ \partial\left(\prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)\right)
$$

We have proved that

$$
|W| \prod_{\alpha \in \Phi^{+}}\langle\lambda+\rho, \alpha\rangle=\theta \cdot \Omega\left(\chi_{\lambda}\right)
$$

To evaluate θ, we take $\lambda=0$, so that χ_{λ} is the character of the trivial representation, and $\Omega\left(\chi_{\lambda}\right)=1$. We see that $\theta=|W| \prod_{\alpha \in \Phi^{+}}\langle\rho, \alpha\rangle$. Dividing by this, we obtain (25.9).

Proposition 25.8. (Brauer) Suppose that λ and μ are in $X^{*}(T) \cap \mathcal{C}_{+}$. Decompose χ_{μ} into a sum of weights $\nu \in X^{*}(T)$ with multiplicities $m(\nu)$:

$$
\chi_{\mu}=\sum_{\nu} m(\nu) e^{\nu}
$$

Suppose that for every ν with $m(\nu) \neq 0$ the weight $\lambda+\nu$ is dominant. Then

$$
\begin{equation*}
\chi_{\lambda} \chi_{\mu}=\sum_{\nu} m(\nu) \chi_{\lambda+\nu} \tag{25.13}
\end{equation*}
$$

Since $\chi_{\lambda} \chi_{\mu}$ is the character of the tensor product representation, this gives the decomposition of this tensor product into irreducibles. The method of proof can be extended to the case where $\lambda+\nu$ is not dominant for all ν, though the answer is a bit more complicated to state (Exercise 25.5).

Proof. By the Weyl character formula, we may write

$$
\chi_{\lambda} \chi_{\mu}=\Delta^{-1} \sum_{\nu} m(\nu) e^{\nu} \sum_{w}(-1)^{l(w)} e^{w(\lambda+\rho)}
$$

Interchange the order of summation, so that the sum over ν is the inner sum, and make the variable change $\nu \longrightarrow w(\nu)$. Since $m(\nu)=m(w \nu)$, we get

$$
\Delta^{-1} \sum_{w} \sum_{\nu} m(\nu)(-1)^{l(w)} e^{w(\lambda+\nu+\rho)}
$$

Now we may interchange the order of summation again and apply the Weyl character formula to obtain (25.13).

Thus far in the proofs we have assumed that G is semisimple. This assumption was used, for example, in defining the ring \mathcal{E} and proving that it is a unique factorization domain. We now remove this assumption. The obstacles toward simply generalizing the proofs in the semisimple case are not insurmountable, but instead we will deduce the Weyl character formula in the general case from the already proved semisimple case.

Let G be an arbitrary compact connected Lie group. Let $\Lambda \subset \mathcal{V}=\mathbb{R} \otimes$ $X^{*}(T)$ be the set of weights, which is not a lattice if G is not semisimple but which contains $X^{*}(T)$. As in Chapter 21 (where we made no assumption that Φ spans \mathcal{V}), we may define a positive Weyl chamber \mathcal{C}_{+}. We may still define ρ to be half the sum of the positive roots, and it is a weight. The ring \mathcal{E} may still be defined to be the free Abelian group on the symbols e^{λ} with $\lambda \in \Lambda$, and it is still an integral domain. It is not Noetherian. We may still define

$$
\Delta=e^{-\rho} \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha}-1\right) .
$$

We may still regard the character of an irreducible representation of G as an element of \mathcal{E}^{W}. If $\lambda \in X^{*}(T) \cap \mathcal{C}_{+}$, we can still define $\chi(\lambda)$ by (25.3). The Weyl character formula is still true in this more general context.

Theorem 25.6. (Weyl) If G is a compact connected Lie group, and if $\lambda \in$ $X^{*}(T) \cap \mathcal{C}_{+}$, then $\chi(\lambda)$ is the character of an irreducible representation of G, and the character of every irreducible representation is of this form.

Proof. Let G^{\prime} be the commutator subgroup of $G, T^{\prime}=T \cap G^{\prime}, Z=Z(G)$ the center, and $Z^{\prime}=T^{\prime} \cap Z$. Then Z^{\prime} is finite and G^{\prime} is semisimple. We have a surjective homomorphism $X^{*}(T) \longrightarrow X^{*}\left(T^{\prime}\right)$, which we can extend to a surjective linear transformation $p: \mathcal{V} \longrightarrow \mathcal{V}^{\prime}$, where $\mathcal{V}^{\prime}=X^{*}\left(T^{\prime}\right)$.

If \mathcal{C}_{+}^{\prime} is the positive Weyl chamber in \mathcal{V}^{\prime}, then $\mathcal{C}_{+}=p^{-1} \mathcal{C}_{+}^{\prime}$ is a positive Weyl chamber in \mathcal{V}. Let λ^{\prime} be the image of λ in $X^{*}\left(T^{\prime}\right)$, and let $\chi^{\prime}\left(\lambda^{\prime}\right)$ be the character of the irreducible representation of G^{\prime} with highest-weight vector λ^{\prime}. The character λ^{\prime} lies in \mathcal{C}_{+}^{\prime} if and only if λ lies in \mathcal{C}_{+}.

The restriction of λ to Z is a character that we denote $\omega: Z \longrightarrow \mathbb{C}^{\times}$.
By the Weyl character formula for the semisimple group G^{\prime}, which is already proved, there exists a representation $\left(\pi^{\prime}, V^{\prime}\right)$ of G^{\prime} with character $\chi^{\prime}\left(\lambda^{\prime}\right)$. The central character of π^{\prime} is a character of Z^{\prime}, which agrees with the restriction of ω. Therefore, we may define a representation $\left(\pi, V^{\prime}\right)$ of $G=G^{\prime} Z$ by $\pi\left(g^{\prime} z\right)=\pi^{\prime}\left(g^{\prime}\right) \omega(z)$ for $g^{\prime} \in G^{\prime}, z \in Z$, and this is well-defined.

If $\nu \in X^{*}(T)$, and if ν^{\prime} is the image of ν in $X^{*}\left(T^{\prime}\right)$, then the multiplicity of ν in $\chi(\lambda)$ is the same as the multiplicity of ν^{\prime} in $\chi^{\prime}\left(\lambda^{\prime}\right)$. This is the multiplicity of ν in π. Indeed, if $V^{\prime}\left(\nu^{\prime}\right)$ is the ν^{\prime} eigenspace of π^{\prime} restricted to T^{\prime}, then π acts by ν on $V^{\prime}\left(\nu^{\prime}\right)$ because ν is the unique character of T whose restriction to T^{\prime} is ν^{\prime} and whose restriction to Z is ω. It is now clear that the character of π is $\chi(\lambda)$.

To see that every irreducible representation of G has character $\chi(\lambda)$ for some $\lambda \in X^{*}(T) \cap \mathcal{C}_{+}$, if π is such a character, $\pi^{\prime}=\pi \mid G^{\prime}$ is an irreducible representation. This is because $G=G^{\prime} Z$, and by Schur's Lemma Z acts by scalars in π, so if π^{\prime} were reducible, then π would also be reducible. The character of π is $\chi^{\prime}\left(\lambda^{\prime}\right)$ for some λ^{\prime}, and if the central character of π is ω, let λ be the character of T whose restriction to T^{\prime} is λ^{\prime} and whose restriction to Z is ω. It is easy to see that the character of π is $\chi(\lambda)$.

When G is not semisimple, it may be useful to shift ρ by a W-invariant element of $\mathbb{R} \otimes X^{*}(T)$ so that it is in $X^{*}(T)$. Let us illustrate this with $G=U(n)$. We identify $X^{*}(T)$ with \mathbb{Z}^{n} by mapping the character

$$
\left(\begin{array}{ccc}
t_{1} & & \tag{25.14}\\
& \ddots & \\
& & t_{n}
\end{array}\right) \longmapsto \prod t_{i}^{k_{i}}
$$

to $\left(k_{1}, \cdots, k_{n}\right) \in \mathbb{Z}^{n}$. Then ρ is $\frac{1}{2}(n-1, n-3, \cdots, 1-n)$. If n is even, it is an element of $\mathbb{R} \otimes X^{*}(T)$ but not of $X^{*}(T)$. However, if we add to it the W-invariant element $\frac{1}{2}(n-1, \cdots, n-1)$, we get

$$
\begin{equation*}
\delta=(n-1, n-2, \cdots, 1,0) \in X^{*}(T) \tag{25.15}
\end{equation*}
$$

We can now write the Weyl character formula in the form

$$
\begin{equation*}
\chi(\lambda)=\Delta_{0}^{-1} \sum_{w \in W}(-1)^{l(w)} e^{w(\lambda+\delta)} \tag{25.16}
\end{equation*}
$$

where

$$
\Delta_{0}=\sum_{w \in W}(-1)^{l(w)} e^{w(\delta)}
$$

We have simply multiplied the numerator and the denominator by the same W-invariant element so that both the numerator and the denominator are in $X^{*}(T)$.

In (25.6), we write the factor $|\Delta|^{2}=\left|\Delta_{0}\right|^{2}$ since $\left(\Delta_{0} / \Delta\right)^{2}=e^{2(\delta-\rho)}$. As a function on the group, this is just $\operatorname{det}(g)^{n-1}$, which has absolute value 1. Therefore, we may write the Weyl integration formula in the form

$$
\begin{equation*}
\int_{G} f(g) d g=\frac{1}{|W|} \int_{T} f(t)\left|\Delta_{0}(t)\right|^{2} d t \tag{25.17}
\end{equation*}
$$

EXERCISES

In the first batch of exercises, $G=\mathrm{SU}(3)$ and, as usual, ϖ_{1} and ϖ_{2} are the fundamental dominant weights.

Exercise 25.1. By Proposition 25.4, all the weights in χ_{λ} lie in the set

$$
S(\lambda)=\left\{\mu \in \Lambda \mid \lambda \succcurlyeq w(\mu) \text { for all } w \in W, \lambda-\mu \in \Lambda_{\text {root }}\right\} .
$$

Confirm by examining the weights that this is true for all the examples in Chapter 24 - in fact, for all these examples, $S(\mu)$ is exactly the set of weights.

Exercise 25.2. Use the Weyl dimension formula to compute the dimension of $\chi_{2 \varpi_{1}}$. Deduce from this that the symmetric square of the standard representation is irreducible.

Exercise 25.3. Use the Weyl dimension formula to compute the dimension of $\chi_{\varpi_{1}+2 \omega_{2}}$. Deduce from this that the symmetric square of the standard representation is irreducible.

Exercise 25.4. Use Brauer's method (Proposition 25.8) to compute the tensor product of the contragredient of the standard representation (with character $\chi_{\varpi_{2}}$) and the adjoint representation (with character $\chi_{w_{1}+w_{2}}$).

Exercise 25.5. Prove the following extension of Proposition 25.8. Suppose that λ is dominant and that ν is any weight. By Proposition 21.1, there exists a Weyl group element such that $w(\nu+\lambda+\rho) \in \mathcal{C}_{+}$. The point $w(\nu+\lambda+\rho)$ is uniquely determined, even though w may not be. If $w(\nu+\lambda+\rho)$ is on the boundary of \mathcal{C}_{+}, define $\xi(\nu, \lambda)=0$. If $w(\nu+\lambda+\rho)$ is not on the boundary of \mathcal{C}_{+}, explain why $w(\nu+\lambda+\rho)-\rho \in \mathcal{C}_{+}$and w is uniquely determined. In this case, define $\xi(\nu, \lambda)=(-1)^{l(w)} \chi_{w(\nu+\lambda+\rho)-\rho}$. Prove that if μ is a dominant weight, and $\chi_{\mu}=\sum m(\nu) e^{\nu}$, then

$$
\chi_{\mu} \chi_{\lambda}=\sum_{\nu} m(\nu) \xi(\nu, \lambda) .
$$

Exercise 25.6. Use the last exercise to compute the decomposition of $\chi_{w_{1}}^{2}$ into irreducibles, and obtain another proof that the symmetric square of the standard representation is irreducible.

Spin

In this chapter, we will take a closer look at the groups $\mathrm{SO}(N)$ and their double covers, $\operatorname{Spin}(N)$. We assume that $N \geqslant 3$ and that $N=2 n+1$ or $2 n$. The group $\operatorname{Spin}(N)$ was constructed at the end of Chapter 13 as the universal cover of $\mathrm{SO}(N)$. Since we proved that $\pi_{1}(\mathrm{SO}(N)) \cong \mathbb{Z} / 2 \mathbb{Z}$, it is a double cover. In this chapter, we will construct and study the interesting and important spin representations of the group $\operatorname{Spin}(N)$. We will also show how to compute the center of $\operatorname{Spin}(N)$.

The spin representation can be realized concretely as acting on a certain ring, the Clifford algebra. We will not use the Clifford algebras, for which see Artin [4], Chevalley [27], Goodman and Wallach [47], and Lawson and Michelsohn [92].

Let $G=\mathrm{SO}(N)$ and let $\tilde{G}=\operatorname{Spin}(N)$. We will take G in the realization of Exercise 5.3; that is, as the group of unitary matrices satisfying $g J^{t} g=J$, where J is (5.3). Let $p: \tilde{G} \longrightarrow G$ be the covering map. Let T be the diagonal torus in G, and let $\tilde{T}=p^{-1}(T)$. It is a double cover of T.

Proposition 26.1. The group \tilde{T} is connected and is a maximal torus of \tilde{G}.
Proof. Let $\Pi \subset \tilde{G}$ be the kernel of p. The connected component \tilde{T}° of the identity in \tilde{T} is a torus of the same dimension as T, so it is a maximal torus in \tilde{G}. Its image in G is isomorphic to $\tilde{T}^{\circ} /\left(\tilde{T}^{\circ} \cap \Pi\right) \cong \tilde{T}^{\circ} \Pi / \Pi$. This is a torus of G contained in T, and of the same dimension as T, so it is all of T. Thus, the composition

$$
\tilde{T}^{\circ} \longrightarrow \tilde{T} \xrightarrow{p} T
$$

is surjective. We see that

$$
\tilde{T} / \Pi \cong T \cong \tilde{T}^{\circ} \Pi / \Pi
$$

canonically and therefore $\tilde{T}=\tilde{T}^{\circ} \Pi$.
We may identify Π with the fundamental group $\pi_{1}(G)$ by Theorem 13.2. It is a discrete normal subgroup of \tilde{G} and hence central in \tilde{G} by Proposition 22.1.

Thus it is contained in every maximal torus by Proposition 22.3, particularly in \tilde{T}°. Thus $\tilde{T}^{\circ}=\tilde{T}^{\circ} \Pi=\tilde{T}$ and so \tilde{T} is connected and a maximal torus.

Composition with p is a homomorphism $X^{*}(T) \longrightarrow X^{*}(\tilde{T})$, which induces an isomorphism $\mathbb{R} \otimes X^{*}(T) \longrightarrow \mathbb{R} \otimes X^{*}(\tilde{T})$. We will identify these two vector spaces, which we denote by \mathcal{V}. From the short exact sequence

$$
1 \longrightarrow \pi_{1}(G) \longrightarrow \tilde{T} \longrightarrow T \longrightarrow 1,
$$

we have a short exact sequence

$$
\begin{equation*}
0 \longrightarrow X^{*}(T) \longrightarrow X^{*}(\tilde{T}) \longrightarrow X^{*}\left(\pi_{1}(G)\right) \longrightarrow 0 \tag{26.1}
\end{equation*}
$$

(Surjectivity of the last map uses Exercise 4.2.) We recall that $\Lambda_{\text {root }} \subseteq$ $X^{*}(T) \subseteq \Lambda$, where Λ and $\Lambda_{\text {root }}$ are the root and weight lattices.

A typical element of T has the form

In either case, \mathcal{V} is spanned by $\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}$, where $\boldsymbol{e}_{i}(t)=t_{i}$. The root system, as we have already seen in Chapter 20, consists of all $\pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j}(i \neq j)$, with the additional roots $\pm e_{i}$ included only if $N=2 n+1$ is odd. Order the roots so that the positive roots are $\boldsymbol{e}_{i} \pm \boldsymbol{e}_{j}(i<j)$ and (if N is odd) \boldsymbol{e}_{i}. This is the ordering that makes the root eigenspaces \mathfrak{X}_{α} upper triangular. See Figure 33.1 and Figure 20.3 for the groups $\mathrm{SO}(8)$ and $\mathrm{SO}(9)$.

It is easy to check that the simple roots are

$$
\begin{gather*}
\alpha_{1}=e_{1}-e_{2}, \\
\alpha_{2}=e_{2}-e_{3}, \\
\vdots \\
\alpha_{n}=\left\{\begin{array}{cc}
\boldsymbol{e}_{n-1}=e_{n-1}-e_{n} \\
e_{n} & \text { if } N=2 n, \\
e_{n} & \text { if }=2 n+1 .
\end{array}\right. \tag{26.2}
\end{gather*}
$$

The Weyl group may now be described.
Theorem 26.1. The Weyl group W of $O(N)$ has order $2^{n} \cdot n!$ if $N=2 n+1$ and order $2^{n-1} \cdot n$! if $N=2 n$. It has as a subgroup the symmetric group S_{n}, which simply permutes the t_{i} in the action on T, or dually the \boldsymbol{e}_{i} in its action on \mathcal{V}. It also has a subgroup H consisting of transformations of the form

$$
t_{i} \longmapsto t_{i}^{ \pm 1} \quad \text { or } \quad \boldsymbol{e}_{i} \longmapsto \pm \boldsymbol{e}_{i}
$$

If $N=2 n+1$, then H consists of all such transformations, and its order is 2^{n}. If $N=2 n$, then H only contains transformations that change an even number of signs. In either case, H is a normal subgroup of W and $W=H \cdot S_{n}$ is a semidirect product.

Proof. Regarding S_{n} and H as groups of linear transformations of \mathcal{V}, the group H is normalized by S_{n}, and $H \cap S_{n}=\{1\}$, so the semidirect product $H \cdot S_{n}$ exists and has order $2^{n} n!$ or $2^{n-1} n!$ depending on whether $|H|=2^{n}$ or 2^{n-1}. We must show that this is exactly the group generated by the simple reflections.

The W-invariant inner product can be chosen to be the standard Euclidean one in which the \boldsymbol{e}_{i} are an orthonormal basis. The simple reflections with respect to $\alpha_{1}, \cdots, \alpha_{n-1}$ are identical with the simple reflections in the Weyl group S_{n} of $U(n)$, which is not surprising since we may embed $U(n) \longrightarrow O(2 n)$ or $O(2 n+1)$ by

$$
g \longmapsto\left(\begin{array}{cc}
g & \\
& g^{*}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
g & & \\
& 1 & \\
& & g^{*}
\end{array}\right)
$$

where

$$
g^{*}=\left({ }_{1} . \cdot{ }^{1}\right){ }^{t} g^{-1}\left({ }_{1} . \cdot{ }^{1}\right)
$$

Under this embedding, the Weyl group S_{n} of $U(n)$ gets embedded in the Weyl group of $O(N)$. In its action on the torus, the t_{i} are simply permuted, and in the action on $X^{*}(T)$, the \boldsymbol{e}_{i} are permuted.

Now let us consider the simple reflection with respect to α_{n}. If $N=2 n+1$, then since $\alpha_{n}=\boldsymbol{e}_{n}$ this just has the effect $\boldsymbol{e}_{n} \longmapsto-\boldsymbol{e}_{n}$, and all other $\boldsymbol{e}_{i} \longmapsto \boldsymbol{e}_{i}$. A representative in $N(T)$ can be taken to be

$$
w_{n}=\left(\begin{array}{|l|lll|l}
\hline I_{n-1} & & & \\
\hline & 0 & 0 & 1 & \\
& 0 & -1 & 0 & \\
& 1 & 0 & 0 & \\
\hline & & & I_{n-1} \\
\hline
\end{array}\right)
$$

It is clear that all elements of the group H described in the statement of the theorem that change the sign of exactly one \boldsymbol{e}_{i} can be generated by conjugating
w_{n} by elements of S_{n} and that these generate H. Thus W contains $H S_{n}$. On the other hand, all simple reflections are contained in $H S_{n}$, so $W=H S_{n}$ in this case.

If $N=2 n$, then since $\alpha_{n}=\boldsymbol{e}_{n-1}+\boldsymbol{e}_{n}$, the simple reflection in α_{n} has the effect $\boldsymbol{e}_{n-1} \longmapsto-\boldsymbol{e}_{n}, \boldsymbol{e}_{n} \longmapsto-\boldsymbol{e}_{n-1}$. A representative in $N(T)$ can be taken to be

$$
w_{n}=\left(\begin{array}{|l|llllll}
\hline I_{n-2} & & & & & \\
\hline & 0 & 0 & 1 & 0 & \\
& 0 & 0 & 0 & 1 & \\
& 1 & 0 & 0 & 0 & \\
& 0 & 1 & 0 & 0 & \\
\hline & & & & & I_{n-2} \\
\hline
\end{array}\right)
$$

If we multiply this by the simple reflection in α_{n-1}, which just interchanges \boldsymbol{e}_{n-1} and \boldsymbol{e}_{n}, we get the element of the group H that changes the signs of \boldsymbol{e}_{n-1} and \boldsymbol{e}_{n} and leaves everything else fixed. It is clear that all elements of the group H described in the statement of the theorem that change the sign of exactly two \boldsymbol{e}_{i} can be generated by conjugating this element of W by elements of S_{n} and that these generate H. Again W contains $H S_{n}$, and again all simple reflections are contained in $H S_{n}$, so $W=H S_{n}$ in this case.

Proposition 26.2. The weight lattice Λ consists of all elements of \mathcal{V} of the form

$$
\frac{1}{2}\left(\sum_{i=1}^{n} c_{i} \boldsymbol{e}_{i}\right)
$$

where $c_{i} \in \mathbb{Z}$ are either all even or all odd.
Proof. Write $\lambda \in \mathcal{V}$ as $\frac{1}{2} \sum c_{i} e_{i}$ with $a_{i} \in \mathbb{R}$. In order to be in Λ, we must have $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$. Whether the root system is B_{n} or D_{n}, we have elements $\pm e_{i} \pm e_{j} \in \Phi$, and for these the condition reduces to $\frac{1}{2}\left(\pm c_{i} \pm c_{j}\right) \in \mathbb{Z}$, which implies that c_{i} are integers and $c_{i} \equiv c_{j}$ modulo 2. If this is satisfied, then $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ remains true when α is of the form $\pm \boldsymbol{e}_{i}$. (These are only roots if N is odd and the root system is of type B_{n}.)

Proposition 26.3. We have $\Lambda=X^{*}(\tilde{T})$.
According to Remark 25.1, this is true for any simply-connected semisimple Lie group. We have not proved this general fact, however, but we prove it now for $\operatorname{Spin}(N)$.

Proof. We have $X^{*}(T) \subset X^{*}(\tilde{T}) \subseteq \Lambda$. The index of $X^{*}(T)$ in $X^{*}(\tilde{T})$ is 2 by the short exact sequence (26.1). On the other hand, the index of $X^{*}(T)$ in Λ is 2 by Proposition 26.2 , so $\Lambda=X^{*}(\tilde{T})$.

From (26.2), we can compute the fundamental dominant weights ϖ_{i}. If $N=2 n+1$ is odd, these are

$$
\begin{gathered}
\varpi_{1}=e_{1} \\
\varpi_{2}=e_{1}+e_{2}, \\
\vdots \\
\varpi_{n-1}=e_{1}+e_{2}+\ldots+e_{n-1} \\
\varpi_{n}=\frac{1}{2}\left(e_{1}+e_{2}+\ldots+e_{n-1}+e_{n}\right) .
\end{gathered}
$$

On the other hand, if $N=2 n$ is even, the last two are a little changed. In this case, the fundamental weights are

$$
\begin{gathered}
\varpi_{1}=e_{1} \\
\varpi_{2}=e_{1}+e_{2} \\
\vdots \\
\varpi_{n-1}=\frac{1}{2}\left(e_{1}+e_{2}+\ldots+e_{n-1}-e_{n}\right) \\
\varpi_{n}=\frac{1}{2}\left(e_{1}+e_{2}+\ldots+e_{n-1}+e_{n}\right)
\end{gathered}
$$

Of course, to check the correctness of these weights, what one must check is that $2\left\langle\varpi_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{j}, \alpha_{j}\right\rangle=1$ if $i=j$, and 0 if $i \neq j$, and this is easily done.

We say that a weight is integral if it is in $X^{*}(T)$ and half-integral if it is not. The integral weights, of course, are highest-weight vectors of representations of $\mathrm{SO}(N)$. By Proposition 26.3, the half-integral weights are highest-weight vectors of representations of $\operatorname{Spin}(N)$. They are not highest-weight vectors of representations of $\mathrm{SO}(N)$.

If $N=2 n+1$, we see that just the last fundamental weight is half-integral, but if $N=2 n$, the last two fundamental weights are half-integral. The representations with highest-weight vectors ϖ_{n} (when $N=2 n+1$) or ϖ_{n-1} and ϖ_{n} (when $N=2 n$) are called the spin representations.

Theorem 26.2. (i) If $N=2 n+1$, the dimension of the spin representation $\pi\left(\varpi_{n}\right)$ is 2^{n}. The weights that occur with nonzero multiplicity in this representation all occur with multiplicity one; they are

$$
\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm \cdots \pm e_{n}\right)
$$

(ii) If $N=2 n$, the dimensions of the spin representations $\pi\left(\varpi_{n-1}\right)$ and $\pi\left(\varpi_{n}\right)$ are each 2^{n-1}. The weights that occur with nonzero multiplicity in this representation all occur with multiplicity one; they are

$$
\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm \cdots \pm e_{n}\right)
$$

where the number of minus signs is odd for $\pi\left(\varpi_{n-1}\right)$ and even for $\pi\left(\varpi_{n}\right)$.
Proof. There is enough information in Proposition 25.4 to determine the weights in the spin representations.

Specifically, let $\lambda=\varpi_{n}$ and $N=2 n+1$ or $2 n$, or $\lambda=\varpi_{n-1}$ if $N=2 n$. Let $S(\lambda)$ be as in Exercise 25.1. Then it is not hard to check that $S(\lambda)$ is exactly the
set of characters stated in the theorem. By Proposition $25.4, S(\lambda) \supseteq \operatorname{supp} \chi_{\lambda}$. On the other hand, it is easy to check that $S(\lambda)$ consists of a single Weyl group orbit, namely the orbit of the highest-weight vector λ, so $S(\lambda) \subseteq \operatorname{supp} \chi_{\lambda}$, and, for this orbit, Proposition 25.4 also tells us that each weight appears in χ_{λ} with multiplicity exactly one.

The center of $\mathrm{SO}(N)$ consists of $\left\{ \pm I_{N}\right\}$ if N is even but is trivial if N is odd. The center of $\operatorname{Spin}(N)$ is more subtle, but we now have the tools to compute it.

Theorem 26.3. Let G be a semisimple compact connected Lie group, and let T be a maximal torus. Then $Z(G) \cong X^{*}(T) / \Lambda_{\text {root }}$.

Proof. Since $Z(G)$ is contained in every maximal torus, particularly T, we have a short exact sequence

$$
1 \longrightarrow Z(G) \longrightarrow T \longrightarrow T / Z(G) \longrightarrow 1
$$

Hence, we have a short exact sequence

$$
0 \longrightarrow X^{*}(T / Z(G)) \longrightarrow X^{*}(T) \longrightarrow X^{*}(Z(G)) \longrightarrow 0
$$

(Surjectivity of the map onto $X^{*}(Z(G))$ follows from Exercise 4.2.) By Proposition 23.7, $X^{*}(T / Z(G))=\Lambda_{\text {root }}$, so $X^{*}(Z(G)) \cong X^{*}(T) / \Lambda_{\text {root }}$. Now every finite Abelian group is isomorphic to its dual. (See Lang [90], Theorem 9.1 on p.47.) The result follows.

Theorem 26.4. If $N=2 n+1$, then $Z(G) \cong \mathbb{Z} / 2 \mathbb{Z}$. If $N=2 n$, then $Z(G) \cong$ $\mathbb{Z} / 4 \mathbb{Z}$ if n is odd, while $Z(G) \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$ if n is even.

Proof. $X^{*}(\tilde{T})$ is described explicitly by Propositions 26.2 and 26.3 , and we have also described the simple roots, which generate $\Lambda_{\text {root }}$. We leave the verification that $X^{*}(\tilde{T}) / \Lambda_{\text {root }}$ is as described to the reader. The result follows from Theorem 26.3.

EXERCISES

Exercise 26.1. Check the details in the proof of Theorem 26.2. That is, verify that $S(\lambda)$ is exactly the set of characters stated in the theorem and that it consists of just the W orbit of λ.

Exercise 26.2. Prove that the restriction of the spin representation of $\operatorname{Spin}(2 n+1)$ to $\operatorname{Spin}(2 n)$ is the sum of the two spin representations of $\operatorname{Spin}(2 n)$.

Exercise 26.3. Prove that the restriction of either spin representation of $\operatorname{Spin}(2 n)$ to $\operatorname{Spin}(2 n-1)$ is the spin representation of $\operatorname{Spin}(2 n)$.

Exercise 26.4. Show that one of the spin representations of $\operatorname{Spin}(6)$ gives an isomorphism $\operatorname{Spin}(6) \cong \mathrm{SU}(4)$. What is the significance of the fact that there are two spin representations?

For another spin exercise, see Exercise 33.3.
Exercise 26.5. Verify the description of $X^{*}(\tilde{T}) / \Lambda_{\text {root }}$ in Theorem 26.4.
Exercise 26.6. Let G be a compact connected Lie group whose root system is of type G_{2}. (See Figure 20.6.) Prove that G is simply-connected.

Complexification

Thus far, we have investigated the representations of compact connected Lie groups. In this chapter, we will see how the representation theory of compact connected Lie groups has implications for at least some noncompact Lie groups.

Let K be a Lie group. An analytic complexification consists of a complex analytic group G with a Lie group homomorphism $i: K \longrightarrow G$ such that whenever $f: K \longrightarrow H$ is a Lie group homomorphism into a complex analytic group, there exists a unique analytic homomorphism $F: G \longrightarrow H$ such that $f=F \circ i$. This is a universal property, so it characterizes G up to isomorphism.

A consequence of this definition is that the finite-dimensional representations of K are in bijection with the finite-dimensional analytic representations of G. Indeed, we may take H to be $\mathrm{GL}(n, \mathbb{C})$. A finite-dimensional representation of K is a Lie group homomorphism $K \longrightarrow \mathrm{GL}(n, \mathbb{C})$, and so any finite-dimensional representation of K extends uniquely to an analytic representation of G.

Proposition 27.1. The group $\mathrm{SL}(n, \mathbb{C})$ is the analytic complexification of the Lie group $\mathrm{SL}(n, \mathbb{R})$.

Proof. Given any complex analytic group H and any Lie group homomorphism $f: \mathrm{SL}(n, \mathbb{R}) \longrightarrow H$, the differential is a Lie algebra homomorphism $\mathfrak{s l}(n, \mathbb{R}) \longrightarrow \operatorname{Lie}(H)$. Since $\operatorname{Lie}(H)$ is a complex Lie algebra, this homomorphism extends uniquely to a complex Lie algebra homomorphism $\mathfrak{s l}(n, \mathbb{C}) \longrightarrow \operatorname{Lie}(H)$ by Proposition 11.3. By Theorems 13.5 and $13.6, \mathrm{SL}(n, \mathbb{C})$ is simply-connected, so by Theorem 14.2 this map is the differential of a Lie group homomorphism $F: \mathrm{SL}(n, \mathbb{C}) \longrightarrow H$. We need to show that F is analytic. Consider the commutative diagram

The top, left, and right arrows are all holomorphic maps, and exp : $\mathfrak{s l}(n, \mathbb{C}) \longrightarrow$ $\mathrm{SL}(n, \mathbb{C})$ is a local homeomorphism in a neighborhood of the identity. Hence F is holomorphic near 1 . If $g \in \mathrm{SL}(n, \mathbb{C})$ and if $l(g): \mathrm{SL}(n, \mathbb{C}) \longrightarrow \mathrm{SL}(n, \mathbb{C})$ and $l(F(g)): H \longrightarrow H$ denote left translation with respect to g and $F(g)$, then $l(g)$ and $l(F(g))$ are analytic, and $F=l(F(g)) \circ F \circ l(g)^{-1}$. Since F is analytic at 1 , it follows that it is analytic at g.

We recall from Chapter 14, particularly the proof of Proposition 14.1, that if G is a Lie group and \mathfrak{h} a Lie subalgebra of $\operatorname{Lie}(G)$, then there is an involutory family of tangent vectors spanned by the left-invariant vector fields corresponding to the elements of \mathfrak{h}. Since these vector fields are left-invariant, this involutory family is invariant under left translation.

Proposition 27.2. Let G be a Lie group and let \mathfrak{h} be a Lie subalgebra of $\operatorname{Lie}(G)$. Let H be a closed connected subset of G that is an integral submanifold of the involutory family associated with \mathfrak{h}, and suppose that $1 \in H$. Then H is a subgroup of G.

One must not conclude from this that every Lie subalgebra of $\operatorname{Lie}(G)$ is the Lie algebra of a closed Lie subgroup. For example, if $G=(\mathbb{R} / \mathbb{Z})^{2}$, then the one-dimensional subalgebra spanned by a vector $\left(x_{1}, x_{2}\right) \in \operatorname{Lie}(G)=\mathbb{R}^{2}$ is the Lie algebra of a closed subgroup only if x_{1} / x_{2} is rational or $x_{2}=0$.

Proof. Let $x \in H$ and let $U=\left\{y \in H \mid x^{-1} y \in H\right\}$.
We show that U is open in H. If $y \in U=H \cap x H$, both H and $x H$ are integral submanifolds for the involutory family associated with \mathfrak{h}, since the vector fields corresponding to elements of \mathfrak{h} are left-invariant. Hence by the uniqueness assertion of the Local Frobenius Theorem (Theorem 14.1) H and $x H$ have the same intersection with a neighborhood of y in G, and it follows that U contains a neighborhood of y in H.

We next show that the complement of U is open in H. Suppose that y is an element $H-U$. Thus $y \in H$ but $x^{-1} y \notin H$. By the Local Frobenius Theorem there exists an integral manifold V through $x^{-1} y$. Since H is closed, the intersection of V with a sufficiently small neighborhood of $x^{-1} y$ in G is disjoint from H. Replacing V by its intersection with this neighborhood, we may assume that the intersection $x V \cap H=\varnothing$. Since H and $x V$ are both integral manifolds through y, they have the same intersection with a neighborhood of y in G, and so $x z \in V$ for z near y in H. Thus $z \notin U$. It follows that $H-U$ is open.

We see that U is both open and closed in H and nonempty since $1 \in U$. Since H is connected, it follows that $U=H$. This proves that if $x, y \in H$, then $x^{-1} y \in H$. This implies that H is a subgroup of G.

Theorem 27.1. Let K be a compact connected Lie group. Then K has an analytic complexification $K \longrightarrow G$, where G is a complex analytic group. The induced map $\pi_{1}(K) \longrightarrow \pi_{1}(G)$ is an isomorphism. The Lie algebra of G is the complexification of the Lie algebra of K. Any faithful complex representation of K can be extended to a faithful analytic complex representation of G. Any analytic representation of G is completely reducible.

Proof. By Theorem 4.2, K has a faithful complex representation, which is unitarizable, so we may assume that K is a closed subgroup of $U(n)$ for some n. The embedding $K \longrightarrow U(n)$ is the differential of a Lie algebra homomorphism $\mathfrak{k} \longrightarrow \mathfrak{g l}(n, \mathbb{C})$, where \mathfrak{k} is the Lie algebra of K. This extends, by Proposition 11.3 , to a homomorphism of complex Lie algebras $\mathfrak{k}_{\mathbb{C}} \longrightarrow \mathfrak{g l}(n, \mathbb{C})$, and we identify $\mathfrak{k}_{\mathbb{C}}$ with its image.

Let $P=\left\{e^{i X} \mid X \in \mathfrak{k}\right\} \subset \mathrm{GL}(n, \mathbb{C})$, and let $G=P K$. Let $P^{\prime} \subset \mathrm{GL}(n, \mathbb{C})$ be the set of positive definite Hermitian matrices. By Theorem 13.4, the multiplication map $P^{\prime} \times U(n) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is a homeomorphism. Moreover, the exponentiation map from the vector space of Hermitian matrices to P^{\prime} is a homeomorphism. Since $i k$ is a closed subspace of the real vector space of Hermitian matrices, P is a closed topological subspace of P^{\prime}, and $G=P K$ is a closed subset of $\mathrm{GL}(n, \mathbb{C})=P^{\prime} U(n)$.

We associate with each element of $\mathfrak{k}_{\mathbb{C}}$ a left-invariant vector field on $\mathrm{GL}(n, \mathbb{C})$ and consider the resulting involutory family on $\mathrm{GL}(n, \mathbb{C})$. We will show that G is an integral submanifold of this involutory family. We must check that the left-invariant vector field associated with an element Z of $\mathfrak{k}_{\mathbb{C}}$ is everywhere tangent to G. It is easiest to check this separately in the cases $Z=Y$ and $Z=i Y$ with $Y \in \mathfrak{k}$. Near the point $e^{i X} k \in G$, with $X \in \mathfrak{k}$ and $k \in K$, the path $t \longrightarrow e^{i(X+t \operatorname{Ad}(k) Y)} k$ is tangent to G when $t=0$ and is also tangent to the path

$$
t \mapsto e^{i X} e^{i t \mathrm{Ad}(k) Y} k=e^{i X} k e^{i t Y}
$$

(The two paths are not identical if $[X, Y] \neq 0$, but this is not a problem.) The latter path is the left translate by $e^{i X} k$ of a path through the identity tangent to the left-invariant vector field corresponding to $i Y \in \mathfrak{k}$. Since this vector field is left invariant, this shows that it is tangent to G at $e^{i X} k$. This settles the case $Z=i Y$. The case where $Z=Y$ is similar and easier.

It follows from Proposition 27.2 that G is a closed subgroup of GL (n, \mathbb{C}). Since P is homeomorphic to a vector space, it is contractible, and since G is homeomorphic to $P \times K$, it follows that the inclusion $K \longrightarrow G$ induces an isomorphism of fundamental groups.

The Lie algebra of G is, by construction, $i \mathfrak{k}+\mathfrak{k}=\mathfrak{k}_{\mathbb{C}}$.
To show that G is the analytic complexification of K, let H be a complex analytic group and $f: K \longrightarrow H$ be a Lie group homomorphism.

We have an induced homomorphism $\mathfrak{k} \longrightarrow \operatorname{Lie}(H)$ of Lie algebras, which induces a homomorphism $\mathfrak{k}_{\mathbb{C}}=\operatorname{Lie}(G) \longrightarrow \operatorname{Lie}(H)$ of complex Lie algebras, by Proposition 11.3. If \tilde{G} is the universal covering group of G, then by Proposition 14.2 we obtain a Lie group homomorphism $\tilde{G} \longrightarrow H$. To show that it factors through $G \cong \tilde{G} / \pi_{1}(G)$, we must show that the composite $\pi_{1}(G) \longrightarrow \tilde{G} \longrightarrow H$ is trivial. But this coincides with the composition $\pi_{1}(G) \cong \pi_{1}(K) \longrightarrow \tilde{K} \longrightarrow K \longrightarrow H$, where \tilde{K} is the universal covering group of K, and the composition $\pi_{1}(K) \longrightarrow \tilde{K} \longrightarrow K$ is already trivial. Hence the $\operatorname{map} \tilde{G} \longrightarrow H$ factors through G, proving that G has the universal property of the complexification.

We constructed G as an analytic subgroup of $\operatorname{GL}(n, \mathbb{C})$ starting with an arbitrary faithful complex representation of K. Looking at this another way, we have actually proved that any faithful complex representation of K can be extended to a faithful analytic complex representation of G. The reason is that if we started with another faithful complex representation and constructed the complexification using that one, we would have gotten a group isomorphic to G because the complexification is characterized up to isomorphism by its universal property.

It remains to be shown that analytic representations of G are completely reducible. If (π, V) is an analytic representation of G, then, since K is compact, by Proposition 2.1 there is a K-invariant inner product on V, and if U is an invariant subspace, then $V=U \oplus W$, where W is the orthogonal complement of U. Then we claim that W is G-invariant. Indeed, it is invariant under \mathfrak{k} and hence under $\mathfrak{k}_{\mathbb{C}}=\mathfrak{k} \oplus i \mathfrak{k}$, which is the Lie algebra of G and, since G is connected, under G itself.

In addition to this notion of analytic complexification, there is another one, which we will call algebraic complexification. If \mathcal{G} is an affine algebraic group defined over the real numbers, then $K=\mathcal{G}(\mathbb{R})$ is a Lie group and $G=\mathcal{G}(\mathbb{C})$ is a complex analytic group, and G is the algebraic complexification of K. We will assume that $\mathcal{G}(\mathbb{R})$ is Zariski-dense in \mathcal{G} to exclude examples such as

$$
\mathcal{G}=\left\{(x, y) \mid x^{2}+y^{2}= \pm 1\right\}
$$

which is an algebraic group with group law $(x, y)(z, w)=(x z-y w, x w+y z)$ but which has one Zariski-connected component with no real points.

The algebraic complexification depends on more than just the isomorphism class of K as a Lie group - it also depends on its realization as the group of real points of an algebraic group. We illustrate this difficulty with an example.

Let G_{a} and G_{m} be the "additive group" and the "multiplicative group." These are algebraic groups such that for any field $G_{\mathrm{a}}(F) \cong F$ (additive group) and $G_{\mathrm{m}}(F) \cong F^{\times}$. The groups $\mathcal{G}_{1}=G_{\mathrm{a}} \times(\mathbb{Z} / 2 \mathbb{Z})$ and $\mathcal{G}_{2}=G_{\mathrm{m}}$ have isomorphic groups of real points since $\mathcal{G}_{1}(\mathbb{R}) \cong \mathbb{R} \times(\mathbb{Z} / 2 \mathbb{Z})$ and $\mathcal{G}_{2}(\mathbb{R}) \cong \mathbb{R}^{\times}$, and these are isomorphic as Lie groups. Their complexifications are $\mathcal{G}_{1}(\mathbb{C}) \cong$ $\mathbb{C} \times(\mathbb{Z} / 2 \mathbb{Z})$ and $\mathcal{G}_{2}(\mathbb{C}) \cong \mathbb{C}^{\times}$. These groups are not isomorphic.

We see that the algebraic complexification is a functor not from the category of Lie groups but rather from the category of algebraic groups \mathcal{G} defined over \mathbb{R} such that $\mathcal{G}(\mathbb{R})$ is Zariski dense in \mathcal{G}. This may seem an unfortunate complication, but sometimes the algebraic complexification is preferred. For example, the analytic complexification of \mathbb{R}^{\times}is not \mathbb{C}^{\times}but the disconnected group $\mathbb{C} \times(\mathbb{Z} / 2 \mathbb{Z})$. Often this is not what we want.

If \mathcal{G} is an algebraic group defined over $F=\mathbb{R}$ or \mathbb{C}, and if $K=\mathcal{G}(F)$, then we call a complex representation $\pi: K \longrightarrow \mathrm{GL}(n, \mathbb{C})$ algebraic if there is a homomorphism of algebraic groups $\mathcal{G} \longrightarrow \mathrm{GL}(n)$ defined over \mathbb{C} such that the induced map of rational points is π. (This amounts to assuming that the matrix coefficients of π are polynomial functions.) With this definition, the algebraic complexification has an interpretation in terms of representations like that of the analytic complexification.

Proposition 27.3. If $G=\mathcal{G}(\mathbb{C})$ is the algebraic complexification of $K=$ $\mathcal{G}(\mathbb{R})$, then any algebraic complex representation of K extends uniquely to an algebraic representation of G.

Proof. This is clear since a polynomial function extends uniquely from $\mathcal{G}(\mathbb{R})$ to $\mathcal{G}(\mathbb{C})$.

If K is a field and L is a Galois extension, we say that algebraic groups \mathcal{G}_{1} and \mathcal{G}_{2} defined over K are L / K-Galois forms of each other - or (more succinctly) L / K-forms - if there is an isomorphism $\mathcal{G}_{1} \cong \mathcal{G}_{2}$ defined over L. If $K=\mathbb{R}$ and $L=\mathbb{C}$ this means that $K_{1}=\mathcal{G}_{1}(\mathbb{R})$ and $K_{2}=\mathcal{G}_{2}(\mathbb{R})$ have isomorphic algebraic complexifications. A \mathbb{C} / \mathbb{R}-Galois form is called a real form.

The example in Proposition 27.4 will help to clarify this concept.
Proposition 27.4. $U(n)$ is a real form of $\mathrm{GL}(n, \mathbb{R})$.
Compare this with Proposition 11.4, which is the Lie algebra analog of this statement.

Proof. Let \mathcal{G}_{1} be the algebraic group $\mathrm{GL}(n)$, and let

$$
\mathcal{G}_{2}=\left\{(A, B) \in \operatorname{Mat}_{n} \times \operatorname{Mat}_{n} \mid A \cdot{ }^{t} A+B \cdot{ }^{t} B=I, A \cdot{ }^{t} B=B \cdot{ }^{t} A\right\}
$$

The group law for G_{2} is given by

$$
(A, B)(C, D)=(A C-B D, A D+B C)
$$

We leave it to the reader to check that this is a group. This definition is constructed so that $\mathcal{G}_{2}(\mathbb{R})=U(n)$ under the map $(A, B) \longrightarrow A+B i$, when A and B are real matrices.

We show that $\mathcal{G}_{2}(\mathbb{C}) \cong \mathrm{GL}(n, \mathbb{C})$. Specifically, we show that if $g \in \mathrm{GL}(n, \mathbb{C})$ then there are unique matrices $(A, B) \in \operatorname{Mat}_{n}(\mathbb{C})$ such that $A \cdot{ }^{t} A+B \cdot{ }^{t} B=I$ and $A \cdot{ }^{t} B=B \cdot{ }^{t} A$ with $A+B i=g$. We consider uniqueness first. We have

$$
(A+B i)\left({ }^{t} A-{ }^{t} B i\right)=\left(A^{t} A+B^{t} B\right)+\left(B^{t} A-A^{t} B\right) i=I
$$

so we must have $g^{-1}={ }^{t} A-{ }^{t} B i$ and thus ${ }^{t} g^{-1}=A-B i$. We may now solve for A and B and obtain

$$
\begin{equation*}
A=\frac{1}{2}\left(g+{ }^{t} g^{-1}\right), \quad B=\frac{1}{2 i}\left(g-{ }^{t} g^{-1}\right) \tag{27.1}
\end{equation*}
$$

This proves uniqueness. Moreover, if we define A and B by (27.1), then it is easy to see that $(A, B) \in G_{2}(\mathbb{C})$ and $A+B i=g$.

It can be seen similarly that $\mathrm{SU}(n)$ and $\operatorname{SL}(n, \mathbb{R})$ are \mathbb{C} / \mathbb{R} Galois forms of each other. One has only to impose in the definition of the second group G_{2} an additional polynomial relation corresponding to the condition $\operatorname{det}(A+B i)=1$. (This condition, written out in terms of matrix entries, will not involve i, so the resulting algebraic group is defined over \mathbb{R}.)

Remark 27.1. Classification of Galois forms of a group is a problem in Galois cohomology. Indeed, the set of Galois forms of \mathcal{G} is parametrized by $H^{1}(\operatorname{Gal}(L / K), \operatorname{Aut}(\mathcal{G}))$. See Springer [113], Satake [108] and III. 1 of Serre [111]. Tits [119] contains the definitive classification over real, p-adic, finite, and number fields.

Galois forms are important because if G_{1} and G_{2} are Galois forms of each other, then we expect the representation theories of G_{1} and G_{2} to be related. We have already seen this principle applied (for example) in Theorem 14.3. Our next proposition gives a typical application.

Proposition 27.5. Let $\pi: \mathrm{GL}(n, \mathbb{R}) \longrightarrow \mathrm{GL}(m, \mathbb{C})$ be an algebraic representation. Then π is completely reducible.

This would not be true if we removed the assumption of algebraicity. For example, the representation $\pi: \mathrm{GL}(n, \mathbb{R}) \longrightarrow \mathrm{GL}(2, \mathbb{R})$ defined by

$$
\pi(g)=\binom{1 \log |\operatorname{det}(g)|}{1}
$$

is not completely reducible - and it is not algebraic.
Proof. Any irreducible algebraic representations of $\mathrm{GL}(n, \mathbb{R})$ can be extended to an algebraic representation of $\mathrm{GL}(n, \mathbb{C})$ and then restricted to $U(n)$, where it is completely reducible because $U(n)$ is compact.

The irreducible algebraic complex representations of $\operatorname{GL}(n, \mathbb{R})$ are the same as the irreducible algebraic complex representations of $\mathrm{GL}(n, \mathbb{C})$, which in turn are the same as the irreducible complex representations of $U(n)$. (The latter are automatically algebraic, and indeed we will later construct them as algebraic representations.)

These finite-dimensional representations of $\mathrm{GL}(n, \mathbb{R})$ may be parametrized by their highest-weight vectors and classified as in the previous chapter. Their characters are given by the Weyl character formula.

Although the irreducible algebraic complex representations of $\mathrm{GL}(n, \mathbb{R})$ are thus the same as the irreducible representations of the compact group $U(n)$, their significance is very different. These finite-dimensional representations of $\mathrm{GL}(n, \mathbb{R})$ are not unitary (except for the one-dimensional ones). They therefore do not appear in the Fourier inversion formula (Plancherel Theorem). Unlike $U(n)$, the noncompact group $G L(n, \mathbb{R})$ has unitary representations that are infinite-dimensional, and it is these infinite-dimensional representations that appear in the Plancherel Theorem.

EXERCISES

Exercise 27.1. If F is a field, let

$$
O_{J}(n, F)=\left\{g \in \mathrm{GL}(n, F) \mid g J^{t} g=J\right\}, \quad J=\left(._{1} \cdot{ }^{1}\right)
$$

Show that $O_{J}(\mathbb{C})$ is the analytic complexification of $O(n)$. (Use Exercise 5.3.)

Coxeter Groups

Let G be a group, and let I be a set of generators of G, each of which has order 2 . If $s_{i}, s_{j} \in I$, let $n\left(s_{i}, s_{j}\right)$ be the order of $s_{i} s_{j}$. We assume this order to be finite for all s_{i}, s_{j}. The pair (G, I) is called a Coxeter group if the relations

$$
\begin{equation*}
s_{i}^{2}=1, \quad\left(s_{i} s_{j}\right)^{n\left(s_{i}, s_{j}\right)}=1 \tag{28.1}
\end{equation*}
$$

are a presentation of W. This means that W is isomorphic to the quotient of the free group on a set of generators $\left\{\sigma_{i}\right\}$, one for each $s_{i} \in I$, by the smallest normal subgroup containing all elements

$$
\sigma_{i}^{2}, \quad\left(\sigma_{i} \sigma_{j}\right)^{n\left(s_{i}, s_{j}\right)}
$$

and in this isomorphism each generator $\sigma_{i} \mapsto s_{i}$. Equivalently, G has the following universal property: if Γ is any other group having elements v_{i} (one for each generator s_{i}) satisfying the same relations (28.1), that is, if

$$
v_{i}^{2}=1, \quad\left(v_{i} v_{j}\right)^{n\left(s_{i}, s_{j}\right)}=1
$$

then there exists a unique homomorphism $G \rightarrow \Gamma$ such that each $s_{i} \rightarrow v_{i}$.
Now let B be a group and I be a set of generators of B that are not assumed to have order 2 . We assume there to be given a map $n: I \times I \longrightarrow \mathbb{Z}$ such that if $u_{i}, u_{j} \in I$ then $n\left(u_{i}, u_{j}\right)$ is a nonnegative integer such that

$$
\begin{equation*}
u_{i} u_{j} u_{i} u_{j} \cdots=u_{j} u_{i} u_{j} u_{i} \cdots, \tag{28.2}
\end{equation*}
$$

where there are $n\left(u_{i}, u_{j}\right)$ terms on both sides. If $n\left(u_{i}, u_{j}\right)$ is odd, the last term on the left is u_{i} and the last term on the right is u_{j}, while if $n\left(u_{i}, u_{j}\right)$ is even, the last term on the left is u_{j} and the last term on the right is u_{i}. If these relations give a presentation of B, then we call (B, I, n) a braid group. We call (28.2) the braid relation.

The term braid group is used due to the fact that the braid group of type A_{n} is Artin's original braid group, which is a fundamental object in knot theory. Although Artin's braid group will not play any role in this book,
abstract braid groups will play a role in our discussion of Hecke algebras in Chapter 48, and the surprising relationship between Weyl groups (from group theory) and braid groups (from knot theory) underlies the use by Jones of Hecke algebras in defining new knot invariants. See Jones [74] and Goodman and Wallach [47] Section 10.4.

Consider a set of paths represented by a set of $n+1$ nonintersecting strings connected to two (infinite) parallel posts in \mathbb{R}^{3} to be a braid. Braids are equivalent if they are homotopic. The "multiplication" in the braid group is concatenation: to multiply two braids, the endpoints of the first braid on the right post are tied to the endpoints of the second braid on the left post. In Figure 28.1, we give generators u_{1} and u_{2} for the braid group of type A_{2} and calculate their product. In Figure 28.2, we consider $u_{1} u_{2} u_{1}$ and $u_{2} u_{1} u_{2}$; clearly these two braids are homotopic, so the braid relation $u_{1} u_{2} u_{1}=u_{2} u_{1} u_{2}$ is satisfied.
\times
u_{2}

$$
=\quad u_{1} u_{2}
$$

Fig. 28.1. Generators u_{1} and u_{2} of the braid group of type A_{2} and $u_{1} u_{2}$.

Fig. 28.2. The braid relation. Left: $u_{1} u_{2} u_{1}$. Right: $u_{2} u_{1} u_{2}$.

We did not have to make the map n part of the defining data in the Coxeter group since $n\left(s_{i}, s_{j}\right)$ is just the order of $s_{i} s_{j}$. This is no longer true in the braid group. Coxeter groups are often finite, but the braid group (B, I) never is if $|I|>1$.

We note that the s_{i} in the Coxeter group G satisfy the braid relation. Indeed, one may write out $\left(s_{i} s_{j}\right)^{n\left(s_{i}, s_{j}\right)}=1$ as a product of $2 n\left(s_{i}, s_{j}\right)$ terms and move half of them to the right to obtain the braid relation.

We return to the context of Chapter 21. Let \mathcal{V} be a vector space, Φ a reduced root system in \mathcal{V}, and W the Weyl group. We partition Φ into positive and negative roots and denote by Σ the simple positive roots. Let I be the set $\left\{s_{\alpha} \mid \alpha \in \Sigma\right\}$ of simple reflections. By definition, W is generated by the set I. Let $n\left(s_{\alpha}, s_{\beta}\right)$ denote the order of $s_{\alpha} s_{\beta}$. We will eventually show that (W, I) is a Coxeter group. It is evident that the relations (28.1) are satisfied, but we need to see that they give a presentation of W.

Let B be the braid group with generators u_{α} indexed by the simple positive roots satisfying (28.2) with $n\left(u_{\alpha}, u_{\beta}\right)=n\left(s_{\alpha}, s_{\beta}\right)$ when $u_{i}=u_{\alpha}$ and $u_{j}=u_{\alpha}$. Since the braid relations are satisfied by the s_{α} there exists a homomorphism $B \longrightarrow W$ in which $u_{\alpha} \longmapsto s_{\alpha}$. Let G be the Coxeter group with generators t_{α} indexed by the simple roots, so (28.1) is satisfied. We also have a homomorphism $G \longrightarrow W$ with $t_{\alpha} \longmapsto s_{\alpha}$.

Proposition 28.1. Let $w \in W$ such that $l(w)=r$. Let $s_{1} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r}^{\prime}$ be two decompositions of w into products of simple reflections, where $s_{i}=s_{\alpha_{i}}$ and $s_{i}^{\prime}=s_{\beta_{i}}$ for simple roots α_{i} and β_{j}. Let $u_{i}=u_{\alpha_{i}}$ and $u_{i}^{\prime}=u_{\beta_{i}}$ be the corresponding elements of the braid group, and let $t_{i}=t_{\alpha}$ and $t_{i}^{\prime}=t_{\beta_{i}}$ be the corresponding elements of the Coxeter group. Then $u_{1} \cdots u_{r}=u_{1}^{\prime} \cdots u_{r}^{\prime}$ and $t_{1} \cdots t_{r}=t_{1}^{\prime} \cdots t_{r}^{\prime}$.

Proof. The proof is identical for the braid group and the Coxeter group. We prove this for the braid group.

Let us assume that we have a counterexample of shortest length. Thus, $l\left(s_{1} \cdots s_{r}\right)=r$ and

$$
\begin{equation*}
s_{1} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r}^{\prime} \quad \text { but } \quad u_{1} \cdots u_{r} \neq u_{1}^{\prime} \cdots u_{r}^{\prime} \tag{28.3}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
s_{2} s_{3} \cdots s_{r} s_{r}^{\prime}=s_{1} \cdots s_{r} \quad \text { but } \quad u_{2} u_{3} \cdots u_{r} u_{r}^{\prime} \neq u_{1} \cdots u_{r} \tag{28.4}
\end{equation*}
$$

Before we prove this, let us explain how it implies the proposition. The W element in (28.4) is w and thus has length r, so we may repeat the process, obtaining

$$
s_{3} s_{4} \cdots s_{r} s_{r}^{\prime} s_{r}=s_{2} s_{3} \cdots s_{r} s_{r}^{\prime} \quad \text { but } \quad u_{3} u_{4} \cdots u_{r} u_{r}^{\prime} u_{r} \neq u_{2} u_{3} \cdots u_{r} u_{r}^{\prime}
$$

Repeating the process, we eventually obtain

$$
\begin{equation*}
\cdots s_{r}^{\prime} s_{r} s_{r}^{\prime} s_{r}=\cdots s_{r} s_{r}^{\prime} s_{r} s_{r}^{\prime} \quad \text { but } \quad \cdots u_{r}^{\prime} u_{r} u_{r}^{\prime} u_{r} \neq \cdots u_{r} u_{r}^{\prime} u_{r} u_{r}^{\prime} \tag{28.5}
\end{equation*}
$$

Moving all the s 's on the left together $\left(s_{r}^{\prime} s_{r}\right)^{r}=1$, so r is a multiple of $n\left(s_{r}, s_{r}^{\prime}\right)$. Now (28.5) contradicts the braid relation.

It remains to prove (28.4). Note that $w s_{r}^{\prime}=s_{1}^{\prime} \cdots s_{r-1}^{\prime}$ has length $r-1$, so by Proposition 21.2 we have $w\left(\beta_{r}\right) \in \Phi^{-}$. Now, by Proposition 21.3, we have

$$
\begin{equation*}
s_{1} \cdots s_{r}=s_{1} \cdots \hat{s}_{i} \cdots s_{r} s_{r}^{\prime} \tag{28.6}
\end{equation*}
$$

for some $1 \leqslant i \leqslant r$, where the hat denotes an omitted element. Using (28.3)

$$
s_{1} \cdots \hat{s}_{i} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r-1}^{\prime}
$$

and this element of W has length $r-1$. (If it had a shorter length, multiplying on the right by s_{r}^{\prime} would contradict the assumption that $l(w)=r$). By the minimality of the counterexample, we have

$$
\begin{equation*}
u_{1} \cdots \hat{u}_{i} \cdots u_{r}=u_{1}^{\prime} \cdots u_{r-1}^{\prime} \tag{28.7}
\end{equation*}
$$

We now claim that $i=1$. Suppose $i>1$. Cancel $s_{1} \cdots s_{i-1}$ in (28.6) to obtain

$$
s_{i} \cdots s_{r}=s_{i+1} \cdots s_{r} s_{r}^{\prime}
$$

and, since $i>1$, this has length $r-i+1<r$. By the minimality of the counterexample (28.3), we have

$$
u_{i} \cdots u_{r}=u_{i+1} \cdots u_{r} u_{r}^{\prime}
$$

We can multiply this identity on the left by $u_{1} \cdots u_{i-1}$ and then use (28.7) to obtain a contradiction to (28.3). This proves that $i=1$.

Now (28.6) proves the first part of (28.4). As for the second part, suppose $u_{2} \cdots u_{r-1} u_{r}^{\prime}=u_{1} \cdots u_{r}$. Then multiplying (28.7) on the right by u_{r}^{\prime} gives a contradiction to (28.3), and (28.4) is proved.

Theorem 28.1. Let W be the Weyl group of the root system Φ, and let I be the set of simple reflections in W. Then (W, I) is a Coxeter group.

Proof. Let G be the Coxeter group with generators t_{α}, taking $n\left(t_{\alpha}, t_{\beta}\right)$ in (28.1) to be the order of $s_{\alpha} s_{\beta}$ in W. We have a surjective homomorphism $G \longrightarrow W$ such that $t_{\alpha} \longrightarrow s_{\alpha}$, and we have to show that the homomorphism $G \longrightarrow W$ is injective. Suppose that $t_{1} \cdots t_{n}$ is in the kernel, where $t_{i}=t_{\alpha_{i}}$ for simple roots α_{i}. We will denote $s_{i}=s_{\alpha_{i}}$. We have $s_{1} \cdots s_{n}=1$, and we will show that $t_{1} \cdots t_{n}=1$.

It follows from Proposition 21.12 that n is even. Let $n=2 r$. Letting $s_{1}^{\prime}=s_{n}^{-1}, s_{2}^{\prime}=s_{n-1}^{-1}$, etc., and similarly $t_{i}^{\prime}=t_{n+1-i}^{-1}$ when $1 \leqslant i \leqslant r$, we have

$$
s_{1} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r}^{\prime}
$$

and we want to show that $t_{1} \cdots t_{r}=t_{1}^{\prime} \cdots t_{r}^{\prime}$. Otherwise,

$$
\begin{equation*}
t_{1} \cdots t_{r} \neq t_{1}^{\prime} \cdots t_{r}^{\prime} \tag{28.8}
\end{equation*}
$$

We assume this counterexample minimizes r. By Proposition 28.1, we already have a contradiction unless $l\left(s_{1} \cdots s_{r}\right)<r$. It follows from Proposition 21.4 that

$$
\begin{equation*}
s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{r}=s_{1} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r}^{\prime} \tag{28.9}
\end{equation*}
$$

for some i and j. Moving s_{r}^{\prime} to the other side,

$$
s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{r} s_{r}^{\prime}=s_{1}^{\prime} \cdots s_{r-1}^{\prime}
$$

and by the minimality of r we therefore have

$$
t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{r} t_{r}^{\prime}=t_{1}^{\prime} \cdots t_{r-1}^{\prime}, \quad \text { so } \quad t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{r}=t_{1}^{\prime} \cdots t_{r-1}^{\prime} t_{r}^{\prime}
$$

It follows from (28.8) that

$$
\begin{equation*}
t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{r} \neq t_{1} \cdots t_{r} \tag{28.10}
\end{equation*}
$$

Now, comparing (28.9) and (28.10), we have

$$
s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{r} s_{r}=s_{1} \cdots s_{r-1} \quad \text { but } \quad t_{1} \cdots \hat{t}_{i} \cdots \hat{t}_{j} \cdots t_{r} t_{r}=t_{1} \cdots t_{r-1}
$$

where there are $r-1$ terms on both sides, again contradicting the minimality of r.

We now describe (without proof) the classification of the possible reduced root systems and their associated finite Coxeter groups. If Φ_{1} and Φ_{2} are root systems in vector spaces $\mathcal{V}_{1}, \mathcal{V}_{2}$, then $\Phi_{1} \cup \Phi_{2}$ is a root system in $\mathcal{V}_{1} \oplus \mathcal{V}_{2}$. Such a root system is called reducible. Naturally, it is enough to classify the irreducible root systems.

The Dynkin diagram represents the Coxeter group in compact form. It is a graph whose vertices are in bijection with Σ. Let us label $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$, and let $s_{i}=s_{\alpha_{i}}$. Let $\theta\left(\alpha_{i}, \alpha_{j}\right)$ be the angle between the roots α_{i} and α_{j}. Then

$$
n\left(s_{i}, s_{j}\right)=\left\{\begin{array}{l}
2 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{\pi}{2} \\
3 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{2 \pi}{3} \\
4 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{3 \pi}{4} \\
6 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{5 \pi}{6}
\end{array}\right.
$$

These four cases arise in the rank 2 root systems $A_{1} \times A_{1}, A_{2}, B_{2}$ and G_{2}, as the reader may confirm by consulting the figures in Chapter 20.

In the Dynkin diagram, we connect the vertices corresponding to α_{i} and α_{j} only if the roots are not orthogonal. If they make an angle of $2 \pi / 3$, we connect them with a single bond; if they make an angle of $6 \pi / 4$, we connect them with a double bond; and if they make an angle of $5 \pi / 6$, we connect them with a triple bond. The latter case only arises with the exceptional group G_{2}.

If α_{i} and α_{j} make an angle of $3 \pi / 4$ or $5 \pi / 6$, then these two roots have different lengths; see Figures 20.4 and 20.6. In the Dynkin diagram, there will be a double or triple bond in these examples, and we draw an arrow from the long root to the short root. The triple bond (corresponding to an angle of $5 \pi / 6)$ is rare - it is only found in the Dynkin diagram of a single group, the exceptional group G_{2}. If there are no double or triple bonds, the Dynkin diagram is called simply-laced.

Fig. 28.3. The Dynkin diagram for the type A_{5} root system.

The root system of type A_{n} is associated with the Lie group $\mathrm{SU}(n+1)$. The corresponding abstract root system is described in Chapter 20. All roots have the same length, so the Dynkin diagram is simply-laced. In Figure 28.3 we illustrate the Dynkin diagram when $n=5$. The case of general n is the same - exactly n nodes strung together in a line $(\bullet \bullet \ldots \bullet)$.

Fig. 28.4. The Dynkin diagram for the type B_{5} root system.

The root system of type B_{n} is associated with the odd orthogonal group $\mathrm{SO}(2 n+1)$. The corresponding abstract root system is described in Chapter 20. There are both long and short roots, so the Dynkin diagram is not simply laced. See Figure 28.4 for the Dynkin diagram of type B_{5}. The general case is the same ($\bullet \ldots \bullet$), with the arrow pointing towards the α_{n} node corresponding to the unique short simple root.

Fig. 28.5. The Dynkin diagram for the type C_{5} root system.

The root system of type C_{n} is associated with the symplectic group $\operatorname{Sp}(2 n)$. The corresponding abstract root system is described in Chapter 20. There are both long and short roots, so the Dynkin diagram is not simply laced. See Figure 28.5 for the Dynkin diagram of type C_{5}. The general case is the same $(\bullet \bullet \ldots)$, with the arrow pointing from the α_{n} node corresponding to the unique long simple root, towards α_{n-1}.

The root system of type D_{n} is associated with the even orthogonal group $O(2 n)$. All roots have the same length, so the Dynkin diagram is simplylaced. See Figure 28.6 for the Dynkin diagram of type D_{6}. The general case is

Fig. 28.6. The Dynkin diagram for the type D_{6} root system.
similar, but the cases $n=2$ or $n=3$ are degenerate, and coincide with the root systems $A_{1} \times A_{1}$ and A_{3}. For this reason, the family D_{n} is usually considered to begin with $n=4$. See Figure 33.2 and the discussion in Chapter 33 for further information about these degenerate cases.

These are the "classical" root systems, which come in infinite families. There are also five exceptional root systems, denoted $E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2}. Their Dynkin diagrams are illustrated in Figures 28.7-28.10.

Fig. 28.7. The Dynkin diagram for the type E_{6} root system.

Fig. 28.8. The Dynkin diagram for the type E_{7} root system.

Fig. 28.9. The Dynkin diagram for the type E_{8} root system.

Fig. 28.10. The Dynkin diagrams of types F_{4} (left) and G_{2} (right).

EXERCISES

Exercise 28.1. For the root systems of types $A_{n}, B_{n}, C_{n}, D_{n}$ and G_{2} described in Chapter 20 identify the simple roots and the angles between them. Confirm that their Dynkin diagrams are as described in this Chapter.

Exercise 28.2. Let Φ be a root system in a Euclidean space \mathcal{V}. Let W be the Weyl group, and let W^{\prime} be the group of all linear transformations of \mathcal{V} that preserve Φ. Show that W is a normal subgroup of W^{\prime} and that W^{\prime} / W is isomorphic to the group of all symmetries of the Dynkin diagram of the associated Coxeter group. (Use Proposition 21.13.)

The Iwasawa Decomposition

Let us begin this topic with an example. Let $G=\mathrm{GL}(n, \mathbb{C})$. It is the complexification of $K=U(n)$, which is a maximal compact subgroup. Let T be the maximal torus of K consisting of diagonal matrices whose eigenvalues have absolute value 1 . The complexification $T_{\mathbb{C}}$ of T can be factored as $T A$, where A is the group of diagonal matrices whose eigenvalues are positive real numbers. Let B be the group of upper triangular matrices in G, and let B_{0} be the subgroup of elements of B whose diagonal entries are positive real numbers. Finally, let N be the subgroup of unipotent elements of B. Recalling that a matrix is called unipotent if its only eigenvalue is 1 , the elements of N are upper triangular matrices whose diagonal entries are all equal to 1 . We may factor $B=T N$ and $B_{0}=A N$. The subgroup N is normal in B and B_{0}, so these decompositions are semidirect products.

Proposition 29.1. With $G=\mathrm{GL}(n, \mathbb{C}), K=U(n)$, and B_{0} as above, every element of $g \in G$ can be factored uniquely as bk where $b \in B_{0}$ and $k \in K$, or as a k, where $a \in A, \nu \in N$, and $k \in K$. The multiplication map $A \times N \times K \longrightarrow$ G is a diffeomorphism.

Proof. Let $g \in G$. Let v_{1}, \cdots, v_{n} be the rows of g. Let a be the diagonal matrix whose elements are $\left|v_{1}\right|, \cdots,\left|v_{n}\right|$. Then the rows of $a^{-1} g$ have length 1. Let $u_{i}=v_{i} /\left|v_{i}\right|$ be these rows.

By the Gram-Schmidt orthogonalization algorithm, we find constants $\theta_{i j}$ $(i<j)$ such that $u_{n}, u_{n-1}+\theta_{n-1, n} u_{n}, u_{3}+\theta_{13} u_{1}+\theta_{23} u_{2}, \cdots$ are orthonormal. This means that if

$$
\nu^{-1}=\left(\begin{array}{ccc}
1 \theta_{12} & \cdots & \theta_{1 n} \\
& 1 & \\
& & \theta_{2 n} \\
& & \ddots
\end{array}\right)
$$

then $k=\nu^{-1} a^{-1} g$ is unitary, and so $g=a \nu k=b_{0} k$ with $b_{0}=a \nu$. This proves the existence of the required factorizations. We have $B_{0} \cap K=\{1\}$ and $A \cap N=\{1\}$, so the factorizations are unique. It is easy to see that
the matrices a, ν, and k depend continuously on g, so the multiplication map $A \times N \times K \longrightarrow G$ has a continuous inverse and hence is a diffeomorphism.

The decomposition $G \cong A \times N \times K$ is called the Iwasawa decomposition of $\operatorname{GL}(n, \mathbb{C})$.

To give another example, if $G=\mathrm{GL}(n, \mathbb{R})$, one takes $K=O(n)$ to be a maximal compact subgroup, A is the same group of diagonal real matrices with positive eigenvalues as in the complex case, and N is the group of upper triangular unipotent real matrices. Again there is an Iwasawa decomposition, and one may prove it by the Gram-Schmidt orthogonalization process.

In this section, we will prove an Iwasawa decomposition if G is a complex Lie group that is the complexification of a compact connected Lie group K. This result contains the first example of $G=\mathrm{GL}(n, \mathbb{C})$, though not the second example of $G=\mathrm{GL}(n, \mathbb{R})$. A more general Iwasawa decomposition containing both examples will be obtained in Theorem 32.2.

We say that a Lie algebra \mathfrak{n} is nilpotent if there exists a finite chain of ideals

$$
\mathfrak{n}=\mathfrak{n}_{1} \supset \mathfrak{n}_{2} \supset \cdots \supset \mathfrak{n}_{N}=\{0\}
$$

such that $\left[\mathfrak{n}, \mathfrak{n}_{k}\right] \subseteq \mathfrak{n}_{k+1}$.
Example 29.1. Let F be a field, and let \mathfrak{n} be the Lie algebra over F consisting of upper triangular nilpotent matrices in $\mathrm{GL}(n, F)$. Let

$$
\mathfrak{n}_{k}=\left\{g \in \mathfrak{n} \mid g_{i j}=0 \text { if } j<i+k\right\} .
$$

For example, if $n=3$,

$$
\mathfrak{n}=\mathfrak{n}_{1}=\left\{\left(\begin{array}{ccc}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{n}_{2}=\left\{\left(\begin{array}{ccc}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{n}_{3}=\{0\}
$$

This Lie algebra is nilpotent.
We also say that a Lie algebra \mathfrak{b} is solvable if there exists a finite chain of Lie subalgebras

$$
\begin{equation*}
\mathfrak{b}=\mathfrak{b}_{1} \supset \mathfrak{b}_{2} \supset \cdots \supset \mathfrak{b}_{N}=\{0\} \tag{29.1}
\end{equation*}
$$

such that $\left[\mathfrak{b}_{i}, \mathfrak{b}_{i}\right] \subseteq \mathfrak{b}_{i+1}$. It is not necessarily true that \mathfrak{b}_{i} is an ideal in \mathfrak{b}. However, the assumption that $\left[\mathfrak{b}_{i}, \mathfrak{b}_{i}\right] \subseteq \mathfrak{b}_{i+1}$ obviously implies that $\left[\mathfrak{b}_{i}, \mathfrak{b}_{i+1}\right] \subseteq$ \mathfrak{b}_{i+1}, so \mathfrak{b}_{i+1} is an ideal in \mathfrak{b}_{i}.

Clearly, a nilpotent Lie algebra is solvable. The converse is not true, as the next example shows.

Example 29.2. Let F be a field, and let \mathfrak{b} be the Lie algebra over F consisting of all upper triangular matrices in GL (n, F). Let

$$
\mathfrak{b}_{k}=\left\{g \in \mathfrak{b} \mid g_{i j}=0 \text { if } j<i+k-1\right\} .
$$

Thus, if $n=3$,

$$
\begin{array}{rlrl}
\mathfrak{b}=\mathfrak{b}_{1}=\left\{\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\}, & \mathfrak{b}_{2}=\left\{\left(\begin{array}{ccc}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right)\right\}, \\
\mathfrak{b}_{3} & =\left\{\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}, & \mathfrak{b}_{4}=\{0\} .
\end{array}
$$

This Lie algebra is solvable. It is not nilpotent.
Proposition 29.2. Let \mathfrak{b} be a Lie algebra, \mathfrak{b}^{\prime} an ideal of \mathfrak{b}, and $\mathfrak{b}^{\prime \prime}=\mathfrak{b} / \mathfrak{b}^{\prime}$. Then \mathfrak{b} is solvable if and only if \mathfrak{b}^{\prime} and $\mathfrak{b}^{\prime \prime}$ are both solvable.

Proof. Given a chain of Lie subalgebras (29.1) satisfying $\left[\mathfrak{b}_{i}, \mathfrak{b}_{i}\right] \subset \mathfrak{b}_{i+1}$, one may intersect them with \mathfrak{b}^{\prime} or consider their images in $\mathfrak{b}^{\prime \prime}$ and obtain corresponding chains in \mathfrak{b}^{\prime} and $\mathfrak{b}^{\prime \prime}$ showing that these are solvable.

Conversely, suppose that \mathfrak{b}^{\prime} and $\mathfrak{b}^{\prime \prime}$ are both solvable. Then there are chains

$$
\mathfrak{b}^{\prime}=\mathfrak{b}_{1}^{\prime} \supset \mathfrak{b}_{2}^{\prime} \supset \cdots \supset \mathfrak{b}_{M}^{\prime}=\{0\}, \quad \mathfrak{b}^{\prime \prime}=\mathfrak{b}_{1}^{\prime \prime} \supset \mathfrak{b}_{2}^{\prime \prime} \supset \cdots \supset \mathfrak{b}_{N}^{\prime \prime}=\{0\}
$$

Let \mathfrak{b}_{i} be the preimage of $\mathfrak{b}_{i}^{\prime \prime}$ in \mathfrak{b}. Splicing the two chains in \mathfrak{b} as

$$
\mathfrak{b}=\mathfrak{b}_{1} \supset \mathfrak{b}_{2} \supset \cdots \supset \mathfrak{b}_{N}=\mathfrak{b}^{\prime}=\mathfrak{b}_{1}^{\prime} \supset \mathfrak{b}_{2}^{\prime} \supset \cdots \supset \mathfrak{b}_{M}^{\prime}=\{0\}
$$

shows that \mathfrak{b} is solvable.
Proposition 29.3. (Dynkin) Let $\mathfrak{g} \subset \mathfrak{g l}(V)$ be a Lie algebra of linear transformations over a field F of characteristic zero, and let \mathfrak{h} be an ideal of \mathfrak{g}. Let $\lambda: \mathfrak{h} \longrightarrow F$ be a linear form. Then the space

$$
W=\{v \in V \mid Y v=\lambda(Y) v \text { for all } Y \in \mathfrak{h}\}
$$

is invariant under all of \mathfrak{g}.
Proof. If $W=0$, there is nothing to prove, so assume $0 \neq v_{0} \in W$. Fix an element $X \in \mathfrak{g}$. Let W_{0} be the linear span of $v_{0}, X v_{0}, X^{2} v_{0}, \cdots$, and let d be the dimension of W_{0}.

If $Z \in \mathfrak{h}$, then we will prove that

$$
\begin{equation*}
Z\left(W_{0}\right) \subseteq W_{0} \text { and the trace of } Z \text { on } W_{0} \text { is } \operatorname{dim}\left(W_{0}\right) \cdot \lambda(Z) \tag{29.2}
\end{equation*}
$$

To prove this, note that

$$
\begin{equation*}
v_{0}, X v_{0}, X^{2} v_{0}, \cdots, X^{d-1} v_{0} \tag{29.3}
\end{equation*}
$$

is a basis of W_{0}. With respect to this basis, for suitable $c_{i j} \in F$, we have

$$
\begin{equation*}
Z X^{i} v_{0}=\lambda(Z) X^{i} v_{0}+\sum_{j<i} c_{i j} X^{j} v_{0} \tag{29.4}
\end{equation*}
$$

This is proved by induction since

$$
Z X^{i} v_{0}=X Z X^{i-1} v_{0}-[X, Z] X^{i-1} v_{0}
$$

By the induction hypothesis, $X Z X^{i-1} v_{0}$ is $X \lambda(Z) X^{i-1} v_{0}$ plus a linear combination of $X^{j} v_{0}$ with $j<i$, and $[X, Z] X^{i-1} v_{0}$ is $\lambda([X, Z]) X^{i-1} v_{0}$ plus a linear combination of $X^{j} v_{0}$ with $j<i-1$. The formula (29.4) follows. The invariance of W_{0} under Z is now clear, and (29.2) also follows from (29.4) because with respect to the basis (29.3) the matrix of Z is upper triangular and the diagonal entries all equal $\lambda(Z)$.

Now let us show that $X v_{0} \in W$. Let $Y \in \mathfrak{h}$. What we must show is that $Y X v_{0}=\lambda(Y) X v_{0}$. The space W_{0} is invariant under both X (obviously) and Y (by (29.2) taking $Z=Y$). Thus, the trace of $[X, Y]=X Y-Y X$ on W_{0} is zero. Since $Y \in \mathfrak{h}$ and \mathfrak{h} is an ideal, $[X, Y] \in \mathfrak{h}$ and we may take $Z=[X, Y]$ in (29.2). Since the characteristic of F is 0 , we see that $\lambda([X, Y])=0$. Now

$$
Y X v_{0}=X Y v_{0}-[X, Y] v_{0}=\lambda(Y) X v_{0}-\lambda([X, Y]) v_{0}=\lambda(Y) X v_{0}
$$

as required.
Theorem 29.1. (Lie) Let $\mathfrak{b} \subseteq \mathfrak{g l}(V)$ be a solvable Lie algebra of linear transformations over an algebraically closed field of characteristic zero. Assume that $V \neq 0$.
(i) There exists a vector $v \in V$ that is a simultaneous eigenvector for all of \mathfrak{b}.
(ii) There exists a basis of V with respect to which all elements of \mathfrak{b} are represented by upper triangular matrices.

Proof. To prove (i), we may clearly assume that $\mathfrak{b} \neq 0$. Let us first observe that \mathfrak{b} has an ideal \mathfrak{h} of codimension 1 . Indeed, since \mathfrak{b} is solvable, $[\mathfrak{b}, \mathfrak{b}]$ is a proper ideal, and the quotient Lie algebra $\mathfrak{b} /[\mathfrak{b}, \mathfrak{b}]$ is Abelian; hence any subspace at all of $\mathfrak{b} /[\mathfrak{b}, \mathfrak{b}]$ is an ideal. We choose a subspace of codimension 1 , and let \mathfrak{h} be its preimage in \mathfrak{b}.

Now \mathfrak{h} is solvable and of strictly smaller dimension than \mathfrak{b}, so by induction there exists a simultaneous eigenvector v_{0} for all of \mathfrak{h}. Let $\lambda: \mathfrak{h} \longrightarrow F$ be such that $X v_{0}=\lambda(X) v_{0}$. The space $W=\{v \in V \mid X v=\lambda(X) v$ for all $X \in \mathfrak{h}\}$ is nonzero, and by Proposition 29.3 it is \mathfrak{b}-invariant. Let $Z \in \mathfrak{b}-\mathfrak{h}$. Since F is assumed to be algebraically closed, Z has an eigenvector on W, which will be an eigenvector v_{1} for all of \mathfrak{b} since it is already an eigenvector for \mathfrak{h}.

For (ii), the Lie algebra of linear transformations of $V / F v_{1}$ induced by those of \mathfrak{b} is solvable, so by induction this quotient space has a basis $\overline{v_{2}}, \cdots, \overline{v_{d}}$ with respect to which every $X \in \mathfrak{b}$ is upper triangular. This means that for suitable $a_{i j} \in F$, we have $X \overline{v_{i}}=\sum_{2 \leqslant j \leqslant i} a_{i j} \overline{v_{j}}$. Letting v_{2}, \cdots, v_{d} be representatives of the cosets $\overline{v_{i}}$ in V, it follows that X is upper triangular with respect to the basis v_{1}, \cdots, v_{d}.

Let K be a compact Lie group and \mathfrak{k} its Lie algebra. Let $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}}$ be the analytic complexification of \mathfrak{k}, so that \mathfrak{g} is the Lie algebra of the complex Lie group G that is the complexification of K. Let T be a maximal torus of K. We can embed its analytic complexification $T_{\mathbb{C}}$ into G by the universal property of the complexification.

Let Φ be the root system of K and let Φ^{+}be the positive roots with respect to some ordering. If $\alpha \in \Phi$, let $\mathfrak{X}_{\alpha} \subset \mathfrak{g}$ be the α-eigenspace. By Proposition 19.3 (ii),

$$
\begin{equation*}
\mathfrak{n}=\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{X}_{\alpha} \tag{29.5}
\end{equation*}
$$

is a complex Lie subalgebra of \mathfrak{g}; indeed, if α and β are positive roots, it is impossible that $\alpha=-\beta$, so $\left[X_{\alpha}, X_{\beta}\right] \subset \mathfrak{X}_{\alpha+\beta}$ if $\alpha+\beta$ is a positive root, and otherwise it is zero. In either case, it is in \mathfrak{n}.

Proposition 29.4. The Lie algebra \mathfrak{n} defined by (29.5) is nilpotent.
Proof. Let Φ_{k}^{+}be the set of positive roots α such that α is expressible as the sum of at least k simple positive roots. Thus $\Phi_{1}^{+}=\Phi, \Phi_{1}^{+} \supset \Phi_{2}^{+} \supset \Phi_{3}^{+} \supset \cdots$, and eventually Φ_{k}^{+}is empty. Define

$$
\mathfrak{n}_{k}=\bigoplus_{\alpha \in \Phi_{k}^{+}} \mathfrak{X}_{\alpha}
$$

It follows from Proposition 19.3 (ii) that $\left[\mathfrak{n}, \mathfrak{n}_{k}\right] \subseteq \mathfrak{n}_{k+1}$, and eventually \mathfrak{n}_{k} is zero, so \mathfrak{n} is nilpotent.

Now let \mathfrak{t} be the Lie algebra of T, and let $\mathfrak{b}=\mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}$. Since $\left[\mathfrak{t}_{\mathbb{C}}, \mathfrak{X}_{\alpha}\right] \subseteq \mathfrak{X}_{\alpha}$, it is clear that \mathfrak{b}, like \mathfrak{n}, is closed under the Lie bracket and forms a complex Lie algebra. Moreover, since $\mathfrak{t}_{\mathbb{C}}$ is Abelian and normalizes \mathfrak{n}, we have $[\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{n}$, and since \mathfrak{n} is nilpotent and hence solvable, it follows that \mathfrak{b} is solvable.

We aim to show that both \mathfrak{n} and \mathfrak{b} are the Lie algebras of closed complex Lie subgroups of G.

Proposition 29.5. Let G be the complexification of a compact Lie group K, and let \mathfrak{n} be as in (29.5). If $\pi: G \longrightarrow \mathrm{GL}(V)$ is any representation and $X \in \mathfrak{n}$, then $\pi(X)$ is nilpotent as a linear transformation; that is, $\pi(X)^{N}=0$ for all sufficiently large N.

We note that it is possible for a nilpotent Lie algebra of linear transformations to contain linear transformations that are not nilpotent. For example, an Abelian Lie algebra is nilpotent as a Lie algebra but might well contain linear transformations that are not nilpotent.

Proof. By Theorem 29.1, we may choose a basis of V such that all $\pi(X)$ are upper triangular for $X \in \mathfrak{b}$, where we are identifying $\pi(X)$ with its matrix with respect to the chosen basis. What we must show is that if $X \in \mathfrak{n}$, then
the diagonal entries of this matrix are zero. It is sufficient to show this if $X \in \mathfrak{X}_{\alpha}$, where α is a positive root.

By the definition of a root, the character α of T is nonzero, and so its differential $d \alpha$ is nonzero. This means that there exists $H \in \mathfrak{t}$ such that $d \alpha(H) \neq 0$, and by (19.4) the commutator $\left[\pi(H), \pi\left(X_{\alpha}\right)\right]$ is a nonzero multiple of $\pi\left(X_{\alpha}\right)$. Because it is a nonzero multiple of the commutator of two upper triangular matrices, it follows that $\pi\left(X_{\alpha}\right)$ is an upper triangular matrix with zeros on the diagonal. Thus, it is nilpotent.

Theorem 29.2. (i) Let G be the complexification of a compact connected Lie group K, let T be a maximal torus of K, let \mathfrak{t} be the Lie algebra of T, and let $T_{\mathbb{C}}$ be its complexification. Let \mathfrak{n} be as in (29.5), and let $\mathfrak{b}=\mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}$. Then N and B are the Lie algebras of closed complex Lie subgroups of G.
(ii) We may embed G in $\operatorname{GL}(n, \mathbb{C})$ for some n in such a way that K consists of unitary matrices, $T_{\mathbb{C}}$ consists of diagonal matrices, and B consists of upper triangular matrices.
(iii) If \mathfrak{u} is a real Lie subalgebra of \mathfrak{n}, then \mathfrak{u} is the Lie algebra of a Lie subgroup of N. If \mathfrak{u} is a complex Lie subalgebra of \mathfrak{n}, then \mathfrak{u} is the Lie algebra of a complex analytic subgroup of N.

The group B is called the standard Borel subgroup of G. A conjugate of B is called a Borel subgroup.

Proof. We will prove parts (i) and (ii) simultaneously.
Let $\pi: K \longrightarrow \mathrm{GL}(V)$ be a faithful representation. We choose on V an inner product with respect to which $\pi(k)$ is unitary for $k \in K$. By Theorem 27.1, we may extend π to a faithful complex analytic representation of G. We have already noted that \mathfrak{b} is a solvable Lie algebra, so by Theorem 29.1 we may find a basis v_{1}, \cdots, v_{n} of V with respect to which the linear transformations $\pi(X)$ with $X \in \mathfrak{b}$ are upper triangular. This means that $\pi(X) v_{i} \in \sum_{j \leqslant i} F v_{j}$. We claim that we may assume that the v_{i} are orthonormal. This is accomplished by Gram-Schmidt orthonormalization. We first divide v_{i} by $\left|v_{i}\right|$ so v_{i} has length 1 . Next we replace v_{2} by $v_{2}-\left\langle v_{2}, v_{1}\right\rangle v_{1}$ and so forth so that the v_{i} are orthonormal. The matrices $\pi(X)$ with $X \in \mathfrak{b}$ remain upper triangular after these changes.

We identify G with its image in $\operatorname{GL}(n, \mathbb{C})$ and its Lie algebra with the corresponding Lie subalgebra of $\operatorname{Mat}_{n}(\mathbb{C})=\mathfrak{g l}(n, \mathbb{C})$. Thus we write X instead of $\pi(X)$ and regard it as a matrix.

Let

$$
N=\{\exp (X) \mid X \in \mathfrak{n}\}
$$

We will show that N is a closed analytic subgroup of G whose Lie algebra is N.

By Remark 8.1, if $X \in \mathfrak{n}$ and $Y=\exp (X)$, then

$$
Y=I+X+\frac{1}{2} X^{2}+\ldots+\frac{1}{n!} X^{n}
$$

This is now a series with only finitely many terms since X is nilpotent by Proposition 29.5. Moreover, $Y-I$ is a finite sum of upper triangular nilpotent matrices and hence is itself nilpotent, and reverting the exponential series, we have $X=\log (Y)$, where we define

$$
\log (Y)=(Y-1)-\frac{1}{2}(Y-1)^{2}+\frac{1}{3}(Y-1)^{3}-\ldots+(-1)^{n-1} \frac{1}{n}(Y-1)^{n}
$$

if Y is an upper triangular unipotent matrix. As with the exponential series, only finitely many terms are needed since $(Y-I)^{n}=0$. This series defines a continuous map $\log : N \longrightarrow \mathfrak{n}$, which is the inverse of the exponential map. Therefore \mathfrak{n} is homeomorphic to N.

Now we can see that N is a closed subset of $\operatorname{GL}(n, \mathbb{C})$ and in fact an affine subvariety. Let \mathfrak{n}^{\prime} be the Lie subalgebra of $\mathfrak{g l}(n, \mathbb{C})$ consisting of upper triangular nilpotent matrices, and let $\lambda_{1}, \cdots, \lambda_{r}$ be a set of linear functionals on \mathfrak{n}^{\prime} such that the intersection of the kernels of the λ_{i} is $\mathfrak{n} . N$ may be characterized as follows. An element $g \in \operatorname{GL}(n, \mathbb{C})$ is in N if and only if it is upper triangular and unipotent, and each $\lambda_{i}(\log (g))=0$. These conditions amount to a set of polynomial equations characterizing N, showing that it is closed.

We may also show that N is a group. Indeed, its intersection with a neighborhood of the identity is a local group by Proposition 14.1. Thus if g, h are near the identity in N, we have $g h \in N$, so $\phi_{i}(g, h)=0$ where $\phi_{i}(g, h)=\lambda_{i}(\exp (g h))$. Thus, the polynomial ϕ_{i} vanishes near the identity in $N \times N$, and since N is a connected affine subvariety of $\mathrm{GL}(n, \mathbb{C})$, this polynomial vanishes identically on all of N. Thus N is closed under multiplication, and it is a group.

Since $\left[\mathfrak{t}_{\mathbb{C}}, \mathfrak{n}\right] \subset \mathfrak{n}$, the group $T_{\mathbb{C}}$ normalizes N, so $B=T_{\mathbb{C}} N$ is a subgroup of G. It is not hard to show that it is a closed Lie subgroup and its Lie algebra is \mathfrak{b}.

The same argument that proved that N is a Lie group proves (iii).
The Borel subgroup is a bit too big for the Iwasawa decomposition since it has a nontrivial intersection with K. Let $\mathfrak{a}=i$. It is the Lie algebra of a closed connected Lie subgroup A of T. If we embed K and G into GL (n, \mathbb{C}) as in Theorem 29.2, the elements of T are diagonal, and A consists of the subgroup of elements of T whose diagonal entries are positive real numbers. Let $B_{0}=A N$.

Theorem 29.3. (Iwasawa Decomposition) With notations as in Theorem 29.2 and B_{0} and A as above, every element of $g \in G$ can be factored uniquely as $b k$ where $b \in B_{0}$ and $k \in K$, or as a k where $a \in A, \nu \in N$ and $k \in K$. The multiplication map $A \times N \times K \longrightarrow G$ is a diffeomorphism.

Proof. Let $G^{\prime}=\mathrm{GL}(n, \mathbb{C}), K^{\prime}=U(n), A^{\prime}$ be the subgroup of $\mathrm{GL}(n, \mathbb{C})$ consisting of diagonal matrices with positive real eigenvalues, and N^{\prime} be the subgroup of upper triangular unipotent matrices in G^{\prime}. By Theorem 29.2 (ii),
we may embed G into G^{\prime} for suitable n such that K ends up in K^{\prime}, N ends up in N^{\prime}, and A ends up in K_{0}^{\prime}.

We have a commutative diagram

where the vertical arrows are multiplications and the horizontal arrows are inclusions. By Proposition 29.1, the composition

$$
\begin{equation*}
A \times N \times K \longrightarrow A^{\prime} \times N^{\prime} \times K^{\prime} \longrightarrow G^{\prime} \tag{29.6}
\end{equation*}
$$

is a diffeomorphism onto its image, and so the multiplication $A \times N \times K \longrightarrow G$ is a diffeomorphism onto its image. We must show that it is surjective.

Since A, N, and K are each closed in A^{\prime}, N^{\prime}, and K^{\prime}, respectively, the image of (29.6) is closed in G^{\prime} and hence in G. We will show that this image is also open in G. We note that $\mathfrak{a}+\mathfrak{n}+\mathfrak{k}=\mathfrak{g}$ since $\mathfrak{t}_{\mathbb{C}} \subset \mathfrak{a}+\mathfrak{k}$, and each $\mathbb{C X}_{\alpha} \subset \mathfrak{n}+\mathfrak{k}$. It follows that the dimension of $A \times N \times K$ is greater than or equal to that of G. (These dimensions are actually equal, though we do not need this fact, since it is not hard to see that the sum $\mathfrak{a}+\mathfrak{n}+\mathfrak{k}$ is direct.) Since multiplication is a diffeomorphism onto its image, this image is open and closed in G. But G is connected, so this image is all of G, and the theorem is now clear.

As an application, we may now show why flag manifolds have a complex structure.

Theorem 29.4. Let K be a compact connected Lie group and T a maximal torus. Then $X=K / T$ can be given the structure of a complex manifold in such a way that the translation maps $g: x T \longrightarrow g x T$ are holomorphic. This action of K can be extended to an action of the analytic complexification G by holomorphic maps.

Proof. By the Iwasawa decomposition, we may write $G=B K$. Since $B \cap K=$ T, we have $G / B \cong K / T$, and this diffeomorphism is K-equivariant. Now G is a complex Lie group and B is a closed analytic subgroup, so the quotient G / B has the structure of a complex analytic manifold, and the action of G, a fortiori of K, consists of holomorphic maps.

The Bruhat Decomposition

The Bruhat decomposition was discovered quite late in the history of Lie groups, which is surprising in view of its fundamental importance. It was preceded by Ehresmann's discovery of a closely related cell decomposition for flag manifolds.

Let $G=\mathrm{GL}(n, F)$, where F is a field, and let B be the Borel subgroup of upper triangular matrices in G. Taking $T \subset B$ to be the subgroup of diagonal matrices in G, the normalizer $N(T)$ consists of all monomial matrices. The Weyl group $W=N(T) / T \cong S_{n}$. If $w \in W$ is represented by $\omega \in N(T)$ then since $T \subset B$ the double coset $B \omega B$ is independent of the choice of representative ω, so by abuse of notation we write $B w B$ for $B \omega B$. It is a remarkable and extremely important fact that $w \longrightarrow B w B$ is a bijection between the elements of W and the double cosets $B \backslash G / B$. Thus

$$
\begin{equation*}
G=\bigcup B w B \quad \text { (disjoint) } \tag{30.1}
\end{equation*}
$$

We will prove this and also obtain a similar statement in complex Lie groups. Specifically, if G is a complex Lie group obtained by complexification of a compact Lie group, we will prove a "Bruhat decomposition" analogous to (30.1) in G. A more general Bruhat decomposition will be found in Theorem 32.5.

We will prove the Bruhat decomposition for a group with a Tits' system, which consists of a pair of subgroups B and N satisfying certain axioms. The use of the notation N differs from that of Chapter 29, though the results of that chapter are very relevant here.

Let G be a group, and let B and N be subgroups such that $T=B \cap N$ is normal in N. Let W be the quotient group N / T. As with $\operatorname{GL}(n, F)$, we write $w B$ instead of $w B$ when $\omega \in N$ represents the Weyl group element w, and similarly we will denote $B w=B \omega$ and $B w B=B \omega B$.

Let G be a group with subgroups B and N satisfying the following conditions.

Axiom TS1. The group $T=B \cap N$ is normal in N.

Axiom TS2. There is specified a set I of generators of the group $W=N / T$ such that if $s \in I$ then $s^{2}=1$.

Axiom TS3. Let $w \in W$ and $s \in I$. Then

$$
\begin{equation*}
w B s \subset B w s B \cup B w B \tag{30.2}
\end{equation*}
$$

Axiom TS4. Let $s \in I$. Then $s B s^{-1} \neq B$.
Axiom TS5. The group G is generated by N and B.
Then we say that (B, N, I) is a Tits' system.
We will be particularly concerned with the double cosets $\mathcal{C}(w)=B w B$ with $w \in W$. Then Axiom TS3 can be rewritten

$$
\mathcal{C}(w) \mathcal{C}(s) \subset \mathcal{C}(w) \cup \mathcal{C}(w s)
$$

which is obviously equivalent to (30.2). Taking inverses, this is equivalent to

$$
\begin{equation*}
\mathcal{C}(s) \mathcal{C}(w) \subset \mathcal{C}(w) \cup \mathcal{C}(s w) \tag{30.3}
\end{equation*}
$$

As a first example, let $G=\mathrm{GL}(n, F)$, where F is any field. Let B be the Borel subgroup of upper triangular matrices in G, let T be the standard "maximal torus" of all diagonal elements, and let N be the normalizer in G of T. The group N consists of the monomial matrices, that is, matrices having exactly one nonzero entry in each row and column. Let $I=\left\{s_{1}, \cdots, s_{n-1}\right\}$ be the set of simple reflections, namely s_{i} is the image in $W=N / T$ of

$$
\left(\begin{array}{llll}
I_{i-1} & & & \\
& 0 & 1 & \\
& 1 & 0 & \\
& & & I_{n-1-i}
\end{array}\right)
$$

We will prove in Theorem 30.1 below that this (B, N, I) is a Tits' system. The proof will require introducing a root system into $\mathrm{GL}(n, F)$. Of course, we have already done this if $F=\mathbb{C}$, but let us revisit the definitions in this new context.

Let $X^{*}(T)$ be the group of rational characters of T. In case F is a finite field, we don't want any torsion in $X^{*}(T)$; that is, we want $\chi \in X^{*}(T)$ to have infinite order so that $\mathbb{R} \otimes X^{*}(T)$ will be nonzero. So we define an element of $X^{*}(T)$ to be a character of $T(\bar{F})$, the group of diagonal matrices in GL (n, \bar{F}), where \bar{F} is the algebraic closure of F, of the form

$$
\left(\begin{array}{ccc}
t_{1} & & \tag{30.4}\\
& \ddots & \\
& & t_{n}
\end{array}\right) \longmapsto t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}
$$

where $k_{i} \in \mathbb{Z}$. Then $X^{*}(T) \cong \mathbb{Z}^{n}$, so $\mathcal{V}=\mathbb{R} \otimes X^{*}(T) \cong \mathbb{R}^{n}$.
As usual, we write the group law in $X^{*}(T)$ additively.
In this context, by a root of T in G we mean an element $\alpha \in X^{*}(T)$ such that there exists a group isomorphism x_{α} of F onto a subgroup X_{α} of G consisting of unipotent matrices such that

$$
\begin{equation*}
t x_{\alpha}(\lambda) t^{-1}=x_{\alpha}(\alpha(t) \lambda), \quad t \in T, \lambda \in F \tag{30.5}
\end{equation*}
$$

(Strictly speaking, we should require that this identity be true as an equality of morphisms from the additive group into G.) There are $n^{2}-n$ roots, which may be described explicitly as follows. If $1 \leqslant i, j \leqslant n$ and $i \neq j$, let

$$
\begin{equation*}
\alpha_{i j}(t)=t_{i} t_{j}^{-1} \tag{30.6}
\end{equation*}
$$

when t is as in (30.4). Then $\alpha_{i j} \in X^{*}(T)$, and if $E_{i j}$ is the matrix with 1 in the i, j position and 0 's elsewhere, and if

$$
x_{\alpha}(\lambda)=I+\lambda E_{i j}
$$

then (30.5) is clearly valid. The set Φ consisting of $\alpha_{i j}$ is a root system; we leave the reader to check this but in fact it is identical to the root system of $\operatorname{GL}(n, \mathbb{C})$ or its maximal compact subgroup $U(n)$ already introduced in Chapter 19 when $n=\mathbb{C}$. Let Φ^{+}consist of the "positive roots" $\alpha_{i j}$ with $i<j$, and let Σ consist of the "simple roots" $\alpha_{i, i+1}$. We will sometimes denote the simple reflections $s_{i}=s_{\alpha}$, where $\alpha=\alpha_{i, i+1}$.

Suppose that α is a simple root. Let $T_{\alpha} \subset T$ be the kernel of α. Let M_{α} be the centralizer of T_{α}, and let P_{α} be the "parabolic subgroup" generated by B and M_{α}. (The term parabolic subgroup will be formally defined in Chapter 33.) We have a semidirect product decomposition $P_{\alpha}=M_{\alpha} U_{\alpha}$, where U_{α} is the group generated by the $x_{\beta}(\lambda)$ with $\beta \in \Phi^{+}-\{\alpha\}$. For example, if $n=4$ and $\alpha=\alpha_{23}$, then

$$
\begin{aligned}
& T_{\alpha}=\left\{\left(\begin{array}{llll}
t_{1} & & & \\
& t_{2} & & \\
& & t_{2} & \\
& & & t_{4}
\end{array}\right)\right\}, \quad M_{\alpha}=\left\{\left(\begin{array}{cccc}
* & & & \\
& * & * & \\
& * & * & \\
& & & *
\end{array}\right)\right\}, \\
& P_{\alpha}=\left\{\left(\begin{array}{rrrr}
* & * & * & * \\
& * & * & * \\
& * & * & * \\
& & & *
\end{array}\right)\right\}, \quad U_{\alpha}=\left\{\left(\begin{array}{rrrr}
1 & * & * & * \\
& 1 & & * \\
& & 1 & * \\
& & & 1
\end{array}\right)\right\}
\end{aligned}
$$

where $*$ indicates an arbitrary value.
Lemma 30.1. Let $G=\mathrm{GL}(n, F)$ for any field F, and let other notations be as above. If s is a simple reflection, then $B \cup \mathcal{C}(s)$ is a subgroup of G.

Proof. First, let us check this when $n=2$. In this case, there is only one simple root s_{α} where $\alpha=\alpha_{12}$. We check easily that

$$
\mathcal{C}\left(s_{\alpha}\right)=B s_{\alpha} B=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}(2, F) \right\rvert\, c \neq 0\right\}
$$

so $\mathcal{C}\left(s_{\alpha}\right) \cup B=G$.
In the general case, both $\mathcal{C}\left(s_{\alpha}\right)$ and B are subsets of P_{α}. We claim that their union is all of P_{α}. Both double cosets are right-invariant by U_{α} since $U_{\alpha} \subset B$, so it is sufficient to show that $\mathcal{C}\left(s_{\alpha}\right) \cup B \supset M_{\alpha}$. Passing to the quotient in $P_{\alpha} / U_{\alpha} \cong M_{\alpha} \cong \mathrm{GL}(2) \times\left(F^{\times}\right)^{n-2}$, this reduces to the case $n=2$ just considered.

We have an action of W on Φ as in Chapter 21. This action is such that if $\omega \in N$ represents the Weyl group element $w \in W$, we have

$$
\begin{equation*}
\omega x_{\alpha}(\lambda) \omega^{-1} \in x_{w(\alpha)}(F) \tag{30.7}
\end{equation*}
$$

Other notations, such as the length function $l: W \longrightarrow \mathbb{Z}$, will be as in that chapter.

Lemma 30.2. Let $G=\operatorname{GL}(n, F)$ for any field F, and let other notations be as above. If α is a simple root and $w \in W$ such that $w(\alpha) \in \Phi^{+}$, then $\mathcal{C}(w) \mathcal{C}(s)=\mathcal{C}(w s)$.

Proof. We will show that

$$
w B s \subseteq B w s B
$$

If this is known, then multiplying both left and right by B gives $\mathcal{C}(w) \mathcal{C}(s)=$ $B w B s B \subseteq B w s B=\mathcal{C}(w s)$. The other inclusion is obvious, so this is sufficient. Let ω and σ be representatives of w and s as cosets in $N / T=W$, and let $b \in B$. We may write $b=t x_{\alpha}(\lambda) u$, where $t \in T, \lambda \in F$, and $u \in U_{\alpha}$. Then

$$
\omega b \sigma=\omega t \omega^{-1} \cdot \omega x_{\alpha}(\lambda) \omega^{-1} \cdot \omega \sigma \cdot \sigma^{-1} u \sigma
$$

We have $\omega t \omega^{-1} \in T \subset B$ since $\omega \in N=N(T)$. We have $\omega x_{\alpha}(\lambda) \omega^{-1} \in$ $x_{w(\alpha)}(F) \subset B$ using (30.7) and the fact that $w(\alpha) \in \Phi^{+}$. We have $\sigma^{-1} u \sigma \in$ $U_{\alpha} \subset B$ since M_{α} normalizes U_{α} and $\sigma \in M_{\alpha}$. We see that $\omega b \sigma \in B w s B$ as required.

Proposition 30.1. Let $G=\mathrm{GL}(n, F)$ for any field F, and let other notations be as above. If $w, w^{\prime} \in W$ are such that $l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)$, then

$$
\mathcal{C}\left(w w^{\prime}\right)=\mathcal{C}(w) \cdot \mathcal{C}\left(w^{\prime}\right)
$$

Proof. It is sufficient to show that if $l(w)=r$, and if $w=s_{1} \cdots s_{r}$ is a decomposition into simple reflections, then

$$
\begin{equation*}
\mathcal{C}(w)=\mathcal{C}\left(s_{1}\right) \cdots \mathcal{C}\left(s_{r}\right) \tag{30.8}
\end{equation*}
$$

Indeed, assuming we know this fact, let $w^{\prime}=s_{1}^{\prime} \cdots s_{r^{\prime}}^{\prime}$ be a decomposition into simple reflections with $r^{\prime}=l\left(r^{\prime}\right)$. Then $s_{1} \cdots s_{r} s_{1}^{\prime} \cdots s_{r^{\prime}}^{\prime}$ is a decomposition of $w w^{\prime}$ into simple reflections with $l\left(w w^{\prime}\right)=r+r^{\prime}$, so

$$
\mathcal{C}\left(w w^{\prime}\right)=\mathcal{C}\left(s_{1}\right) \cdots \mathcal{C}\left(s_{r}\right) \mathcal{C}\left(s_{1}^{\prime}\right) \cdots \mathcal{C}\left(s_{r^{\prime}}^{\prime}\right)=\mathcal{C}(w) \mathcal{C}\left(w^{\prime}\right)
$$

To prove (30.8), let $s_{r}=s_{\alpha}$, and let $w_{1}=s_{1} \cdots s_{r-1}$. Then $l\left(w_{1} s_{\alpha}\right)=$ $l\left(w_{1}\right)+1$, so by Propositions 21.2 and 21.5 we have $w^{\prime}(\alpha) \in \Phi^{+}$. Thus, Lemma 30.2 is applicable and $\mathcal{C}(w)=\mathcal{C}\left(w_{1}\right) \mathcal{C}\left(s_{r}\right)$. By induction on r, we have $\mathcal{C}\left(w_{1}\right)=$ $\mathcal{C}\left(s_{1}\right) \cdots \mathcal{C}\left(s_{r-1}\right)$ and so we are done.

Theorem 30.1. With $G=\mathrm{GL}(n, F)$ and B, N, I as above, (B, N, I) is a Tits' system in G.

Proof. Only Axiom TS3 requires proof; the others can be safely left to the reader. Let $\alpha \in \Sigma$ such that $s=s_{\alpha}$.

First, suppose that $w(\alpha) \in \Phi^{+}$. In this case, it follows from Lemma 30.2 that $w B s \subset B w s B$.

Next suppose that $w(\alpha) \notin \Phi^{+}$. Then $w s_{\alpha}(\alpha)=w(-\alpha)=-w(\alpha) \in \Phi^{+}$, so we may apply the case just considered, with $w s_{\alpha}$ replacing w, to see that

$$
\begin{equation*}
w s B s \subset B w s^{2} B=B w B \tag{30.9}
\end{equation*}
$$

By Lemma 30.1, $B \cup B s B$ is a group containing a representative of the coset of $s \in N / T$, so $B \cup B s B=s B \cup s B s B$ and thus

$$
B s \subset s B \cup s B s B
$$

Using (30.9),

$$
w B s \subset w s B \cup w s B s B \subset B w s B \cup B w B
$$

This proves Axiom TS3.
As a second example of a Tits' system, let K be a compact connected Lie group, and let G be its complexification. Let T be a maximal torus of K, let $T_{\mathbb{C}}$ be the complexification of T, and let B be the Borel subgroup of G as constructed in Chapter 29. Let N be the normalizer in G of $T_{\mathbb{C}}$, and let I be the set of simple reflections in $W=N / T$. We will prove that (B, N, I) is a Tits' system in G, closely paralleling the proof just given for $\mathrm{GL}(n, F)$. In fact, if $F=\mathbb{C}$ and $K=U(n)$, so $G=\mathrm{GL}(n, \mathbb{C})$, the two examples, including the method of proof, exactly coincide.

The key to the proof is the construction of the "parabolic subgroup" P_{α} corresponding to a simple root $\alpha \in \Sigma$. (The term parabolic subgroup will be formally defined in Chapter 33.) Let T_{α} be the kernel of α in T. The centralizer $C_{K}\left(T_{\alpha}\right)$ played a key role in Chapter 19, particularly in the proof of Theorem 19.1, where a homomorphism $i_{\alpha}: \mathrm{SU}(2) \longrightarrow C_{K}\left(T_{\alpha}\right)$ was constructed. This homomorphism extends to a homomorphism, which we will also denote as i_{α}, of the complexification $\mathrm{SL}(2, \mathbb{C})$ into the centralizer $C_{G}\left(T_{\alpha}\right)$ of T_{α} in
G. Let P_{α} be the subgroup generated by $i_{\alpha}(\mathrm{SL}(2, \mathbb{C}))$ and B. Let M_{α} be the group generated by $i_{\alpha}(\mathrm{SL}(2, \mathbb{C}))$ and $T_{\mathbb{C}}$. Finally, let

$$
\mathfrak{u}_{\alpha}=\bigoplus_{\substack{\beta \in \Phi^{+} \\ \beta \neq \alpha}} \mathfrak{X}_{\beta}
$$

If $\beta_{1}, \beta_{2} \in\left\{\beta \in \Phi^{+} \mid \beta \neq \alpha\right\}$, then $\beta_{1}+\beta_{2} \neq 0$, and if $\beta_{1}+\beta_{2}$ is a root, it is also in $\left\{\beta \in \Phi^{+} \mid \beta \neq \alpha\right\}$. It follows from this observation and Proposition 19.3 that \mathfrak{u}_{α} is closed under the Lie bracket; that is, it is a complex Lie algebra of the Lie algebra denoted \mathfrak{n} in Chapter 29. Theorem 29.2 (iii) shows that it is the Lie algebra of a complex Lie subgroup U_{α} of G.

Proposition 30.2. Let G be the complexification of the compact connected Lie group K, let α be a simple positive root of G with respect to a fixed maximal torus T of K, and let other notations be as above. Then M_{α} normalizes U_{α}.

Proof. It is clear that B normalizes U_{α}, so we need to show that $i_{\alpha}(\mathrm{SL}(2, \mathbb{C}))$ normalizes U_{α}. If $\gamma \in\left\{\beta \in \Phi^{+} \mid \beta \neq \alpha\right\}$ and $\delta=\alpha$ or $-\alpha$, then $\gamma+\delta \neq 0$, and if $\gamma+\delta \in \Phi$, then $\gamma+\delta \in\left\{\beta \in \Phi^{+} \mid \beta \neq \alpha\right\}$. Thus $\left[\mathfrak{X}_{ \pm \alpha}, \mathfrak{X}_{\gamma}\right] \subseteq \mathfrak{u}_{\alpha}$, and since by Theorem 19.1 and Proposition 19.6 the Lie algebra of $i_{\alpha}(\operatorname{SL}(2, \mathbb{C}))$ is generated by \mathfrak{X}_{α} and $\mathfrak{X}_{-\alpha}$, it follows that the Lie algebra of $i_{\alpha}(\operatorname{SL}(2, \mathbb{C}))$ normalizes the Lie algebra of U_{α}. Since both groups are connected, it follows that $i_{\alpha}(\mathrm{SL}(2, \mathbb{C}))$ normalizes U_{α}.

Since M_{α} normalizes U_{α}, we may define P_{α} to be the semidirect product $M_{\alpha} U_{\alpha}$. An analog of Lemma 30.1 is true in this context.

Lemma 30.3. Let G be the complexification of the compact connected Lie group K, and let other notations be as above. If s is a simple reflection, then $B \cup \mathcal{C}(s)$ is a subgroup of G.

Proof. Indeed, if $s=s_{\alpha}$, then $B \cup \mathcal{C}(s)=P_{\alpha}$. From Theorem 19.1, the group M_{α} contains a representative of $s \in N / T$, so it is clear that $B \cup \mathcal{C}(s) \subset P_{\alpha}$. As for the other inclusion, both B and $\mathcal{C}(s)$ are invariant under right multiplication by U_{α}, so it is sufficient to show that $M_{\alpha} \in B \cup \mathcal{C}(s)$. Moreover, both B and $\mathcal{C}(s)$ are invariant under right multiplication by $T_{\mathbb{C}}$, so it is sufficient to show that $i_{\alpha}(\mathrm{SL}(2, \mathbb{C})) \subset B \cup \mathcal{C}(s)$. This is identical to Lemma 30.1 except that we work with $\mathrm{SL}(2, \mathbb{C})$ instead of $\mathrm{GL}(2, F)$. We have

$$
i_{\alpha}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in\left\{\begin{array}{cc}
B & \text { if } c=0, \\
\mathcal{C}(s) & \text { if } c \neq 0 .
\end{array}\right.
$$

This completes the proof.
Theorem 30.2. Let G be the complexification of the compact connected Lie group K. With B, N, I as above, (B, N, I) is a Tits' system in G.

Proof. The proof of this is identical to Theorem 30.1. The analog of Lemma 30.2 is true, and the proof is the same except that we use Lemma 30.3 instead of Lemma 30.1. All other details are the same.

Now that we have two examples of Tits' systems, let us prove the Bruhat decomposition.

Theorem 30.3. Let (B, N, I) be a Tits' system within a group G, and let W be the corresponding Weyl group. Then

$$
\begin{equation*}
G=\bigcup_{w \in W} B w B \tag{30.10}
\end{equation*}
$$

and this union is disjoint.
Proof. Let us show that $\bigcup_{w \in W} \mathcal{C}(w)$ is a group. It is clearly closed under inverses. We must show that it is closed under multiplication.

Let us consider $\mathcal{C}\left(w_{1}\right) \cdot \mathcal{C}\left(w_{2}\right)$, where $w_{1}, w_{2} \in W$. We show by induction on $l\left(w_{2}\right)$ that this is contained in a union of double cosets. If $l\left(w_{2}\right)=0$, then $w_{2}=1$ and the assertion is obvious. If $l\left(w_{2}\right)>0$, write $w_{2}=s w_{2}^{\prime}$, where $s \in I$ and $l\left(w_{2}^{\prime}\right)<l\left(w_{2}\right)$. Then, by Axiom TS3, we have

$$
\mathcal{C}\left(w_{1}\right) \cdot \mathcal{C}\left(w_{2}\right)=B w_{1} B s w_{2}^{\prime} B \subset B w_{1} B w_{2}^{\prime} B \cup B w_{1} s B w_{2}^{\prime} B
$$

and by induction this is contained in a union of double cosets.
We have shown that the right-hand side of (30.10) is a group, and since it clearly contains B and N, it must be all of G by Axiom TS5.

It remains to be shown that the union (30.10) is disjoint. Of course, two double cosets are either disjoint or equal, so assume that $\mathcal{C}(w)=\mathcal{C}\left(w^{\prime}\right)$, where $w, w^{\prime} \in W$. We will show that $w=w^{\prime}$.

Without loss of generality, we may assume that $l(w) \leqslant l\left(w^{\prime}\right)$, and we proceed by induction on $l(w)$. If $l(w)=0$, then $w=1$, and so $B=\mathcal{C}\left(w^{\prime}\right)$. Thus, in N / T, a representative for w^{\prime} will lie in B. Since $B \cap N=T$, this means that $w^{\prime}=1$, and we are done in this case. Assume therefore that $l(w)>0$ and that whenever $\mathcal{C}\left(w_{1}\right)=\mathcal{C}\left(w_{1}^{\prime}\right)$ with $l\left(w_{1}\right)<l(w)$ we have $w_{1}=w_{1}^{\prime}$.

Write $w=w^{\prime \prime} s$, where $s \in I$ and $l\left(w^{\prime \prime}\right)<l(w)$. Thus $w^{\prime \prime} s \in \mathcal{C}\left(w^{\prime}\right)$, and since s has order 2, we have

$$
w^{\prime \prime} \in \mathcal{C}\left(w^{\prime}\right) s \subset \mathcal{C}\left(w^{\prime}\right) \cup \mathcal{C}\left(w^{\prime} s\right)
$$

by Axiom TS3. Since two double cosets are either disjoint or equal, this means that either

$$
\mathcal{C}\left(w^{\prime \prime}\right)=\mathcal{C}\left(w^{\prime}\right) \quad \text { or } \quad \mathcal{C}\left(w^{\prime \prime}\right)=\mathcal{C}\left(w^{\prime} s\right)
$$

Our induction hypothesis implies that either $w^{\prime \prime}=w^{\prime}$ or $w^{\prime \prime}=w^{\prime} s$. The first case is impossible since $l\left(w^{\prime \prime}\right)<l(w) \leqslant l\left(w^{\prime}\right)$. Therefore $w^{\prime \prime}=w^{\prime} s$. Hence $w=w^{\prime \prime} s=w^{\prime}$, as required.

31

Symmetric Spaces

We have devoted some attention to an important class of homogeneous spaces of Lie groups, namely flag manifolds. An even more important class is that of symmetric spaces. In differential geometry, a symmetric space is a Riemannian manifold in which around every point there is an isometry reversing the direction of every geodesic.

Our approach to symmetric spaces will be to alternate the examination of examples with an explanation of general principles. In a few places (Remark 31.2, Theorem 31.2, Theorem 31.3, Proposition 31.3, and in the next chapter Theorem 32.5) we will make use of results from Helgason [56]. This should cause no problems for the reader. These are facts that need to be included to complete the picture, though we do not have space to prove them from scratch. They can be skipped without serious loss of continuity. In addition to Helgason [56], a second indispensable work on (mainly Hermitian) symmetric spaces is Satake [109].

It turns out that symmetric spaces (apart from Euclidean spaces) are constructed mainly as homogeneous spaces of Lie groups. In this chapter, an involution of a Lie group G is an automorphism of order 2.

Proposition 31.1. Suppose that G is a connected Lie group with an involution θ. Assume that the group

$$
\begin{equation*}
K=\{g \in G \mid \theta(g)=g\} \tag{31.1}
\end{equation*}
$$

is a compact Lie subgroup. In this setting, $X=G / K$ is a symmetric space.
The involution θ is called a Cartan involution of G, and the involution it induces on the Lie algebra is called a Cartan involution of $\operatorname{Lie}(G)$.

Proof. Clearly, G acts transitively on G / K, and K is the stabilizer of the base point x_{0}, that is, the coset $K \in G / K$. We put a positive definite inner product on the tangent space $T_{x_{0}}(X)$ that is invariant under the compact group K and also under θ. If $x \in X$, then we may find $g \in G$ such that
$g\left(x_{0}\right)=x$, and g induces an isomorphism $T_{x_{0}}(X) \longrightarrow T_{x}(X)$ by which we may transfer this positive definite inner product to $T_{x}(X)$. Because the inner product on $T_{x_{0}}(X)$ is invariant under K, this inner product does not depend on the choice of g. Thus X becomes a Riemannian manifold. The involution θ induces an automorphism of X that preserves geodesics through K, reversing their direction, so X is a symmetric space.

We now come to a striking algebraic fact that leads to the appearance of symmetric spaces in pairs. The involution θ induces an involution of $\mathfrak{g}=$ $\operatorname{Lie}(G)$. The +1 eigenspace of θ is of course $\mathfrak{k}=\operatorname{Lie}(K)$. Let \mathfrak{p} be the -1 eigenspace. Evidently,

$$
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, \quad[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}, \quad[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k} .
$$

From this, it is clear that

$$
\begin{equation*}
\mathfrak{g}_{c}=\mathfrak{k}+i \mathfrak{p} \tag{31.2}
\end{equation*}
$$

is a Lie subalgebra of $\mathfrak{g}_{\mathbb{C}}=\mathbb{C} \otimes \mathfrak{g}$. We observe that \mathfrak{g} and \mathfrak{g}_{c} have the same complexification; that is, $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \oplus i \mathfrak{g}=\mathfrak{g}_{c} \oplus i \mathfrak{g}_{c}$.

The appearance of these two Lie algebras with a common complexification means that symmetric spaces come in pairs. To proceed further, we will make some assumptions, which we now explain.

Hypothesis 31.1. Let G be a noncompact connected semisimple Lie group with Lie algebra \mathfrak{g}. Let θ be an involution of G such that the fixed subgroup K of θ is compact, as in Proposition 31.1. Let \mathfrak{k} and \mathfrak{p} be the +1 and -1 eigenspaces of θ on \mathfrak{g}, and let \mathfrak{g}_{c} be the Lie algebra defined by (31.2). We will assume that \mathfrak{g}_{c} is the Lie algebra of a second Lie group G_{c} that is compact. Let $G_{\mathbb{C}}$ be the complexification of G_{c} (Theorem 27.1). We assume that the Lie algebra homomorphism $\mathfrak{g} \longrightarrow \mathfrak{g}_{\mathbb{C}}$ is the differential of a Lie group embedding $G \longrightarrow G_{\mathbb{C}}$ and that θ extends to an automorphism of $G_{\mathbb{C}}$, also denoted θ, which stabilizes G_{c}.

This means G and G_{c} can be embedded compatibly in the complex analytic group $G_{\mathbb{C}}$. The involution θ extends to $\mathfrak{g}_{\mathbb{C}}$ and induces an involution on \mathfrak{g}_{c} such that

$$
X+i Y \longmapsto X-i Y, \quad X \in \mathfrak{k}, Y \in \mathfrak{p}
$$

The last statement in Hypothesis 31.1 means that this θ is the differential of an automorphism of G_{c}. As a consequence the homogeneous space $X_{c}=G_{c} / K$ is also a symmetric space, again by Proposition 31.1. The symmetric spaces X and X_{c}, one noncompact and the other compact, are said to be in duality with each other.

Remark 31.1. Although Hypothesis 31.1 may seem rather special, we will see in Theorem 31.3 that every noncompact semisimple Lie group admits a Cartan involution θ such that this hypothesis is satisfied. Our proof of Theorem 31.3 will not be self-contained, but we do not really need to rely on it as motivation
because we will give numerous examples in this chapter and the next where Hypothesis 31.1 is satisfied.

Remark 31.2. We do not specify G, K, and G_{c} up to isomorphism by this description since different K could correspond to the same pair G and θ. But K is always connected and contains the center of G (Helgason [56], Chapter VI, Theorem 1.1 on p. 252). If we replace G by a semisimple covering group, the center increases, so we must also enlarge K, and the quotient space G / K is unchanged. Hence, there is a unique symmetric space of noncompact type determined by the real semisimple Lie algebra \mathfrak{g}. By contrast, the symmetric space of compact type is not uniquely determined by \mathfrak{g}_{c}. There could be a finite number of different choices for G_{c} and K resulting in different compact symmetric spaces that have the same universal covering space. We will not distinguish a particular one as the dual of X but say that any one of these compact spaces is in duality with X. See Helgason [56], Chapter VII, for a discussion of this point and other subtleties in the compact case.

Example 31.1. Suppose that $G=\mathrm{SL}(n, \mathbb{R})$ and $K=\mathrm{SO}(n)$. Then $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{R})$ and the involution $\theta: G \longrightarrow G$ is $\theta(g)={ }^{t} g^{-1}$. The induced involution on \mathfrak{g} is $X \longrightarrow-{ }^{t} X$. This \mathfrak{p} consists of symmetric matrices, and \mathfrak{g}_{c} consists of the skew-Hermitian matrices in $\mathfrak{s l}(n, \mathbb{C})$; that is, $\mathfrak{g}_{c}=\mathfrak{s u}(n)$. The Lie groups $G=\mathrm{SL}(n, \mathbb{R})$ and $G_{c}=\mathrm{SU}(n)$ are subgroups of their common complexification $G_{\mathbb{C}}=\mathrm{SL}(n, \mathbb{C})$. The symmetric spaces $X=\mathrm{SL}(n, R) / \mathrm{SO}(n)$ and $X_{c}=\mathrm{SU}(n) / \mathrm{SO}(n)$ are in duality.

Let us obtain concrete realizations of the symmetric spaces G / K and G_{c} / K in Example 31.1. The group $\operatorname{GL}(n, \mathbb{R})$ acts on the cone $\mathcal{P}_{n}(\mathbb{R})$ of positive definite symmetric matrices by the action

$$
\begin{equation*}
g: x \longmapsto g x^{t} g . \tag{31.3}
\end{equation*}
$$

On the other hand, the group $U(n)$ acts on the space $\mathcal{E}_{n}(\mathbb{R})$ of unitary symmetric matrices by the same formula (31.3). (The notation $\mathcal{E}_{n}(\mathbb{R})$ does not imply that the elements of this space are real matrices.)

Proposition 31.2. Suppose that $x \in \mathcal{P}_{n}(\mathbb{R})$ or $\mathcal{E}_{n}(\mathbb{R})$.
(i) There exists $g \in \mathrm{SO}(n)$ such that $g x^{t} g$ is diagonal.
(ii) The actions of $\mathrm{GL}(n, \mathbb{R})$ and $U(n)$ are transitive.
(iii) Let \mathfrak{p} be the vector space of real symmetric matrices. We have

$$
\mathcal{P}_{n}(\mathbb{R})=\left\{e^{X} \mid X \in \mathfrak{p}\right\}, \quad \mathcal{E}_{n}(\mathbb{R})=\left\{e^{i X} \mid X \in \mathfrak{p}\right\}
$$

See Theorem 47.6 in Chapter 47 for an application.
Proof. If $x \in \mathcal{P}_{n}(\mathbb{R})$, then (i) is of course just the spectral theorem. However, if $x \in \mathcal{E}_{n}(\mathbb{R})$, this statement may be less familiar. It is instructive to give a unified proof of the two cases. Give \mathbb{C}^{n} its usual inner product, so $\langle u, v\rangle=\sum_{i} u_{i} \overline{v_{i}}$.

Let λ be an eigenvalue of x. We will show that the eigenspace $V_{\lambda}=\{v \in$ $\left.\mathbb{C}^{n} \mid x v=\lambda v\right\}$ is stable under complex conjugation. Suppose that $v \in V_{\lambda}$. If $x \in \mathcal{P}_{n}(\mathbb{R})$, then both x and λ are real, and simply conjugating the identity $x v=\lambda v$ gives $x \bar{v}=\lambda \bar{v}$. On the other hand, if $x \in \mathcal{E}_{n}(\mathbb{R})$, then $\bar{x}={ }^{t} x^{-1}=x^{-1}$ and $|\lambda|=1$ so $\bar{\lambda}=\lambda^{-1}$. Thus, conjugating $x v=\lambda v$ gives $x^{-1} \bar{v}=\lambda^{-1} \bar{v}$, which implies that $x \bar{v}=\lambda \bar{v}$.

Now we can show that \mathbb{C}^{n} has an orthonormal basis consisting of eigenvectors v_{1}, \cdots, v_{n} such that $v_{i} \in \mathbb{R}^{n}$. The adjoint of x with respect to the standard inner product is x or x^{-1} depending on whether $x \in \mathcal{P}_{n}(\mathbb{R})$ or $\mathcal{E}_{n}(\mathbb{R})$. In either case, x is the matrix of a normal operator - one that commutes with its adjoint - and \mathbb{C}^{n} is the orthogonal direct sum of the eigenspaces of x. Each eigenspace has an orthonormal basis consisting of real vectors. Indeed, if v_{1}, \cdots, v_{k} is a basis of V_{λ}, then since we have proved that $\overline{v_{i}} \in V_{\lambda}$, the space is spanned by $\frac{1}{2}\left(v_{i}+\overline{v_{i}}\right)$ and $\frac{1}{2 i}\left(v_{i}-\overline{v_{i}}\right)$; selecting a basis from this spanning set and applying the usual Gram-Schmidt orthogonalization process gives an orthonormal basis of real vectors.

In either case, we see that \mathbb{C}^{n} has an orthonormal basis consisting of eigenvectors v_{1}, \cdots, v_{n} such that $v_{i} \in \mathbb{R}^{n}$. Let $x v_{i}=\lambda_{i} v_{i}$. Then, if $k \in O(n)$ is the matrix with columns x_{i} and d is the diagonal matrix with diagonal entries λ_{i}, we have $x k=k d$ so $k^{-1} x k=\delta$. As $k^{-1}={ }^{t} k$ we may take the matrix $g=k^{-1}$. If the determinant of k is -1 , we can switch the sign of the first entry without harm, so we may assume $k \in \mathrm{SO}(n)$ and (i) is proved.

For (i), we have shown that each orbit in $\mathcal{P}_{n}(\mathbb{R})$ or $\mathcal{E}_{n}(\mathbb{R})$ contains a diagonal matrix. The eigenvalues are positive real if $x \in \mathcal{P}_{n}(\mathbb{R})$ or of absolute value 1 if $x \in \mathcal{E}_{n}(\mathbb{R})$. In either case, applying the action (31.3) with $g \in$ $\mathrm{GL}(n, \mathbb{R})$ or $U(n)$ diagonal will reduce to the identity, proving (ii). For (iii), we use (ii) to write an arbitrary element x of $\mathcal{P}_{n}(\mathbb{R})$ or $\mathcal{E}_{n}(\mathbb{R})$ as $k d k^{-1}$, where k is orthogonal and d diagonal. The eigenvalues of d are either positive real if $x \in \mathcal{P}_{n}(\mathbb{R})$ or of absolute value 1 if $x \in \mathcal{E}_{n}(\mathbb{R})$. Thus $d=e^{Y}$, where Y is real or purely imaginary, and $x=e^{X}$ or $e^{i X}$, where $X=k Y k^{-1}$ or $-i k Y k^{-1}$ is real.

In the action (31.3) of $\mathrm{GL}(n, \mathbb{R})$ or $U(n)$ on $\mathcal{P}_{n}(\mathbb{R})$ or $\mathcal{E}_{n}(\mathbb{R})$, the stabilizer of I is $O(n)$, so we may identify the coset spaces $\mathrm{GL}(n, \mathbb{R}) / O(n)$ and $U(n) / O(n)$ with $\mathcal{P}_{n}(\mathbb{R})$ and $\mathcal{E}_{n}(\mathbb{R})$, respectively. The actions of $\mathrm{SL}(n, \mathbb{R})$ and $\operatorname{SU}(n)$ on $\mathcal{P}_{n}(\mathbb{R})$ and $\mathcal{E}_{n}(\mathbb{R})$ are not transitive. Let $\mathcal{P}_{n}^{\circ}(\mathbb{R})$ and $\mathcal{E}_{n}^{\circ}(\mathbb{R})$ be the subspaces of matrices of determinant 1 . Then the actions of $\operatorname{SL}(n, \mathbb{R})$ and $\mathrm{SU}(n)$ on $\mathcal{P}_{n}^{\circ}(\mathbb{R})$ and $\mathcal{E}_{n}^{\circ}(\mathbb{R})$ are transitive, so we may identify $\mathcal{P}_{n}^{\circ}(\mathbb{R})=$ $\mathrm{SL}(n, \mathbb{R}) / \mathrm{SO}(n)$ and $\mathcal{E}_{n}^{\circ}(\mathbb{R})=\mathrm{SU}(n) / \mathrm{SO}(n)$. Thus, we obtain concrete models of the dual symmetric spaces $\mathcal{P}_{n}^{\circ}(\mathbb{R})$ and $\mathcal{E}_{n}^{\circ}(\mathbb{R})$.

We say that a symmetric space X is reducible if its universal cover decomposes into a product of two lower-dimensional symmetric spaces. If X is irreducible (i.e., not reducible) and not a Euclidean space, then it is classified into one of four types, called I, II, III, and IV. We next explain this classification.

Example 31.2. If K_{0} is a compact Lie group, then K_{0} is itself a compact symmetric space, the geodesic reversing involution being $k \longmapsto k^{-1}$. A symmetric space of this type is called Type II.

Example 31.3. Suppose that G is itself obtained by complexification of a compact Lie group K_{0} and that the involution θ of G is the automorphism of G as a real Lie group induced by complex conjugation. This means that on the Lie algebra $\mathfrak{g}=\mathfrak{k}_{0} \oplus i \mathfrak{k}_{0}$ of G, where $\mathfrak{k}_{0}=\operatorname{Lie}(K)$, the involution θ sends $X+i Y \longmapsto X-i Y, Y \in \mathfrak{k}_{0}$. The fixed subgroup of θ is K_{0}, and the symmetric space is G / K_{0}. A symmetric space of this type is called Type IV. It is noncompact.

We will show that the Type II and Type IV symmetric spaces are in duality. For this, we need a couple of lemmas. If R is a ring and $e, f \in R$ we call e and f orthogonal central idempotents if $e x=x e$ and $f x=x f$ for all $x \in R, e^{2}=e, f^{2}=f$, and $e f=f e$.

Lemma 31.1. (Pierce Decomposition) Let R be a ring, and let e and f be orthogonal central idempotents. Assume that $1=e+f$. Then Re and $R f$ are (two-sided) ideals of R, and each is a ring with identity elements e and f, respectively. The ring R decomposes as $R e \oplus R f$.

Proof. It is straightforward to see that Re is closed under multiplication and is a ring with identity element e and similarly for $R f$. Since $1=e+f$, we have $R=R e+R f$, and $R e \cap R f=0$ because if $x \in R e \cap R f$ we can write $x=r e=r^{\prime} f$, so $x=r^{\prime} f^{2}=r e f=0$.

Lemma 31.2. Regard $\mathbb{C} \otimes \mathbb{C}=\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ as a \mathbb{C}-algebra with scalar multiplication $a(x \otimes y)=a x \otimes y, a \in \mathbb{C}$. Then $\mathbb{C} \otimes \mathbb{C}$ and $\mathbb{C} \oplus \mathbb{C}$ are isomorphic as \mathbb{C}-algebras.

Proof. Let

$$
\begin{equation*}
e=\frac{1}{2}(1 \otimes 1+i \otimes i), \quad f=\frac{1}{2}(1 \otimes 1-i \otimes i) \tag{31.4}
\end{equation*}
$$

It is easily checked that e and f are orthogonal central idempotents whose sum is the identity element $1 \otimes 1$, and so we obtain a Pierce decomposition by Lemma 31.1. The ideals generated by e and f are both isomorphic to \mathbb{C}.

Theorem 31.1. Let K_{0} be a compact connected Lie group. Then the compact and noncompact symmetric spaces of Examples 31.2 and 31.3 are in duality.

Proof. Let \mathfrak{g} and \mathfrak{k}_{0} be the Lie algebras of G and K_{0}, respectively. We have $\mathfrak{g}=\mathbb{C} \otimes \mathfrak{k}_{0}$. The involution $\theta: \mathfrak{g} \longrightarrow \mathfrak{g}$ takes $a \otimes X \longrightarrow \bar{a} \otimes X$. By Lemma 31.2, we have $\mathfrak{g}_{\mathbb{C}}=\mathbb{C} \otimes \mathbb{C} \otimes \mathfrak{k}_{0} \cong \mathbb{C} \otimes \mathfrak{k}_{0} \oplus \mathbb{C} \otimes \mathfrak{k}_{0}$. Now θ induces the automorphism

$$
\theta: a \otimes b \otimes X \longrightarrow a \otimes \bar{b} \otimes X, \quad a, b \in \mathbb{C}, X \in \mathfrak{k}_{0}
$$

The +1 and -1 eigenspaces are spanned by vectors of the form $1 \otimes 1 \otimes X$ and $1 \otimes i \otimes X\left(X \in \mathfrak{k}_{0}\right)$, so the Lie algebra \mathfrak{g}_{c} as in (31.2) will be spanned by vectors of the form $1 \otimes 1 \otimes X$ and $i \otimes i \circ X$, and the Lie algebra \mathfrak{k} is $1 \otimes 1 \otimes \mathfrak{k}_{0}$.

Thus, with e and f as in (31.4), \mathfrak{g}_{c} is the \mathbb{R}-linear span of $e \otimes \mathfrak{k}_{0}$ and $f \otimes \mathfrak{k}_{0}$. We can identify

$$
\mathfrak{g}_{c}=e \otimes \mathfrak{k}_{0} \oplus f \otimes \mathfrak{k}_{0} \cong \mathfrak{k}_{0} \oplus \mathfrak{k}_{0}
$$

The involution θ interchanges these two components, and since $1 \otimes 1=e+f$, $\mathfrak{k}=1 \otimes \mathfrak{k}_{0} \cong \mathfrak{k}_{0}$ embedded diagonally in $\mathfrak{k}_{0} \otimes \mathfrak{k}_{0}$.

From this description, we see that \mathfrak{g}_{c} is the Lie algebra of $K \times K$, which we take to be the group G_{c}. The involution $\theta: K \times K \longrightarrow K \times K$ is $\theta(x, y)=(y, x)$, and K is embedded diagonally. This differs from the description of the compact symmetric space of Type II in Example 31.2, but it is equivalent. We may see this as follows. We can map $K \longrightarrow G_{c} / K$ by $x \longrightarrow(x, 1) K$. The involution sends this to $(1, x) K=\left(x^{-1}, 1\right) K$ since $(x, x) \in K$ embedded diagonally. Thus, if we represent the cosets of G_{c} / K this way, the symmetric space is parametrized by K, and the involution corresponds to $x \longrightarrow x^{-1}$.

If G / K and G_{c} / K are noncompact and compact symmetric spaces in duality, and if G / K and G_{c} / K are not of types IV and II, they are said to be of types III and I, respectively.

Theorem 31.2. Let G be a noncompact, connected semisimple Lie group with an involution θ satisfying Hypothesis 31.1. Then K is a maximal compact subgroup of G. Indeed, if K^{\prime} is any compact subgroup of G, then K^{\prime} is conjugate to a subgroup of K.

Proof. This follows from Helgason [56], Theorem 2.1 of Chapter VI on page 246. (Note the hypothesis that K be compact in our Proposition 31.1.) The proof in [56] depends on showing that G / K is a space of constant negative curvature. A compact group of isometries of such a space has a fixed point ([56], Theorem 13.1 of Chapter I on page 75). Now if K^{\prime} fixes $x K \in G / K$, then $x^{-1} K^{\prime} x \subseteq K$.

A semisimple real Lie algebra \mathfrak{g} is compact if and only if the Killing form is negative definite. If this is the case, then $\operatorname{ad}(\mathfrak{g})$ is contained in the Lie algebra of the compact orthogonal group with respect to this negative definite quadratic form, and it follows that \mathfrak{g} is the Lie algebra of a compact Lie group. A semisimple Lie algebra is simple if it has no proper nontrivial ideals.

Theorem 31.3. If \mathfrak{g} is a noncompact Lie algebra, then there exists a noncompact Lie group G with Lie algebra \mathfrak{g} and a Cartan involution θ of G whose fixed points are a maximal subgroup K of G so that G / K is a symmetric space of noncompact type. In particular, Hypothesis 31.1 is satisfied. If \mathfrak{g} is simple, then G / K is irreducible, and this construction gives a one-to-one correspondence between the simple real Lie algebras and the irreducible noncompact symmetric spaces of noncompact type.

Although we will not need this fact, it is very striking that the classification of irreducible symmetric spaces of noncompact type is the same as the classification of noncompact real forms of the semisimple Lie algebras.

Proof. It follows from Helgason [56], Chapter III, Theorem 6.4 on p. 181, that \mathfrak{g} has a compact form; that is, a compact Lie algebra \mathfrak{g}_{c} with an isomorphic complexification. It follows from Theorems 7.1 and 7.2 in Chapter III of [56] that we may arrange things so that $\mathfrak{g}_{c}=\mathfrak{k}+i \mathfrak{p}$ and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$, where \mathfrak{k} and \mathfrak{p} are the +1 and -1 eigenspaces of a Cartan involution θ, and that this Cartan involution is essentially unique. Let G_{c} be the adjoint group of \mathfrak{g}_{c}; that is, the group generated by exponentials of endomorphisms $\operatorname{ad}(X)$ with $X \in \mathfrak{g}_{c}$. It is a compact Lie group with Lie algebra $\mathfrak{g}_{c}-$ see Helgason [56], Chapter II, Section 5. Thus G_{c} is a group of linear transformations of \mathfrak{g}_{c}, but we extend them to complex linear transformations of $\mathfrak{g}_{\mathbb{C}}$, and so G_{c} and the other groups $G, G_{\mathbb{C}}$, and K that we will construct will all be subgroups of $G L\left(\mathfrak{g}_{\mathbb{C}}\right)$. Let $G_{\mathbb{C}}$ be the complexification of G_{c}. The conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to \mathfrak{g} induces an automorphism of $G_{\mathbb{C}}$ as a real Lie group whose fixed-point set can be taken to be G. The Cartan involution θ induces an involution of G whose fixed-point set K is a subgroup with Lie algebra \mathfrak{k}.

In Table 31.1, we give the classification of Cartan [21] of the Type I and Type III symmetric spaces. (The symmetric spaces of Type II and Type IV, as we have already seen, correspond to complex semisimple Lie algebras.)

In Table 31.1, the group $\mathrm{SO}^{*}(2 n)$ consists of all elements of $\mathrm{SO}(2 n, \mathbb{C})$ that stabilize the skew-Hermitian form

$$
x_{1} \overline{x_{n+1}}+x_{2} \overline{x_{n+2}}+\ldots+x_{n} \overline{x_{2 n}}-x_{n+1} \overline{x_{1}}-x_{n+2} \overline{x_{2}}-\ldots-x_{2 n} \overline{x_{n}}
$$

The subgroups $S(O(p) \times O(q))$ and $S(U(p) \times U(q))$ are the subgroups of $O(p) \times O(q)$ and $U(p) \times U(q)$ consisting of elements of determinant 1. Cartan considered the special cases $q=1$ significant enough to warrant independent classifications. The group $S(O(p) \times O(1)) \cong O(p)$, and we have written K this way for types $B I I$ and $D I I$.

For the exceptional groups, we have only described the Lie algebra of the maximal compact subgroup. We have given the real form from the classification of Tits [119]. In this classification, ${ }^{2} E_{6,2}^{16}={ }^{i} E_{6, r}^{d}$, for example, where i, d, and r are numbers whose significance we will briefly discuss. They will all reappear in the next chapter.

The number $i=1$ if the group is an inner form and 2 if it is an outer form. As we mentioned in Remark 27.1, real forms of G_{c} are parametrized by elements of $H^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Aut}\left(G_{\mathbb{C}}\right)\right)$. If the defining cocycle is in the image of

$$
H^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Inn}\left(G_{c}\right)\right) \longrightarrow H^{1}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \operatorname{Aut}\left(G_{c}\right)\right)
$$

where $\operatorname{Inn}\left(G_{c}\right)$ is the group of inner automorphisms, then the group is an inner form. Looking ahead to the next chapter, where we introduce the Satake diagrams, G is an inner form if and only if the symmetry of the Satake diagram,

Table 31.1. Real forms and Type I and Type III symmetric spaces.

Cartan's class	G	G_{c}	K° or \mathfrak{k}	dimension rank	absolute/rel. root systems
$A I$	$\mathrm{SL}(n, \mathbb{R})$	$\mathrm{SU}(n)$	$\mathrm{SO}(n)$	$\frac{1}{2}(n-1)(n+2)$ $n-1$	A_{n-1} A_{n-1}
$A I I$	$\mathrm{SL}(n, \mathbb{H})$	$\mathrm{SU}(2 n)$	$\mathrm{Sp}(2 n)$	$(n-1)(2 n+1)$ $n-1$	$A_{2 n-1}$ A_{n-1}
$A I I I$	$\mathrm{SU}(p, q)$ $p, q>1$	$\mathrm{SU}(p+q)$	$S(U(p) \times U(q))$	$2 p q$ $\min (p, q)$	A_{p+q-1} $C_{p}(p=q)$ $B C_{p}(p>q)$
$A I V$	$\mathrm{SU}(p, 1)$	$\mathrm{SU}(p+1)$	$S(U(p) \times U(q))$	$2 p$ 1	A_{p} $B C_{1}$
$B I$	$\mathrm{SO}(p, q)$ $p, q>1$	$\mathrm{SO}(p+q)$	$S(O(p) \times O(q))$	$p q$ $\min (p, q)$	$B_{(p+q-1) / 2}$ $B_{q}(p>q)$ $D_{p}(p=q)$
$B+q$ odd					

corresponding to the permutation $\alpha \longmapsto-\theta(\alpha)$ of the relative root system, is trivial. Thus, from Figure 32.3, we see that $\mathrm{SO}(6,6)$ is an inner form, but the quasisplit group $\mathrm{SO}(7,5)$ is an outer form. For the exceptional groups, only E_{6} admits an outer automorphism (corresponding to the nontrivial automorphism of its Dynkin diagram). Thus, for the other exceptional groups, this parameter is omitted from the notation.

The number r is the (real) rank - the dimension of the group $A=\exp (\mathfrak{a})$, where \mathfrak{a} is a maximal Abelian subspace of \mathfrak{p}. The number d is the dimension of the anisotropic kernel, which is the maximal compact subgroup of the centralizer of A. Both A and M will play an extensive role in the next chapter.

We have listed the rank for the groups of classical type but not the exceptional ones since for those the rank is contained in the Tits' classification.

For classification matters we recommend Tits [119] supplemented by Borel [12]. The definitive classification in this paper, from the point of view of algebraic groups, includes not only real groups but also groups over p-adic fields, number fields, and finite fields. Knapp [83], Helgason [56], Onishchik and Vinberg [121], and Satake [108] are also very useful.

Example 31.4. Consider $\mathrm{SL}(2, \mathbb{R}) / \mathrm{SO}(2)$ and $\mathrm{SU}(2) / \mathrm{SO}(2)$. Unlike the general case of $\mathrm{SL}(n, \mathbb{R}) / \mathrm{SO}(n)$ and $\mathrm{SU}(n) / \mathrm{SO}(n)$, these two symmetric spaces have complex structures. Specifically, $\mathrm{SL}(2, \mathbb{R})$ acts transitively on the Poincaré upper half-plane $\mathfrak{H}=\{z=x+i y \mid x, y \in \mathbb{R}, y>0\}$ by linear fractional transformations:

$$
\mathrm{SL}(2, \mathbb{R}) \ni\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): z \longmapsto \frac{a z+b}{c z+d}
$$

The stabilizer of the point $i \in \mathfrak{H}$ is $\operatorname{SO}(2)$, so we may identify \mathfrak{H} with $\mathrm{SL}(2, \mathbb{R}) / \mathrm{SO}(2)$. Equally, let \mathfrak{R} be the Riemann sphere $\mathbb{C} \cup\{\infty\}$, which is the same as the complex projective line $\mathbb{P}^{1}(\mathbb{C})$. The group $\mathrm{SU}(2)$ acts transitively on \mathfrak{R}, also by linear fractional transformations:

$$
\mathrm{SU}(2) \ni\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right): z \longmapsto \frac{a z+b}{-\bar{b} z+\bar{a}}, \quad|a|^{2}+|b|^{2}=1
$$

Again, the stabilizer of i is $\mathrm{SO}(2)$, so we may identify $\mathrm{SU}(2) / \mathrm{SO}(2)$ with \mathfrak{R}.
Both \mathfrak{H} and \mathfrak{R} are naturally complex manifolds, and the action of $\operatorname{SL}(2, \mathbb{R})$ or $\mathrm{SU}(2)$ consists of holomorphic mappings. They are examples of Hermitian symmetric spaces, which we now define. A Hermitian manifold is the complex analog of a Riemannian manifold. A Hermitian manifold is a complex manifold on which there is given a (smoothly varying) positive definite Hermitian inner product on each tangent space (which has a complex structure because the space is a complex manifold). The real part of this positive definite Hermitian inner product is a positive definite symmetric bilinear form, so a Hermitian manifold becomes a Riemannian manifold. A real-valued symmetric bilinear form B on a complex vector space V is the real part of a positive definite Hermitian form H if and only if it satisfies

$$
B(i X, i Y)=B(X, Y)
$$

for if this is true it is easy to check that

$$
H(X, Y)=\frac{1}{2}(B(X, Y)-i B(i X, Y))
$$

is the unique positive definite Hermitian form with real part H. From this remark, a complex manifold is Hermitian by our definition if and only if it is Hermitian by the definition in Helgason [56].

A symmetric space X is called Hermitian if it is a Hermitian manifold that is homogeneous with respect to a group of holomorphic Hermitian isometries that is connected and contains the geodesic-reversing reflection around each point. Thus, if $X=G / K$, the group G consists of holomorphic mappings, and if $g(x)=y$ for $x, y \in X, g \in X$, then g induces an isometry between the tangent spaces at x and y.

The irreducible Hermitian symmetric spaces can easily be recognized by the following criterion.

Proposition 31.3. Let $X=G / K$ and $X_{c}=G_{c} / K$ be a pair of irreducible symmetric spaces in duality. If one is a Hermitian symmetric space then they both are. This will be true if and only if the center of K is a one-dimensional central torus Z. In this case, the rank of G_{c} equals the rank of K.

In a nutshell, if K has a one-dimensional central torus, then there exists a homomorphism of \mathbb{T} into the center of K. The image of \mathbb{T} induces a group of isometries of X fixing the base point $x_{0} \in X$ corresponding to the coset of K. The content of the proposition is that X may be given the structure of a complex manifold in such a way that the maps on the tangent space at x_{0} induced by this family of isometries correspond to multiplication by \mathbb{T}, which is regarded as a subgroup of \mathbb{C}^{\times}.

Proof. See Helgason [56], Theorem 6.1 and Proposition 6.2, or Wolf [131], Corollary 8.7.10, for the first statement. The latter reference has two other very interesting conditions for the space to be symmetric. The fact that G_{c} and K are of equal rank is contained in Helgason [56] in the first paragraph of "Proof of Theorem 7.1 (ii), algebraic part" on p. 383.

A particularly important family of Hermitian symmetric spaces are the Siegel upper half-spaces \mathfrak{H}_{n}, also known as Siegel spaces which generalize the Poincaré upper half-plane $\mathfrak{H}=\mathfrak{H}_{1}$. We will discuss this family of examples in considerable detail since many features of the general case are already present in this example and are perhaps best understood with an example in mind.

In this chapter, if F is a field (always \mathbb{R} or \mathbb{C}), the symplectic group is

$$
\mathrm{Sp}(2 n, F)=\left\{g \in \mathrm{GL}(2 n, F) \mid g J^{t} g=J\right\}, \quad J=\left(I_{I_{n}}^{-I_{n}}\right)
$$

Write $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where A, B, C, and D are $n \times n$ blocks. Multiplying out the condition $g J^{t} g=J$ gives the conditions

$$
\begin{array}{ll}
A \cdot{ }^{t} B=B \cdot{ }^{t} A, & C \cdot{ }^{t} D=D \cdot{ }^{t} C \\
A \cdot{ }^{t} D-B \cdot{ }^{t} C=I, & D \cdot{ }^{t} A-C \cdot{ }^{t} B=I \tag{31.5}
\end{array}
$$

The condition $g J^{t} g=J$ may be expressed as $(g J)\left({ }^{t} g J\right)=-I$, so $g J$ and ${ }^{t} g J$ are negative inverses of each other. From this, we see that ${ }^{t} g$ is also symplectic, and so (31.5) applied to ${ }^{t} g$ gives the further relations

$$
\begin{array}{ll}
{ }^{t} A \cdot C={ }^{t} C \cdot A, & { }^{t} B \cdot D={ }^{t} D \cdot B \\
{ }^{t} A \cdot D-{ }^{t} C \cdot B=I, & { }^{t} D \cdot A-{ }^{t} B \cdot C=I . \tag{31.6}
\end{array}
$$

If $A+i B \in U(n)$, where the matrices A and B are real, then $A \cdot{ }^{t} A+B \cdot{ }^{t} B=I$ and $A \cdot{ }^{t} B=B \cdot{ }^{t} A$. Thus, if we take $D=A$ and $C=-B$, then (31.5) is satisfied. Thus

$$
A+i B \longmapsto\left(\begin{array}{cc}
A & B \tag{31.7}\\
-B & A
\end{array}\right)
$$

maps $U(n)$ into $\operatorname{Sp}(2 n, \mathbb{R})$ and is easily checked to be a homomorphism.
If W is a Hermitian matrix, we write $W>0$ if W is positive definite.
If $\Omega \subset \mathbb{R}^{r}$ is any connected open set, we can form the tube domain over Ω. This is the set of all elements of \mathbb{C}^{r} whose imaginary parts are in Ω. Let \mathfrak{H}_{n} be the tube domain over $\mathcal{P}_{n}(\mathbb{R})$. Thus \mathfrak{H}_{n} is the space of all symmetric complex matrices $Z=X+i Y$ where X and Y are real symmetric matrices such that $Y>0$.
Proposition 31.4. If $Z \in \mathfrak{H}_{n}$ and $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{R})$, then $C Z+D$ is invertible. Define

$$
\begin{equation*}
g(Z)=(A Z+B)(C Z+D)^{-1} \tag{31.8}
\end{equation*}
$$

Then $g(Z) \in \mathfrak{H}_{n}$, and (31.8) defines an action of $\operatorname{Sp}(2 n, \mathbb{R})$ on \mathfrak{H}_{n}. The action is transitive, and the stabilizer of $i I_{n} \in \mathfrak{H}_{n}$ is the image of $U(n)$ under the embedding (31.7). If W is the imaginary part of $g(Z)$ then

$$
\begin{equation*}
W=\left(\bar{Z}^{t} C+{ }^{t} D\right)^{-1} Y(C Z+D)^{-1} \tag{31.9}
\end{equation*}
$$

Proof. Using (31.6), one easily checks that

$$
\begin{equation*}
\frac{1}{2 i}\left(\left(\bar{Z}^{t} C+{ }^{t} D\right)(A Z+B)-\left(\bar{Z}^{t} A+{ }^{t} B\right)(C Z+D)\right)=\frac{1}{2 i}(Z-\bar{Z})=Y \tag{31.10}
\end{equation*}
$$

where Y is the imaginary part of Z. From this it follows that $C Z+D$ is invertible since if it had a nonzero nullvector v, then we would have ${ }^{t} \bar{v} Y v=0$, which is impossible since $Y>0$.

Therefore we may make the definition (31.8). To check that $g(Z)$ is symmetric, the identity $g(Z)={ }^{t} g(Z)$ is equivalent to

$$
(A Z+B)\left(Z^{t} C+{ }^{t} D\right)=\left(Z^{t} A+{ }^{t} B\right)(C Z+D)
$$

which is easily confirmed using (31.5) and (31.6).
Next we show that the imaginary part W of $g(Z)$ is positive definite. Indeed W equals $\frac{1}{2 i}(g(Z)-\overline{g(Z)})$. Using the fact that $\overline{g(Z)}$ is symmetric and (31.10), this is

$$
\frac{1}{2 i}\left((A Z+B)(C Z+D)^{-1}-\left(\bar{Z}^{t} C+{ }^{t} D\right)^{-1}\left(\bar{Z}^{t} A+{ }^{t} B\right)\right)
$$

Simplifying this gives (31.9). From this it is clear that W is Hermitian and that $W>0$. It is of course real, though that is less clear from this expression. Since it is real and positive definite Hermitian, it is a positive definite symmetric matrix.

It is easy to check that $g\left(g^{\prime}(Z)\right)=\left(g g^{\prime}\right)(Z)$, so this is a group action. To show that this action is transitive, we note that if $Z=X+i Y \in \mathfrak{H}_{n}$, then

$$
\binom{I-X}{I} \in \operatorname{Sp}(2 n, \mathbb{R})
$$

and this matrix takes Z to $i Y$. Now if $h \in \operatorname{GL}(n, \mathbb{R})$, then

$$
\left(\begin{array}{ll}
g & \\
& \\
& t g^{-1}
\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{R})
$$

and this matrix takes $i Y$ to $i Y^{\prime}$, where $Y^{\prime}=g Y^{t} g$. Since $Y>0$, we may choose g so that $Y^{\prime}=I$. This shows that any element in \mathfrak{H}_{n} may be moved to $i I_{n}$, and the action is transitive.

To check that $U(n)$ is the stabilizer of $i I_{n}$ is quite easy, and we leave it to the reader.

Example 31.5. By Proposition 31.4, we can identify \mathfrak{H}_{n} with $\operatorname{Sp}(2 n, \mathbb{R}) / U(n)$. The fact that it is a Hermitian symmetric space is in accord with Proposition 31.3, since $U(n)$ has a central torus. In the notation of Proposition 31.1, if $G=\operatorname{Sp}(2 n, \mathbb{R})$ and $K=U(n)$ are embedded via (31.7), then the compact group G_{c} is $\operatorname{Sp}(2 n)$, where as usual $\operatorname{Sp}(2 n)$ denotes $\operatorname{Sp}(2 n, \mathbb{C}) \cap U(2 n)$.

We will investigate the relationship between Examples 31.1 and 31.5 using a fundamental map, the Cayley transform. For clarity, we introduce this first in the more familiar context of the Poincaré upper half-plane (Example 31.4), which is a special case of Example 31.5.

We observe that the action of $G_{c}=\mathrm{SU}(2)$ on the compact dual $X_{c}=$ $\mathrm{SU}(2) / \mathrm{SO}(2)$ can be extended to an action of $G_{\mathbb{C}}=\mathrm{SL}(2, \mathbb{C})$. Indeed, if we identify X_{c} with the Riemann sphere \mathfrak{R}, then the action of $\mathrm{SU}(2)$ was by linear fractional transformations and so is the extension to $\operatorname{SL}(2, \mathbb{C})$.

As a consequence, we have an action of $G=\mathrm{SL}(2, \mathbb{R})$ on X_{c} since $G \subset G_{\mathbb{C}}$ and $G_{\mathbb{C}}$ acts on X_{c}. This is just the action by linear fractional transformations
on $\mathfrak{R}=\mathbb{C} \cup\{\infty\}$. There are three orbits: \mathfrak{H}, the projective real line $\mathbb{P}^{1}(\mathbb{R})=$ $\mathbb{R} \cup\{\infty\}$, and the lower half-plane $\overline{\mathfrak{H}}$.

The Cayley transform is the element $c \in \mathrm{SU}(2)$ given by

$$
c=\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
1 & -i \tag{31.11}\\
1 & i
\end{array}\right), \quad \text { so } \quad c^{-1}=\frac{1}{\sqrt{2 i}}\left(\begin{array}{rr}
i & i \\
-1 & 1
\end{array}\right) .
$$

Interpreted as a transformation of \mathfrak{R}, the Cayley transform takes \mathfrak{H} to the unit disk

$$
\mathfrak{D}=\{w \in \mathbb{C}| | w \mid<1\}
$$

Indeed, if $z \in \mathfrak{H}$, then

$$
c(z)=\frac{z-i}{z+i}
$$

and since z is closer to i than to $-i$, this lies in \mathfrak{D}. The effect of the Cayley transform is shown in Figure 31.1.

Fig. 31.1. The Cayley transform.

The significance of the Cayley transform is that it relates a bounded symmetric domain \mathfrak{D} to an unbounded one, \mathfrak{H}. We will use both \mathfrak{H} and \mathfrak{D} together when thinking about the boundary of the noncompact symmetric space embedded in its compact dual.

Since $\operatorname{SL}(2, \mathbb{R})$ acts on \mathfrak{H}, the group $c \operatorname{SL}(2, \mathbb{R}) c^{-1}$ acts on $c(\mathfrak{H})=\mathfrak{D}$. This group is

$$
\mathrm{SU}(1,1)=\left\{\left.\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right)| | a\right|^{2}-|b|^{2}=1\right\} .
$$

The Cayley transform is generally applicable to Hermitian symmetric spaces. It was shown by Cartan and Harish-Chandra that Hermitian symmetric spaces could be realized on bounded domains in \mathbb{C}^{n}. Piatetski-Shapiro [101] gave unbounded realizations. Korányi and Wolf [87], [88] gave a completely general theory relating bounded symmetric domains to unbounded ones by means of the Cayley transform.

Now let us consider the Cayley transform for \mathfrak{H}_{n}. Let $G=\operatorname{Sp}(2 n, \mathbb{R})$, $K=U(n), G_{c}=\operatorname{Sp}(2 n)$, and $G_{\mathbb{C}}=\operatorname{Sp}(2 n, \mathbb{C})$. Let

$$
c=\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
I_{n} & -i I_{n} \\
I_{n} & i I_{n}
\end{array}\right), \quad c^{-1}=\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
i I_{n} & i I_{n} \\
-I_{n} & I_{n}
\end{array}\right)
$$

They are elements of $\operatorname{Sp}(2 n)$. We will see that the scenario uncovered for $\mathrm{SL}(2, \mathbb{R})$ extends to the symplectic group.

Our first goal is to show that \mathfrak{H}_{n} can be embedded in its compact dual, a fact already noted when $n=1$. The first step is to interpret G_{c} / K as an analog of the Riemann sphere \mathfrak{R}, a space on which the actions of both groups G and G_{c} may be realized as linear fractional transformations. Specifically, we will construct a space \mathfrak{R}_{n} that contains a dense open subspace \mathfrak{R}_{n}° that can be naturally identified with the vector space of all complex symmetric matrices. What we want is for $G_{\mathbb{C}}$ to act on \Re_{n}, and if $g \in G_{\mathbb{C}}$, with both $Z, g(Z) \in \mathfrak{R}_{n}^{\circ}$, then $g(Z)$ is expressed in terms of Z by (31.8).

Toward the goal of constructing \Re_{n}, let

$$
P=\left\{\left.\left(\begin{array}{ll}
h & \tag{31.12}\\
& { }^{t} h^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & X \\
& I
\end{array}\right) \right\rvert\, h \in \mathrm{GL}(n, \mathbb{C}), X \in \operatorname{Mat}_{n}(\mathbb{C}), X={ }^{t} X\right\}
$$

This group is called the Siegel parabolic subgroup of $\operatorname{Sp}(2 n, \mathbb{C})$. (The term parabolic subgroup will be formally defined in Chapter 33 .) We will define \mathfrak{R}_{n} to be the quotient $G_{\mathbb{C}} / P$. Let us consider how an element of this space can (usually) be regarded as a complex symmetric matrix, and the action of $G_{\mathbb{C}}$ is by linear fractional transformations as in (31.8).
Proposition 31.5. We have $P G_{c}=\operatorname{Sp}(2 n, \mathbb{C})$ and $P \cap G_{c}=c K c^{-1}$.
Proof. Indeed, P contains a Borel subgroup, the group B of matrices (31.12) with g upper triangular, so $P G_{c}=\operatorname{Sp}(2 n, \mathbb{C})$ follows from the Iwasawa decomposition (Theorem 29.3). The group K is $U(n)$ embedded via (31.7), and it is easy to check that

$$
c K c^{-1}=\left\{\left.\left(\begin{array}{ll}
g^{t} g^{-1} \tag{31.13}
\end{array}\right) \right\rvert\, g \in U(n)\right\}
$$

It is clear that $c K c^{-1} \subseteq P \cap \operatorname{Sp}(2 n)$. To prove the converse inclusion, it is straightforward to check that any unitary matrix in P is actually of the form (31.13), and so $P \cap G_{c} \subseteq c K c^{-1}$.

We define $\mathfrak{R}_{n}=G_{\mathbb{C}} / P$. We define \mathfrak{R}_{n}° to be the set of cosets $g P$, where $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{C})$ and $\operatorname{det}(C)$ is nonsingular.

Lemma 31.3. Suppose that

$$
g=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad g^{\prime}=\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)
$$

are elements of $G_{\mathbb{C}}$. Then $g P=g^{\prime} P$ if and only if there exists a matrix $h \in$ $\mathrm{GL}(n, \mathbb{C})$ such that $A h=A^{\prime}$ and $C h=C^{\prime}$. If C is invertible, then $A C^{-1}$ is a complex symmetric matrix. If this is true, a necessary and sufficient condition for $g P=g^{\prime} P$ is that C^{\prime} is also invertible and that $A C^{-1}=A^{\prime}\left(C^{\prime}\right)^{-1}$.

Proof. Most of this is safely left to the reader. We only point out the reason that $A C^{-1}$ is symmetric. By (31.6), the matrix ${ }^{t} C A$ is symmetric, so ${ }^{t} C^{-1}$. ${ }^{t} C A \cdot C^{-1}=A C^{-1}$ is also.

Let \mathcal{R}_{n} be the vector space of $n \times n$ complex symmetric matrices. By the Lemma 31.3, the map $\sigma: \mathcal{R}_{n} \longrightarrow \mathfrak{R}_{n}^{\circ}$ defined by

$$
\sigma(Z)=\binom{Z-I}{I} P
$$

is a bijection, and we can write

$$
\sigma(Z)=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) P
$$

if and only if $A C^{-1}=Z$.
Proposition 31.6. If $\sigma(Z)$ and $g(\sigma(Z))$ are both in \mathfrak{R}_{n}°, where $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is an element of $\operatorname{Sp}(2 n, \mathbb{C})$, then $C Z+D$ is invertible and

$$
g(\sigma(Z))=\sigma\left((A Z+B)(C Z+D)^{-1}\right)
$$

Proof. We have

$$
g(\sigma(Z))=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{Z-I}{I} P=\binom{A Z+B-A}{C Z+D-C} P
$$

Since we are assuming this is in \mathfrak{R}_{n}°, the matrix $C Z+D$ is invertible by Lemma 31.3, and this equals $\sigma\left((A Z+B)(C Z+D)^{-1}\right)$.

In view of Proposition 31.6 we will identify \mathcal{R}_{n} with its image in \mathfrak{R}_{n}°. Thus, elements of \mathfrak{R}_{n}° become for us complex symmetric matrices, and the action of $\operatorname{Sp}(2 n, \mathbb{C})$ is by linear fractional transformations.

We can also identify \mathfrak{R}_{n} with the compact symmetric space G_{c} / K by means of the composition of bijections

$$
G_{c} / K \longrightarrow G_{c} / c K c^{-1} \longrightarrow G_{\mathbb{C}} / P=\Re_{n}
$$

The first map is induced by conjugation by $c \in G_{c}$. The second map is induced by the inclusion $G_{c} \longrightarrow G_{\mathbb{C}}$ and is bijective by Proposition 31.5 , so we may regard the embedding of \mathfrak{H}_{n} into \mathfrak{R}_{n} as an embedding of a noncompact symmetric space into its compact dual.

So far, the picture is extremely similar to the case where $n=1$. We now come to an important difference. In the case of $\operatorname{SL}(2, \mathbb{R})$, the topological boundary of \mathfrak{H} (or \mathfrak{D}) in \mathfrak{R} was just a circle consisting of a single orbit of $\mathrm{SL}(2, \mathbb{R})$ or even its maximal compact subgroup $\mathrm{SO}(2)$.

When $n \geqslant 2$, however, the boundary consists of a finite number of orbits, each of which is the union of smaller pieces called boundary components. Each boundary component is a copy of a Siegel space of lower dimension. The boundary components are infinite in number, but each is a copy of one of a finite number of standard ones. Since the structure of the boundary is suddenly interesting when $n \geqslant 2$, we will take a closer look at it. For more information about boundary components, which are important in the theory of automorphic forms and the algebraic geometry of arithmetic quotients such as $\operatorname{Sp}(2 n, \mathbb{Z}) \backslash \mathfrak{H}_{n}$, see Ash, Mumford, Rapoport, and Tai [5], Baily [6], Baily and Borel [7], and Satake [106], [108].

The first step is to map \mathfrak{H}_{n} into a bounded region. Writing $Z=X+i Y$, where X and Y are real symmetric matrices, $Z \in \mathfrak{H}_{n}$ if and only if $Y>0$. So Z is on the boundary if Y is positive semidefinite yet has 0 as an eigenvalue. The multiplicity of 0 as an eigenvalue separates the boundary into several pieces that are separate orbits of G. (These are not the boundary components, which we will meet presently.)

If we embed \mathfrak{H}_{n} into \mathfrak{R}_{n}, a portion of the border is at "infinity"; that is, it is in $\Re_{n}-\Re_{n}^{\circ}$. We propose to examine the border by applying c, which maps \mathfrak{H}_{n} into a region whose closure is wholly contained in \mathfrak{R}_{n}.

Proposition 31.7. The image of \mathfrak{H}_{n} under c is

$$
\mathfrak{D}_{n}=\left\{W \in \mathfrak{R}_{n}^{\circ} \mid I-\bar{W} W>0\right\}
$$

The group $c \operatorname{Sp}(2 n, \mathbb{R}) c^{-1}$, acting on \mathfrak{D}_{n} by linear fractional transformations, consists of all symplectic matrices of the form

$$
\begin{equation*}
\left(\frac{A}{B} \frac{B}{A}\right) \tag{31.14}
\end{equation*}
$$

(Note that, since W is symmetric, $I-\bar{W} W$ is Hermitian.)
Proof. The condition on W to be in $c(\mathfrak{H})$ is that the imaginary part of

$$
c^{-1}(W)=-i(W-I)(W+I)^{-1}
$$

be positive definite. This imaginary part is

$$
\begin{aligned}
& Y=-\frac{1}{2}\left((W-I)(W+I)^{-1}+(\bar{W}-I)(\bar{W}+I)^{-1}\right)= \\
& -\frac{1}{2}\left((W-I)(W+I)^{-1}+(\bar{W}+I)^{-1}(\bar{W}-I)\right)
\end{aligned}
$$

where we have used the fact that both \bar{W} and $(\bar{W}-I)(\bar{W}+I)^{-1}$ are symmetric to rewrite the second term. This will be positive definite if and only if $(\bar{W}+$ $I) Y(W+I)$ is positive definite. This equals

$$
-\frac{1}{2}((\bar{W}+I)(W-I)+(\bar{W}-I)(W+I))=I-\bar{W} W .
$$

Since $\operatorname{Sp}(2 n, \mathbb{R})$ maps \mathfrak{H}_{n} into itself, $c \operatorname{Sp}(2 n, \mathbb{R}) c^{-1}$ maps $\mathfrak{D}_{n}=c\left(\mathfrak{H}_{n}\right)$ into itself. We have only to justify the claim that this group consists of the matrices of form (31.14). For $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{C})$ to have the property that $c^{-1} g c$ is real, we need $c^{-1} g c=\overline{c^{-1} g c}$, so

$$
c \bar{c}^{-1} \overline{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) c \bar{c}^{-1}, \quad c \bar{c}^{-1}=\sqrt{-i}\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right) .
$$

This implies that $C=\bar{B}$ and $D=\bar{A}$.
Proposition 31.8. (i) The closure of \mathfrak{D}_{n} is contained within \mathfrak{R}_{n}°. The boundary of \mathfrak{D}_{n} consists of all complex symmetric matrices W such that $I-\bar{W} W$ is positive semidefinite but such that $\operatorname{det}(I-\bar{W} W)=0$.
(ii) If W and W^{\prime} are points of the closure of \mathfrak{D}_{n} in \mathfrak{R}_{n} that are congruent modulo $c G c^{-1}$, then the ranks of $I-\bar{W} W$ and $I-\overline{W^{\prime}} W^{\prime}$ are equal.
(iii) Let W be in the closure of \mathfrak{D}_{n}, and let r be the rank of $I-\bar{W} W$. Then there exists $g \in c G c^{-1}$ such that $g(W)$ has the form

$$
\left(\begin{array}{ll}
W_{r} & \tag{31.15}\\
& I_{n-r}
\end{array}\right), \quad W_{r} \in \mathfrak{D}_{n-r}
$$

Proof. The diagonal entries in $\bar{W} W$ are the squares of the lengths of the rows of the symmetric matrix W. If $I-\bar{W} W$ is positive definite, these must be less than 1 . So \mathfrak{D}_{n} is a bounded domain within the set \mathfrak{R}_{n}° of symmetric complex matrices. The rest of (i) is also clear.

For (ii), if $g \in c G c^{-1}$, then by Proposition 31.7 the matrix g has the form (31.14). Using the fact that both W and W^{\prime} are symmetric, we have

$$
I-\bar{W}^{\prime} W=I-\left(\bar{W}^{t} B+{ }^{t} A\right)^{-1}\left(\bar{W}^{t} \bar{A}+\bar{t} B\right)(A W+B)(\bar{B} W+\bar{A})^{-1}
$$

Both W and W^{\prime} are in \mathfrak{R}_{n}°, so by Proposition 31.6 the matrix $\bar{B} W+\bar{A}$ is invertible. Therefore, the rank of $I-\overline{W^{\prime}} W^{\prime}$ is the same as the rank of

$$
\begin{array}{r}
\left(\bar{W}^{t} B+{ }^{t} A\right)\left(I-\bar{W}^{\prime} W^{\prime}\right)(\bar{B} W+\bar{A})= \\
\left(\bar{W}^{t} B+{ }^{t} A\right)(\bar{B} W+\bar{A})-\left(\bar{W}^{t} \bar{A}+\bar{t} B\right)(A W+B)
\end{array}
$$

Using the relations (31.6), this equals $I-\bar{W} W$.
To prove (iii), note first that if $u \in U(n) \subset c G c^{-1}$, then

$$
c G c^{-1} \ni\left(\begin{array}{cc}
u & \\
& \bar{u}
\end{array}\right): W \longmapsto u W^{t} u
$$

Taking u to be a scalar, we may assume that -1 is not an eigenvalue of W. Then $W+I$ is nonsingular so $Z=c^{-1} W=-i(W-I)(W+I)^{-1} \in \mathfrak{R}_{n}^{\circ}$. Since
Z is in the closure of \mathfrak{H}, it follows that $Z=X+i Y$, where X and Y are real symmetric and Y is positive semidefinite. There exists an orthogonal matrix k such that $D=k Y k^{-1}$ is diagonal with nonnegative eigenvalues. Now

$$
\gamma(Z)=i D, \quad \gamma=\left(\begin{array}{cc}
k & \\
& k
\end{array}\right)\binom{I-X}{I} \in G .
$$

Thus, denoting $W^{\prime}=c \gamma c^{-1} W$,

$$
W^{\prime}=c(i D)=(D-I)(D+I)^{-1}
$$

Like D, the matrix W^{\prime} is diagonal, and its diagonal entries equal to 1 correspond to the diagonal entries of D equal to 0 . These correspond to diagonal entries of $I-\overline{W^{\prime}} W^{\prime}$ equal to 0 , so the diagonal matrices D and $I-\overline{W^{\prime}} W^{\prime}$ have the same rank. But by (ii), the ranks of $I-\bar{W} W$ and $I-\overline{W^{\prime}} W^{\prime}$ are equal, so the rank of D is r. Clearly, W^{\prime} has the special form (31.15).

Now let us fix $r<n$ and consider

$$
\mathfrak{B}_{r}=\left\{\left.\left(\begin{array}{ll}
W_{r} & \\
& I_{n-r}
\end{array}\right) \right\rvert\, W_{r} \in \mathfrak{D}_{n-r}\right\} .
$$

By Proposition 31.7, the subgroup of $c G c^{-1}$ of the form

$$
\left(\begin{array}{cccc}
A_{r} & 0 & B_{r} & 0 \\
0 & I_{n-r} & 0 & 0 \\
\frac{B_{r}}{} & 0 & \frac{A_{r}}{r} & 0 \\
0 & 0 & 0 & I_{n-r}
\end{array}\right)
$$

is isomorphic to $\operatorname{Sp}(2 r, \mathbb{R})$, and \mathfrak{B}_{r} is homogeneous with respect to this subgroup. Thus \mathfrak{B}_{r} is a copy of the lower-dimensional Siegel space \mathfrak{D}_{r} embedded into the boundary of \mathfrak{D}_{n}.

Any subset of the boundary that is congruent to a \mathfrak{B}_{r} by an element of $c G c^{-1}$ is called a boundary component. There are infinitely many boundary components, but each of them resembles one of these standard ones. The closure of a boundary component is a union of lower-dimensional boundary components.

Now let us consider the union of the zero-dimensional boundary components, that is, the set of all elements equivalent to $\mathfrak{B}_{0}=\left\{I_{n}\right\}$. By Proposition 31.8 , it is clear that this set is characterized by the vanishing of $I-\bar{W} W$. In other words, this is the set $\mathcal{E}_{n}(\mathbb{R})$.

If D is a bounded convex domain in \mathbb{C}^{r}, homgeneous under a group G of holomorphic mappings, the Bergman-Shilov boundary of D is the unique minimal closed subset B of the topological boundary ∂D such that a function holomorphic on D and continuous on its closure will take its maximum (in absolute value). See Korányi and Wolf [88] for further information, including the fact that a bounded symmetric domain must have such a boundary.

Theorem 31.4. The domain \mathfrak{D}_{n} has $\mathcal{E}_{n}(\mathbb{R})$ as its Bergman-Shilov boundary.
Proof. Let f be a holomorphic function on \mathfrak{D}_{n} that is continuous on its closure. We will show that f takes its maximum on the set $\mathcal{E}_{n}(\mathbb{R})$. This is sufficient because G acts transitively on $\mathcal{E}_{n}(\mathbb{R})$, so the set $\mathcal{E}_{n}(\mathbb{R})$ cannot be replaced by any strictly smaller subspace with the same maximizing property.

Suppose $x \in \overline{\mathfrak{D}_{n}}$ maximizes $|f|$. Let \mathfrak{B} be the boundary component containing x, so \mathfrak{B} is congruent to some \mathfrak{B}_{r}. If $r>0$, then noting that the restriction of f to \mathfrak{B} is a holomorphic function there, the maximum modulus principle implies that f is constant on \mathfrak{B} and hence $|f|$ takes the same maximum value on the boundary of \mathfrak{B}, which intersects $\mathcal{E}_{n}(\mathbb{R})$.

We now see that both the dual symmetric spaces $\mathcal{P}_{n}(\mathbb{R})$ and $\mathcal{E}_{n}(\mathbb{R})$ appear in connection with \mathfrak{H}_{n}. The construction of \mathfrak{H}_{n} involved building a tube domain over the cone $\mathcal{P}_{n}(\mathbb{R})$, while the dual $\mathcal{E}_{n}(\mathbb{R})$ appeared as the BergmanShilov boundary. (Since $\mathcal{P}_{n}^{\circ}(\mathbb{R})$ and $\mathcal{E}_{n}(\mathbb{R})^{\circ}$ are in duality, it is natural to extend the notion of duality to the reducible symmetric spaces $\mathcal{P}_{n}(\mathbb{R})$ and $\mathcal{E}_{n}(\mathbb{R})$ and to say that these are in duality.)

This scenario repeats itself: there are four infinite families and one isolated example of Hermitian symmetric spaces that appear as tube domains over cones. In each case, the space can be mapped to a bounded symmetric domain by a Cayley transform, and the compact dual of the cone appears as the Bergman-Shilov boundary of the cone. These statements follow from the work of Koecher, Vinberg, and Piatetski-Shapiro [101], culminating in Korányi and Wolf [87], [88].

Let us describe this setup in a bit more detail. Let V be a real vector space with an inner product \langle,$\rangle . A cone \mathcal{C} \subset V$ is a convex open set consisting of a union of rays through the origin but not containing any line. The dual cone to \mathcal{C} is $\{x \in V \mid\langle x, y\rangle>0$ for all $y \in \mathcal{C}\}$. If \mathcal{C} is its own dual, it is naturally called self-dual. It is called homogeneous if it admits a transitive automorphism group.

A homogeneous self-dual cone is a symmetric space. It is not irreducible since it is invariant under similitudes (that is, transformations $x \longmapsto \lambda x$ where $\lambda \in \mathbb{R}^{\times}$). The orbit of a typical point under the commutator subgroup of the group of automorphisms of the cone sits inside the cone, inscribed like a hyperboloid, though this description is a little misleading since it may be the constant locus of an invariant of degree >2. For example, $\mathcal{P}_{n}^{\circ}(\mathbb{R})$ is the locus of $\operatorname{det}(x)=1$, and det is a homogeneous polynomial of degree n.

Homogeneous self-dual cones were investigated and applied to symmetric domains by Koecher, Vinberg, and others. A Jordan algebra over a field F is a nonassociative algebra over F whose multiplication is commutative and satisfies the weakened associative law $(a b) a^{2}=a\left(b a^{2}\right)$. The basic principle is that if $\mathcal{C} \subset V$ is a self-dual convex cone, then V can be given the structure of a Jordan algebra in such a way that \mathcal{C} becomes the set of squares in V.

In addition to Satake [109] Chapter I Section 8, see Ash, Mumford, Rapoport, and Tai [5], Chapter II, for good explanations, including a discussion of the boundary components of a self-dual cone.

Example 31.6. Let $D=\mathbb{R}, \mathbb{C}$, or \mathbb{H}. Let $d=1,2$ or 4 be the real dimension of D. Let $\mathcal{J}_{n}(D)$ be the set of Hermitian matrices in $\operatorname{Mat}_{n}(D)$, which is a Jordan algebra. Let $\mathcal{P}_{n}(D)$ be the set of positive definite elements. It is a selfdual cone of dimension $n+(d / 2) n(n-1)$. It is a reducible symmetric space, but the elements of $g \in \mathcal{P}_{n}(D)$ such that multiplication by g as an \mathbb{R}-linear transformation of $\operatorname{Mat}_{n}(D)$ has determinant 1 is an irreducible symmetric space $\mathcal{P}_{n}^{\circ}(D)$ of dimension $n+(d / 2) n(n-1)-1$. The dual $\mathcal{E}_{n}^{\circ}(D)$ is a compact Hermitian symmetric space.

Example 31.7. The set defined by the inequality $x_{0}>\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ in \mathbb{R}^{n+1} is a self-dual cone, which we will denote $\mathcal{P}(n, 1)$. The group of automorphisms is the group of similitudes for the quadratic form $x_{0}^{2}-x_{1}^{2}-\ldots-x_{n}^{2}$. The derived group is $\mathrm{SO}(n, 1)$, and its homogeneous space $\mathcal{P}^{\circ}(n, 1)$ can be identified with the orbit of $(1,0, \cdots, 0)$, which is the locus of the hyperboloid $x_{0}^{2}-x_{1}^{2}-\ldots-$ $x_{n}^{2}=1$. The following special cases are worth noting: $\mathcal{P}(2,1) \cong \mathcal{P}_{2}(\mathbb{R})$ can be identified with the Poincaré upper half-plane, $\mathcal{P}^{\circ}(3,1)$ can be identified with $\mathcal{P}_{2}(\mathbb{C})$, and $\mathcal{P}^{\circ}(5,1)$ can be identified with $\mathcal{P}_{2}(\mathcal{H})$.

Example 31.8. The octonions or Cayley numbers are a nonassociative algebra \mathbb{O} over \mathbb{R} of degree 8 . The construction of Example 31.6 applied to $D=\mathbb{O}$ does not produce a Jordan algebra if $n>3$. If $n \leqslant 3$, then $\mathcal{J}_{n}(\mathbb{O})$ is a Jordan algebra containing a self-dual cone $\mathcal{P}_{n}(\mathbb{O})$. But $\mathcal{P}_{2}(\mathbb{D})$ is the same as $\mathcal{P}(9,1)$. Only the 27-dimensional exceptional Jordan algebra $\mathcal{J}_{3}(\mathbb{O})$, discovered in 1947 by A. A. Albert, produces a new cone $\mathcal{P}_{3}(\mathbb{O})$. It contains an irreducible symmetric space of codimension $1, \mathcal{P}_{3}^{\circ}(\mathbb{O})$, which is the locus of a cubic invariant. Let $\mathcal{E}_{3}^{\circ}(\mathbb{O})$ denote the compact dual. The Cartan classification of these 26-dimensional symmetric spaces is EIV.

The nonassociative algebras \mathbb{O} and $\mathcal{J}_{3}(\mathbb{O})$ are crucial in the construction of the exceptional groups and Lie algebras. See Jacobson [72], Onishchik and Vinberg [121] and Schafer [110] for Lie algebra constructions.

The tube domain $\mathfrak{H}(\mathcal{C})$ over a self-dual cone \mathcal{C}, consisting of all $X+i Y \in$ $\mathbb{C} \otimes V$, is a Hermitian symmetric space. These examples are extremely similar to the case of the Siegel space. For example, we can embed $\mathfrak{H}(\mathcal{C})$ in its compact dual $\mathfrak{R}(\mathcal{C})$, which contains $\mathfrak{R}^{\circ}(\mathcal{C})=\mathbb{C} \otimes V$ as a dense open set. A Cayley transform $c: \mathfrak{R}(\mathcal{C}) \longrightarrow \mathfrak{R}(\mathcal{C})$ takes $\mathfrak{H}(\mathcal{C})$ into a bounded symmetric domain $\mathfrak{D}(\mathcal{C})$, whose closure is contained in $\mathfrak{R}^{\circ}(\mathcal{C})$. The Bergman-Shilov boundary can be identified with the compact dual of the (reducible) symmetric space \mathcal{C}, and its preimage under c consists of $X+i Y \in \mathbb{C} \otimes V$ with $Y=0$, that is, with the vector space V.

Freudenthal [41] observed a phenomenon involving some symmetric spaces known as the magic square. Freudenthal envisioned a series of geometries over
the algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$, and \mathbb{O}, and found a remarkable symmetry, which we will present momentarily. A good recent paper on the magic square, very much in the geometric spirit of Freudenthal's original approach, is Landsberg and Manivel [89]. Onishchik and Vinberg [121] is also very useful in approaching the magic square.

Let us denote $\mathfrak{R}(\mathcal{C})$ as $\mathfrak{R}_{n}(D)$ if $\mathcal{C}=\mathcal{P}_{n}(D)$. We associate with this \mathcal{C} three groups $G_{n}(D), G_{n}^{\prime}(D)$, and $G_{n}^{\prime \prime}(D)$ such that $G_{n}^{\prime \prime}(D) \supset G_{n}^{\prime}(D) \supset G_{n}(D)$ and such that $G^{\prime \prime}(D) / G_{n}^{\prime}(D)=\Re_{n}(D)$, while $G_{n}^{\prime}(D) / G_{n}(D)=\mathcal{E}_{n}(D)$. Thus $G_{n}(\mathbb{R})=\mathrm{SO}(n)$ and $G_{n}^{\prime}(\mathbb{R})=\mathrm{GL}(n, \mathbb{R})$, while $G_{n}^{\prime \prime}(\mathbb{R})=\operatorname{Sp}(2 n, \mathbb{R})$.

These groups are tabulated in Figure 31.2 together with the noncompact duals that produce tube domains. Note that the symmetric spaces $U(n) \times$ $U(n) / U(n)=U(n)$ and $\mathrm{GL}(2 n, \mathbb{C}) / U(n)=\mathcal{P}_{3}(\mathbb{C})$ of the center column are of Types II and IV, respectively. The "magic" consists of the fact that the square is symmetric.

D	\mathbb{R}	\mathbb{C}	\mathbb{H}
$G_{n}(D)$	$\mathrm{SO}(n)$	$U(n)$	$\operatorname{Sp}(2 n)$
$G_{n}^{\prime}(D)$	$U(n)$	$U(n) \times U(n)$	$U(2 n)$
$G_{n}^{\prime \prime}(D)$	$\operatorname{Sp}(2 n)$	$U(2 n)$	$\mathrm{SO}(4 n)$

\mathbb{R}	\mathbb{C}	\mathbb{H}
-	-	-
$\mathrm{GL}(n, \mathbb{R})$	$\mathrm{GL}(n, \mathbb{C})$	$\mathrm{GL}(n, \mathbb{H})$
$\mathrm{Sp}(2 n, \mathbb{R})$	$\mathrm{GU}(n, n)$	$\mathrm{SO}(4 n)^{*}$

Fig. 31.2. The 3×3 square. Left: compact forms. Right: noncompact forms.

We have the following numerology:

$$
\begin{equation*}
\operatorname{dim} G_{n}^{\prime \prime}(D)+2 \operatorname{dim} G(D)=3 \operatorname{dim} G_{n}^{\prime}(D) \tag{31.16}
\end{equation*}
$$

Indeed, $\operatorname{dim} G_{n}^{\prime \prime}(D)-\operatorname{dim} G_{n}^{\prime}(D)$ is the dimension of the tube domain, and this is twice the dimension $\operatorname{dim} G^{\prime}(D)-\operatorname{dim} G_{n}(D)$ of the cone.

Although in presenting the 3×3 square - valid for all n - in Figure 31.2 it seems best to take the full unitary groups in the second rows and columns, this does not work so well for the 4×4 magic square. Let us therefore note that we can also use modified groups that we call $H_{n}(D) \subset H_{n}^{\prime}(D) \subset H_{n}^{\prime \prime}$, which are the derived groups of the $G_{n}(D)$. We must modify (31.16) accordingly:

$$
\begin{equation*}
\operatorname{dim} H^{\prime \prime}(D)+2 \operatorname{dim} H(D)=3 \operatorname{dim} H_{n}^{\prime}(D)+3 \tag{31.17}
\end{equation*}
$$

See Figure 31.3 for the resulting "reduced" 3×3 magic square.
If $n=3$, the reduced 3×3 square can be extended, resulting in Freudenthal's magic square, which we consider next. It will be noted that in Cartan's list (Table 31.1) some of the symmetric spaces have an $\mathrm{SU}(2)$ factor in K. Since $S U(2)$ is the multiplicative group of quaternions of norm 1 , these spaces have a quaternionic structure analogous to the complex structure shown by Hermitian symmetric spaces, where K contains a $U(1)$ factor (Proposition 31.3). See Wolf [130]. Of the exceptional types, EII, EIV, EIX, FI, and G are quaternionic. Observe that in each case the dimension is a multiple of 4 .

D	\mathbb{R}	\mathbb{C}	\mathbb{H}
$H_{n}(D)$	$\mathrm{SO}(n)$	$\mathrm{SU}(n)$	$\mathrm{Sp}(2 n)$
$H_{n}^{\prime}(D)$	$\mathrm{SU}(n)$	$\mathrm{SU}(n) \times \mathrm{SU}(n)$	$\mathrm{SU}(2 n)$
$H_{n}^{\prime \prime}(D)$	$\mathrm{Sp}(2 n)$	$\mathrm{SU}(2 n)$	$\mathrm{SO}(4 n)$

\mathbb{R}	\mathbb{C}	\mathbb{H}
$\frac{1}{2} n(n-1)$	$n^{2}-1$	$n(2 n+1)$
$n^{2}-1$	$2 n^{2}-2$	$4 n^{2}-1$
$n(2 n+1)$	$4 n^{2}-1$	$2 n(4 n-1)$

Fig. 31.3. Left: the reduced 3×3 square. Right: dimensions.

Using some of these quaternionic symmetric spaces it is possible to extend the magic square in the special case where $n=3$ by a fourth group $H_{n}^{\prime \prime \prime}(D)$ such that $H_{n}^{\prime \prime}(D) \times \mathrm{SU}(2)$ is the maximal compact subgroup of the relevant noncompact form. It is also possible to add a fourth column when $n=3$ due to existence of the exceptional Jordan algebra and $\mathcal{P}_{3}(\mathbb{O})$.

The magic square then looks like Figure 31.4. In addition to (31.17), there is a similar relation,

$$
\begin{equation*}
\operatorname{dim} H^{\prime \prime \prime}(D)+2 \operatorname{dim} H^{\prime}(D)=3 \operatorname{dim} H_{n}^{\prime \prime}(D)+5 \tag{31.18}
\end{equation*}
$$

which suggests that the quaternionic symmetric spaces - they are FI, EII, $E V I$, and EIX in Cartan's classification - should be thought of as "quaternionic tube domains" over the corresponding Hermitian symmetric spaces.

D	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
$H_{3}(D)$	$\mathrm{SO}(3)$	$\mathrm{SU}(3)$	$\mathrm{Sp}(6)$	F_{4}
$H_{3}^{\prime}(D)$	$\mathrm{SU}(3)$	$\mathrm{SU}(3) \times \mathrm{SU}(3)$	$\mathrm{SU}(6)$	E_{6}
$H_{3}^{\prime \prime}(D)$	$\mathrm{Sp}(6)$	$\mathrm{SU}(6)$	$\mathrm{SO}(12)$	E_{7}
$H_{3}^{\prime \prime \prime}(D)$	F_{4}	E_{6}	E_{7}	E_{8}

\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
3	8	21	52
8	16	35	78
21	35	66	133
52	78	133	248

Fig. 31.4. Left: the magic square. Right: dimensions.

EXERCISES

In the exercises, we look at the complex unit ball, which is a Hermitian symmetric space that is not a tube domain. For these spaces, Piatetski-Shapiro [101] gave unbounded realizations that are called Siegel domains of Type II. (Siegel domains of Type I are tube domains over self-dual cones.)

Exercise 31.1. The group $G=\operatorname{SU}(n, 1)$ consists of solutions to

$$
{ }^{t} \bar{g}\left(\begin{array}{ll}
I_{n} & \\
& -1
\end{array}\right) g=\left(\begin{array}{ll}
I_{n} & \\
& -1
\end{array}\right), \quad g \in \mathrm{GL}(n+1, \mathbb{C})
$$

$$
\mathcal{B}_{n}=\left\{w=\left.\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)| | w_{1}\right|^{2}+\ldots+\left|w_{n}\right|^{2}<1\right\}
$$

be the complex unit ball. Write

$$
g=\left(\begin{array}{ll}
A & b \\
c & d
\end{array}\right), \quad A \in \operatorname{Mat}_{n}(\mathbb{C}), b \in \operatorname{Mat}_{n \times 1}(\mathbb{C}), c \in \operatorname{Mat}_{1, n}(\mathbb{C}), d \in \mathbb{C}
$$

If $w \in \mathcal{B}_{n}$, show that $c w+d$ is invertible. (This is a 1×1 matrix, so it can be regarded as a complex number.) Define

$$
\begin{equation*}
g(w)=(A w+b)(c w+d)^{-1} \tag{31.19}
\end{equation*}
$$

Show that $g(w) \in \mathcal{B}_{n}$ and that this defines an action of $\operatorname{SU}(n, 1)$ on \mathcal{B}_{n}.
Exercise 31.2. Let $\mathcal{H}_{n} \in \mathbb{C}^{n}$ be the bounded domain

$$
\mathcal{H}_{n}=\left\{z=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)\left|2 \operatorname{Im}\left(z_{1}\right)>\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}\right\} .\right.
$$

Show that there are holomorphic maps $c: \mathcal{H}_{n} \longrightarrow \mathcal{B}_{n}$ and $c^{-1}: \mathcal{B}_{n} \longrightarrow \mathcal{H}_{n}$ that are inverses of each other and are given by

$$
c(z)=\left(\begin{array}{c}
\left(z_{1}-i\right)\left(z_{1}+i\right)^{-1} \\
\sqrt{2 i} z_{2}\left(z_{1}+i\right)^{-1} \\
\vdots \\
\sqrt{2 i} z_{n}\left(z_{1}+i\right)^{-1}
\end{array}\right), \quad c^{-1}(w)=\left(\begin{array}{c}
i\left(1+w_{1}\right)\left(1-w_{1}\right)^{-1} \\
\sqrt{2 i} w_{2}\left(1-w_{1}\right)^{-1} \\
\vdots \\
\sqrt{2 i} w_{n}\left(1-w_{1}\right)^{-1}
\end{array}\right) .
$$

Note: If we extend the action (31.19) to allow $g \in \mathrm{GL}(n+1, \mathbb{C})$, these "Cayley transforms" are represented by the matrices

$$
c=\left(\begin{array}{cc}
1 / \sqrt{2 i} & \\
& -i / \sqrt{2 i} \\
& I_{n-1} \\
1 / \sqrt{2 i} & \\
i / \sqrt{2 i}
\end{array}\right), \quad c^{-1}=\left(\begin{array}{cc}
i / \sqrt{2 i} & \\
& i / \sqrt{2 i} \\
-1 / \sqrt{2 i} & 1 / \sqrt{2 i}
\end{array}\right) .
$$

Exercise 31.3. Show that $c^{-1} \mathrm{SU}(n, 1) c=\mathrm{SU}_{\xi}$, where SU_{ξ} is the group of all $g \in$ GL(n, \mathbb{C}) satisfying $g \xi^{t} \bar{g}^{-1}=\xi$, where

$$
\xi=\left(\begin{array}{ll}
I_{n-1} & -i \\
i &
\end{array}\right)
$$

Show that SU_{ξ} contains the noncompact "Heisenberg" unipotent subgroup

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & i \bar{b} & \frac{i}{2}|b|^{2}+i a \\
& I_{n-1} & b \\
& & 1
\end{array}\right) \right\rvert\, b \in \operatorname{Mat}_{n, 1}(\mathbb{C}), a \in \mathbb{R}\right\}
$$

Let us write

$$
z=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\binom{z_{1}}{\zeta}, \quad \zeta=\left(\begin{array}{c}
z_{2} \\
\vdots \\
z_{n}
\end{array}\right) .
$$

According to (31.19), a typical element of H should act by

$$
\begin{array}{r}
z_{1} \longmapsto z_{1}+i \bar{b} \zeta+\frac{i}{2}|b|^{2}+i a, \\
\zeta \longmapsto \zeta+b .
\end{array}
$$

Check directly that H is invariant under such a transformation. Also show that SU_{ξ} contains the group

$$
M=\left\{\left.\left(\begin{array}{lll}
u & & \\
& h & \\
& & \bar{u}^{-1}
\end{array}\right) \right\rvert\, u, v \in \mathbb{C}^{\times}, h \in U(n-1)\right\} .
$$

Describe the action of this group. Show that the subgroup of SU_{ξ} generated by H and M is transitive on \mathcal{H}_{n}, and deduce that the action of $\operatorname{SU}(n, 1)$ on \mathcal{B}_{n} is also transitive.

Exercise 31.4. Observe that the subgroup $K=S(U(n) \times U(1))$ of $\operatorname{SU}(n, 1)$ acts transitively on the topological boundary of \mathcal{B}_{n}, and explain why this shows that the Bergman-Shilov boundary is the whole topological boundary. Contrast this with the case of \mathfrak{D}_{n}.

Exercise 31.5. Emulate the construction of \Re_{n} and \mathfrak{R}_{n}° to show that the compact dual of \mathcal{B}_{n} has a dense open subset that can be identified with \mathbb{C}^{n} in such a way that $G_{\mathbb{C}}=\mathrm{GL}(n+1, \mathbb{C})$ acts by (31.19). Show that \mathcal{B}_{n} can be embedded in its compact dual, just as \mathfrak{D}_{n} is in the case of the symplectic group.

Relative Root Systems

In this chapter, we will consider root systems and Weyl groups associated with a Lie group G. We will assume that G satisfies the assumptions in Hypothesis 31.1 of the last chapter. Thus, G is semisimple and comes with a compact dual G_{c}. In Chapter 19, we associated with G_{c} a root system and Weyl group. That root system and Weyl group we will call the absolute root system Φ and Weyl group W. We will introduce another root system $\Phi_{\text {rel }}$, called the relative or restricted root system, and a Weyl group $W_{\text {rel }}$ called the relative Weyl group. The relation between the two root systems will be discussed. The structures that we will find give Iwasawa and Bruhat decompositions in this context.

As we saw in Theorem 31.3, every semisimple Lie group admits a Car\tan decomposition, and Hypothesis 31.1 will be satisfied. The assumption of semisimplicity can be relaxed - it is sufficient for G to be reductive, though in this book we only define the term "reductive" when G is a complex analytic group. A more significant generalization of the results of this chapter is that relative and absolute root systems and Weyl groups can be defined whenever G is a reductive algebraic group defined over a field F. If F is algebraically closed, these coincide. If $F=\mathbb{R}$, they coincide with the structures defined in this chapter. But reductive groups over p-adic fields, number fields, or finite fields have many applications, and this reason alone is enough to prefer an approach based on algebraic groups. For this, see Borel [12] as well as Borel and Tits [13], Tits [119] (and other papers in the same volume), and Satake [108].

Consider, for example, the group $G=\mathrm{SL}(r, \mathbb{H})$, whose construction we recall. The group $\mathrm{GL}(r, \mathbb{H})$ is the group of units of the central simple algebra $\operatorname{Mat}_{r}(\mathbb{H})$ over \mathbb{R}. We have $\mathbb{C} \otimes \mathbb{H} \cong \operatorname{Mat}_{2}(\mathbb{C})$ as \mathbb{C}-algebras. Consequently $\mathbb{C} \otimes \operatorname{Mat}_{r}(\mathbb{H}) \cong \operatorname{Mat}_{2 r}(\mathbb{C})$. The reduced norm $\nu: \operatorname{Mat}_{r}(\mathbb{H}) \longrightarrow \mathbb{R}$ is a map determined by the commutativity of the diagram

(See Exercise 32.1.) The restriction of the reduced norm to $\mathrm{GL}(r, \mathbb{H})$ is a homomorphism $\nu: \mathrm{GL}(r, \mathbb{H}) \longrightarrow \mathbb{R}^{\times}$whose kernel is the group $\mathrm{SL}(r, \mathbb{H})$. It is a real form of $\operatorname{SL}(2 r, \mathbb{R})$, or of the compact group $G_{c}=\operatorname{SU}(2 r)$, and we may associate with it the Weyl group and root system W and Φ of $\operatorname{SU}(2 r)$ of type $A_{2 r-1}$. This is the absolute root system. On the other hand, there is also a relative or restricted root system and Weyl group, which we now describe.

Let K be the group of $g \in \operatorname{SL}(r, \mathbb{H})$ such that $g^{t} \bar{g}=I$, where the bar denotes the conjugation map of \mathbb{H}. By Exercise 5.7, K is a compact group isomorphic to $\operatorname{Sp}(2 r)$. The Cartan involution θ of Hypothesis 31.1 is the map $g \longmapsto{ }^{t} \bar{g}^{-1}$.

We will denote by \mathbb{R}_{+}^{\times}the multiplicative group of the positive real numbers. Let $A \cong\left(\mathbb{R}_{+}^{\times}\right)^{r}$ be the subgroup

$$
\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{r}
\end{array}\right), \quad t_{i} \in \mathbb{R}_{+}^{\times}, \prod t_{i}=1 .
$$

The centralizer of A consists of the group

$$
C_{G}(A)=\left\{\left.\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{r}
\end{array}\right) \right\rvert\, t_{i} \in \mathbb{H}^{\times}\right\} .
$$

The group $M=C_{G}(A) \cap K$ consists of all elements with $\left|t_{i}\right|=1$. The group of norm 1 elements in \mathbb{H}^{\times}is isomorphic to $\mathrm{SU}(2)$ by Exercise 5.7 with $n=1$. Thus M is isomorphic to $\mathrm{SU}(2)^{r}$.

On the other hand, the normalizer of $N_{G}(A)$ consists of all monomial quaternion matrices. The quotient $W_{\text {rel }}=N_{G}(A) / C_{G}(A)$ is of type A_{r-1}. The "restricted roots" are "rational characters" of the group A, of the form $\alpha_{i j}=$ $t_{i} t_{j}^{-1}$, with $i \neq j$. We can identify $\mathfrak{g}=\operatorname{Lie}(G)$ with $\operatorname{Mat}_{n}(\mathbb{H})$, in which case the subspace of \mathfrak{g} that transforms by $\alpha_{i j}$ consists of all elements of \mathfrak{g} having zeros everywhere except in the i, j position. In contrast with the absolute root system, where the eigenspace \mathfrak{X}_{α} of a root is always one-dimensional (see Proposition 19.5), these eigenspaces are all four-dimensional.

We see from this example that the group $\mathrm{SL}(n, \mathbb{H})$ looks like $\mathrm{SL}(n, \mathbb{R})$, but the root eigenspaces are "fattened up." The role of the torus T in Chapter 19 will be played by the group $C_{G}(A)$, which may be thought of as a "fattened up" and non-Abelian replacement for the torus.

We turn to the general case and to the proofs.

Proposition 32.1. Assume that the assumptions of Hypothesis 31.1 are satisfied. Then the map

$$
\begin{equation*}
(Z, k) \longmapsto \exp (Z) k \tag{32.1}
\end{equation*}
$$

is a diffeomorphism $\mathfrak{p} \times K \longrightarrow G$.
Proof. Choosing a faithful representation (π, V) of the compact group G_{c}, we may embed G_{c} into $\mathrm{GL}(V)$. We may find a positive definite invariant inner product on V and, on choosing an orthonormal basis, we may embed G_{c} into $U(n)$, where $n=\operatorname{dim}(V)$. The Lie algebra $\mathfrak{g}_{\mathbb{C}}$ is then embedded into $\mathfrak{g l}(n, \mathbb{C})$ in such a way that $\mathfrak{k} \subseteq \mathfrak{u}(n)$ and \mathfrak{p} is contained in the space \mathfrak{P} of $n \times n$ Hermitian matrices. We now recall from Theorem 13.4 and Proposition 13.6 that the formula (32.1) defines a diffeomorphism $\mathfrak{P} \times U(n) \longrightarrow \mathrm{GL}(n, \mathbb{C})$. It follows that it gives a diffeomorphism of $\mathfrak{p} \times K$ onto its image. It also follows that (32.1) has nonzero differential everywhere, and as $\mathfrak{p} \times K$ and G have the same dimension, we get an open mapping $\mathfrak{p} \times K \longrightarrow G$. On the other hand, $\mathfrak{p} \times K$ is closed in $\mathfrak{P} \times U(n)$, so the image of (32.1) is closed as well as open in G. Since G is connected, it follows that (32.1) is surjective.

If \mathfrak{a} is an Abelian Lie subalgebra of \mathfrak{g} such that $\mathfrak{a} \subset \mathfrak{p}$, we say \mathfrak{a} is an Abelian subspace of \mathfrak{p}. This expression is used instead of "Abelian subalgebra" since \mathfrak{p} itself is not a Lie subalgebra of \mathfrak{g}. We will see later in Theorem 32.3 that a maximal Abelian subspace \mathfrak{a} of \mathfrak{p} is unique up to conjugation.

Proposition 32.2. Assume that the assumptions of Hypothesis 31.1 are satisfied. Let \mathfrak{a} be a maximal Abelian subspace of \mathfrak{p}. Then $A=\exp (\mathfrak{a})$ is a closed Lie subgroup of G, and \mathfrak{a} is its Lie algebra. There exists a θ-stable maximal torus T of G_{c} such that A is contained in the complexification $T_{\mathbb{C}}$ regarded as a subgroup of $G_{\mathbb{C}}$. If $r=\operatorname{dim}(\mathfrak{a})$, then $A \cong\left(\mathbb{R}_{+}^{\times}\right)^{r}$. Moreover, $A_{c}=\exp (i \mathfrak{a})$ is a compact torus contained in T. We have $T=A_{c} T_{M}$, where $T_{M}=(T \cap K)^{\circ}$.

Proof. By Proposition 15.2, A is an Abelian group. By Proposition 32.1, the restriction of \exp to \mathfrak{p} is a diffeomorphism onto its image, which is closed in G, and since \mathfrak{a} is closed in \mathfrak{p} it follows that $\exp (\mathfrak{a})$ is closed and isomorphic as a Lie group to the vector space $\mathfrak{a} \cong \mathbb{R}^{r}$. Exponentiating, the group $A \cong\left(\mathbb{R}_{+}^{\times}\right)^{r}$.

Let $A_{c}=\exp (i \mathfrak{a}) \subset G_{c}$. By Proposition 15.2, it is an Abelian subgroup. We will show that it is closed. If it is not, consider its topological closure \bar{A}_{c}. This is a closed connected Abelian subgroup of the compact group G_{c} and hence a torus by Theorem 15.2 . Since θ induces -1 on \mathfrak{p}, it induces the automorphism $g \longmapsto g^{-1}$ on A_{c} and hence on \bar{A}_{c}. Therefore, the Lie algebra of \bar{A}_{c} is contained in the -1 eigenspace $i \mathfrak{p}$ of θ in $\operatorname{Lie}\left(G_{c}\right)$. Since $i \mathfrak{a}$ is a maximal Abelian subspace of $i \mathfrak{p}$, it follows that $i \mathfrak{a}$ is the Lie algebra of \bar{A}_{c}, and therefore $\bar{A}_{c}=\exp (i \mathfrak{a})=A_{c}$.

Now let T be a maximal θ-stable torus of G_{c} containing A_{c}. We will show that T is a maximal torus of G_{c}. Let $T^{\prime} \supseteq T$ be a maximal torus. Let \mathfrak{t}^{\prime} and \mathfrak{t} be the respective Lie algebras of T^{\prime} and T. Suppose that $H \in \mathfrak{t}^{\prime}$. If $Y \in \mathfrak{t}$, then $\left[Y,{ }^{\theta} H\right]=\left[{ }^{\theta} Y, H\right]=-[Y, H]=0$ since \mathfrak{t} is θ-stable and $Y, H \in \mathfrak{t}^{\prime}$, which
is Abelian. Thus, both H and ${ }^{\theta} H$ are in the centralizer of \mathfrak{t}. Now we can write $H=H_{1}+H_{2}$, where $H_{1}=\frac{1}{2}\left(H+{ }^{\theta} H\right)$ and $H_{2}=\frac{1}{2}\left(H-{ }^{\theta} H\right)$. Note that the torus S_{i}, which is the closure of $\left\{\exp \left(t H_{i}\right) \mid t \in \mathbb{R}\right\}$, is θ stable - indeed θ is trivial on S_{1} and induces the automorphism $x \longmapsto x^{-1}$ on S_{2}. Also $S_{i} \subseteq T^{\prime}$ centralizes T. Consequently, $T S_{i}$ is a θ-stable torus and, by maximality of T, $S_{i} \subseteq T$. It follows that $H_{i} \in \mathfrak{t}$, and so $H \in \mathfrak{t}$. We have proven that $\mathfrak{t}^{\prime}=\mathfrak{t}$ and so $T=T^{\prime}$ is a maximal torus.

It remains to be shown that $T=A_{c} T_{M}$. It is sufficient to show that the Lie algebra of T decomposes as $i \mathfrak{a} \oplus \mathfrak{t}_{M}$, where \mathfrak{t}_{M} is the Lie algebra of T_{M}. Since θ stabilizes T, it induces an endomorphism of order 2 of $\mathfrak{t}=\operatorname{Lie}(T)$. The +1 eigenspace is $\mathfrak{t}_{M}=\mathfrak{t} \cap \mathfrak{k}$ since the +1 eigenspace of θ on \mathfrak{g}_{c} is \mathfrak{k}. On the other hand, the -1 eigenspace of θ on \mathfrak{t} contains $i \mathfrak{a}$ and is contained in $i \mathfrak{p}$, which is the -1 eigenspace of θ on \mathfrak{g}_{c}. Since \mathfrak{a} is a maximal Abelian subspace of \mathfrak{p}, it follows that the -1 eigenspace of θ on \mathfrak{t} is exactly $i \mathfrak{a}$, so $\mathfrak{t}=i \mathfrak{a} \oplus \mathfrak{t}_{M}$.

Lemma 32.1. Let $Z \in \mathrm{GL}(n, \mathbb{C})$ be a Hermitian matrix. If $g \in \operatorname{GL}(n, \mathbb{C})$ commutes with $\exp (Z)$, then g commutes with Z.

Proof. Let $\lambda_{1}, \cdots, \lambda_{h}$ be the distinct eigenvalues of Z. Let us choose a basis with respect to which Z has the matrix

$$
\left(\begin{array}{lll}
\lambda_{1} I_{r_{1}} & & \\
& \ddots & \\
& & \lambda_{h} I_{r_{h}}
\end{array}\right)
$$

Then $\exp (Z)$ has the same form with λ_{i} replaced by $\exp \left(\lambda_{i}\right)$. Since the λ_{i} are distinct real numbers, the $\exp \left(\lambda_{i}\right)$ are also distinct, and it follows that g has the form

$$
\left(\begin{array}{lll}
g_{1} & & \\
& \ddots & \\
& & g_{h}
\end{array}\right)
$$

where g_{i} is an $r_{i} \times r_{i}$ block. Thus g commutes with Z.
Proposition 32.3. In the context of Proposition 32.2, let $M=C_{G}(A) \cap K$. Then $C_{G}(A)=M A$ and $M \cap A=\{1\}$, so $C_{G}(A)$ is the direct product of M and A. The group T_{M} is a maximal torus of M.

The compact group M is called the anisotropic kernel.
Proof. Since $M \subseteq K$ and $A \subseteq \exp (\mathfrak{p})$, and since by Proposition $32.1 K \cap$ $\exp (\mathfrak{p})=\{1\}$, we have $M \cap A=\{1\}$. We will show that $C_{G}(A)=M A$. Let $g \in M$. By Proposition 32.1, we may write $g=\exp (Z) k$, where $Z \in \mathfrak{p}$ and $k \in K$. If $a \in A$, then a commutes with $\exp (Z) k$. We will show that any $a \in A$ commutes with $\exp (Z)$ and with k individually. From this we will deduce that $\exp (Z) \in A$ and $k \in M$.

By Theorem 4.2, G_{c} has a faithful complex representation $G_{c} \longrightarrow \mathrm{GL}(V)$. We extend this to a representation of $G_{\mathbb{C}}$ and $\mathfrak{g}_{\mathbb{C}}$. Giving V a G_{c}-invariant inner product and choosing an orthonormal basis, G_{c} is realized as a group of unitary matrices. Therefore \mathfrak{g}_{c} is realized as a Lie algebra of skew-Hermitian matrices, and since $i \mathfrak{p} \subseteq \mathfrak{g}_{c}$, the vector space \mathfrak{p} consists of Hermitian matrices.

We note that $\theta(Z)=-Z, \theta(a)=a^{-1}$, and $\theta(k)=k$. Thus if we apply the automorphism θ to the identity $a \exp (Z) k=\exp (Z) k a$, we get $a^{-1} \exp (-Z) k=\exp (-Z) k a^{-1}$. Since this is true for all $a \in A$, both $\exp (-Z) k$ and $\exp (Z) k$ are in $C_{G}(A)$. It follows that $\exp (2 Z)=(\exp (Z) k)(\exp (-Z) k)^{-1}$ is in $C_{G}(A)$. Since $\exp (2 Z)$ commutes with A, by Lemma $32.1, Z$ commutes with the elements of A (in our matrix realization) and hence $\operatorname{ad}(Z) \mathfrak{a}=0$. Because \mathfrak{a} is a maximal Abelian subspace of \mathfrak{p}, it follows that $Z \in \mathfrak{a}$. Also, k centralizes A since $\exp (Z) k$ and $\exp (Z)$ both do, and so $\exp (Z) \in A$ and $k \in M$.

It is clear that $T_{M}=(T \cap K)^{\circ}$ is contained in $C_{G}(A)$ and K, so T_{M} is a torus in M. Let T_{M}^{\prime} be a maximal torus of M containing T_{M}. Then $A_{c} T_{M}^{\prime}$ is a connected Abelian subgroup of $C_{G}(A)$ containing $T=A_{c} T_{M}$, and since T is a maximal torus of G_{c} we have $A_{c} T_{M}^{\prime}=T$. Therefore $T_{M}^{\prime} \subset T$. It is also contained in K and connected. This proves that $T_{M}=T_{M}^{\prime}$ is a maximal torus of M.

We say that a quasicharacter of $A \cong\left(\mathbb{R}_{+}^{\times}\right)^{r}$ is a rational character if it can be extended to a complex analytic character of $A_{\mathbb{C}}=\exp \left(\mathfrak{a}_{\mathbb{C}}\right)$. We will denote by $X^{*}(A)$ the group of rational characters of A. We recall from Chapter 15 that $X^{*}\left(A_{c}\right)$ is the group of all characters of the compact torus A_{c}.

Proposition 32.4. Every rational character of A has the form

$$
\begin{equation*}
\left(t_{1}, \cdots, t_{r}\right) \longmapsto t_{1}^{k_{1}} \cdots t_{r}^{k_{r}}, \quad k_{i} \in \mathbb{Z} \tag{32.2}
\end{equation*}
$$

The groups $X^{*}(A)$ and $X^{*}\left(A_{c}\right)$ are isomorphic: extending a rational character of A to a complex analytic character of $A_{\mathbb{C}}$ and then restricting it to A_{c} gives every character of A_{c} exactly once.

Proof. Obviously (32.2) is a rational character. Extending any rational character of A to an analytic character of $A_{\mathbb{C}}$ and then restricting it to A_{c} gives a homomorphism $X^{*}(A) \longrightarrow X^{*}\left(A_{c}\right)$, and since the characters of $X^{*}\left(A_{c}\right)$ are classified by Proposition 15.4, we see that every rational character has the form (32.2) and that the homomorphism $X^{*}(A) \longrightarrow X^{*}\left(A_{c}\right)$ is an isomorphism.

Since the compact tori T and A_{c} satisfy $T \supset A_{c}$, we may restrict characters of T to A_{c}. Some characters may restrict trivially. In any case, if $\alpha \in X^{*}(T)$ restricts to $\beta \in X^{*}(A)=X^{*}\left(A_{c}\right)$, we write $\alpha \mid \beta$. Assuming that α and hence β are not the trivial character, as in Chapter 19 we will denote by \mathfrak{X}_{β} the β-eigenspace of T on $\mathfrak{g}_{\mathbb{C}}$. We will also denote by $\mathfrak{X}_{\alpha}^{\text {rel }}$ the α-eigenspace of A_{c} on $\mathfrak{g}_{\mathrm{C}}$. Since $X^{*}\left(A_{c}\right)=X^{*}(A)$, we may write

$$
\mathfrak{X}_{\alpha}^{\text {rel }}=\left\{X \in \mathfrak{g}_{\mathbb{C}} \mid \operatorname{Ad}(a) X=\alpha(a) X \text { for all } a \in A\right\}
$$

We will see by examples that $\mathfrak{X}_{\alpha}^{\text {rel }}$ may be more than one-dimensional. However, \mathfrak{X}_{β} is one-dimensional by Proposition 19.5, and we may obviously write

$$
\mathfrak{X}_{\alpha}^{\mathrm{rel}}=\bigoplus_{\substack{\beta \in X^{*}(T) \\ \beta \mid \alpha}} \mathfrak{X}_{\beta} .
$$

Let Φ be the set of $\beta \in X^{*}(T)$ such that $\mathfrak{X}_{\beta} \neq 0$, and let $\Phi_{\text {rel }}$ be the set of $\alpha \in X^{*}(A)$ such that $\mathfrak{X}_{\alpha}^{\mathrm{rel}} \neq 0$.

If $\beta \in X^{*}(T)$, let $d \beta: \mathfrak{t} \longrightarrow \mathbb{C}$ be the differential of β. Thus

$$
d \beta(H)=\left.\frac{d}{d t} \beta\left(e^{t H}\right)\right|_{t=0}, \quad H \in \mathfrak{t}
$$

As in Chapter 19, the linear form $d \beta$ is pure imaginary on the Lie algebra $\mathfrak{t}_{M} \oplus i \mathfrak{a}$ of the compact torus T. This means that $d \beta$ is real on \mathfrak{a} and purely imaginary on \mathfrak{t}_{M}.

If $\alpha \in \Phi_{\text {rel }}$, the α-eigenspace $\mathfrak{X}_{\alpha}^{\text {rel }}$ can be characterized by either the condition (for $X \in \mathfrak{X}_{\alpha}^{\text {rel }}$)

$$
\operatorname{Ad}(a) X=\alpha(a) X, \quad a \in A
$$

or

$$
\begin{equation*}
[H, X]=d \alpha(H) X, \quad H \in \mathfrak{a} \tag{32.3}
\end{equation*}
$$

Let $c: \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathfrak{g}_{\mathbb{C}}$ denote the conjugation with respect to \mathfrak{g}. Thus, if $Z \in \mathfrak{g}_{\mathbb{C}}$ is written as $X+i Y$, where $X, Y \in \mathfrak{g}$, then $c(Z)=X-i Y$ so $\mathfrak{g}=\left\{Z \in \mathfrak{g}_{\mathbb{C}} \mid c(Z)=Z\right\}$. Let \mathfrak{m} be the Lie algebra of M. Thus, the Lie algebra of $C_{G}(A)=M A$ is $\mathfrak{m} \oplus \mathfrak{a}$. It is the 0-eigenspace of A on \mathfrak{g}, so

$$
\begin{equation*}
\mathfrak{g}_{\mathbb{C}}=\mathbb{C}(\mathfrak{m} \oplus \mathfrak{a}) \oplus \bigoplus_{\alpha \in \Phi_{\mathrm{rel}}} \mathfrak{X}_{\alpha} \tag{32.4}
\end{equation*}
$$

is the decomposition into eigenspaces.
Proposition 32.5. (i) In the context of Proposition 32.2, if $\alpha \in \Phi_{\text {rel }}$, then $\mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$ spans $\mathfrak{X}_{\alpha}^{\text {rel }}$.
(ii) If $0 \neq X \in \mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$, then $\theta(X) \in \mathfrak{X}_{-\alpha}^{\text {rel }} \cap \mathfrak{g}$ and $[X, \theta(X)] \neq 0$.
(iii) The space $\mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$ is invariant under $\operatorname{Ad}(M A)$.
(iv) If $\alpha, \alpha^{\prime} \in \Phi_{\text {rel }}$, and if $X_{\alpha} \in \mathfrak{X}_{\alpha}^{\text {rel }}, X_{\alpha^{\prime}} \in \mathfrak{X}_{\alpha^{\prime}}^{\text {rel }}$, then

$$
\left[X_{\alpha}, X_{\alpha^{\prime}}\right] \in\left\{\begin{array}{cl}
\mathbb{C}(\mathfrak{m} \oplus \mathfrak{a}) & \text { if } \alpha^{\prime}=-\alpha \\
\mathfrak{X}_{\alpha+\alpha^{\prime}} & \text { if } \alpha+\alpha^{\prime} \in \Phi_{\mathrm{rel}}
\end{array}\right.
$$

while $\left[X_{\alpha}, X_{\alpha^{\prime}}\right]=0$ if $\alpha^{\prime} \neq-\alpha$ and $\alpha+\alpha^{\prime} \notin \Phi$.
This is in contrast with the situation in Chapter 19, where the spaces \mathfrak{X}_{α} did not intersect the Lie algebra of the compact Lie group.

Proof. We show that we may find a basis X_{1}, \cdots, X_{h} of the complex vector space $\mathfrak{X}_{\alpha}^{\text {rel }}$ such that $X_{i} \in \mathfrak{g}$. Suppose that X_{1}, \cdots, X_{h} are a maximal linearly independent subset of $\mathfrak{X}_{\alpha}^{r e l}$ such that $X_{i} \in \mathfrak{g}$. If they do not span $\mathfrak{X}_{\alpha}^{\text {rel }}$, let $0 \neq Z \in \mathfrak{X}_{\alpha}^{\text {rel }}$ be found that is not in their span. Then $c(Z) \in \mathfrak{X}_{\alpha}^{\text {rel }}$ since applying c to (32.3) gives the same condition, with Z replaced by $c(Z)$. Now

$$
\frac{1}{2}(Z+c(Z)), \quad \frac{1}{2 i}(Z-c(Z))
$$

are in \mathfrak{g}, and at least one of them is not in the span of X_{1}, \cdots, X_{i} since Z is not. We may add this to the linearly independent set X_{1}, \cdots, X_{h}, contradicting the assumed maximality. This proves (i).

For (ii), let us show that θ maps $\mathfrak{X}_{\alpha}^{\text {rel }}$ to $\mathfrak{X}_{-\alpha}^{\text {rel }}$. Indeed, if $X \in X_{\alpha}^{\text {rel }}$, then for $a \in A$ we have $\operatorname{Ad}(a) X=\alpha(a) X_{\alpha}$. Since $\theta(a)=a^{-1}$, replacing a by its inverse and applying θ, it follows that $\operatorname{Ad}(a) \theta(X)=\alpha\left(a^{-1}\right) \theta(X)$. Since the group law in $X^{*}(A)$ is written additively, $(-\alpha)(a)=\alpha\left(a^{-1}\right)$. Therefore $\theta(X) \in \mathfrak{X}_{-\alpha}$.

Since θ and c commute, if $X \in \mathfrak{g}$, then $\theta(X) \in \mathfrak{g}$.
The last point we need to check for (ii) is that if $0 \neq X \in \mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$, then $[X, \theta(X)] \neq 0$. Since $\operatorname{Ad}: G_{c} \longrightarrow \mathrm{GL}\left(\mathfrak{g}_{c}\right)$ is a real representation of a compact group, there exists a positive definite symmetric bilinear form B on \mathfrak{g}_{c} that is G_{c}-invariant. We extend B to a symmetric \mathbb{C}-bilinear form $B: \mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}} \longrightarrow \mathbb{C}$ by linearity. We note that $Z=X+\theta(X) \in \mathfrak{k}$ since $\theta(Z)=Z$ and $Z \in \mathfrak{g}$. In particular $Z \in \mathfrak{g}_{c}$. It cannot vanish since X and $\theta(X)$ lie in \mathfrak{X}_{α} and $\mathfrak{X}_{-\alpha}$, which have a trivial intersection. Therefore $B(Z, Z) \neq 0$. Choose $H \in \mathfrak{a}$ such that $d \alpha(H) \neq 0$. We have

$$
B(X+\theta(X),[H, X-\theta(X)])=B(Z, d \alpha(H) Z) \neq 0
$$

On the other hand, by (10.1) this equals

$$
-B([X+\theta(X), X-\theta(X)], H)=2 B([X, \theta(X)], H)
$$

Therefore $[X, \theta(X)] \neq 0$.
For (ii), we will prove that $\mathfrak{X}_{\alpha}^{\text {rel }}$ is invariant under $C_{G}(A)$, which contains M. Since \mathfrak{g} is obviously an Ad-invariant real subspace of $\mathfrak{g}_{\mathbb{C}}$ it will follow that $\mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$ is $\operatorname{Ad}(M)$-invariant. Since $C_{G}(A)$ is connected by Theorem 16.6 , it is sufficient to show that $\mathfrak{X}_{\alpha}^{\text {rel }}$ is invariant under $\operatorname{ad}(Z)$ when Z is in the Lie algebra centralizer of \mathfrak{a}. Thus, if $H \in \mathfrak{a}$ we have $[H, Z]=0$. Now if $X \in \mathfrak{X}_{\alpha}^{\text {rel }}$ we have

$$
[H,[Z, X]]=[[H, Z], X]+[Z,[H, X]]=[Z, d \alpha(H) X]=d \alpha(H)[Z, X]
$$

Therefore $\operatorname{Ad}(Z) X=[Z, X] \in \mathfrak{X}_{\alpha}^{\text {rel }}$.
Part (iv) is entirely similar to Proposition 19.3 (ii), and we leave it to the reader.

The roots in Φ can now be divided into two classes. First, there are those that restrict nontrivially to A and hence correspond to roots in $\Phi_{\text {rel }}$. On the other hand, some roots do restrict trivially, and we will show that these correspond to roots of the compact Lie group M. Let $\mathfrak{m}=\operatorname{Lie}(M)$.

Proposition 32.6. Suppose that $\beta \in \Phi$. If the restriction of β to A is trivial, then \mathfrak{X}_{β} is contained in the complexification of \mathfrak{m} and β is a root of the compact group M with respect to T_{M}.

Proof. We show that \mathfrak{X}_{β} is θ-stable. Let $X \in \mathfrak{X}_{\beta}$. Then

$$
\begin{equation*}
[H, X]=d \beta(H) X, \quad H \in \mathfrak{t} \tag{32.5}
\end{equation*}
$$

We must show that $\theta(X)$ has the same property. Applying θ to (32.5) gives

$$
[\theta(H), \theta(X)]=d \beta(H) \theta(X), \quad H \in \mathfrak{t} .
$$

If $H \in \mathfrak{t}_{M}$, then $\theta(H)=H$ and we have (32.5) with $\theta(X)$ replacing X. On the other hand, if $H \in i \mathfrak{a}$ we have $\theta(H)=-H$, but by assumption $d \beta(H)=0$, so we have (32.5) with $\theta(X)$ replacing X in this case, too. Since $\mathfrak{t}=\mathfrak{t}_{M} \oplus i \mathfrak{a}$, we have proved that \mathfrak{X}_{β} is θ-stable.

If $a \in A$ and $X \in \mathfrak{X}_{\beta}$, then $\operatorname{Ad}(a) X$ is trivial, so a commutes with the one-parameter subgroup $t \longmapsto \exp (t X)$, and therefore $\exp (t X)$ is contained in the centralizer of A in $G_{\mathbb{C}}$. This means that $\exp (t X)$ is contained in the complexification of the Lie algebra of $C_{G}(A)$, which by Proposition 32.3 is $\mathbb{C}(\mathfrak{m} \oplus \mathfrak{a})$. Since θ is +1 on \mathfrak{m} and -1 on \mathfrak{a}, and since we have proved that \mathfrak{X}_{β} is θ-stable, we have $X \in \mathbb{C m}$.

Now let $\mathcal{V}=\mathbb{R} \otimes X^{*}(T), \mathcal{V}_{M}=\mathbb{R} \otimes X^{*}\left(T_{M}\right)$, and $\mathcal{V}_{\text {rel }}=\mathbb{R} \otimes X^{*}(A)=$ $\mathbb{R} \otimes X^{*}\left(A_{c}\right)$. Since $T=T_{M} A_{c}$ by Proposition 32.2 , we have $\mathcal{V}=\mathcal{V}_{M} \oplus \mathcal{V}_{\text {rel }}$. In particular, we have a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{V}_{M} \longrightarrow \mathcal{V} \longrightarrow \mathcal{V}_{\text {rel }} \longrightarrow 0 \tag{32.6}
\end{equation*}
$$

Let Φ_{M} be the root system of M with respect to T_{M}. The content of Proposition 32.6 is that the roots of G_{c} with respect to T that restrict trivially to A are roots of M with respect to T_{M}.

We choose on \mathcal{V} an inner product that is invariant under the absolute Weyl group $N_{G_{c}}(T) / T$. This induces an inner product on $\mathcal{V}_{\text {rel }}$ and, if α is a root, there is a reflection $s_{\alpha}: \mathcal{V}_{\text {rel }} \longrightarrow \mathcal{V}_{\text {rel }}$ given by (19.1).

Proposition 32.7. In the context of Proposition 32.2, let $\alpha \in \Phi_{\text {rel }}$. Let $A_{\alpha} \subset$ A be the kernel of α, let $G_{\alpha} \subset G$ be its centralizer, and let $\mathfrak{g}_{\alpha} \subset \mathfrak{g}$ be the Lie algebra of G_{α}. There exist $X_{\alpha} \in \mathfrak{X}_{\alpha} \cap \mathfrak{g}$ such that if $X_{-\alpha}=-\theta\left(X_{\alpha}\right)$ and $H_{\alpha}=\left[X_{\alpha}, X_{-\alpha}\right]$, then $d \alpha\left(H_{\alpha}\right)=2$. We have

$$
\begin{equation*}
\left[H_{\alpha}, X_{\alpha}\right]=2 X_{\alpha}, \quad\left[H_{\alpha}, X_{-\alpha}\right]=-2 X_{-\alpha} . \tag{32.7}
\end{equation*}
$$

There exists a Lie group homomorphism $i_{\alpha}: \mathrm{SL}(2, \mathbb{R}) \longrightarrow G_{\alpha}$ such that the differential di $: \mathfrak{s l}(2, \mathbb{R}) \longrightarrow \mathfrak{g}_{\alpha}$ maps

$$
\left(\begin{array}{cc}
1 & \tag{32.8}\\
& -1
\end{array}\right) \longmapsto H_{\alpha}, \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \longmapsto X_{\alpha}, \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \longmapsto X_{-\alpha} .
$$

The Lie group homomorphism i_{α} extends to a complex analytic homomorphism $\mathrm{SL}(2, \mathbb{C}) \longrightarrow G_{\mathbb{C}}$.

Proof. Choose $0 \neq X_{\alpha} \in \mathfrak{X}_{\alpha}$. By Proposition 32.5 , we may choose $X_{\alpha} \in \mathfrak{g}$, and denoting $X_{-\alpha}=-\theta\left(X_{a}\right)$ we have $X_{-\alpha} \in \mathfrak{X}_{-\alpha} \cap \mathfrak{g}$ and $H_{\alpha}=\left[X_{\alpha}, X_{-\alpha}\right] \neq 0$. We claim that $H_{\alpha} \in \mathfrak{a}$. Observe that $H_{\alpha} \in \mathfrak{g}$ since X_{α} and $X_{-\alpha}$ are in \mathfrak{g}, and applying θ to H_{α} gives $\left[X_{-\alpha}, X_{\alpha}\right]=-H_{\alpha}$. Therefore $H_{\alpha} \in \mathfrak{p}$. Now if $H \in \mathfrak{a}$ we have

$$
\begin{aligned}
& {\left[H, H_{\alpha}\right]=\left[\left[H, X_{\alpha}\right], X_{-\alpha}\right]+\left[X_{\alpha},\left[H, X_{-\alpha}\right]\right]=} \\
& {\left[d \alpha(H) X_{\alpha}, X_{-\alpha}\right]+\left[X_{\alpha},-d \alpha(H) X_{-\alpha}\right]=0}
\end{aligned}
$$

Since \mathfrak{a} is a maximal Abelian subspace of \mathfrak{p}, this means that $H_{\alpha} \in \mathfrak{a}$.
Now $i H_{\alpha} \in i \mathfrak{p}, Z=X_{\alpha}-X_{-\alpha} \in \mathfrak{k}$, and $Y=i\left(X_{\alpha}+X_{-\alpha}\right) \in i \mathfrak{p}$ are all elements of $\mathfrak{g}_{c}=\mathfrak{k} \oplus i \mathfrak{p}$. We have

$$
\left[i H_{\alpha}, Z\right]=d \alpha\left(H_{\alpha}\right) Y, \quad\left[i H_{\alpha}, Y\right]=-d \alpha\left(H_{\alpha}\right) Z
$$

and

$$
[Y, Z]=2 i H_{\alpha}
$$

Now $d \alpha\left(H_{\alpha}\right) \neq 0$. Indeed, if $d \alpha\left(H_{\alpha}\right)=0$, then $\operatorname{ad}(Z)^{2} Y=0$ while $\operatorname{ad}(Z) Y \neq$ 0 , contradicting Lemma 19.1, since $Z \in \mathfrak{k}$. After replacing X_{α} by a positive multiple, we may assume that $d \alpha(H)=2$.

Now at least we have a Lie algebra homomorphism $\mathfrak{s l}(2, \mathbb{R}) \longrightarrow \mathfrak{g}$ with the effect (32.8), and we have to show that it is the differential of a Lie group homomorphism $\mathrm{SL}(2, \mathbb{R}) \longrightarrow G$. We begin by constructing the corresponding $\operatorname{map} \mathrm{SU}(2) \longrightarrow G_{c}$. Note that $i H_{\alpha}, Y$, and Z are all elements of \mathfrak{g}_{c}, and so we have a homomorphism $\mathfrak{s u}(2) \longrightarrow \mathfrak{k}$ that maps

$$
\left(\begin{array}{cc}
i & \\
& -i
\end{array}\right) \longmapsto i H_{\alpha}, \quad\binom{i}{i} \longmapsto Y, \quad\binom{1}{-1} \longmapsto Z
$$

By Theorem 14.2, there exists a homomorphism $\mathrm{SU}(2) \longrightarrow G_{c}$. Since $\mathrm{SL}(2, \mathbb{C})$ is the analytic complexification of $\mathrm{SU}(2)$, and $G_{\mathbb{C}}$ is the analytic complexification of G_{c}, this extends to a complex analytic homomorphism $\mathrm{SL}(2, \mathbb{C}) \longrightarrow$ $G_{\mathbb{C}}$. The restriction to $\mathrm{SL}(2, \mathbb{R})$ is the sought-after embedding.

Lastly, we note that X_{α} and $X_{-\alpha}$ centralize A_{α} since $\left[H, X_{ \pm \alpha}\right]=0$ for H in the kernel \mathfrak{a}_{α} of $d \alpha: \mathfrak{a} \longrightarrow \mathbb{R}$, which is the Lie algebra of A_{α}. Thus, the Lie algebra they generate is contained in \mathfrak{g}_{α}, and its exponential is contained in G_{α}.

Theorem 32.1. In the context of Proposition 32.7, the set $\Phi_{\text {rel }}$ of restricted roots is a root system. If $\alpha \in \Phi_{\text {rel }}$, there exists $w_{\alpha} \in K$ that normalizes A and that induces on $X^{*}(A)$ the reflection s_{α}.

Proof. Let

$$
w_{\alpha}=i_{\alpha}\binom{1}{-1}
$$

We note $w_{\alpha} \in K$. Indeed, it is the exponential of

$$
d i_{\alpha}\left(\frac{\pi}{2}\binom{1}{-1}\right)=\frac{\pi}{2}\left(X_{\alpha}-X_{-\alpha}\right) \in \mathfrak{k}
$$

since

$$
\exp \left(t\binom{1}{-1}\right)=\left(\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right) .
$$

Now w_{α} centralizes A_{α} by Proposition 32.7. Also

$$
\operatorname{ad}\left(\frac{\pi}{2}\binom{1}{-1}\right):\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right) \longmapsto-\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right)
$$

in $\operatorname{SL}(2, \mathbb{R})$, and applying i_{α} gives $\operatorname{Ad}\left(w_{\alpha}\right) H_{\alpha}=-H_{\alpha}$. Since \mathfrak{a} is spanned by the codimension 1 subspace \mathfrak{a}_{α} and the vector H_{α}, it follows that (in its action on $\mathcal{V}_{\text {rel }}$) w_{α} has order 2 and eigenvalue -1 with multiplicity 1 . It therefore induces the reflection s_{α} in its action on $\mathcal{V}_{\text {rel }}$.

Now the proof that $\Phi_{\text {rel }}$ is a root system follows the structure of the proof of Theorem 19.2. The existence of the simple reflection w_{α} in the Weyl group implies that s_{α} preserves the set Φ.

For the proof that if α and β are in Φ then $2\langle\alpha, \beta\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$, we adapt the proof of Proposition 19.8. If $\lambda \in X^{*}\left(A_{c}\right)$, we will denote (in this proof only) by \mathfrak{X}_{λ} the λ-eigenspace of A_{c} in the adjoint representation. We normally use this notation only if $\lambda \neq 0$ is a root. If $\lambda=0$, then \mathfrak{X}_{λ} is the complexified Lie algebra of $C_{G}(A)$; that is, $\mathbb{C}(\mathfrak{m} \oplus \mathfrak{a})$. Let

$$
W=\bigoplus_{k \in \mathbb{Z}} \mathfrak{X}_{\beta+k \alpha} \subseteq \mathfrak{X}_{\mathbb{C}}
$$

We claim that W is invariant under $i_{\alpha}(\mathrm{SL}(2, \mathbb{C}))$. To prove this, it is sufficient to show that it is invariant under $d i_{\alpha}(\mathfrak{s l}(2, \mathbb{C}))$, which is generated by X_{α} and $X_{-\alpha}$, since these are the images under i_{α} of a pair of generators of $\mathfrak{s l}(2, \mathbb{C})$ by (32.8). These are the images of $d i_{\alpha}$ and i_{α}, respectively. From (32.7), we see that $\operatorname{ad}\left(X_{\alpha}\right) \mathfrak{X}_{\gamma} \in \mathfrak{X}_{\gamma+2 \alpha}$ and $\operatorname{ad}\left(X_{-\alpha}\right) \mathfrak{X}_{\gamma} \in \mathfrak{X}_{\gamma-2 \alpha}$, proving that $i_{\alpha}(\operatorname{SL}(2, \mathbb{C}))$ is invariant. In particular, W is invariant under $w_{\alpha} \in \operatorname{SL}(2, \mathbb{C})$. Since $\operatorname{ad}\left(w_{\alpha}\right)$ induces s_{α} on $\mathcal{V}_{\text {rel }}$, it follows that the set $\{\beta+k \alpha \mid k \in \mathbb{Z}\}$ is invariant under s_{α} and, by (19.1), this implies that $2\langle\alpha, \beta\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$.

The group $W_{\text {rel }}=N_{G}(A) / C_{G}(A)$ is the relative Weyl group. In Theorem 32.1 we constructed simple reflections showing that $W_{\text {rel }}$ contains the abstract Weyl group associated with the root system $\Phi_{\text {rel }}$. An analog of Theorem 25.1 is true - $W_{\text {rel }}$ is generated by the reflections and hence coincides with the abstract Weyl group. We note that by Theorem 32.1 the generators of $W_{\text {rel }}$ can be taken in K, so we may write $W_{\text {rel }}=N_{K}(A) / C_{K}(A)$.

Although we have proved that $\Phi_{\text {rel }}$ is a root system, we have not proved that it is reduced. In fact, it may not be - we will give examples where the type of $\Phi_{\text {rel }}$ is $B C_{q}$ and is not reduced! In Chapter 21, except for Proposition 21.17, it was assumed that the root system was reduced. Proposition 21.17 contains all we need about nonreduced root systems.

The relationship between the three root systems Φ, Φ_{M}, and $\Phi_{\text {rel }}$ can be expressed in a "short exact sequence of root systems,"

$$
\begin{equation*}
0 \longrightarrow \Phi_{M} \longrightarrow \Phi \longrightarrow \Phi_{\text {rel }} \longrightarrow 0 \tag{32.9}
\end{equation*}
$$

embedded in the short exact sequence (32.6) of Euclidean spaces. Of course, this is intended symbolically rather than literally. What we mean by this "short exact sequence" is that, in accord with Proposition 32.6, each root of M can be extended to a unique root of G_{c}; that the roots in Φ that are not thus extended from M are precisely those that restrict to a nonzero root in $\Phi_{\text {rel }}$; and that every root in $\Phi_{\text {rel }}$ is a restricted root.

Proposition 32.8. If $\alpha \in \Phi_{\text {rel }}^{+}$is a simple positive root, then there exists a $\beta \in \Phi^{+}$such that β is a simple positive root and $\beta \mid \alpha$. Moreover, if $\beta \in \Phi^{+}$is a simple positive root whose restriction to A is nonzero, then its restriction is a simple root of $\Phi_{\text {rel }}^{+}$.

Proof. Find a root $\gamma \in \Phi$ whose restriction to A is α. Since we have chosen the root systems compatibly, γ is a positive root. We write it as a sum of positive roots: $\gamma=\sum \beta_{i}$. Each of these restricts either trivially or to a relative root in $\Phi_{\text {rel }}^{+}$, and we can write α as the sum of the nonzero restrictions of β_{i}, which are positive roots. Because α is simple, exactly one restricted β_{i} can be nonzero, and taking β to be this β_{i}, we have $\beta \mid \alpha$.

The last statement is clear.
We see that the restriction map induces a surjective mapping from the set of simple roots in Φ that have nonzero restrictions to the simple roots in $\Phi_{\text {rel }}$. The last question that needs to be answered is when two simple roots of Φ can have the same nonzero restriction to $\Phi_{\text {rel }}$.

Proposition 32.9. Let $\beta \in \Phi^{+}$. Then $-\theta(\beta) \in \Phi^{+}$. The roots β and $-\theta(\beta)$ have the same restriction to A. If β is a simple positive root, then so is $-\theta(\beta)$, and if α is a simple root of $\Phi_{\text {rel }}$ and β, β^{\prime} are simple roots of $\Phi_{\text {rel }}$ both restricting to α, then either $\beta^{\prime}=\beta$ or $\beta^{\prime}=-\theta(\beta)$.

Proof. The fact that β and $-\theta(\beta)$ have the same restriction follows from Proposition 32.5 (ii). It follows immediately that $-\theta(\beta)$ is a positive root in Φ. The map $\beta \longmapsto-\theta(\beta)$ permutes the positive roots, is additive, and therefore preserves the simple positive roots.

Suppose that α is a simple root of $\Phi_{\text {rel }}$ and β, β^{\prime} are simple roots of $\Phi_{\text {rel }}$ both restricting to α. Since $\beta-\beta^{\prime}$ has trivial restriction to A_{c}, it is θ-invariant. Rewrite $\beta-\beta^{\prime}=\theta\left(\beta-\beta^{\prime}\right)$ as $\beta+(-\theta(\beta))=\beta^{\prime}+\left(\theta\left(-\beta^{\prime}\right)\right)$. This expresses the sum of two simple positive roots as the sum of another two simple positive roots. Since the simple positive roots are linearly independent by Proposition 21.17, it follows that either $\beta^{\prime}=\beta$ or $\beta^{\prime}=-\theta(\beta)$.

The symmetry $\beta \longmapsto-\theta(\beta)$ of the Weyl group is reflected by a symmetry of the Dynkin diagram. It may be shown that if G_{c} is simply-connected, this symmetry corresponds to an outer automorphism of $G_{\mathbb{C}}$. Only the Dynkin diagrams of types A_{n}, D_{n}, and E_{6} admit nontrivial symmetries, so unless the absolute root system is one of these types, $\beta=-\theta(\beta)$.

The relationship between the three root systems in the "short exact sequence" (32.9) may be elucidated by the "Satake diagram," which we will now discuss. Tables of Satake diagrams may be found in Table VI on p. 532 of Helgason [56], p. 124 of Satake [108], or in Table 4 on p. 229 of Onishchik and Vinberg [121]. The diagrams in Tits [119] look a little different from the Satake diagram but contain the same information.

In addition to the Satake diagrams we will work out, a few different examples are explained in Goodman and Wallach [47].

Knapp [83] contains a different classification based on tori (Cartan subgroups) that (in contrast with our "maximally split" torus T), are maximally anisotropic, that is, are split as little as possible. Knapp also discusses the relationships between different tori by Cayley transforms. In this classification the Satake diagrams are replaced by "Vogan diagrams."

In the Satake diagram, one starts with the Dynkin diagram of Φ. We recall that the nodes of the Dynkin diagram correspond to simple roots of G_{c}. Those corresponding to roots that restrict trivially to A are colored dark. By Proposition 32.6, these correspond to the simple roots of the anisotropic kernel M, and indeed one may read the Dynkin diagram of M from the Satake diagram simply by taking the colored roots.

In addition to coloring some of the roots, the Satake diagram records the effect of the symmetry $\beta \longmapsto-\theta(\beta)$ of the Dynkin diagram. In the "exact sequence" (32.9), corresponding nodes are mapped to the same node in the Dynkin diagram of $\Phi_{\text {rel }}$. We will discuss this point later, but for examples of diagrams with nontrivial symmetries see Figures 32.3 (right) and 32.5.

As a first example of a Satake diagram, consider $\operatorname{SL}(3, \mathbb{H})$. The Satake diagram is $\bullet-0-$. The symmetry $\beta \longmapsto-\theta(\beta)$ is trivial. From this Satake diagram, we can read off the Dynkin diagram of $M \cong \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$ by erasing the uncolored dots to obtain the disconnected diagram $\bullet \bullet \bullet$ of type $A_{1} \times A_{1} \times A_{1}$.

On the other hand, in this example, the relative root system is of type A_{2}. We can visualize the "short exact sequence of root systems" as in Figure 32.1, where we have indicated the destination of each simple root in the inclusion $\Phi_{M} \longrightarrow \Phi$ and the destinations of those simple roots in Φ that restrict nontrivially in the relative root system.

As a second example, let $F=\mathbb{R}$, and let us consider the group $G=$ $\mathrm{SO}(n, 1)$. In this example, we will see that G has real rank 1 and that the relative root system of G is of type A_{1}. Groups of real rank 1 are in many ways the simplest groups. Their symmetric spaces are direct generalizations of the Poincare upper half-plane, and the symmetric space of $\mathrm{SO}(n, 1)$ is of-

Fig. 32.1. The "short exact sequence of root systems" for $\operatorname{SL}(3, \mathbb{H})$.
ten referred to as hyperbolic n-space. (It is n-dimensional.) We have seen in Example 31.7 that this symmetric space can be realized as a hyperboloid.

We will see, consistent with our description of $\operatorname{SL}(n, \mathbb{H})$ as a "fattened up" version of $\operatorname{SL}(n, \mathbb{R})$, that $\mathrm{SO}(n, 1)$ can be seen as a "fattened up" version of $\mathrm{SO}(2,1)$.

We originally defined $G=\mathrm{SO}(n, 1)$ to be the set of $g \in \mathrm{GL}(n+1, \mathbb{R})$ such that $g J^{t} g=J$, where $J=J_{1}$ and

$$
J_{1}=\left(\begin{array}{ll}
I_{n} & \\
& -1
\end{array}\right)
$$

However, we could just as easily take $J=J_{2}$ and

$$
J_{2}=\left(\begin{array}{ll}
& \\
I_{n-1}
\end{array}\right)
$$

since this symmetric matrix also has eigenvalues 1 with multiplicity n and -1 with multiplicity -1 . Thus, if

$$
u=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
I_{n-1} & \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

then $u \in O(n+1)$ and $u J_{1}{ }^{t} u=J_{2}$. It follows that if $g J_{1}{ }^{t} g=J_{1}$, then $h=$ $u g u^{-1}$ satisfies $h J_{2}{ }^{t} h=J_{2}$. The two orthogonal groups are thus equivalent, and we will take $J=J_{2}$ in the definition of $O(n, 1)$. Then we see that the Lie algebra of G is

$$
\left\{\left.\left(\begin{array}{ccc}
a & x & 0 \\
y & T & -{ }^{t} x \\
0 & -{ }^{t} y & -a
\end{array}\right) \right\rvert\, T=-{ }^{t} T\right\}
$$

Here a is a 1×1 block, x is $1 \times(n-1), y$ is $(n-1) \times 1$, and T is $(n-1) \times(n-1)$. The middle block is just the Lie algebra of $\mathrm{SO}(n-1)$, which is the anisotropic kernel. The relative Weyl group has order 2, and is generated by J_{2}. The Satake diagram is shown in Figure 32.2 for the two cases $n=9$ and $n=10$.

Fig. 32.2. Satake diagrams for the rank 1 groups $\mathrm{SO}(n, 1)$.

A number of rank 1 groups, such as $\mathrm{SO}(n, 1)$ can be found in Cartan's list. Notably, among the exceptional groups, we find Type FII. Most of these can be thought of as "fattened up" versions of $\operatorname{SL}(2, \mathbb{R})$ or $\operatorname{SO}(2,1)$, as in the two cases above. Some rank 1 groups have relative root system of type $B C_{1}$.

At the other extreme, let us consider the groups $\mathrm{SO}(n, n)$ and $\mathrm{SO}(n+$ $1, n-1)$. The group $\mathrm{SO}(n, n)$ is split. This means that the anisotropic kernel is trivial and that the absolute and relative root systems Φ and $\Phi_{\text {rel }}$ coincide. We can take $G=\left\{g \in \mathrm{GL}(2 n, \mathbb{R}) \mid g J^{t} g=J\right\}$, where

$$
J=\left(._{1} .{ }^{1}\right)
$$

We leave the details of this case to the reader. The Satake diagram is shown in Figure 32.3 when $n=6$.

$S O(6,6)$ (Type $D I$, split)

$S O(7,5)$ (Type $D I$, quasisplit)

Fig. 32.3. Split and quasisplit even orthogonal groups.

A more interesting case is $\mathrm{SO}(n+1, n-1)$. This group is quasisplit. This means that the anisotropic kernel M is Abelian. Since M contains no roots,
there are no colored roots in the Dynkin diagram of a quasisplit group. A split group is quasisplit, but not conversely, as this example shows. This group is not split since the relative root systems Φ and $\Phi_{\text {rel }}$ differ. We can take $G=\left\{g \in \mathrm{GL}(2 n, \mathbb{R}) \mid g J^{t} g=J\right\}$ where now

We can take A to be the group of matrices of the form

For $n=5$, the Lie algebra of $\mathrm{SO}(6,4)$ is shown in Figure 32.4. For $n=6$, the Satake diagram of $\operatorname{SO}(7,5)$ is shown in Figure 32.3.

The circling of the x_{45} and x_{46} positions in Figure 32.4 is slightly misleading because, as we will now explain, these do not correspond exactly to roots. Indeed, each of the circled coordinates x_{12}, x_{23}, and x_{34} corresponds to a one-dimensional subspace of \mathfrak{g} spanning a space $\mathfrak{X}_{\alpha_{i}}$, where $i=1,2,3$ are the first three simple roots in Φ. In contrast, the root spaces $\mathfrak{X}_{\alpha_{4}}$ and $\mathfrak{X}_{\alpha_{5}}$ are divided between the x_{45} and x_{46} positions. To see this, the torus T in $G_{c} \subset G_{\mathbb{C}}$ consists of matrices

Fig. 32.4. The Lie algebra of quasisplit $\mathrm{SO}(6,4)$.
with $t_{i} \in \mathbb{R}$. The simple roots are

$$
\alpha_{1}(t)=e^{i\left(t_{1}-t_{2}\right)}, \quad \alpha_{2}(t)=e^{i\left(t_{2}-t_{3}\right)}, \quad \alpha_{3}(t)=e^{i\left(t_{3}-t_{4}\right)}
$$

and

$$
\alpha_{4}(t)=e^{i\left(t_{4}-t_{5}\right)}, \quad \alpha_{5}(t)=e^{i\left(t_{4}+t_{5}\right)}
$$

The eigenspaces $\mathfrak{X}_{\alpha_{4}}$ and $\mathfrak{X}_{\alpha_{5}}$ are spanned by $X_{\alpha_{4}}$ and $X_{\alpha_{5}}$, where

$$
X_{\alpha_{4}}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and its conjugate is $X_{\alpha_{5}}$.
The involution θ is transpose-inverse. In its effect on the torus $T, \theta\left(t^{-1}\right)$ does not change t_{1}, t_{2}, t_{3}, or t_{4} but sends $t_{5} \longmapsto-t_{5}$. Therefore $-\theta$ interchanges the simple roots α_{4} and α_{5}, as indicated in the Satake diagram in Figures 32.3 and 32.4.

As a last example, we look next at the Lie group $\mathrm{SU}(p, q)$, where $p>q$. We will see that this has type $B C_{q}$. Recall from Chapter 20 that the root system of type $B C_{q}$ can be realized as all elements of the form

$$
\pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j}(i<j), \quad \pm \boldsymbol{e}_{i}, \quad \pm 2 \boldsymbol{e}_{i}
$$

where \boldsymbol{e}_{i} are standard basis vectors of \mathbb{R}^{n}. See Figure 20.5 for the case $q=2$. We defined $U(p, q)$ to be

$$
\left\{g \in \mathrm{GL}(p+q, \mathbb{C}) \mid g J^{t} \bar{g}=J\right\}
$$

where $J=J_{1}$, but (as with the group $O(n, 1)$ discussed above) we could just as well take $J=J_{2}$, where now

$$
J_{1}=\left(\begin{array}{ll}
I_{p} & \\
& -I_{q}
\end{array}\right), \quad J_{2}=\binom{I_{q}}{I_{p-q}}
$$

This has the advantage of making the group A diagonal. We can take A to be the group of matrices of the form

Now the Lie algebra of $\operatorname{SU}(p, q)$ consists of

$$
\left\{\left.\left(\begin{array}{ccc}
a & x & b \\
y & u & -t \bar{x} \\
c & -{ }^{t} \bar{y} & -^{t} \bar{a}
\end{array}\right) \right\rvert\, b, c, u \text { skew-Hermitian }\right\}
$$

Considering the action of the adjoint representation, the roots $t_{i} t_{j}^{-1}$ appear in a, the roots $t_{i} t_{j}$ and t_{i}^{2} appear in b, the roots $t_{i}^{-1} t_{j}^{-1}$ and t_{i}^{-2} appear in c, the roots t_{i} appear in x, and the roots t_{i}^{-1} appear in y. Identifying $\mathbb{R} \otimes X^{*}(A)=\mathbb{R}^{n}$ in such a way that the rational character t_{i} corresponds to the standard basis vector \boldsymbol{e}_{i}, we see that $\Phi_{\text {rel }}$ is a root system of type $B C_{q}$. The Satake diagram is illustrated in Figure 32.5.

We turn now to the Iwasawa decomposition for G admitting a Cartan decomposition as in Hypothesis 31.1. The construction is rather similar to what we have already done in Chapter 29.

Fig. 32.5. The Satake diagram of $S U(p, q)$.

Proposition 32.10. Let $G, G_{c}, K, \mathfrak{g}$, and θ satisfy Hypothesis 31.1. Let M and A be as in Propositions 32.2 and 32.3. Let Φ and $\Phi_{\text {rel }}$ be the absolute and relative root systems, and let Φ^{+}and $\Phi_{\text {rel }}^{+}$be the positive roots with respect to compatible orders. Let

$$
\mathfrak{n}=\bigoplus_{\alpha \in \Phi_{\mathrm{rel}}^{+}}\left(\mathfrak{X}_{\alpha} \cap \mathfrak{g}\right)
$$

Then \mathfrak{n} is a nilpotent Lie algebra. It is the Lie algebra of a closed subgroup N of G. The group N is normalized by M and by A. We may embed the complexification $G_{\mathbb{C}}$ of G into $\mathrm{GL}(n, \mathbb{C})$ for some n in such a way that $G \subseteq$ $\mathrm{GL}(n, \mathbb{R}), G_{c} \subseteq U(n), K \subseteq O(n), N$ is upper triangular, and $\theta(g)={ }^{t} g^{-1}$.
Proof. As part of the definition of semisimplicity, it is assumed that the semisimple group G has a faithful complex representation. Since we may embed $\mathrm{GL}(n, \mathbb{C})$ in $\mathrm{GL}(2 n, \mathbb{R})$, it has a faithful real representation. We may assume that $G \subseteq \mathrm{GL}(V)$, where V is a real vector space. We may then assume that the complexification $G_{\mathbb{C}} \subseteq \mathrm{GL}\left(V_{\mathbb{C}}\right)$, where $V_{\mathbb{C}}=\mathbb{C} \otimes V$ is the complexified vector space.

The proof that \mathfrak{n} is nilpotent is identical to Proposition 29.4 but uses Proposition 32.5 (iv) instead of Proposition 19.3 (ii). By Lie's Theorem 29.1, we can find an \mathbb{R}-basis v_{1}, \cdots, v_{n} of V such that each $X \in \mathfrak{n}$ is upper triangular with respect to this basis. It is nilpotent as a matrix by Proposition 29.5.

Choose a G_{c}-invariant inner product on $V_{\mathbb{C}}$ (that is, a positive definite Hermitian form $\langle\rangle$,$) . It induces an inner product on V$; that is, its restriction to V is a positive definite \mathbb{R}-bilinear form. Now applying Gram-Schmidt orthogonalization to the basis v_{1}, \cdots, v_{n}, we may assume that they are orthonormal.

This does not alter the fact that \mathfrak{n} consists of upper triangular matrices. It follows by imitating the argument of Theorem 29.2 that $N=\exp (\mathfrak{n})$ is a Lie group with Lie algebra n. The group M normalizes N because its Lie algebra normalizes the Lie algebra of N by Proposition 19.3 (iii), so the Lie algebra of N is invariant under $\operatorname{Ad}(M A)$.

We have $G \subseteq \mathrm{GL}(n, \mathbb{R})$ since G stabilizes V. It is also clear that $G_{c} \subseteq U(n)$ since v_{i} are an orthonormal basis and the inner product \langle,$\rangle was chosen to$ be G_{c}-invariant. Since $K \subseteq G \cap G_{c}$, we have $K \subseteq O(n)$.

It remains to be shown that $\theta(g)={ }^{t} g^{-1}$ for $g \in G$. Since G is assumed to be connected in Hypothesis 31.1, it is sufficient to show that $\theta(X)=-{ }^{t} X$ for $X \in \mathfrak{g}$, and we may treat the cases $X \in \mathfrak{k}$ and $X \in \mathfrak{p}$ separately. If $X \in \mathfrak{k}$, then X is skew-symmetric since $K \subseteq O(n)$. Thus $\theta(X)=X=-{ }^{t} X$. On the other hand, if $X \in \mathfrak{p}$, then $i X \in \mathfrak{g}_{c}$, and $i X$ is skew-Hermitian because $G_{c} \subseteq U(n)$. Thus X is symmetric, and $\theta(X)=-X=-{ }^{t} X$.

Since M normalizes N, we have a Lie subgroup $B=M A N$ of G. We may call it the (standard) \mathbb{R}-Borel subgroup of G. (If G is split or quasisplit, one may omit the " \mathbb{R}-" from this designation.) Let $B_{0}=A N$.

Theorem 32.2. (Iwasawa decomposition) With notations as above, every element of $g \in G$ can be factored uniquely as $b k$, where $b \in B_{0}$ and $k \in K$, or as avk where $a \in A, \nu \in N$, and $k \in K$. The multiplication map $A \times N \times K \longrightarrow$ G is a diffeomorphism.

Proof. This is nearly identical to Theorem 29.3, and we mostly leave the proof to the reader. We consider only the key point that $\mathfrak{g}=\mathfrak{a}+\mathfrak{n}+\mathfrak{k}$. It is sufficient to show that $\mathfrak{g}_{\mathbb{C}}=\mathbb{C} \mathfrak{a}+\mathbb{C} \mathfrak{n}+\mathbb{C} \mathfrak{k}$. We have $\mathfrak{t}_{\mathbb{C}} \subseteq \mathbb{C} \mathfrak{a}+\mathbb{C} \mathfrak{m} \subseteq \mathbb{C} \mathfrak{a}+\mathbb{C} \mathfrak{k}$, so it is sufficient to show that $\mathbb{C} \mathfrak{n}+\mathbb{C} \mathfrak{k}$ contains \mathfrak{X}_{β} for each $\beta \in \Phi$. If β restricts trivially to A, then $\mathfrak{X}_{\beta} \subseteq \mathbb{C} \mathfrak{m}$ by Proposition 32.6 , so we may assume that β restricts nontrivially. Let α be the restriction of β. If $\beta \in \Phi^{+}$, then $\mathfrak{X}_{\beta} \subseteq$ $\mathfrak{X}_{\alpha} \subset \mathbb{C} \mathfrak{n}$. On the other hand, if $\beta \in \Phi^{-}$and $X \in \mathfrak{X}_{\beta}$, then $X+\theta(X) \in \mathbb{C} \mathfrak{E}$ and $\theta(X) \in \mathfrak{X}_{-\beta} \subseteq \mathfrak{X}_{-\alpha} \subset \mathbb{C} \mathfrak{n}$. In either case, $\mathfrak{X}_{\beta} \subset \mathbb{C} \mathfrak{k}+\mathbb{C} \mathfrak{n}$.

Our next goal is to show that the maximal Abelian subspace \mathfrak{a} is unique up to conjugacy. First, we need an analog of Proposition 22.3 (ii). Let us say that $H \in \mathfrak{p}$ is regular if it is contained in a unique maximal Abelian subspace of \mathfrak{p} and singular if it is not regular.

Proposition 32.11. (i) If H is regular and $Z \in \mathfrak{p}$ satisfies $[H, Z]=0$, then $Z \in \mathfrak{a}$.
(ii) An element $H \in \mathfrak{a}$ is singular if and only if $d \alpha(H)=0$ for some $\alpha \in \Phi_{\text {rel }}$.

Proof. The element H is singular if and only if there is some $Z \in \mathfrak{p}-\mathfrak{a}$ such that $[Z, H]=0$, for if this is the case, then H is contained in at least two distinct maximal Abelian subspaces, namely \mathfrak{a} and any maximal Abelian subspace containing the Abelian subspace $\mathbb{R} Z+\mathbb{R} H$. Conversely, if no such
Z exists, then any maximal Abelian subgroup containing H must obviously coincide with \mathfrak{a}.

Now (i) is clear.
We also use this criterion to prove (ii). Consider the decomposition of $Z \in \mathfrak{p}$ in the eigenspace decomposition (32.4):

$$
Z=Z_{0}+\sum_{\alpha \in \Phi_{\mathrm{rel}}} Z_{\alpha}, \quad Z_{0} \in \mathbb{C}(\mathfrak{m} \oplus \mathfrak{a}), Z_{\alpha} \in \mathfrak{X}_{\alpha}^{\mathrm{rel}}
$$

We have

$$
0=[H, Z]=\left[H, Z_{0}\right]+\sum_{\alpha \in \Phi_{\mathrm{rel}}}\left[H, Z_{\alpha}\right]=\sum_{\alpha \in \Phi_{\mathrm{rel}}} d \alpha(H) Z_{\alpha}
$$

Thus, for all $\alpha \in \Phi_{\text {rel }}$, we have either $d \alpha(H)=0$ or $Z_{\alpha}=0$. So if $d \alpha(H) \neq 0$ for all H then all $Z_{\alpha}=0$ and $Z=Z_{0} \in \mathbb{C}(\mathfrak{m} \oplus \mathfrak{a})$. Since $Z \in \mathfrak{p}$, this implies that $Z \in \mathfrak{a}$, and so H is regular. On the other hand, if $d \alpha=0$ for some α, then we can take $Z=Z_{\alpha}-\theta\left(Z_{\alpha}\right)$ for nonzero $Z_{\alpha} \in \mathfrak{X}_{\alpha}^{\text {rel }} \cap \mathfrak{g}$ and $[Z, H]=0$, $Z \in \mathfrak{p}-\mathfrak{a}$.

Theorem 32.3. Let \mathfrak{a}_{1} and \mathfrak{a}_{2} be two maximal Abelian subspaces of \mathfrak{p}. Then there exists a $k \in \mathfrak{k}$ such that $\operatorname{Ad}(k) \mathfrak{a}_{1}=\mathfrak{a}_{2}$.

Thus, the relative root system does not dependent in any essential way on the choice of \mathfrak{a}. The argument is similar to the proof of Theorem 16.4.

Proof. By Proposition 32.11 (ii), \mathfrak{a}_{1} and \mathfrak{a}_{2} contain regular elements H_{1} and H_{2}. We will show that $\left[\operatorname{Ad}(k) H_{1}, H_{2}\right]=0$ for some $k \in \mathfrak{k}$. Choose an Ad-invariant inner product \langle,$\rangle on \mathfrak{g}$, and choose $k \in K$ to maximize $\left\langle\operatorname{Ad}(k) H_{1}, H_{2}\right\rangle$. If $Z \in \mathfrak{k}$, then since $\left\langle\operatorname{Ad}\left(e^{t Z}\right) H_{1}, H_{2}\right\rangle$ is maximal when $t=0$, we have

$$
0=\frac{d}{d t}\left\langle\operatorname{Ad}\left(e^{t Z}\right) \operatorname{Ad}(k) H_{1}, H_{2}\right\rangle=-\left\langle\left[\operatorname{Ad}(k) H_{1}, Z\right], H_{2}\right\rangle
$$

By Proposition 10.2, this equals $\left\langle Z,\left[\operatorname{Ad}(k) H_{1}, H_{2}\right]\right\rangle$. Since both $\operatorname{Ad}(k) H_{1}$ and H_{2} are in \mathfrak{p}, their bracket is in \mathfrak{k}, and the vanishing of this inner product for all $Z \in \mathfrak{k}$ implies that $\left[\operatorname{Ad}(k) H_{1}, H_{2}\right]=0$.

Now take $Z=\operatorname{Ad}(k) H_{1}$ in Proposition 32.11 (i). We see that $\operatorname{Ad}(k) H_{1} \in$ \mathfrak{a}_{2}, and since both $\operatorname{Ad}(k) H_{1}$ and H_{2} are regular, it follows that $\operatorname{Ad}(k) \mathfrak{a}_{1}=\mathfrak{a}_{2}$.

Theorem 32.4. With notations as above, $G=K A K$.
Proof. Let $g \in G$. Let $p=g \theta(g)^{-1}=g^{t} g$. We will show that $p \in \exp (\mathfrak{p})$. By Proposition 32.1, we can write $p=\exp (Z) k_{0}$, where $Z \in \mathfrak{p}$ and $k_{0} \in K$, and we want to show that $k_{0}=1$. By Proposition 32.10 , we may embed $G_{\mathbb{C}}$ into $\mathrm{GL}(n, \mathbb{C})$ in such a way that $G \subseteq \operatorname{GL}(n, \mathbb{R}), G_{c} \subseteq U(n), K \subseteq O(n)$,
and $\theta(g)={ }^{t} g^{-1}$. In the matrix realization, p is a positive definite symmetric matrix. By the uniqueness assertion in Theorem 13.4, it follows that $k_{0}=1$ and $p=\exp (Z)$.

Now, by Theorem 32.3, we can find $k \in K$ such that $\operatorname{Ad}(k) Z=H \in \mathfrak{a}$. It follows that $k p k^{-1}=a^{2}$, where $a=\exp (\operatorname{Ad}(k) H / 2) \in A$. Now

$$
\left(a^{-1} k g\right) \theta\left(a^{-1} k g\right)^{-1}=a^{-1} k g \theta(g)^{-1} k^{-1} a=a^{-1} k p k^{-1} a^{-1}=1
$$

Therefore $a^{-1} k g \in K$, and it follows that $g \in K a K$.
Finally, there is the Bruhat decomposition. Let B be the \mathbb{R}-Borel subgroup of G. If $w \in W$, let $\omega \in N_{G}(A)$ represent W. Clearly, the double coset $B \omega B$ does not depend on the choice of representative ω, and we denote it $B w B$.

Theorem 32.5. (Bruhat decomposition) We have

$$
G=\bigcup_{w \in W_{\mathrm{rel}}} B w B
$$

Proof. Omitted. See Helgason [56], p. 403.

EXERCISES

Exercise 32.1. Show that $\mathbb{C} \otimes \operatorname{Mat}_{n}(\mathbb{H}) \cong \operatorname{Mat}_{2 n}(\mathbb{C})$ as \mathbb{C}-algebras and that the composition

$$
\operatorname{Mat}_{n}(\mathbb{H}) \longrightarrow \mathbb{C} \otimes \operatorname{Mat}_{n}(\mathbb{H}) \cong \operatorname{Mat}_{2 n}(\mathbb{C}) \xrightarrow{\text { det }} \mathbb{C}
$$

takes values in \mathbb{R}.
Exercise 32.2. Compute the Satake diagrams for $\operatorname{SO}(p, q)$ with $p \geqslant q$ for all p and q.

Exercise 32.3. Prove an analog of Theorem 25.1 showing that $W_{\text {rel }}$ is generated by the reflections constructed in Theorem 32.1.

Embeddings of Lie Groups

In this chapter, we will contemplate how Lie groups embed in one another. Our aim is not to be systematic or even completely precise but to give the reader some tools for thinking about the relationships between different Lie groups. This Chapter is thus different in style and purpose than the others in this book.

If G is a Lie group and H a subgroup, then there exists a chain of Lie subgroups of G,

$$
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}=H
$$

such that each G_{i} is maximal in G_{i-1}. Dynkin [38], [36], [37] classified the maximal subgroups of semisimple complex analytic groups. Thus, the lattice of semisimple complex analytic subgroups of such a group is known.

Let K_{1} and K_{2} be compact connected Lie groups, and let G_{1} and G_{2} be their complexifications. Given an embedding $K_{1} \longrightarrow K_{2}$, there is a unique analytic embedding $G_{1} \longrightarrow G_{2}$. The converse is also true: given an analytic embedding $G_{1} \longrightarrow G_{2}$, then K_{1} embeds as a compact subgroup of G_{2}. However any compact subgroup of G_{2} is conjugate to a subgroup of K_{2} (Theorem 31.2), so K_{1} is conjugate to a subgroup of K_{2}. Thus, embeddings of compact connected Lie groups and analytic embeddings of their complexifications are essentially the same thing. To be definite, let us specify that in this chapter we are talking about analytic embeddings of complex analytic groups, with the understanding that the ideas will be applicable in other contexts. By a "torus," we therefore mean a group analytically isomorphic to $(\mathbb{C})^{n}$ for some n. We will allow ourselves to be a bit sloppy in this chapter, and we will sometimes write $O(n)$ when we should really write $O(n, \mathbb{C})$.

So let us start with embeddings of complex analytic Lie groups. A useful class of complex analytic groups that is slightly larger than the semisimple ones is the class of reductive complex analytic groups. A complex analytic group G (connected, let us assume) is called reductive if its linear analytic representations are completely reducible. For example, $\mathrm{GL}(n, \mathbb{C})$ is reductive, though it is not semisimple.

Examples of groups that are not reductive are parabolic subgroups. Let G be the complexification of the compact connected Lie group K, and let B be the Borel subgroup described in Theorem 29.2. A subgroup of G containing B is called a standard parabolic subgroup. (Any conjugate of a standard parabolic subgroup is called parabolic.)

As an example of a group that is not reductive, let $P \subset \mathrm{GL}(n, \mathbb{C})$ be the maximal parabolic subgroup consisting of matrices

$$
\left(\begin{array}{rr}
g_{1} & * \\
& g_{2}
\end{array}\right), \quad g_{1} \in \mathrm{GL}(r, \mathbb{C}), g_{2} \in \mathrm{GL}(s, \mathbb{C}), \quad r+s=n
$$

In the standard representation corresponding to the inclusion $P \longrightarrow \mathrm{GL}(n, \mathbb{C})$, the set of matrices whose last s entries are zero is a P-invariant subspace of \mathbb{C}^{n} that has no invariant complement. Therefore, this representation is not completely reducible, and so P is not reductive.

If G is the complexification of a connected compact group, then analytic representations of G are completely reducible by Theorem 27.1. It turns out that the converse is true - a reductive group is the complexification of a compact Lie group. We will not prove this, but it is useful to bear in mind that whatever we prove for complexifications of connected compact groups is applicable to the class of reductive complex analytic Lie groups.

Even if we restrict ourselves to finding reductive subgroups of reductive Lie groups, the problem is very difficult. After all, any faithful representation gives an embedding of a Lie group in another. There is an important class of embeddings for which it is possible to give a systematic discussion. Following Dynkin, we call an embedding of Lie groups or Lie algebras regular if it takes a maximal torus into a maximal torus and roots into roots. Our first aim is to show how regular embeddings can be recognized using extended Dynkin diagrams.

We will use orthogonal groups to illustrate some points. It is convenient to take the orthogonal group in the form

$$
O_{J}(n, F)=\left\{g \in \mathrm{GL}(n, F) \mid g J^{t} g=J\right\}, \quad J=\left(._{1} \cdot{ }^{1}\right)
$$

We will take the realization $O_{J}(n, \mathbb{C}) \cap U(n) \cong O(n)$ of the usual orthogonal group in Exercise 5.3 with the maximal torus T consisting of diagonal elements of $O_{J}(n, \mathbb{C}) \cap U(n)$. Then, as in Exercise 27.1, $O_{J}(n, \mathbb{C})$ is the analytic complexification of the usual orthogonal group $O(n)$. We can take the ordering of the roots so that the root eigenspaces \mathfrak{X}_{α} with $\alpha \in \Phi^{+}$are upper triangular.

We recall that the root system of type D_{n} is the root system for $\mathrm{SO}(2 n)$. Normally, one only considers D_{n} when $n \geqslant 4$. The reason for this is that the Lie groups $\mathrm{SO}(4)$ and $\mathrm{SO}(6)$ have root systems of types $A_{1} \times A_{1}$ and A_{3}, respectively. To see this, consider the Lie algebra of type $\mathrm{SO}(8)$. This consists of the set of all matrices of the form in Figure 33.1.

Fig. 33.1. The Lie algebra of $\mathrm{SO}(8)$.

The Lie algebra \mathfrak{t} of T consists of the subalgebra of diagonal matrices, where all $x_{i j}=0$ and the t_{i} are purely imaginary. The 24 roots α are such that each \mathfrak{X}_{α} is characterized by the nonvanishing of exactly one $x_{i j}$. We have circled the \mathfrak{X}_{α} corresponding to the four simple roots and drawn lines to indicate the graph of the Dynkin diagram. (Note that each $x_{i j}$ occurs in two places. We have only circled the $x_{i j}$ in the upper half of the diagram.)

The middle 6×6 block, shaded in Figure 33.1, is the Lie algebra of $\mathrm{SO}(6)$, and the very middle 4×4 block, shaded dark, is the Lie algebra of SO(4). Looking at the simple roots, we can see the inclusions of Dynkin diagrams in Figure 33.2. The shadings of the nodes correspond to the shadings in Figure 33.1.

The coincidences of root systems $D_{2}=A_{1} \times A_{1}$ and $D_{3}=A_{3}$ are worth explaining from another point of view. We may realize the group $\mathrm{SO}(4)$ concretely as follows. Let $V=\operatorname{Mat}_{2}(\mathbb{C})$. The determinant is a nondegenerate quadratic form on V. Since all nondegenerate quadratic forms are equivalent, the group of linear transformations of V preserving the determinant may thus be identified with $\mathrm{SO}(4)$. We consider the group

$$
G=\left\{\left(g_{1}, g_{2}\right) \in \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(2, \mathbb{C}) \mid \operatorname{det}\left(g_{1}\right)=\operatorname{det}\left(g_{2}\right)\right\} .
$$

This group acts on V by

$$
\left(g_{1}, g_{2}\right): X \longmapsto g_{1} X g_{2}^{-1} .
$$

Fig. 33.2. The inclusions $\mathrm{SO}(4) \rightarrow \mathrm{SO}(6) \rightarrow \mathrm{SO}(8)$.

This action preserves the determinant, so we have a homomorphism $G \longrightarrow$ $O(4)$. There is a kernel Z^{Δ} consisting of the scalar matrices in GL($2, \mathbb{C}$) embedded diagonally. We therefore have an injective homomorphism $G / Z^{\Delta} \longrightarrow$ $O(4)$. Both groups have dimension 6 , so this homomorphism is a surjection onto the connected component $\mathrm{SO}(4)$ of the identity.

Using the fact that \mathbb{C} is algebraically closed, the subgroup $\operatorname{SL}(2, \mathbb{C}) \times$ $\mathrm{SL}(2, \mathbb{C})$ of G maps surjectively onto $\mathrm{SO}(4)$. The kernel of the map

$$
\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C}) \longrightarrow \mathrm{SO}(4)
$$

has order 2 , and we may identify the simply-connected group $\operatorname{SL}(2, \mathbb{C}) \times$ $\operatorname{SL}(2, \mathbb{C})$ as the double cover $\operatorname{spin}(4, \mathbb{C})$. Since $\operatorname{SO}(4)$ is a quotient of $\operatorname{SL}(2, \mathbb{C}) \times$ $\mathrm{SL}(2, \mathbb{C})$, we see why its root system is of type $A_{1} \times A_{1}$.

Remark 33.1. Although we could have worked with $\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C})$ at the outset, over a field F that was not algebraically closed, it is better to use the realization $G / Z^{\Delta} \cong \mathrm{SO}(4)$. The reason is we might want to do the same thing over a field F that is not algebraically closed. In this case, the image of the homomorphism $\mathrm{SL}(2, F) \times \mathrm{SL}(2, F) \longrightarrow \mathrm{SO}(4, F)$ might not be all of $\mathrm{SO}(4)$. Identifying $\mathrm{SL}(2) \times \mathrm{SL}(2)$ with the algebraic group $\operatorname{spin}(4)$, this is a special instance of the fact that the covering map $\operatorname{spin}(n) \rightarrow \mathrm{SO}(n)$ is not generally surjective on rational points over a field that is not algebraically closed. A surjective map may always be obtained by working with the group of $\operatorname{similitudes} \operatorname{Gspin}(n)$, which when $n=4$ is the group G. This is analogous to the fact that the homomorphism $\mathrm{SL}(2, F) \longrightarrow \mathrm{PGL}(2, F)$ is not surjective if F is algebraically closed, which is why the adjoint group $\mathrm{PGL}(2, F)$ of $\operatorname{SL}(2)$ is constructed as $\mathrm{GL}(2, F)$ modulo the center, not $\mathrm{SL}(2)$ modulo the center.

We turn next to $\mathrm{SO}(6)$. Let W be a four-dimensional complex vector space. There is a homomorphism $\mathrm{GL}(W) \longrightarrow \mathrm{GL}\left(\wedge^{2} W\right) \cong \mathrm{GL}(6, \mathbb{C})$, namely the exterior square map, and there is a homomorphism

$$
\mathrm{GL}\left(\wedge^{2} W\right) \xrightarrow{\wedge^{2}} \mathrm{GL}\left(\wedge^{4} W\right) \cong \mathbb{C}^{\times}
$$

The latter map is symmetric since in the exterior algebra

$$
\left(v_{1} \wedge \cdots \wedge v_{r}\right) \wedge\left(w_{1} \wedge \cdots \wedge w_{s}\right)=(-1)^{r s}\left(w_{1} \wedge \cdots \wedge w_{s}\right) \wedge\left(v_{1} \wedge \cdots \wedge v_{r}\right)
$$

(Each v_{i} has to move past each w_{j} producing $r s$ sign changes.) Hence we may regard \wedge^{2} as a quadratic form on $\mathrm{GL}\left(\wedge^{2} W\right)$. The subspace preserving the determinant is therefore isomorphic to $\mathrm{SO}(6)$. The composite

$$
\mathrm{GL}(W) \xrightarrow{\wedge^{2}} \mathrm{GL}\left(\wedge^{2} W\right) \xrightarrow{\wedge^{2}} \mathrm{GL}\left(\wedge^{4} W\right) \cong \mathbb{C}^{\times}
$$

is the determinant, so the image of $\mathrm{SL}(W)=\mathrm{SL}(4, \mathbb{C})$ in $\mathrm{GL}\left(\wedge^{2} W\right)$ is therefore contained in $\mathrm{SO}(6)$. Both $\mathrm{SL}(4, \mathbb{C})$ and $\mathrm{SO}(6)$ are 15 -dimensional and connected, so we have constructed a homomorphism onto $\mathrm{SO}(6)$. The kernel consists of $\{ \pm 1\}$, so we see that $\mathrm{SO}(6) \cong \mathrm{SL}(4, \mathbb{C}) /\{ \pm I\}$. Since $\mathrm{SO}(6)$ is a quotient of $\operatorname{SL}(4, \mathbb{C})$, we see why its root system is of type A_{3}.

The maps discussed so far, involving $\mathrm{SO}(2 n)$ with $n=2,3$, and 4 , are regular. Sometimes (as in these examples) regular embeddings can be recognized by inclusions of ordinary Dynkin diagrams, but a fuller picture will emerge if we introduce the extended Dynkin diagram.

Let K be a compact connected Lie group with maximal torus T. Let G be its complexification. Let Φ, Φ^{+}, Σ, and other notations be as in Chapter 19.

Proposition 33.1. Suppose in this setting that S is any set of roots such that if $\alpha, \beta \in S$ and if $\alpha+\beta \subset \Phi$, then $\alpha+\beta \in S$. Then

$$
\mathfrak{h}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in S} \mathfrak{X}_{\alpha}
$$

is a Lie subalgebra of $\operatorname{Lie}(G)$.
Proof. It is immediate from Proposition 19.3 (ii) and Proposition 19.2 (ii) that this vector space is closed under the bracket.

We will not worry too much about verifying that \mathfrak{h} is the Lie algebra of a closed Lie subgroup of G except to remark that we have some tools for this, such as Theorem 14.3.

We have already introduced the Dynkin diagram in Chapter 28. We recall that the Dynkin diagram is obtained as a graph whose vertices are in bijection with Σ. Let us label $\Sigma=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$, and let $s_{i}=s_{\alpha_{i}}$. Let $\theta\left(\alpha_{i}, \alpha_{j}\right)$ be the angle between the roots α_{i} and α_{j}. Then

$$
n\left(s_{i}, s_{j}\right)=\left\{\begin{array}{l}
2 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{\pi}{2} \\
3 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{2 \pi}{3} \\
4 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{3 \pi}{4} \\
6 \text { if } \theta\left(\alpha_{i}, \alpha_{j}\right)=\frac{5 \pi}{6}
\end{array}\right.
$$

The extended Dynkin diagram adjoins to the graph of the Dynkin diagram one more node, which corresponds to the negative root α_{0} such that $-\alpha_{0}$ is the highest-weight vector in the adjoint representation. As in the usual Dynkin diagram, we connect the vertices corresponding to α_{i} and α_{j} only if the roots are not orthogonal. If they make an angle of $2 \pi / 3$, we connect them with a single bond; if they make an angle of $6 \pi / 4$, we connect them with a double bond; and if they make an angle of $5 \pi / 6$, we connect them with a triple bond.

The basic paradigm is that if we remove a node from the extended Dynkin diagram, what remains will be the Dynkin diagram of a subgroup of G. To get some feeling for why this is true, let us consider an example in the exceptional group G_{2}. We may take S in Proposition 33.1 to be the set of six long roots. These form a root system of type A_{2}, and \mathfrak{h} is the Lie algebra of a Lie subgroup isomorphic to $\operatorname{SL}(3, \mathbb{C})$. Since $\mathrm{SL}(3, \mathbb{C})$ is the complexification of the simplyconnected compact Lie group $\mathrm{SU}(2)$, it follows from Theorem 14.3 that there is a homomorphism $\operatorname{SL}(3, \mathbb{C}) \longrightarrow G$.

Fig. 33.3. The exceptional root α_{0} of $G_{2}(\bullet=$ positive roots $)$.

The ordinary Dynkin diagram of G_{2} does not reflect the existence of this embedding. However, from Figure 33.3, we see that the roots α_{2} and α_{0} can be taken as the simple roots of $\mathrm{SL}(3, \mathbb{C})$. The embedding $\mathrm{SL}(3, \mathbb{C})$ can be understood as an inclusion of the A_{2} (ordinary) Dynkin diagram in the extended G_{2} Dynkin diagram (Figure 33.4).

Let us consider some more extended Dynkin diagrams. If $n>2$, and if G is the odd orthogonal group $\mathrm{SO}(2 n+1)$, its root system is of type B_{n}, and its extended Dynkin diagram is as in Figure 33.5. We confirm this in Figure 33.6 for $\mathrm{SO}(9)$ - that is, when $n=4$ - by explicitly marking the simple roots $\alpha_{1}, \cdots, \alpha_{n}$ and the largest root α_{0}.

A_{2} (ordinary Dynkin diagram)

Fig. 33.4. The inclusion of $\operatorname{SL}(3)$ in G_{2}.

Fig. 33.5. The extended Dynkin diagram of type B_{n}.

Fig. 33.6. The Lie algebra of $\mathrm{SO}(9)$.

Next, if $n \geqslant 5$ and $G=\mathrm{SO}(2 n)$, the root system of G is D_{n}, and the extended Dynkin diagram is as in Figure 33.7. For example if $n=5$, the configuration of roots is as in Figure 33.8.

We leave it to the reader to check the extended Dynkin diagrams of the symplectic group $\mathrm{Sp}(2 n)$, which is of type C_{n} (Figure 33.9).

The extended Dynkin diagram of type $A_{n}(n \geqslant 2)$ is shown in Figure 33.10. It has the feature that removing a node leaves the diagram connected. Because of this, the paradigm of finding subgroups of a Lie group by examining

Fig. 33.7. The extended Dynkin diagram of type D_{n}.

Fig. 33.8. The Lie algebra of $\mathrm{SO}(10)$.

Fig. 33.9. The extended Dynkin diagram of type C_{n}.
the extended Dynkin diagram does not produce any interesting examples for $\mathrm{SL}(n+1)$ or GL $(n+1)$.

We already encountered the extended Dynkin diagram of G_{2} is in Figure 33.4. The extended Dynkin diagrams of all the exceptional groups are listed in Figure 33.11.

Our first paradigm of recognizing the embedding of a group H in G by embedding the ordinary Dynkin diagram of H in the extended Dynkin diagram

Fig. 33.10. The extended Dynkin diagram of type A_{n}.

Fig. 33.11. Extended Dynkin diagram of the exceptional groups.
of G predicts the embedding of $\mathrm{SO}(2 n)$ in $\mathrm{SO}(2 n+1)$ but not the embedding of $\mathrm{SO}(2 n+1)$ in $\mathrm{SO}(2 n+2)$. For this we need another paradigm, which we call root folding.

We note that the Dynkin diagram D_{n+1} has a symmetry interchanging the vertices α_{n} and α_{n+1}. This corresponds to an outer automorphism of $\mathrm{SO}(2 n+2)$, namely conjugation by

$$
\left(\begin{array}{lll}
I_{n-1} & & \\
& \begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} & \\
& & \\
& & I_{n-1}
\end{array}\right)
$$

which is in $O(2 n+2)$ but not $\mathrm{SO}(2 n+2)$. The fixed subgroup of this outer automorphism stabilizes the vector $v_{0}={ }^{t}(0, \cdots, 0,1,-1,0, \cdots, 0)$. This vector is not isotropic (that is, it does not have length zero) so the stabilizer is the group $\mathrm{SO}(2 n+1)$ fixing the $2 n+1$-dimensional orthogonal complement of v_{0}. In this embedding $\mathrm{SO}(2 n+1) \longrightarrow \mathrm{SO}(2 n+1)$, the short simple root of $\mathrm{SO}(2 n+1)$ is embedded into the direct sum of $\mathfrak{X}_{\alpha_{n}}$ and $\mathfrak{X}_{\alpha_{n+1}}$. We invite the reader to confirm this for the embedding of $\mathrm{SO}(9) \longrightarrow \mathrm{SO}(10)$ with the above matrices. We envision the D_{n+1} Dynkin diagram being folded into the B_{n} diagram, as in Figure 33.12.

The Dynkin diagram of type D_{4} admits a rare symmetry of order 3 (Figure 33.13). This is associated with a phenomenon known as triality, which we now discuss.

Fig. 33.12. Embedding $\mathrm{SO}(2 n+1) \longleftrightarrow \mathrm{SO}(2 n+2)$ as "folding."

Fig. 33.13. Triality.

Referring to Figure 33.1, the groups $\mathfrak{X}_{\alpha_{i}}(i=1,2,3,4)$ correspond to x_{12}, x_{23}, x_{34} and x_{35}, respectively. The Lie algebra will thus have an automorphism τ that sends $x_{12} \longrightarrow x_{34} \longrightarrow x_{35} \longrightarrow x_{12}$ and fixes x_{23}. Let us consider the effect on $\mathfrak{t}_{\mathbb{C}}$, which is the subalgebra of elements t with all $x_{i j}=0$. Noting that $d \alpha_{1}(t)=t_{1}-t_{2}, d \alpha_{2}(t)=t_{2}-t_{3}, d \alpha_{3}(t)=t_{3}-t_{4}$, and $d \alpha_{4}(t)=t_{3}+t_{4}$, we must have

$$
\tau:\left\{\begin{array}{l}
t_{1}-t_{2} \longmapsto t_{3}-t_{4} \\
t_{2}-t_{3} \longmapsto t_{2}-t_{3} \\
t_{3}-t_{4} \longmapsto t_{3}+t_{4} \\
t_{3}+t_{4} \longmapsto t_{1}-t_{2}
\end{array}\right.
$$

from which we deduce that

$$
\begin{aligned}
& \tau\left(t_{1}\right)=\frac{1}{2}\left(t_{1}+t_{2}+t_{3}-t_{4}\right), \\
& \tau\left(t_{2}\right)=\frac{1}{2}\left(t_{1}+t_{2}-t_{3}+t_{4}\right), \\
& \tau\left(t_{3}\right)=\frac{1}{2}\left(t_{1}-t_{2}+t_{3}+t_{4}\right), \\
& \tau\left(t_{4}\right)=\frac{1}{2}\left(t_{1}-t_{2}-t_{3}-t_{4}\right) .
\end{aligned}
$$

At first this is puzzling since, translated to a statement about the group, we have
where

$$
\begin{gathered}
t_{1}^{\prime}=\sqrt{t_{1} t_{2} t_{3} t_{4}^{-1}}, \quad t_{2}^{\prime}=\sqrt{t_{1} t_{2} t_{3}^{-1} t_{4}} \\
t_{3}^{\prime}=\sqrt{t_{1} t_{2}^{-1} t_{3} t_{4}},
\end{gathered} t_{4}^{\prime}=\sqrt{t_{1} t_{2}^{-1} t_{3}^{-1} t_{4}^{-1}} .
$$

Due to the ambiguity of the square roots, this is not a univalent map.
The explanation is that since $\mathrm{SO}(8)$ is not simply-connected, a Lie algebra automorphism cannot necessarily be lifted to the group. However, there is automatically induced an automorphism τ of the simply-connected double cover $\operatorname{spin}(8)$. The center of $\operatorname{spin}(8)$ is $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$, which has an automorphism of order 3 that does not preserve the kernel (of order 2) of τ. If we divide $\operatorname{spin}(8)$ by its entire center $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$, we obtain the adjoint group PGO(8), and the triality automorphism of spin(8) induces an automorphism of order 3 of $\mathrm{PGO}(8)$. To summarize, triality is an automorphism of order 3 of either $\operatorname{spin}(8)$ or $\mathrm{PGO}(8)$ but not of $\mathrm{SO}(8)$.

The fixed subgroup of τ in either $\operatorname{spin}(8)$ or $\mathrm{PGO}(8)$ is the exceptional group G_{2}, and the inclusion of G_{2} in $\operatorname{spin}(8)$ can be understood as a folding of roots. The unipotent subgroup corresponding to a short simple root of G_{2} is included diagonally in the three root groups $\exp \left(\mathfrak{X}_{\alpha_{i}}\right),(i=1,3,4)$ of $\operatorname{spin}(8)$ as in Figure 33.14 (left).

Triality has the following interpretation. The quadratic space V of dimension 8 on which $\mathrm{SO}(8)$ acts can be given the structure of a nonassociative algebra known as the octonions or Cayley numbers.

If $f_{1}: V \longrightarrow V$ is any nonsingular orthogonal linear transformation, there exist linear transformations f_{2} and f_{3} such that

$$
f_{1}(x y)=f_{2}(x) f_{3}(y)
$$

The linear transformations f_{2} and f_{3} are only determined up to sign. The maps $f_{1} \longmapsto f_{2}$ and $f_{1} \longmapsto f_{3}$, though thus not well-defined as an automorphisms of $\mathrm{SO}(8)$, do lift to well-defined automorphisms of $\operatorname{spin}(8)$, and the resulting automorphism $f_{1} \longmapsto f_{2}$ is the triality automorphism. Triality permutes the three orthogonal maps f_{1}, f_{2}, and f_{3} cyclicly. Note that if $f_{1}=f_{2}=f_{3}$, then f_{1} is an automorphism of the octonion ring, so the fixed group G_{2} is the automorphism group of the octonions. See Chevalley [27], p.188. As an alternative to Chevalley's approach, one may first prove a local form of triality as in Jacobson [72] and then deduce the global form. See also Schafer [110].

Over an algebraically closed field, the octonion algebra is unique. Over the real numbers there are two forms, which correspond to the compact group $O(8)$ and the split form $O(4,4)$.

So far, the examples we have given of folding correspond to automorphisms of the group G. For an example that does not, consider the embedding of G_{2} into spin(7) (Figure 33.14, right).

Fig. 33.14. The group G_{2} embedded in $\operatorname{spin}(8)$ and $\operatorname{spin}(7)$.

The two paradigms described above are sufficient to explain the embeddings $K \longleftrightarrow G_{c}$ for the Type I examples listed in Table 31.1.

We now turn to some embeddings of Lie groups that are important but do not fall into the preceding discussion.

Suppose that V_{1} and V_{2} are quadratic spaces (that is, vector spaces equipped with nondegenerate symmetric bilinear forms). Then $V_{1} \oplus V_{2}$ is naturally a quadratic space, so we have an embedding $O\left(V_{1}\right) \times O\left(V_{2}\right) \longrightarrow$ $O\left(V_{1} \oplus V_{2}\right)$. The same is true if V_{1} and V_{2} are symplectic (that is, equipped with nondegenerate skew-symmetric bilinear forms). It follows that we have embeddings

$$
O(r) \times O(s) \longrightarrow O(r+s), \quad \mathrm{Sp}(2 r) \times \mathrm{Sp}(2 s) \longrightarrow \mathrm{Sp}(2(r+s))
$$

These embeddings can be understood as embeddings of extended Dynkin diagrams except in the orthogonal case where r and s are both odd (Exercise 33.2.

Also, if V_{1} and V_{2} are vector spaces with bilinear forms $\beta_{i}: V_{i} \times V_{i} \longrightarrow \mathbb{C}$, then there is a bilinear form B on $V_{1} \otimes V_{2}$ such that

$$
B\left(v_{1} \otimes v_{2}, v_{1}^{\prime} \otimes v_{2}^{\prime}\right)=\beta_{1}\left(v_{1}, v_{1}^{\prime}\right) \beta_{2}\left(v_{2}, v_{2}^{\prime}\right)
$$

If both β_{1} and β_{2} are either symmetric or skew-symmetric, then B is symmetric. If one of β_{1} and β_{2} is symmetric and the other skew-symmetric, then B is skew-symmetric. Therefore, we have embeddings

$$
O(r) \times O(s) \longrightarrow O(r s), \quad \mathrm{Sp}(2 r) \times O(s) \longrightarrow \mathrm{Sp}(4 r s)
$$

The second embedding is the single most important "dual reductive pair," which is fundamental in automorphic forms and representation theory. A dual
reductive pair in a Lie or algebraic group H consists of reductive subgroups G_{1} and G_{2} embedded in such a way that G_{1} is the centralizer of G_{2} in H and conversely. If H is the symplectic group, or more properly its "metaplectic" double cover, then H has an important infinite-dimensional representation ω introduced by Weil [127]. Weil showed in [128] that in many cases the restriction of the Weil representation to a dual reductive pair can be used to understand classical correspondences of automorphic forms due to Siegel. The importance of this phenomenon cannot be overstated. From Weil's point of view this phenomenon is a global one, but Howe [60] gave better foundations, including a local theory. This is a topic that transcends Lie theory since in much of the literature one will consider $O(s)$ or $\mathrm{Sp}(2 r)$ as algebraic groups defined over a p-adic field or a number field (and its adele ring). Expositions of pure Lie group applications may be found in Howe and Tan [64] and Goodman and Wallach [47].

The classification of dual reductive pairs in $\operatorname{Sp}(2 n)$, described in Weil [128] and Howe [60], has its origins in the theory of algebras with involutions, due to Albert [2]. The connection between algebras with involutions and the theory of algebraic groups was emphasized earlier by Weil [126]. A modern and immensely valuable treatise on algebras with involutions and their relations with the theory of algebraic groups may be found in Knus, Merkurjev, Rost, and Tignol [84].

A classification of dual reductive pairs in exceptional groups is in Rubenthaler [103]. These examples have proved interesting in the theory of automorphic forms since an analog of the Weil representation is available.

As a final topic, we discuss parabolic subgroups. Just as regular subgroups of G can be read off from the extended Dynkin diagram, the parabolic subgroups can be read off from the regular Dynkin diagram. Let $\Sigma^{\prime} \subset \Sigma$ be any proper subset of the set of simple roots. Then Σ^{\prime} is the set of vertices of a (possibly disconnected) Dynkin diagram \mathcal{D}^{\prime} contained in that of G. There will be a unique parabolic subgroup P such that, for a simple root $\alpha \in \Sigma$, the space $\mathfrak{X}_{-\alpha}$ is contained in the Lie algebra of P if and only if $\alpha \in S$.

The roots $\mathfrak{X}_{-\alpha}$ and \mathfrak{X}_{α} with $\alpha \in S$ together with $\mathfrak{t}_{\mathbb{C}}$ generate a Lie algebra \mathfrak{m}, which is the Lie algebra of a reductive Lie group M, and

$$
\mathfrak{u}=\bigoplus_{\substack{\alpha \in \Phi^{+} \\ \mathfrak{f} \\ \sigma_{\mathrm{m}}}} \mathfrak{X}_{\alpha}
$$

is the Lie algebra of a unipotent subgroup U of P. (By unipotent we mean here that its image in any analytic representation of G consists of unipotent matrices.) The group $P=M U$. This factorization is called the Levi decomposition. The subgroup U of P is normal, so this decomposition is a semidirect product. The group M is called the Levi factor, and the group U is called the unipotent radical of P.

We illustrate all this with an example from the symplectic group. We take $G=\operatorname{Sp}(2 n)$ to be $\left\{\left.g\right|^{t} g J g=J\right\}$, where

$$
J=\left(\begin{array}{llll}
& & . & . \\
& & & \\
& .1 & \\
& &
\end{array}\right)
$$

This realization of the symplectic group has the advantage that the \mathfrak{X}_{α} corresponding to positive roots $\alpha \in \Phi^{+}$all correspond to upper triangular matrices. We see from Figure 33.9 that removing a node from the Dynkin diagram of type C_{n} gives a smaller diagram, disconnected unless we take an end vertex, of type $A_{r-1} \times C_{n-r}$. This is the Dynkin diagram of a maximal parabolic subgroup with Levi factor $M=\mathrm{GL}(r) \times \operatorname{Sp}(2(n-r))$. The subgroup looks like this:

$$
M=\left\{\left.\left(\begin{array}{c|c|c}
\hline g & & \\
\hline & h & \\
\hline & & g^{\prime}
\end{array}\right) \right\rvert\, g \in \mathrm{GL}(r), h \in \mathrm{Sp}(2 m)\right\}, \quad U=\left\{\left(\begin{array}{c|c|c}
\hline I_{r} & * & * \\
\hline & I_{2 m} & * \\
\hline & & I_{r}
\end{array}\right)\right\} .
$$

Here $m=n-r$. In the matrix M, the matrix g^{\prime} depends on g; it is determined by the requirement that the given matrix be symplectic. Figure 33.15 shows the parabolic subgroup with Levi factor $\mathrm{GL}(3) \times \mathrm{Sp}(4)$ in $\mathrm{GL}(10)$. Its Lie algebra is shaded here: the Lie algebra of M shaded dark and the Lie algebra of U is shaded light.

The Levi factor $M=\mathrm{GL}(3) \times \mathrm{Sp}(4)$ is a proper subgroup of the larger group $\operatorname{Sp}(6) \times \operatorname{Sp}(4)$, which can be read off from the extended Dynkin diagram. The Lie algebra of $\operatorname{Sp}(6) \times \operatorname{Sp}(4)$ is shaded dark in Figure 33.16.

Fig. 33.15. A parabolic subgroup of $\mathrm{Sp}(10)$.

Fig. 33.16. The $\mathrm{Sp}(6) \times \mathrm{Sp}(4)$ subgroup of $\mathrm{Sp}(10)$.

EXERCISES

Exercise 33.1. Discuss each of the embeddings $K \hookrightarrow G_{c}$ in Table 31.1 of Chapter 31 using the extended Dynkin diagram of G_{c}.

Exercise 33.2. In doing the last exercise, one case you may have trouble with is the embedding of $S(O(p) \times O(q))$ into $S O(p+q)$ when p and q are both odd. To get some insight, consider the embedding of $\mathrm{SO}(5) \times \mathrm{SO}(5)$ into $\mathrm{SO}(10)$. (Note: $S(O(p) \times O(q))$ is the group of elements of determinant 1 in $O(p) \times O(q)$ and contains $\mathrm{SO}(p) \times \mathrm{SO}(q)$ as a subgroup of index 2 . For this exercise, it does not matter whether you work with $\mathrm{SO}(5) \times \mathrm{SO}(5)$ or $S(O(5) \times O(5))$.) Take the form of $\mathrm{SO}(10)$ in Figure 33.8. This stabilizes the quadratic form $x_{1} x_{10}+x_{2} x_{9}+x_{3} x_{8}+x_{4} x_{7}+x_{5} x_{6}$. Consider the subspaces

$$
V_{1}=\left\{\left(\begin{array}{c}
a \\
b \\
0 \\
0 \\
c \\
-c \\
0 \\
0 \\
d \\
e
\end{array}\right)\right\}, \quad V_{2}=\left\{\left(\begin{array}{c}
0 \\
0 \\
d \\
e \\
f \\
f \\
0 \\
0 \\
g \\
h
\end{array}\right)\right\} .
$$

Observe that these five-dimensional spaces are mutually orthogonal and that the restriction of the quadratic form is nondegenerate, so the stabilizers of these two spaces are mutually centralizing copies of SO(5). Compute the Lie algebras of these two subgroups, and describe how the roots of $\mathrm{SO}(10)$ restrict to $\mathrm{SO}(5) \times \mathrm{SO}(5)$.

Exercise 33.3. The group $\operatorname{Spin}(8)$ has three distinct irreducible eight-dimensional representations, namely the standard representation of $\mathrm{SO}(8)$ and the two spin representations. Show that these are permuted cyclicly by the triality automorphism.

Part III: Topics

Mackey Theory

Given a subgroup H of a finite group G, and a representation π of H, there is an induced representation π^{G} of G. Mackey theory is concerned with intertwining operators between a pair of induced representations. If these representations are induced from subgroups H_{1} and H_{2}, the intertwining operators are parametrized in a computable way by double cosets. A special case is when one of the subgroups H_{i} is G itself - in these cases, Mackey theory reduces to Frobenius reciprocity.

In this chapter, we will work with finite groups and with representations over an arbitrary ground field F. In this generality, representations may not be completely reducible. Before considering Mackey theory in general, we will give two functorial interpretations of Frobenius reciprocity that correspond to the two special cases where $H_{1}=G$ and $H_{2}=G$.

Let G be a finite group, F a field, and $F[G]$ the group algebra. If $\pi: G \longrightarrow$ $\mathrm{GL}(V)$ is an representation in an F-vector space V, then V becomes an $F[G]$ module by

$$
\left(\sum_{g \in G} c_{g} \cdot g\right) v=\sum_{g \in G} c_{g} \pi(g) v, \quad \sum_{g \in G} c_{g} \cdot g \in F[G]
$$

and, conversely, if V is an $F[G]$-module, then $\pi: G \longrightarrow G L(V)$ defined by $\pi(g) v=g v$ is a representation. Thus, the categories of complex representations of G and $F[G]$-modules are equivalent. In either case, we may refer to V as a G-module. An intertwining operator for two representations is the same as an $F[G]$-module homomorphism for the corresponding $F[G]$-modules, and we call such a map a G-module homomorphism.

If H is a subgroup of G, and if (π, V) is a representation of H, then we define the induced representation $\left(\pi^{G}, V^{G}\right)$ as follows. The vector space V^{G} consists of all maps $f: G \longrightarrow V$ that satisfy $f(h g)=\pi(h) f(g)$ when $h \in H$. The representation $\pi^{G}: G \longrightarrow \mathrm{GL}\left(V^{G}\right)$ is by right translation

$$
\left(\pi^{G}(g) f\right)(x)=f(x g)
$$

It is easy to see that if $f \in V^{G}$, then so is $\pi^{G}(g) f$, and that π^{G} is a representation. We will sometimes denote the representation $\left(\pi^{G}, V^{G}\right)$ as $\operatorname{Ind}_{H}^{G}(\pi)$.

Also, if (σ, U) is a representation of G, then we can restrict σ to H to obtain a representation of H. We call U_{H} the corresponding H-module. Thus, as sets, U and U_{H} are equal.

Proposition 34.1. (Frobenius reciprocity, first version) Let H be a subgroup of G and let (π, V) be a representation of H. Let (σ, U) be a representation of G. Then

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(U, V^{G}\right) \cong \operatorname{Hom}_{H}\left(U_{H}, V\right) \tag{34.1}
\end{equation*}
$$

In this isomorphism, $J \in \operatorname{Hom}_{G}\left(U, V^{G}\right)$ and $j \in \operatorname{Hom}_{H}\left(U_{H}, V\right)$ correspond if and only if $j(u)=J(u)(1)$ and $J(u)(g)=j(\sigma(g) u)$.

Proof. Given $J \in \operatorname{Hom}_{G}\left(U, V^{G}\right)$, define $j(u)=J(u)(1)$. We show that j is in $\operatorname{Hom}_{H}\left(U_{H}, V\right)$. Indeed, if $h \in H$, we have

$$
j(\sigma(h) u)=J(\sigma(h) u)(1)=\left(\pi^{G}(h) J(u)\right)(1)
$$

because $J: U \longrightarrow V^{G}$ is G-equivariant. This equals $J(u)(1 . h)=J(u)(h .1)=$ $\pi(h) J(u)(1)=\pi(h) j(u)$ because $h \in H$ and $J(u) \in V^{G}$. Therefore $j \in$ $\operatorname{Hom}_{H}\left(U_{H}, V\right)$.

Conversely, if $j \in \operatorname{Hom}_{H}\left(U_{H}, V\right)$ and $u \in U$, we define $J(u): G \longrightarrow V$ by $J(u)(g)=j(\sigma(g) u)$. We claim that $J(u) \in V^{G}$. Indeed, if $h \in H$, we have

$$
J(u)(h g)=j(\sigma(h g) u)=j(\sigma(h) \sigma(g) u)=\pi(h) j(\sigma(g) u)=\pi(h) J(u)(g)
$$

because j is H-equivariant. This equals $\pi(h) J(u)(g)$, so indeed $J(u) \in V^{G}$. We claim that $J: U \longrightarrow V^{G}$ is G-equivariant. Indeed, if $g, x \in G$ and $u \in U$, we have

$$
J(\sigma(g) u)(x)=j(\sigma(x) \sigma(g))(u)=j(\sigma(x g) u)=J(u)(x g)=\left(\pi^{G}(g) J(u)\right)(x)
$$

Therefore $J(\sigma(g) u)=\pi^{G}(g) J(u)$ so $J \in \operatorname{Hom}_{G}\left(U, V^{G}\right)$.
It is straightforward to check that $J \mapsto j$ and $j \mapsto J$ are inverse maps and so $\operatorname{Hom}_{G}\left(U, V^{G}\right) \cong \operatorname{Hom}_{H}\left(U_{H}, V\right)$.

If the ground field $F=\mathbb{C}$, then we may reinterpret this statement in terms of characters. If η and χ are the characters of U and V, respectively, and if χ^{G} is the character of the representation of G on V^{G}, then by Theorem 2.5 we may express Proposition 34.1 by the well-known character identity

$$
\begin{equation*}
\langle\chi, \eta\rangle_{H}=\left\langle\chi^{G}, \eta\right\rangle_{G} \tag{34.2}
\end{equation*}
$$

Dual to (34.1) there is also a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(V^{G}, U\right) \cong \operatorname{Hom}_{H}(V, U) \tag{34.3}
\end{equation*}
$$

This is slightly more difficult than Proposition 34.1, and it also involves ideas that we will need in our discussion of Mackey theory. We will approach this by means of a universal property.

Proposition 34.2. Let H be a subgroup of G and let (π, V) be a representation of H. If $v \in V$, define $\epsilon(v): G \longrightarrow V$ by

$$
\epsilon(v)(g)=\left\{\begin{array}{cc}
\pi(g) v & \text { if } g \in H \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $\epsilon(v) \in V^{G}$, and $\epsilon: V \longrightarrow V^{G}$ is H-equivariant. Let (σ, U) be a representation of G. If $j: V \longrightarrow U$ is any H-module homomorphism, then there exists a unique G-module homomorphism $J: V^{G} \longrightarrow U$ such that $j=J \circ \epsilon$. We have

$$
\begin{equation*}
J(f)=\sum_{\gamma \in G / H} \sigma(\gamma) j\left(f\left(\gamma^{-1}\right)\right) \tag{34.4}
\end{equation*}
$$

Proof. It is easy to check that $\epsilon(v) \in V^{G}$ and that if $h \in H$, then

$$
\begin{equation*}
\epsilon(\pi(h) v)=\pi^{G}(h) \epsilon(v) \tag{34.5}
\end{equation*}
$$

Thus ϵ is H-equivariant.
We prove that if $f \in V^{G}$, then

$$
\begin{equation*}
f=\sum_{G / H} \pi^{G}(\gamma) \epsilon\left(f\left(\gamma^{-1}\right)\right) \tag{34.6}
\end{equation*}
$$

Using (34.5), each term on the right-hand side is independent of the choice of representatives γ of the cosets in G / H. Let us apply the right-hand side to $g \in G$. We get

$$
\sum_{G / H} \epsilon\left(f\left(\gamma^{-1}\right)\right)(g \gamma)
$$

Only one coset representative γ of G / H contributes since, by the definition of ϵ, the contribution is zero unless $g \gamma \in H$. Since we have already noted that each term on the right-hand side of (34.6) is independent of the choice of γ modulo right multiplication by an element of H, we may as well choose $\gamma=g^{-1}$. We obtain $\epsilon(f(g))(1)=f(g)$. This proves (34.6).

Suppose now that $J: V^{G} \longrightarrow U$ is G-equivariant and that $j=J \circ \epsilon$. Then, using (34.6),

$$
J(f)=\sum_{G / H} J\left(\pi^{G}(\gamma) \epsilon\left(f\left(\gamma^{-1}\right)\right)\right)=\sum_{G / H} \sigma(\gamma)(J \circ \epsilon)\left(f\left(\gamma^{-1}\right)\right)
$$

so J must satisfy (34.4). We leave it to the reader to check that J defined by (34.4) is independent of the choice of representatives γ for G / H. We check that it is G-equivariant. If $g \in G$, we have

$$
J\left(\pi^{G}(g) f\right)=\sum_{\gamma \in G / H} \sigma(\gamma) \phi\left(f\left(\gamma^{-1} g\right)\right)
$$

The variable change $\gamma \longrightarrow g \gamma$ permutes the cosets in G / H and shows that

$$
J\left(\pi^{G}(g) f\right)=\sum_{\gamma \in G / H} \sigma(g \gamma) \phi\left(f\left(\gamma^{-1}\right)\right)=\sigma(g) J(f)
$$

as required.
Corollary 34.1. (Frobenius reciprocity, second version) If H is a subgroup of the finite group G, and if (σ, U) and (π, V) are representations of G and H, respectively, then $\operatorname{Hom}_{G}\left(V^{G}, U\right) \cong \operatorname{Hom}_{H}(V, U)$, and in this isomorphism $j \in \operatorname{Hom}_{H}(V, U)$ corresponds to $J \in \operatorname{Hom}_{G}\left(V^{G}, U\right)$ if and only if they are related by (34.4).

Proof. This is a direct restatement of Proposition 34.2.
We turn next to Mackey theory. In the following statement, $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ means $\operatorname{Hom}_{F}\left(V_{1}, V_{2}\right)$, the space of all linear maps.

Theorem 34.1. (Mackey's Theorem, geometric version) Suppose that G is a finite group, H_{1} and H_{2} subgroups, and $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ representations of H_{1} and H_{2}, respectively. Then $\operatorname{Hom}_{G}\left(V_{1}^{G}, V_{2}^{G}\right)$ is naturally isomorphic to the space of all functions $\Delta: G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ that satisfy

$$
\begin{equation*}
\Delta\left(h_{2} g h_{1}\right)=\pi_{2}\left(h_{2}\right) \circ \Delta(g) \circ \pi_{1}\left(h_{1}\right), \quad h_{i} \in H_{i} \tag{34.7}
\end{equation*}
$$

In this isomorphism an intertwining operator $\Lambda: V_{1}^{G} \longrightarrow V_{2}^{G}$ corresponds to Δ if $\Lambda(f)=\Delta * f\left(f \in V_{1}^{G}\right)$, where the "convolution" $\Delta * f$ is defined by

$$
\begin{equation*}
(\Delta * f)(g)=\sum_{\gamma \in G / H_{1}} \Delta(\gamma) f\left(\gamma^{-1} g\right) \tag{34.8}
\end{equation*}
$$

Proof. It is easy to check, using (34.7) and the fact that $f \in V_{1}^{G}$, that (34.8) is independent of the choice of coset representatives γ for G / H_{1}. Moreover if $h_{2} \in H_{2}$, then the variable change $\gamma \longrightarrow h_{2} \gamma$ permutes the cosets of G / H_{1}, and again using (34.7), this variable change shows that $\Delta * f \in V_{2}^{G}$. Thus $f \longrightarrow \Delta * f$ is a well-defined map $V_{1}^{G} \longrightarrow V_{2}^{G}$, and using the fact that G acts on both these spaces by right translation, it is straightforward to see that $\Lambda(f)=\Delta * f$ defines an intertwining operator $V_{1}^{G} \longrightarrow V_{2}^{G}$.

To show that this map $\Delta \mapsto \Lambda$ is an isomorphism of the space of Δ satisfying (34.7) to $\operatorname{Hom}_{G}\left(V_{1}^{G}, V_{2}^{G}\right)$, we make use of Corollary 34.1. We must relate the space of Δ satisfying (34.7) to $\operatorname{Hom}_{H_{1}}\left(V_{1}, V_{2}^{G}\right)$. Given $\lambda \in \operatorname{Hom}_{H_{1}}\left(V_{1}, V_{2}^{G}\right)$ corresponding to $\Lambda \in \operatorname{Hom}_{G}\left(V_{1}^{G}, V_{2}^{G}\right)$ as in that corollary, define $\Delta: G \longrightarrow$ $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ by $\Delta(g) v_{1}=\lambda\left(v_{1}\right)(g)$. The condition that $\lambda\left(v_{1}\right) \in V_{2}^{G}$ for all $v_{1} \in V_{1}$ is equivalent to

$$
\Delta\left(h_{2} g\right)=\pi_{2}\left(h_{2}\right) \circ \Delta(g), \quad h_{2} \in H_{2}
$$

and the condition that $\lambda: V_{1} \longrightarrow V_{2}^{G}$ is H_{1}-equivariant is equivalent to

$$
\Delta\left(g h_{1}\right)=\Delta(g) \circ \pi_{1}\left(h_{1}\right), \quad h_{1} \in H_{1} .
$$

Of course, these two properties together are equivalent to (34.7). We see that Corollary 34.1 implies a linear isomorphism between the space of functions Δ satisfying (34.7) and the elements of $\operatorname{Hom}_{G}\left(V_{1}^{G}, V_{2}^{G}\right)$. We have only to show that this correspondence is given by (34.8). In (34.4), we take $H=H_{1}$, $(\sigma, U)=\left(\pi_{2}^{G}, V_{2}^{G}\right)$, and $j=\lambda$. Then $J=\Lambda$ and (34.4) gives us, for $f \in V_{1}^{G}$,

$$
\Lambda(f)=\sum_{\gamma \in G / H_{1}} \pi_{2}^{G}(\gamma) \lambda\left(f\left(\gamma^{-1}\right)\right)
$$

Applying this to $g \in G$,

$$
\Lambda(f)(g)=\sum_{\gamma \in G / H_{1}} \lambda\left(f\left(\gamma^{-1}\right)\right)(g \gamma)=\sum_{\gamma \in G / H_{1}} \Delta(g \gamma) f\left(\gamma^{-1}\right) .
$$

Making the variable change $\gamma \longrightarrow g^{-1} \gamma$, this equals (34.8).
Remark 34.1. Suppose that H_{1}, H_{2}, and $\left(\pi_{i}, V_{i}\right)$ are as in Theorem 34.1. The function $\Delta: G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ associated with an intertwining operator $\Lambda: V_{1}^{G} \longrightarrow V_{2}^{G}$ is clearly determined by its values on a set of representatives for the double cosets in $H_{2} \backslash G / H_{1}$. The simplest case is when Δ is supported on a single double coset $H_{2} \gamma H_{1}$. In this case, we say that the intertwining operator Λ is supported on $H_{2} \gamma H_{1}$.

Proposition 34.3. In the setting of Theorem 34.1, let $\gamma \in G$. Let $H_{\gamma}=H_{2} \cap$ $\gamma H_{1} \gamma^{-1}$. Define two representations $\left(\pi_{1}^{\gamma}, V_{1}\right)$ and $\left(\pi_{2}^{\gamma}, V_{2}\right)$ of H_{γ} as follows. The representation π_{2}^{γ} is just the restriction of π_{2} to H_{γ}. On the other hand, we define $\pi_{1}^{\gamma}(h)=\pi_{1}\left(\gamma^{-1} h \gamma\right)$ for $h \in H_{\gamma}$. The space of intertwining operators $\Lambda: V_{1}^{G} \longrightarrow V_{2}^{G}$ supported on $H_{2} \gamma H_{1}$ is isomorphic to $\operatorname{Hom}_{H_{\gamma}}\left(\pi_{1}^{\gamma}, \pi_{2}^{\gamma}\right)$, the space of all $\delta: V_{1} \longrightarrow V_{2}$ such that

$$
\begin{equation*}
\delta \circ \pi_{1}^{\gamma}(h)=\pi_{2}^{\gamma}(h) \circ \delta, \quad h \in H_{\gamma} . \tag{34.9}
\end{equation*}
$$

Proof. If $\Delta: G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ is associated with Λ as in Theorem 34.1, then Δ is by assumption supported on $H_{2} \gamma H_{1}$, and (34.7) implies that Δ is determined by $\delta=\Delta(\gamma)$. This is subject to a consistency condition derived from (34.7). If $h \in H_{\gamma}$, then $\gamma h^{\prime}=h \gamma$, where $h^{\prime}=\gamma^{-1} h \gamma$. We have $h \in H_{2}$ and $h^{\prime} \in H_{1}$, so by (34.7) the map $\delta: V_{1} \longrightarrow V_{2}$ must satisfy (34.9). Conversely, if (34.9) is assumed, it is not hard to see that

$$
\Delta(g)=\left\{\begin{array}{cl}
\pi_{2}\left(h_{2}\right) \delta \pi_{1}\left(h_{1}\right) & \text { if } g=h_{2} \gamma h_{1} \in H_{2} \gamma H_{1}, h_{i} \in H_{i} \\
0 & \text { if } g \notin H_{2} \gamma H_{1}
\end{array}\right.
$$

is a well-defined function $G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ satisfying (34.7), and the corresponding intertwining operator Λ is supported on $H_{2} \gamma H_{1}$.

Theorem 34.2. (Mackey's Theorem, algebraic version) In the setting of Theorem 34.1, let $\gamma_{1}, \cdots, \gamma_{h}$ be a complete set of representatives of the double cosets in $H_{2} \backslash G / H_{1}$. With $\gamma=\gamma_{i}$, let π_{i}^{γ} be as in Proposition 34.3. We have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{G}\left(V_{1}^{G}, V_{2}^{G}\right)=\sum_{i=1}^{h} \operatorname{dim} \operatorname{Hom}_{H_{\gamma_{i}}}\left(\pi_{1}^{\gamma_{i}}, \pi_{2}^{\gamma_{i}}\right) \tag{34.10}
\end{equation*}
$$

Proof. If Δ is as in Theorem 34.1, write $\Delta=\sum_{i} \Delta_{i}$, where

$$
\Delta_{i}(g)=\left\{\begin{array}{cl}
\Delta(g) & \text { if } g \in H_{2} \gamma_{i} H_{1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then Δ_{i} satisfy (34.7). Let Λ_{i} be the intertwining operator. Then Λ_{i} is supported on a single double coset, and the dimension of the space of such intertwining operators is computed in Proposition 34.3.

Corollary 34.2. Assume that the ground field F is of characteristic zero. Let H_{1} and H_{2} be subgroups of G and let (π, V) be an irreducible representation of H_{1}. Let $\gamma_{1}, \cdots, \gamma_{h}$ be a complete set of representatives of the double cosets in $H_{2} \backslash G / H_{1}$. If $\gamma \in G$, let $H_{\gamma}=H_{2} \cap \gamma H_{1} \gamma^{-1}$, and let $\pi^{\gamma}: H_{\gamma} \rightarrow \mathrm{GL}(V)$ be the representation $\pi^{\gamma}(g)=\pi\left(\gamma^{-1} g \gamma\right)$. Then the restriction of π_{1}^{G} to H_{2} is isomorphic to

$$
\begin{equation*}
\bigoplus_{i=1}^{h} \operatorname{Ind}_{H_{\gamma_{i}}}^{H_{2}}\left(\pi^{\gamma_{i}}\right) \tag{34.11}
\end{equation*}
$$

In a word, first inducing and then restricting gives the same result as restricting, then inducing.

Proof. Since we are assuming that the characteristic of F is zero, representations are completely reducible and it is enough to show that the multiplicity of an irreducible representation $\left(\pi_{2}, V_{2}\right)$ in π_{1}^{G} is the same as the multiplicity of π_{2} in the direct sum (34.11). The multiplicity of π_{2} in π_{1}^{G} is

$$
\operatorname{dim} \operatorname{Hom}_{H_{2}}\left(V^{G}, V_{2}\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(V^{G}, V_{2}^{G}\right)=\sum_{i=1}^{h} \operatorname{dim} \operatorname{Hom}_{H_{\gamma_{i}}}\left(\pi^{\gamma_{i}}, \pi_{2}^{\gamma_{i}}\right)
$$

by Frobenius reciprocity and Theorem 34.2. One more application of Frobenius reciprocity shows that this equals

$$
\sum_{i=1}^{h} \operatorname{dim} \operatorname{Hom}_{H_{2}}\left(\operatorname{Ind}_{H_{\gamma_{i}}}^{H_{2}}\left(\pi^{\gamma_{i}}\right), \pi_{2}\right)
$$

Next we will reinterpret induced representations as obtained by "extension of scalars" as explained in Chapter 11. We must extend the setup there to noncommutative rings. In particular, we recall the basics of tensor products over noncommutative rings. Let R be a ring, not necessarily commutative, and let W be a right R-module and V a left R -module. If C is an Abelian group (written additively), a map $f: W \times V \longrightarrow C$ is called balanced if (for $w, w_{1}, w_{2} \in W$ and $\left.v, v_{1}, v_{2} \in V\right)$

$$
\begin{aligned}
f\left(w_{1}+w_{2}, v\right) & =f\left(w_{1}, v\right)+f\left(w_{2}, v\right) \\
f\left(w, v_{1}+v_{2}\right) & =f\left(w, v_{1}\right)+f\left(w, v_{2}\right)
\end{aligned}
$$

and if $r \in R$,

$$
f(w r, v)=f(w, r v)
$$

The tensor product $W \otimes_{R} V$ is an Abelian group with a balanced map T : $W \times V \longrightarrow W \otimes_{R} V$ such that if $f: W \times V \longrightarrow C$ is any balanced map into an Abelian group C, then there exists a unique homomorphism $F: W \otimes_{R} V \longrightarrow C$ of Abelian groups such that $f=F \circ T$. The balanced map T is usually denoted $T(w, v)=w \otimes v$.

Remark 34.2. The tensor product always exists and is characterized up to isomorphism by this universal property. If R is noncommutative, then $W \otimes_{R} V$ does not generally have an R-module structure. However, in special cases it is a module. If A is another ring, we call W an (A, R)-bimodule if it is a left A module and a right R-module, and if these module structures are compatible in the sense that if $w \in W, a \in A$, and $r \in R$, then $a(w r)=(a w) r$. If W is an (A, R)-bimodule, then $W \otimes_{R} V$ has the structure of a left A-module with multiplication satisfying

$$
a(w \otimes v)=a w \otimes v, \quad a \in A
$$

If R is a subring of A, then A is itself an (A, R)-bimodule. Therefore, if V is a left R-module, we can consider $A \otimes_{R} V$ and this is a left A-module.

Proposition 34.4. If R is a subring of A and V is a left R-module, let V^{\prime} be the left A-module $A \otimes_{R} V$. We have a homomorphism $i: V \longrightarrow V^{\prime}$ of R-modules defined by $i(v)=1 \otimes v$. If U is any left A-module and $j: V \longrightarrow U$ is an R-module homomorphism, then there exists a unique A-module homomorphism $J: V^{\prime} \longrightarrow U$ such that $j=J \circ i$.

Proof. Suppose that $J: V^{\prime} \longrightarrow U$ is A-linear and satisfies $j=J \circ i$. Then

$$
J(a \otimes v)=J(a(1 \otimes v))=a J(1 \otimes v)=a J(i(v))=a j(v)
$$

Since V^{\prime} is spanned by elements of the form $a \otimes v$, this proves that J, if it exists, is unique.

To show that J exists, note that we have a balanced map $A \times V \longrightarrow U$ given by $(a, v) \longrightarrow a j(v)$. Hence, there exists a unique homomorphism J : $V^{\prime}=A \otimes_{R} V \longrightarrow U$ of Abelian groups such that $J(a \otimes v)=a j(v)$. It is straightforward to see that this J is A-linear and that $J \circ i=j$.

Proposition 34.5. If R is a subring of A, U is a left A-module, and V is a left R-module, we have a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{R}(V, U) \cong \operatorname{Hom}_{A}\left(A \otimes_{R} V, U\right) \tag{34.12}
\end{equation*}
$$

Proof. This is a direct generalization of Proposition 11.1 (ii). It is also essentially equivalent to Proposition 34.4. Indeed, composition with $i: V \longrightarrow$ $V^{\prime}=A \otimes_{R} V$ is a $\operatorname{map} \operatorname{Hom}_{A}\left(V^{\prime}, U\right) \longrightarrow \operatorname{Hom}_{R}(V, U)$, and the content of Proposition 34.4 is that this map is bijective.

Proposition 34.6. Suppose that H is a subgroup of G and V is an H-module. Then V is a module for the group ring $F[H]$, which is a subring of $F[G]$. We have an isomorphism

$$
V^{G} \cong F[G] \otimes_{F[H]} V
$$

as G-modules.
Proof. Comparing Proposition 34.2 and Proposition 34.4, the G-modules V^{G} and $F[G] \otimes_{F[H]} V$ satisfy the same universal property, so they are isomorphic.

Finally, if $F=\mathbb{C}$, let us recall the formula for the character of the induced representation. If χ is a class function of the subgroup H of G, let $\dot{\chi}: G \longrightarrow \mathbb{C}$ be the function

$$
\dot{\chi}(g)=\left\{\begin{array}{cc}
\chi(g) & \text { if } g \in H \\
0 & \text { otherwise }
\end{array}\right.
$$

and let $\chi^{G}: G \longrightarrow \mathbb{C}$ be the function

$$
\begin{equation*}
\chi^{G}(g)=\sum_{x \in H \backslash G} \dot{\chi}\left(x g x^{-1}\right) . \tag{34.13}
\end{equation*}
$$

We note that since χ is assumed to be a class function, each term depends only on the coset of x in $H \backslash G$. We may of course also write

$$
\begin{equation*}
\chi^{G}(g)=\frac{1}{|H|} \sum_{x \in G} \dot{\chi}\left(x g x^{-1}\right) \tag{34.14}
\end{equation*}
$$

Clearly, χ^{G} is a class function on G.
Proposition 34.7. Let (π, V) be a complex representation of the subgroup H of the finite group G with character χ. Then the character of the induced representation π^{G} is χ^{G}.

Proof. Let η be the character of a representation (σ, U) of G. We will prove that the class function χ^{G} satisfies Frobenius reciprocity in its classical form (34.2). This suffices because χ^{G} is determined by the inner product values $\left\langle\chi^{G}, \eta\right\rangle$. We have

$$
\begin{gathered}
\left\langle\chi^{G}, \eta\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \frac{1}{|H|} \sum_{x \in G} \dot{\chi}\left(x g x^{-1}\right) \eta(g)= \\
\frac{1}{|G|} \sum_{g \in G} \frac{1}{|H|} \sum_{h \in H} \sum_{\substack{x \in G \\
x g x^{-1}=h}} \chi(h) \eta(g)
\end{gathered}
$$

Given $h \in H$, we can enumerate the pairs $(g, x) \in G \times G$ that satisfy $x g x^{-1}=h$ by noting that they are the pairs $\left(x^{-1} h x, x\right)$ with $x \in G$. So the sum equals

$$
\frac{1}{|G|} \frac{1}{|H|} \sum_{h \in H} \sum_{x \in G} \chi(h) \eta\left(x^{-1} h x\right)=\frac{1}{|H|} \sum_{h \in H} \chi(h) \eta(h)=\langle\chi, \eta\rangle_{H}
$$

since $\eta\left(x^{-1} h x\right)=\eta(h)$.

Characters of GL($\boldsymbol{n}, \mathbb{C}$)

In the next few chapters, we will construct the irreducible representations of the symmetric group in parallel with the irreducible algebraic representations of $\mathrm{GL}(n, \mathbb{C})$. In this chapter, we will construct some generalized characters of $\mathrm{GL}(n, \mathbb{C})$. The connection with the representation theory of S_{k} will become clear later.

We recall that the character χ of a finite-dimensional representation (π, V) of a group G is the function $\chi(g)=\operatorname{tr} \pi(g)$. A complex representation (π, V) of $\mathrm{GL}(n, \mathbb{C})$ is algebraic if the matrix coefficients of $\pi(g)$ are polynomial functions in the matrix coefficients $g_{i j}$ of $g=\left(g_{i j}\right) \in \mathrm{GL}(n, \mathbb{C})$ and of $\operatorname{det}(g)^{-1}$. Thus, if we choose a basis of V, then $\pi(g)$ becomes a matrix $\left(\pi(g)_{k l}\right)$ with $1 \leqslant k, l \leqslant$ $\operatorname{dim}(V)$, and for each k, l we require that there be a polynomial $P_{k l}$ with $n^{2}+1$ entries such that

$$
\pi(g)_{k l}=P_{k l}\left(g_{11}, \cdots, g_{n n}, \operatorname{det}(g)^{-1}\right)
$$

A character χ is algebraic if it is the character of an algebraic representation. A generalized character, also called a virtual character, is the difference between two characters. We will sometimes call a generalized character effective if it is a character. If $G=\operatorname{GL}(n, \mathbb{C})$, or more generally any algebraic group, we will say a generalized character is algebraic if it is $\chi_{1}-\chi_{2}$, where χ_{1} and χ_{2} are algebraic.

If R is a ring, we will denote by $R_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ the ring of symmetric polynomials in x_{1}, \cdots, x_{n} having coefficients in R. Let e_{k} and $h_{k} \in$ $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ be the k-th elementary and complete symmetric polynomials in n variables. Specifically,

$$
\begin{aligned}
& e_{k}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \\
& h_{k}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k} \leqslant n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
\end{aligned}
$$

If $k>n$, then $e_{k}=0$, although this is not true for h_{k}. Our convention is that $e_{0}=h_{0}=1$.

Let $E(t)$ be the generating function for the elementary symmetric polynomials:

$$
E(t)=\sum_{k=0}^{n} e_{k} t^{k}
$$

Then

$$
\begin{equation*}
E(t)=\left(1+x_{1} t\right)\left(1+x_{2} t\right) \cdots\left(1+x_{n} t\right) \tag{35.1}
\end{equation*}
$$

since expanding the right-hand side and collecting the coefficients of t^{k} will give each monomial in the definition of e_{k} exactly once. Similarly, if

$$
H(t)=\sum_{k=0}^{\infty} h_{k} t^{k},
$$

then

$$
\begin{equation*}
H(t)=\prod_{i=0}^{n}\left(1+x_{i} t+x_{i}^{2} t^{2}+\ldots\right)=\left(1-x_{1} t\right)^{-1} \cdots\left(1-x_{n} t\right)^{-1} . \tag{35.2}
\end{equation*}
$$

We see that

$$
H(t) E(-t)=1 .
$$

Equating the coefficients in this identity gives us recursive relations

$$
\begin{equation*}
h_{k}-e_{1} h_{k-1}+e_{2} h_{k-2}-\cdots+(-1)^{k} e_{k}=0, \quad k>0 \tag{35.3}
\end{equation*}
$$

These can be used to express the h 's in terms of the e 's or vice versa.
Proposition 35.1. The ring $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ is generated as a \mathbb{Z}-algebra by e_{1}, \cdots, e_{n}, and they are algebraically independent. Thus $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]=$ $\mathbb{Z}\left[e_{1}, \cdots, e_{n}\right]$ is a polynomial ring. It is also generated by h_{1}, \cdots, h_{n}, which are algebraically independent, and $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]=\mathbb{Z}\left[h_{1}, \cdots, h_{n}\right]$.
Proof. The fact that the e_{i} generate $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ is Theorem 6.1 on p. 191 of Lang [90], and their algebraic independence is proved on p. 192 of that reference. The fact that h_{1}, \cdots, h_{n} also generate follows since (35.3) can be solved recursively to express the e_{i} in terms of the h_{i}. The h_{i} must be algebraically independent since if they were dependent the transcendence degree of the field of fractions of $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ would be less than n, so the e_{i} would also be algebraically dependent, which is a contradiction.

If V is a vector space, let $\wedge^{k} V$ and $\vee^{k} V$ denote the k-th exterior and symmetric powers. If $T: V \longrightarrow W$ is a linear transformation, then there are induced linear transformations $\wedge^{k} T: \wedge^{k} V \longrightarrow \wedge^{k} W$ and $\vee^{k} T: \vee^{k} V \longrightarrow$ $v^{k} W$.

Proposition 35.2. If V is an n-dimensional vector space and $T: V \longrightarrow V$ an endomorphism, and if t_{1}, \cdots, t_{n} are its eigenvalues with multiplicities (that is, each eigenvalue is listed with its multiplicity as a root of the characteristic polynomial), then

$$
\begin{equation*}
\operatorname{tr} \wedge^{k} T=e_{k}\left(t_{1}, \cdots, t_{n}\right) \tag{35.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} \vee^{k} T=h_{k}\left(t_{1}, \cdots, t_{n}\right) \tag{35.5}
\end{equation*}
$$

Proof. First, assume that T is diagonalizable and that v_{1}, \cdots, v_{n} are its eigenvectors, so $T v_{i}=t_{i} v_{i}$. Then a basis of $\wedge^{k} V$ consists of the vectors

$$
v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}, \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n
$$

and this is an eigenvector of $\wedge^{k} T$ with eigenvalue $t_{i_{1}} \cdots t_{i_{k}}$. Summing these eigenvalues gives $e_{k}\left(t_{1}, \cdots, t_{n}\right)$. Thus, (35.4) is true if T is diagonalizable. Similarly, a basis of $\vee^{k} V$ consists of the vectors

$$
v_{i_{1}} \vee \cdots \vee v_{i_{k}}, \quad 1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k} \leqslant n
$$

so (35.5) is also true if T is diagonalizable.
In the general case, both sides of (35.4) or (35.5) are continuous functions of the matrix entries of T. The left-hand side of (35.4) is continuous because if we refer T to a fixed basis, then $\operatorname{tr} \wedge^{k} T$ is the sum of the $\binom{n}{k}$ principal minors of its matrix with respect to this basis, and the right-hand side is continuous because it is a coefficient in the characteristic polynomial of T. Since the diagonalizable matrices are dense in GL (n, \mathbb{C}), it follows that (35.4) is true for all T. As for (35.5), the h 's are polynomial functions in the e 's, as we see by solving (35.3) recursively, so the right-hand side of (35.5) is also continuous, and (35.5) is also proved.

Theorem 35.1. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a symmetric polynomial with integer coefficients. Define a function ψ_{f} on $\mathrm{GL}(n, \mathbb{C})$ as follows. If t_{1}, \cdots, t_{n} are the eigenvalues of g, let

$$
\begin{equation*}
\psi_{f}(g)=f\left(t_{1}, \cdots, t_{n}\right) \tag{35.6}
\end{equation*}
$$

Then ψ_{f} is an algebraic generalized character of $\operatorname{GL}(n, \mathbb{C})$.
As in Proposition 35.2, there may be repeated eigenvalues. If this is the case, we count each eigenvalue with the multiplicity with which it occurs as a root of the characteristic polynomial.

Proof. Let us call a symmetric polynomial f constructible if ψ_{f} is a generalized character of $\mathrm{GL}(n, \mathbb{C})$. The generalized characters of $\mathrm{GL}(n, \mathbb{C})$ form a ring since the direct sum and tensor product operations on $G L(n, \mathbb{C})$-modules correspond to addition and multiplication of characters. Since

$$
\psi_{f_{1} \pm f_{2}}=\psi_{f_{1}} \pm \psi_{f_{2}}, \quad \psi_{f_{1} f_{2}}=\psi_{f_{1}} \psi_{f_{2}}
$$

it follows that the constructible polynomials also form a ring. The e_{k} are constructible by Proposition 35.2 and generate $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ by Proposition 35.1. Thus the ring of constructible polynomials is all of $\mathbb{Z}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$.

In addition to the elementary and complete symmetric polynomials, we have the power sum symmetric polynomials

$$
\begin{equation*}
p_{k}\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{k}+\ldots+x_{n}^{k} \tag{35.7}
\end{equation*}
$$

Theorem 35.2. Let G be a group, let χ be a character of G, and let k be a nonnegative integer. Then $g \mapsto \chi\left(g^{k}\right)$ is a virtual character of G.

Proof. Let χ be the character corresponding to the representation $\pi: G \rightarrow$ $\mathrm{GL}(n, \mathbb{C})$. If ψ is any generalized character of $\operatorname{GL}(n, \mathbb{C})$, then $\psi \circ \pi$ is a generalized character of G. We take $\psi=\psi_{p_{k}}$, which is a generalized character by Theorem 35.1. If t_{1}, \cdots, t_{n} are the eigenvalues of $T(g)$, then $t_{1}^{k}, \cdots, t_{n}^{k}$ are the eigenvalues of $\pi\left(g^{k}\right)$. Hence

$$
\begin{equation*}
\left(\psi_{p_{k}} \circ \pi\right)(g)=\chi\left(g^{k}\right) \tag{35.8}
\end{equation*}
$$

proving that $\chi\left(g^{k}\right)$ is a generalized character.
Proposition 35.3. (Newton) The polynomials p_{k} generate $\mathbb{Q}_{\text {sym }}\left[x_{1}, \cdots, x_{n}\right]$ as a \mathbb{Q}-algebra.

Proof. We will make use of the identity

$$
\log (1+t)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} t^{k}
$$

Replacing t by $t x_{i}$ in this identity, summing over the x_{i}, and using (35.1), we see that

$$
\log E(t)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} p_{k} t^{k}
$$

Exponentiating this identity,

$$
\sum_{k=0}^{\infty} e_{k} t^{k}=\exp \left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} p_{k} t^{k}\right)
$$

Expanding and collecting the coefficients of t^{k} expresses e_{k} as a polynomial in the p 's, with rational coefficients.

Let us return to the context of Theorem 35.2. Let G be a group and χ the character of a representation $\pi: G \longrightarrow \mathrm{GL}(n, \mathbb{C})$. As we saw in that theorem, the functions $g \longrightarrow \chi_{k}(g)=\chi\left(g^{k}\right)$ are generalized characters; indeed they are the functions $\psi_{p_{k}} \circ \pi$. They are conveniently computable and therefore useful.

The operations $\chi \longrightarrow \chi_{k}$ on the ring of generalized characters of G are called the Adams operations.

Let us consider an example. Consider the polynomial

$$
s\left(x_{1}, \cdots, x_{n}\right)=\sum_{i \neq j} x_{i}^{2} x_{j}+2 \sum_{i<j<k} x_{i} x_{j} x_{k}
$$

We find that

$$
p_{1}^{3}=\sum_{i} x_{i}^{3}+3 \sum_{i \neq j} x_{i}^{2} x_{j}+6 \sum_{i<j<k} x_{i} x_{j} x_{k},
$$

so

$$
\begin{equation*}
s=\frac{1}{3}\left(p_{1}^{3}-p_{3}\right) \tag{35.9}
\end{equation*}
$$

Hence, if $\pi: G \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is a representation affording the character χ, then we have

$$
\begin{equation*}
\left(\psi_{s} \circ \pi\right)(g)=\frac{1}{3}\left(\chi(g)^{3}-\chi\left(g^{3}\right)\right) \tag{35.10}
\end{equation*}
$$

The expression on the right-hand side is useful for calculating the values of this function, which we have proved is a virtual character of $\operatorname{GL}(n, \mathbb{C})$, provided we know the values of the character χ. We will show in the next chapter that this function is actually a proper character. This will require ideas different from those than used in this chapter.

EXERCISES

Exercise 35.1. Express each of the sets of polynomials $\left\{e_{k} \mid k \leqslant 5\right\}$ and $\left\{p_{k} \mid k \leqslant 5\right\}$ in terms of the other.

Exercise 35.2. Here is the character table of S_{4}.

	1	(123)	$(12)(34)$	(12)	(1234)
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	3	0	-1	1	-1
χ_{4}	3	0	-1	-1	1
χ_{5}	2	-1	2	0	0

Using (35.10), compute $\psi_{s} \circ \pi$ when (π, V) is an irreducible representation with character χ_{i} for each i, and decompose the resulting class function into irreducible characters, confirming that it is a generalized character.

Duality between $\boldsymbol{S}_{\boldsymbol{k}}$ and GL($\left.n, \mathbb{C}\right)$

Let V be a complex vector space, and let $\bigotimes^{k} V=V \otimes \cdots \otimes V$ be the k-fold tensor of V. (Unadorned \otimes means $\otimes_{\mathbb{C}}$.) We consider this to be a right module over the group ring $\mathbb{C}\left[S_{k}\right]$, where $\sigma \in S_{k}$ acts by permuting the factors:

$$
\begin{equation*}
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)} \tag{36.1}
\end{equation*}
$$

It may be checked that with this definition

$$
\left(\left(v_{1} \otimes \cdots \otimes v_{k}\right) \sigma\right) \tau=\left(v_{1} \otimes \cdots \otimes v_{k}\right)(\sigma \tau)
$$

If A is \mathbb{C}-algebra and V is an A-module, then $\bigotimes^{k} V$ has an A-module structure; namely, $a \in A$ acts diagonally:

$$
a\left(v_{1} \otimes \cdots \otimes v_{k}\right)=a v_{1} \otimes \cdots \otimes a v_{k}
$$

This action commutes with the action (36.1) of the symmetric group, so it makes $\bigotimes^{k} V$ an $\left(A, \mathbb{C}\left[S_{k}\right]\right)$-bimodule. If $\rho: S_{k} \longrightarrow \mathrm{GL}\left(N_{\rho}\right)$ is a representation, then N_{ρ} is an S_{k}-module, so by Remark 34.2

$$
\begin{equation*}
V_{\rho}=\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} N_{\rho} \tag{36.2}
\end{equation*}
$$

is a left A-module.
If V is a complex vector space, we can take $A=\operatorname{End}(V)$. Embedding $\mathrm{GL}(V) \longrightarrow A$, we obtain a representation of $\mathrm{GL}(V)$ parametrized by a module N_{ρ} of S_{k}. This is the basic construction of Frobenius-Schur duality.

We now give a reinterpretation of the symmetric and exterior powers, which were used in the proof of Theorem 35.1 . Let $\mathbb{C}_{\text {sym }}$ be a left $\mathbb{C}\left[S_{k}\right]$ module for the trivial representation, and let $\mathbb{C}_{\text {alt }}$ be a $\mathbb{C}\left[S_{k}\right]$-module for the alternating character. Thus $\mathbb{C}_{\text {alt }}$ is \mathbb{C} with the S_{k}-module structure

$$
\sigma x=\varepsilon(\sigma) x
$$

for $\sigma \in S_{k}, x \in \mathbb{C}_{\text {alt }}$, where $\varepsilon: S_{k} \rightarrow\{ \pm 1\}$ is the alternating character.

Proposition 36.1. Let V be a vector space over \mathbb{C}. We have functorial isomorphisms

$$
\wedge^{k} V \cong\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\mathrm{alt}}, \quad \vee^{k} V \cong\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\mathrm{sym}}
$$

Here "functorial" means that if $T: V \longrightarrow W$ is a linear transformation, then we have a commutative diagram

$$
\begin{aligned}
\wedge^{k} V \xrightarrow{\cong}\left(\otimes^{k} V\right) & \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }} \\
\downarrow & \downarrow \\
\wedge^{k} W \xrightarrow{\cong}\left(\otimes^{k} W\right) & \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}
\end{aligned}
$$

and in particular if $V=W$, this implies that $\wedge^{k} V \cong\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}$ as $\mathrm{GL}(V)$-modules.

Proof. The proofs of these isomorphisms are similar. We will prove the first. It is sufficient to show that the right-hand side satisfies the universal property of the exterior k-th power. We recall that this is the following property of $\wedge^{k} V$. Given a vector space W, a k-linear map $f: V \times \cdots \times V \longrightarrow W$ is alternating if

$$
f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=\varepsilon(\sigma) f\left(v_{1}, \cdots, v_{k}\right)
$$

The universal property is that any such alternating map factors uniquely through $\wedge^{k} V$. That is, the map $\left(v_{1}, \cdots, v_{k}\right) \mapsto v_{1} \wedge \cdots \wedge v_{k}$ is itself alternating, and given any alternating map $f: V \times \cdots \times V \longrightarrow W$ there exists a unique linear map $F: \wedge^{k} V \longrightarrow W$ such that $f\left(v_{1}, \cdots, v_{k}\right)=F\left(v_{1} \wedge \cdots \wedge v_{k}\right)$. We will show that $\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}$ has the same universal property.

We are identifying the underlying space of $\mathbb{C}_{\text {alt }}$ with \mathbb{C}, so $1 \in \mathbb{C}_{\text {alt }}$. There exists a map $i: V \times \cdots \times V \rightarrow\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}$ given by

$$
i\left(v_{1}, \cdots, v_{k}\right)=\left(v_{1} \otimes \cdots \otimes v_{k}\right) \otimes_{\mathbb{C}\left[S_{k}\right]} 1
$$

Let $f: V \times \cdots \times V \rightarrow U$ be an alternating k-linear map into a vector space W. We must show that there exists a unique linear map

$$
F:\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\mathrm{alt}} \rightarrow W
$$

such that $f=F \circ i$. Uniqueness is clear since the image of i spans the space $\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}$. To prove existence, we observe first that by the universal property of the tensor product there exists a linear map $f^{\prime}: \bigotimes^{k} V \rightarrow W$ such that $f\left(v_{1}, \cdots, v_{k}\right)=f^{\prime}\left(v_{1} \otimes \cdots \otimes v_{k}\right)$. Now consider the map

$$
\left(\bigotimes^{k} V\right) \times \mathbb{C}_{\mathrm{alt}} \rightarrow W
$$

defined by $(\xi, t) \longmapsto t f^{\prime}(\xi)$. It follows from the fact that f is alternating that this map is $\mathbb{C}\left[S_{k}\right]$-balanced and consequently induces a map

$$
F:\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }} \rightarrow W
$$

This is the map we are seeking. We see that $\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}_{\text {alt }}$ satisfies the same universal property as the exterior power, so it is naturally isomorphic to $\wedge^{k} V$.

For the rest of this chapter, fix n and let $V=\mathbb{C}^{n}$. If $\rho: S_{k} \longrightarrow \mathrm{GL}\left(N_{\rho}\right)$ is any representation, then (36.2) defines a module for $\operatorname{GL}(n, \mathbb{C})$.

Theorem 36.1. Let $\rho: S_{k} \longrightarrow \mathrm{GL}\left(N_{\rho}\right)$ be a representation. There exists a homogeneous symmetric polynomial s_{ρ} of degree k in n variables such that if $\psi_{\rho}(g)$ is the trace of $g \in \mathrm{GL}(n, \mathbb{C})$ on V_{ρ}, and if t_{1}, \cdots, t_{n} are the eigenvalues of g, then

$$
\begin{equation*}
\psi_{\rho}(g)=s_{\rho}\left(t_{1}, \cdots, t_{n}\right) \tag{36.3}
\end{equation*}
$$

Proof. First let us prove this for g restricted to the subgroup of diagonal matrices. Let ξ_{1}, \ldots, ξ_{n} be the standard basis of V. In other words, identifying V with \mathbb{C}^{n}, let $\xi_{i}=(0, \ldots, 1, \ldots, 0)$, where the 1 is in the i-th position. The vectors $\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{k}}\right) \otimes \nu$, where ν runs through a basis of N_{ρ}, and $1 \leqslant$ $i_{1} \leqslant \cdots \leqslant i_{k} \leqslant n \operatorname{span} V_{\rho}$. They will generally not be linearly independent, but there will be a linearly independent subset that forms a basis of V_{ρ}. For g diagonal, if $g\left(\xi_{i}\right)=t_{i} \xi_{i}$, then $\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{k}}\right) \otimes \nu$ will be an eigenvector for g in V_{ρ} with eigenvalue $t_{i_{1}} \cdots t_{i_{k}}$. Thus, we see that there exists a homogeneous polynomial s_{ρ} of degree k such that (36.3) is true for diagonal matrices g.

To see that s_{ρ} is symmetric, we have pointed out that the action of S_{k} on $\otimes^{k} V$ commutes with the action of $\mathrm{GL}(n, \mathbb{C})$. In particular, it commutes with the action of the permutation matrices in $\operatorname{GL}(n, \mathbb{C})$, which form a subgroup isomorphic to S_{n}. These permute the eigenvectors $\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{k}}\right) \otimes \nu$ of g and hence their eigenvalues. Thus, the polynomial s_{ρ} must be symmetric.

Since the eigenvalues of a matrix are equal to the eigenvalues of any conjugate, we see that (36.3) must be true for any matrix that is conjugate to a diagonal matrix. Since these are dense in $\operatorname{GL}(n, \mathbb{C}),(36.3)$ follows for all g by continuity.

Proposition 36.2. Let $\rho_{i}: S_{k} \longrightarrow \mathrm{GL}\left(N_{\rho_{i}}\right)(i=1, \cdots, h)$ be the irreducible representations of S_{k} and let d_{1}, \cdots, d_{h} be their respective degrees. Then

$$
\begin{equation*}
p_{1}^{k}=\sum_{i} d_{i} s_{\rho_{i}} \tag{36.4}
\end{equation*}
$$

Proof. If R is a ring and M a right R-module, then

$$
\begin{equation*}
M \otimes_{R} R \cong M \tag{36.5}
\end{equation*}
$$

(To prove this standard isomorphism, observe that $m \otimes r \mapsto m r$ and $m \mapsto m \otimes 1$ are inverse maps between the two Abelian groups.) If M is an (S, R)-bimodule, then this is an isomorphism of S-modules. Consequently,

$$
\bigotimes_{\bigotimes}^{k} V \cong\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} \mathbb{C}\left[S_{k}\right]
$$

The multiplicity of ρ_{i} in the regular representation is d_{i}, that is, $\mathbb{C}\left[S_{k}\right] \cong$ $\bigoplus d_{i} \rho_{i}$, and hence

$$
\begin{equation*}
\bigotimes_{\bigotimes}^{k} V \cong \bigoplus_{i} d_{i}\left(\bigotimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} N_{\rho_{i}}=\bigoplus_{i} d_{i} V_{\rho_{i}} \tag{36.6}
\end{equation*}
$$

Taking characters, we obtain (36.4).
Recall that we ended the last chapter by asserting that ψ_{s} is a proper character of $\operatorname{GL}(n, \mathbb{C})$, where s is the polynomial in (35.9). We now have the tools to prove this.

Let $k=3$, and let ρ_{i} be the irreducible representations of degree 2 of S_{3}. We will take ρ_{1} to be the trivial representation, $\rho_{2}=\varepsilon$ to be the alternating representation, and ρ_{3} to be the irreducible two-dimensional representation. If $g \in \mathrm{GL}(n, \mathbb{C})$ has eigenvalues t_{1}, \cdots, t_{n}, then the value at g of the character of the representation of $\mathrm{GL}(n, \mathbb{C})$ on the module $\bigotimes^{3} V$ is

$$
p_{1}^{3}\left(t_{1}, \cdots, t_{n}\right)=\left(\sum t_{i}\right)^{3}=\sum t_{i}^{3}+3 \sum_{i \neq j} t_{i}^{2} t_{j}+6 \sum_{i<j<k} t_{i} t_{j} t_{k}
$$

The right-hand side of (36.4) consists of three terms. First, corresponding to ρ_{1} and the symmetric cube $\vee^{3} V \cong V_{\rho_{1}}$ representation of $G L(n, \mathbb{C})$ is

$$
h_{3}=\sum t_{i}^{3}+\sum_{i \neq j} t_{i}^{2} t_{j}+\sum_{i<j<k} t_{i} t_{j} t_{k}
$$

Second, corresponding to ρ_{2} and the exterior cube $\wedge^{3} V \cong V_{\rho_{2}}$ representation of $G L(n, \mathbb{C})$ is

$$
e_{3}=\sum_{i<j<k} t_{i} t_{j} t_{k}
$$

Finally, corresponding to ρ_{3}, the associated module $V_{\rho_{3}}$ of $G L(n, \mathbb{C})$ affords the character $\psi_{\rho_{3}}$, and the associated symmetric polynomial $s_{\rho_{3}}$ occurs with coefficient $d_{3}=2$. Thus satisfies the equation

$$
p_{1}^{3}=h_{3}+e_{3}+2 s_{\rho_{3}}
$$

from which we easily calculate that $s_{\rho_{3}}$ is the polynomial in (35.9).
The conjugacy classes of S_{k} are parametrized by the partitions of k. A partition of k is a decomposition of k into a sum of positive integers. Thus, the partitions of 5 are

$$
5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+2+1, \quad 2+1+1+1, \quad 1+1+1+1+1
$$

Note that the partitions $3+2$ and $2+3$ are considered equal. We may arrange the terms in a partition into descending order. Hence, a partition λ of k may be more formally defined to be a sequence of nonnegative integers $\left(\lambda_{1}, \cdots, \lambda_{l}\right)$ such that $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{l} \geqslant 0$ and $\sum_{i} \lambda_{i}=k$. It is sometimes convenient to allow some of the parts λ_{i} to be zero, in which case we identify two sequences if they differ only by trailing zeros. Thus $(3,2,0,0)$ is considered to be the same partition as $(3,2)$. The length or number of parts $l(\lambda)$ of the partition λ is the largest i such that $\lambda_{i} \neq 0$, so the length of the partition (3,2) is two. We will denote by $p(k)$ the number of partitions of k, so that $p(5)=7$.

If λ is a partition of k, there is another partition, called the conjugate partition, which may be constructed as follows. We construct from λ a diagram in which the i-th row is a series of λ_{i} boxes. Thus, the diagram corresponding to the partition $(3,2)$ is

Having constructed the diagram, we transpose it, and the corresponding partition is the conjugate partition, denoted λ^{t}. Hence, the transpose of the preceding diagram is

and so the partition of 5 conjugate to $(3,2)$ is $(2,1,1)$. These types of diagrams are called Young diagrams or Ferrers' diagrams.

More formally, the diagram $D(\lambda)$ of a partition λ is the set of $(i, j) \in \mathbb{Z}^{2}$ such that $0 \leqslant i$ and $0 \leqslant j \leqslant \lambda_{i}$. We associate with each pair (i, j) the box in the i-th row and the j-th column, where the convention is that the row index i increases as one moves downward and the column index j increases as one moves to the right, so that the boxes lie in the fourth quadrant.

Suppose that $\mu=\lambda^{t}$. Then $(i, j) \in D(\lambda)$ if and only if $(j, i) \in D(\mu)$. Therefore

$$
\begin{equation*}
j \leqslant \lambda_{i} \quad \Longleftrightarrow \quad i \leqslant \mu_{j} . \tag{36.7}
\end{equation*}
$$

If G is a finite group, let $X(G)$ be the free Abelian group generated by the isomorphism classes of irreducible representations. Because $X(G)$ has a wellknown ring structure, it is usually called the character ring of G, but we will not use the multiplication in $X(G)$ at all. To us it is simply an additive Abelian group with a distinguished set of generators, namely the set of isomorphism classes of irreducible representations. Let $\mathcal{R}_{k}=X\left(S_{k}\right)$. It is a free Abelian group of rank equal to the number $p(k)$ of partitions of k. Our convention is $\mathcal{R}_{0}=\mathbb{Z}$.

Remark 36.1. As a vector space, $\mathcal{R}_{k}=X\left(S_{k}\right)$ is isomorphic to the space of generalized characters on S_{k}, and by abuse of language we will frequently identify a generalized character with its corresponding element of \mathcal{R}_{k}.

Although we do not need the ring structure on \mathcal{R}_{k} itself, we will introduce a multiplication $\mathcal{R}_{k} \times \mathcal{R}_{l} \rightarrow \mathcal{R}_{k+l}$, which makes $\mathcal{R}=\bigoplus_{k} \mathcal{R}_{k}$ into a graded ring. The multiplication in \mathcal{R} is as follows. If θ, ρ are representations of S_{k} and S_{l}, respectively, then $\theta \otimes \rho$ is a representation of $S_{k} \times S_{l}$, which is a subgroup of S_{k+l}. We will always use the unadorned symbol \otimes to denote $\otimes_{\mathbb{C}}$.

We let $\theta \circ \rho$ be the representation obtained by inducing $\theta \otimes \rho$ from $S_{k} \times S_{l}$ to S_{k+l}. This multiplication, at first defined only for genuine representations, extends to virtual representations by additivity, and so we get a multiplication $\mathcal{R}_{k} \times \mathcal{R}_{l} \rightarrow \mathcal{R}_{k+l}$. It follows from the principle of transitivity of induction that this multiplication is associative, and since the subgroups $S_{k} \times S_{l}$ and $S_{l} \times S_{k}$ are conjugate in S_{k+l}, it is also commutative.

Now let us introduce another graded ring. Let n be a fixed integer, and let x_{1}, \ldots, x_{n} be indeterminates. We consider the ring

$$
\Lambda^{(n)}=\mathbb{Z}_{\text {sym }}\left[x_{1}, \ldots, x_{n}\right]
$$

of symmetric polynomials with integer coefficients in x_{1}, \ldots, x_{n}, graded by degree. By Proposition $35.1, \Lambda^{(n)}$ is a polynomial ring in the symmetric polynomials e_{1}, \cdots, e_{n},

$$
\begin{equation*}
\Lambda^{(n)} \cong \mathbb{Z}\left[e_{1}, \cdots, e_{n}\right] \tag{36.8}
\end{equation*}
$$

or equally, in terms of the symmetric polynomials h_{i},

$$
\Lambda^{(n)} \cong \mathbb{Z}\left[h_{1}, \cdots, h_{n}\right]
$$

$\Lambda^{(n)}$ is a graded ring. We have $\Lambda^{(n)}=\bigoplus \Lambda_{k}^{(n)}$, where $\Lambda_{k}^{(n)}$ consists of all homogeneous polynomials of degree k in $\Lambda^{(n)}$.
Proposition 36.3. The homogeneous part $\Lambda_{k}^{(n)}$ is a free Abelian group of rank equal to the number of partitions of k into no more than n parts.
Proof. Let $\lambda^{(n)}$ be such a partition. Thus $\lambda^{(n)}=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, where $\lambda_{1} \geqslant$ $\lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$ and $\sum_{i} \lambda_{i}=k$. Let

$$
m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ runs over all distinct permutations of $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Clearly, the m_{λ} form a \mathbb{Z}-basis of $\Lambda_{k}^{(n)}$, and therefore $\Lambda_{k}^{(n)}$ is a free Abelian group of rank equal to the number of partitions of k into no more than n parts.

In Theorem 36.1, we associated with each irreducible representation ρ of S_{k} an element s_{ρ} of $\Lambda_{k}^{(n)}$. Thus, there exists a homomorphism of Abelian groups $\operatorname{ch}_{k}^{(n)}: \mathcal{R}_{k} \rightarrow \Lambda_{k}^{(n)}$ such that $\operatorname{ch}_{k}^{(n)}(\rho)=s_{\rho}$. Let $\operatorname{ch}^{(n)}: \mathcal{R} \longrightarrow \Lambda^{(n)}$ be the homomorphism of graded rings that is $\mathrm{ch}_{k}^{(n)}$ on the homogeneous part \mathcal{R}_{k} of degree k.
Proposition 36.4. The map $\mathrm{ch}^{(n)}$ is a surjective homomorphism of graded rings. The map $\mathrm{ch}_{k}^{(n)}$ in degree k is an isomorphism if $n \geqslant k$.

Proof. The main thing to check is that the group law o that was introduced in the ring \mathcal{R} corresponds to multiplication of polynomials. Indeed, let θ and ρ be representations of S_{k} and S_{l}, respectively. Then $\theta \otimes \rho$ is an $S_{k} \times S_{l}$ module, and by Proposition 34.6, $\theta \circ \rho$ is the representation of S_{k+l} attached to $\mathbb{C}\left[S_{k+l}\right] \otimes_{\mathbb{C}\left[S_{k} \times S_{l}\right]}\left(N_{\theta} \otimes N_{\rho}\right)$. Therefore

$$
V_{\theta \circ \rho}=\left(\otimes^{k+l} V\right) \otimes_{\mathbb{C}\left[S_{k+l}\right]} \mathbb{C}\left[S_{k+l}\right] \otimes\left(N_{\theta} \otimes N_{\rho}\right)
$$

which by (36.5) is isomorphic to

$$
\begin{aligned}
& \left(\otimes^{k+l} V\right) \otimes_{\mathbb{C}\left[S_{k} \times S_{l}\right]}\left(N_{\theta} \otimes N_{\rho}\right) \\
\cong & \left(\left(\otimes^{k} V\right) \otimes\left(\otimes^{l} V\right)\right) \otimes_{\mathbb{C}\left[S_{k}\right] \otimes \mathbb{C}\left[S_{l}\right]}\left(N_{\theta} \otimes N_{\rho}\right) \\
\cong & \left(\otimes^{k} V \otimes_{\mathbb{C}\left[S_{k}\right]} N_{\theta}\right) \otimes\left(\otimes^{l} V \otimes_{\mathbb{C}\left[S_{l}\right]} N_{\rho}\right)=V_{\theta} \otimes V_{\rho} .
\end{aligned}
$$

Consequently the trace of $g \in \mathrm{GL}(n, \mathbb{C})$ on $V_{\theta \circ \rho}$ is the product of the traces on V_{θ} and V_{ρ}. It follows that for representations θ and ρ of S_{k} and S_{l}, we have $s_{\theta \circ \rho}=s_{\theta} s_{\rho}$. Hence, $\mathrm{ch}^{(n)}$ is multiplicative and therefore is a homomorphism of graded rings. It is surjective because a set of generators - the elementary symmetric polynomials e_{i} - are in the image. If $n \geqslant k$, then the ranks of \mathcal{R}_{k} and $\Lambda_{k}^{(n)}$ both equal $p(k)$, so surjectivity implies that it is an isomorphism.

We will denote by $\boldsymbol{e}_{k}, \boldsymbol{h}_{k} \in \mathcal{R}_{k}$ the classes of the alternating representation and the trivial representation, respectively. It follows from Proposition 36.1 that $\operatorname{ch}^{(n)}\left(\boldsymbol{e}_{k}\right)=e_{k}$ and $\operatorname{ch}^{(n)}\left(\boldsymbol{h}_{k}\right)=h_{k}$.
Proposition 36.5. \mathcal{R} is a polynomial ring in an infinite number of generators, $\mathcal{R}=\mathbb{Z}\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \cdots\right]=\mathbb{Z}\left[\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \boldsymbol{h}_{3}, \cdots\right]$.
Proof. To show that the \boldsymbol{e}_{i} generate \mathcal{R}, it is sufficient to show that the ring they generate contains an arbitrary element u of \mathcal{R}_{k} for any fixed k. Take $n \geqslant k$. Since e_{1}, \cdots, e_{n} generate the ring $\Lambda^{(n)}$, there exists a polynomial f with integer coefficients such that $f\left(e_{1}, \cdots, e_{n}\right)=\operatorname{ch}(u)$. Then $\mathrm{ch}^{(n)}$ applied to $f\left(e_{1}, \cdots, e_{n}\right)$ gives $\operatorname{ch}(u)$, and it follows from the injectivity assertion in Proposition 36.4 that $f\left(\boldsymbol{e}_{1}, \cdots, e_{n}\right)=u$.

To see that the \boldsymbol{e}_{i} are algebraically independent, if f is a polynomial with integer coefficients such that $f\left(e_{1}, \cdots, e_{n}\right)=0$, then since applying $\mathrm{ch}^{(n)}$ we have $f\left(e_{1}, \cdots, e_{n}\right)=0$, by Proposition 35.1 it follows that $f=0$.

Identical arguments work for the h 's using Proposition 35.1.
The rings $\Lambda^{(n)}$ may be combined as follows. We have a homomorphism

$$
\begin{equation*}
r_{n}: \Lambda^{(n+1)} \longrightarrow \Lambda^{(n)}, \quad x_{n+1} \longrightarrow 0 \tag{36.9}
\end{equation*}
$$

It is easy to see that in this homomorphism $e_{i} \mapsto e_{i}$ if $i \leqslant n$ while $e_{n+1} \mapsto 0$, and so in the inverse limit

$$
\begin{equation*}
\Lambda=\lim _{\leftarrow} \Lambda^{(n)} \tag{36.10}
\end{equation*}
$$

there exists a unique element whose image under the projection $\Lambda \rightarrow \Lambda^{(n)}$ is e_{k} for all $n \geqslant k$; we naturally denote this element e_{k}, and (36.8) implies that

$$
\Lambda \cong \mathbb{Z}\left[e_{1}, e_{2}, e_{3}, \cdots\right]
$$

is a polynomial ring in an infinite number of variables, and similarly

$$
\Lambda \cong \mathbb{Z}\left[h_{1}, h_{2}, h_{3}, \cdots\right]
$$

In the natural grading on Λ, e_{i} and h_{i} are homogeneous of degree i. Since the rank of $\Lambda_{k}^{(n)}$ equals the number of partitions of k into no more than n parts, the rank of Λ equals the number of partitions of k.
Proposition 36.6. We have $r_{n} \circ \mathrm{ch}^{(n+1)}=\mathrm{ch}^{(n)}$ as maps $\mathcal{R} \longrightarrow \Lambda^{(n)}$.
Proof. It is enough to check this on e_{1}, e_{2}, \cdots since they generate \mathcal{R} by Proposition 35.1. Both maps send $\boldsymbol{e}_{k} \longrightarrow e_{k}$ if $k \leqslant n$, and $\boldsymbol{e}_{k} \longrightarrow 0$ if $k>n$.

Now turning to the inverse limit (36.10), the homomorphisms $\mathrm{ch}^{(n)}: \mathcal{R} \rightarrow$ $\Lambda^{(n)}$ are compatible with the homomorphisms $\Lambda^{(n+1)} \rightarrow \Lambda^{(n)}$, and so there is induced a ring homomorphism ch : $\mathcal{R} \rightarrow \Lambda$.

Theorem 36.2. The map $\operatorname{ch}: \mathcal{R} \longrightarrow \Lambda$ is a ring isomorphism.
Proof. This is clear from Proposition 36.4.
Theorem 36.3. The rings \mathcal{R} and Λ admit automorphisms of order 2 that interchange $\boldsymbol{e}_{i} \longleftrightarrow \boldsymbol{h}_{i}$ and $e_{i} \longleftrightarrow h_{i}$.

Proof. Of course, it does not matter which ring we work in. Since $\Lambda \cong$ $\mathbb{Z}\left[e_{1}, e_{2}, e_{3}, \cdots\right]$, and since the e_{i} are algebraically independent, if u_{1}, u_{2}, \cdots are arbitrarily elements of Λ, there exists a unique ring homomorphism $\Lambda \longrightarrow \Lambda$ such that $e_{i} \longrightarrow u_{i}$. What we must show is that if we take the $u_{i}=h_{i}$, then this same homomorphism maps $h_{i} \longrightarrow u_{i}$. This follows from the fact that the recursive identity (35.3), from which we may solve for the e 's in terms of the h 's or conversely, is unchanged if we interchange $e_{i} \longleftrightarrow h_{i}$.

We will usually denote the involution of Theorem 36.3 as ι.

The Jacobi-Trudi Identity

An important question is to characterize the symmetric polynomials that correspond to irreducible representations of S_{k}. These are called Schur polynomials.

If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are square $N \times N$ matrices, and if $I, J \subset$ $\{1,2,3, \cdots, n\}$ are two subsets of cardinality r, where $1 \leqslant r \leqslant n$, the minors

$$
\operatorname{det}\left(a_{i j} \mid i \in I, j \in J\right), \quad \operatorname{det}\left(b_{i j} \mid i \notin I, j \notin J\right)
$$

are called complementary.
Proposition 37.1. Let A be a matrix of determinant 1, and let $B={ }^{t} A^{-1}$. Each minor of A equals \pm the complementary minor of B.

This is a standard fact from linear algebra. For example, if

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right),
$$

then

$$
a_{23}=-\left|\begin{array}{lll}
b_{11} & b_{12} & b_{14} \\
b_{31} & b_{32} & b_{34} \\
b_{41} & b_{42} & b_{44}
\end{array}\right|, \quad\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|=-\left|\begin{array}{ll}
b_{21} & b_{24} \\
b_{41} & b_{44}
\end{array}\right| .
$$

It is not hard to give a rule for the sign in general, but we will not need it.
Proof. Let us show how to prove this fact using exterior algebra. Suppose that A is an $N \times N$ matrix. Let $V=\mathbb{C}^{N}$. Then $\wedge^{N} V$ is one-dimensional, and we fix an isomorphism $\eta: \wedge^{N} V \longrightarrow \mathbb{C}$. If $1 \leqslant k \leqslant N$, and if $A: V \longrightarrow V$ is any linear transformation, we have a commutative diagram:

The vertical arrows marked \wedge are multiplications in the exterior algebra.
The vertical map $\eta \circ \wedge:\left(\wedge^{k} V\right) \times\left(\wedge^{N-k} V\right) \longrightarrow \mathbb{C}$ is a nondegenerate bilinear pairing. Indeed, let v_{1}, \cdots, v_{N} be a basis of V chosen so that

$$
\eta\left(v_{1} \wedge \cdots \wedge v_{N}\right)=1
$$

Then a pair of dual bases of $\wedge^{k} V$ and $\wedge^{N-k} V$ with respect to this pairing are

$$
v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}, \quad \pm v_{j_{1}} \wedge \cdots \wedge v_{j_{N-k}}
$$

where $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{N-k}$, and the two subsets

$$
\left\{i_{1}, \cdots, i_{k}\right\}, \quad\left\{j_{1}, \cdots, j_{N-k}\right\}
$$

of $\{1, \cdots, N\}$ are complementary. (The sign of the second basis vector will be $(-1)^{d}$, where $d=\left(i_{1}-1\right)+\left(i_{2}-2\right)+\ldots+\left(i_{k}-k\right)$.) If $\operatorname{det}(A)=1$, then the bottom arrow is the identity map, and therefore we see that the map $\wedge^{N-k} A: \wedge^{N-k} V \rightarrow \wedge^{N-k} V$ is the inverse of the adjoint of $\wedge^{k} A: \wedge^{k} V \rightarrow \wedge^{k} V$ with respect to this dual pairing. Hence, if we use the above dual bases to compute matrices for these two maps, the matrix of $\wedge^{N-k} A$ is the transpose of the inverse of the matrix of $\wedge^{k} A$. Thus, if B is the inverse of the adjoint of A with respect to the inner product on V for which v_{1}, \cdots, v_{N} are an orthonormal basis, then the matrix of $\wedge^{N-k} B$ is the same as the matrix of $\wedge^{k} A$. Now, with respect to the chosen dual bases, the coefficients in the matrix of $\wedge^{k} A$ are the $k \times k$ minors of A, while the matrix coefficients of $\wedge^{N-k} B$ are (up to sign) the complementary $(N-k) \times(N-k)$ minors of B. Hence, these are equal.

Proposition 37.2. Suppose that $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{s}\right)$ are conjugate partitions of k. Then the $r+s$ numbers

$$
\begin{array}{ll}
s+i-\lambda_{i}, & (i=1, \cdots, r) \\
s-j+\mu_{j}+1, & (j=1, \cdots, s)
\end{array}
$$

are $1,2,3, \cdots, r+s$ rearranged.

Another proof of this combinatorial lemma may be found in Macdonald [95], I.1.7.

Proof. First note that the $r+s$ integers all lie between 0 and $r+s$. Indeed, if $1 \leqslant i \leqslant r$, then

$$
0 \leqslant s+i-\lambda_{i} \leqslant s+r
$$

because s is greater than or equal to the length $l(\mu)=\lambda_{1} \geqslant \lambda_{i}$, so $s+i-\lambda_{i} \geqslant$ $s-\lambda_{i} \geqslant 0$, and $s+i-\lambda_{i} \leqslant s+i \leqslant s+r$; and if $1 \leqslant j \leqslant s$, then

$$
0 \leqslant s-j+\mu_{j}+1 \leqslant s+r
$$

since $s-j+\mu_{j}+1 \geqslant s-j \geqslant 0$, and $\mu_{j} \leqslant \mu_{1}=l(\lambda) \leqslant r$, so $s-j+\mu_{j}+1 \leqslant$ $s+\mu_{j} \leqslant s+r$.

Thus, it is sufficient to show that there are no duplications between these $s+r$ numbers. The sequence $s+i-\lambda_{i}$ is strictly increasing, so there can be no duplications in it, and similarly there can be no duplications among the $s-j+\mu_{j}+1$. We need to show that $s+i-\lambda_{i} \neq s-j+\mu_{j}+1$ for all $1 \leqslant i \leqslant r$, $1 \leqslant j \leqslant s$, that is,

$$
\begin{equation*}
\lambda_{i}+\mu_{j}+1 \neq i+j \tag{37.1}
\end{equation*}
$$

There are two cases. If $j \leqslant \lambda_{i}$, then by (36.7) we have also $i \leqslant \mu_{j}$, so $\lambda_{i}+$ $\mu_{j}+1>\lambda_{i}+\mu_{j} \geqslant i+j$. On the other hand, if $j>\lambda_{i}$, then by (36.7), $i>\lambda_{j}$, so

$$
i+j \geqslant \lambda_{i}+\mu_{j}+2>\lambda_{i}+\mu_{j}+1
$$

In both cases, we have (37.1).
We will henceforth denote the multiplication in \mathcal{R}, which was denoted in Chapter 36 with the symbol \circ, by the usual notations for multiplication. Thus what was formerly denoted $\theta \circ \rho$ will be denoted $\theta \rho$, etc. Observe that the ring \mathcal{R} is commutative.

We recall that \boldsymbol{e}_{k} and $\boldsymbol{h}_{k} \in \mathcal{R}_{k}$ denote the alternating representation and the trivial representation of S_{k}, respectively.

Proposition 37.3. We have

$$
\begin{equation*}
\boldsymbol{h}_{k}-\boldsymbol{e}_{1} \boldsymbol{h}_{k-1}+\boldsymbol{e}_{2} \boldsymbol{h}_{k-2}-\cdots+(-1)^{k} \boldsymbol{e}_{k}=0 \tag{37.2}
\end{equation*}
$$

if $k \geqslant 1$.
Proof. Choose $n \geqslant k$ so that the characteristic map ch ${ }^{(n)}: \mathcal{R}_{k} \rightarrow \Lambda_{k}^{(n)}$ is injective. It is then sufficient to prove that $\mathrm{ch}^{(n)}$ annihilates the left-hand side. Since $\operatorname{ch}^{(n)}\left(\boldsymbol{e}_{i}\right)=e_{i}$ and $\operatorname{ch}^{(n)}\left(\boldsymbol{h}_{i}\right)=h_{i}$, this follows from (35.3).

Proposition 37.4. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{s}\right)$ be conjugate partitions of k. Then

$$
\begin{equation*}
\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)_{1 \leqslant i, j \leqslant r}= \pm \operatorname{det}\left(e_{\mu_{i}-i+j}\right) \tag{37.3}
\end{equation*}
$$

Our convention is that if $r<0$, then $h_{r}=e_{r}=0$. (Also, remember that $h_{0}=e_{0}=1$.) As an example, if $\lambda=(3,3,1)$, then $\mu=\lambda^{t}=(3,2,2)$, and we have

$$
\left|\begin{array}{ccc}
h_{3} & h_{4} & h_{5} \\
h_{2} & h_{3} & h_{4} \\
0 & h_{0} & h_{1}
\end{array}\right|=\left|\begin{array}{lll}
e_{3} & e_{4} & e_{5} \\
e_{1} & e_{2} & e_{3} \\
e_{0} & e_{1} & e_{2}
\end{array}\right| .
$$

Later, in Proposition 37.1 we will see that the sign in (37.3) is always + . This could be proved now by carefully keeping track of the sign, but this is more trouble than it is worth because we will determine the sign in a different way.

Proof. We may interpret (35.3) as saying that the Toeplitz matrix

$$
\left(\begin{array}{ccc}
h_{0} & h_{1} & \cdots
\end{array} h_{r+s-1}, ~\left(\begin{array}{cc}
 \tag{37.4}\\
h_{0} & \cdots
\end{array} h_{r+s-2}\right)\right.
$$

is the transpose inverse of

$$
\left(\begin{array}{cccc}
e_{0} & & & \tag{37.5}\\
e_{1} & e_{0} & & \\
\vdots & & \ddots & \\
e_{r+s-1} & e_{r+s-2} & & e_{0}
\end{array}\right)
$$

conjugated by

$$
\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & \ddots & \\
& & & (-1)^{r+s-1}
\end{array}\right)
$$

We only need to compute the minors up to sign, and conjugation by the latter matrix only changes the signs of these minors. Hence, it follows from Proposition 37.1 that each minor of (37.4) is, up to sign, the same as the complementary minor of (37.5). Let us choose the minor of (37.4) with columns $s+1, \cdots, s+r$ and rows $s+i-\lambda_{i}(i=1, \cdots, r)$. This minor is the left-hand side of (37.3). By Proposition 37.2, the complementary minor of (37.5) is formed with columns $1, \cdots, s$ and rows $s-j+\mu_{j}+1(j=1, \cdots, s)$. After conjugating this matrix by

$$
\left(._{1} \cdot{ }^{1}\right)
$$

we obtain the right-hand side of (37.3).
Suppose that $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ is a partition of k. Then we will denote

$$
\boldsymbol{e}_{\lambda}=\boldsymbol{e}_{\lambda_{1}} \cdots \boldsymbol{e}_{\lambda_{r}}, \quad \boldsymbol{h}_{\lambda}=\boldsymbol{h}_{\lambda_{1}} \cdots \boldsymbol{h}_{\lambda_{r}}
$$

Referring to the definition of multiplication in the ring \mathcal{R}_{k}, we see that \boldsymbol{e}_{λ} and \boldsymbol{h}_{λ} are the representations of S_{k} induced from the alternating and trivial representations, respectively, of the subgroup $S_{\lambda_{1}} \times \cdots S_{\lambda_{r}}$. We will denote this group by S_{λ}.

There is a partial ordering on partitions. We write $\lambda \succcurlyeq \mu$ if

$$
\lambda_{1}+\ldots+\lambda_{i} \geqslant \mu_{1}+\ldots+\mu_{i}, \quad(i=1,2,3, \cdots)
$$

Since \mathcal{R}_{k} is the character ring of S_{k}, it has a natural inner product, which we will denote \langle,$\rangle . Our objective is to compute the inner product \left\langle\boldsymbol{e}_{\lambda}, \boldsymbol{h}_{\mu}\right\rangle$.

Proposition 37.5. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{s}\right)$ be partitions of k. Then

$$
\begin{equation*}
\left\langle\boldsymbol{h}_{\lambda}, \boldsymbol{e}_{\mu}\right\rangle=\left\langle\boldsymbol{e}_{\lambda}, \boldsymbol{h}_{\mu}\right\rangle \tag{37.6}
\end{equation*}
$$

This inner product is equal to the number of $r \times s$ matrices with each coefficient equal to either 0 or 1 such that the sum of the i-th row is equal to λ_{i} and the sum of the j-th column is equal to μ_{j}. This inner product is nonzero if and only if $\mu^{t} \succcurlyeq \lambda$. If $\mu^{t}=\lambda$, then the inner product is 1 .

Proof. Computing the right- and left-hand sides of (37.6) both lead to the same calculation, as we shall see. For definiteness, we will compute the lefthand side of (37.6). Note that

$$
\left\langle\boldsymbol{h}_{\lambda}, \boldsymbol{e}_{\mu}\right\rangle=\operatorname{dim} \operatorname{Hom}_{S_{k}}\left(\operatorname{Ind}_{S_{\lambda}}^{S_{k}}(1), \operatorname{Ind}_{S_{\mu}}^{S_{k}}(\varepsilon)\right),
$$

where ε is the alternating character of S_{λ}, and $\operatorname{Ind}_{S_{\mu}}^{S_{k}}(\varepsilon)$ denotes the corresponding induced representation of S_{k}. This is because $\boldsymbol{e}_{\mu_{i}} \in \mathcal{R}_{\mu_{i}}$ is the alternating character of $S_{\lambda_{i}}$, and the multiplication in \mathcal{R} is defined so that the product $\boldsymbol{e}_{\mu}=\boldsymbol{e}_{\mu_{1}} \cdots \boldsymbol{e}_{\mu_{r}}$ is obtained by induction from S_{μ}.

By Mackey's theorem, we must count the number of double cosets in $S_{\mu} \backslash S_{k} / S_{\lambda}$ that support intertwining operators. (See Remark 34.1.) Simply counting these double cosets is sufficient because the representations that we are inducing are both one-dimensional, so each space on the right-hand side of (34.10) is either one-dimensional (if the coset supports an intertwining operator) or zero-dimensional (if it doesn't).

First, we will show that the double cosets in $S_{\mu} \backslash S_{k} / S_{\lambda}$ may be parametrized by $s \times r$ matrices with nonnegative integer coefficients such that the sum of the i-th row is equal to μ_{i} and the sum of the j-th column is equal to λ_{j}. Then we will show that the double cosets that support intertwining operators are precisely those that have no entry >1. This will prove the first assertion.

We will identify S_{k} with the group of $k \times k$ permutation matrices. (A permutation matrix is one that has only zeros and ones as entries, with exactly one nonzero entry in each row and column.) Then S_{λ} is the subgroup consisting of elements of the form

$$
\left(\begin{array}{cccc}
D_{1} & 0 & \cdots & 0 \\
0 & D_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & D_{r}
\end{array}\right)
$$

where D_{i} is a $\lambda_{i} \times \lambda_{i}$ permutation matrix. Let $g \in S_{k}$ represent a double coset in $S_{\mu} \backslash S_{k} / S_{\lambda}$. Let us write g in block form,

$$
\left(\begin{array}{cccc}
G_{11} & G_{12} & \cdots & G_{1 r} \tag{37.7}\\
G_{21} & G_{22} & \cdots & G_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
G_{s 1} & G_{s 2} & \cdots & G_{s r}
\end{array}\right)
$$

where $G_{i j}$ is a $\mu_{i} \times \lambda_{i}$ block. Let $\gamma_{i j}$ be the rank of $G_{i j}$, which is the number of nonzero entries. Then the matrix $r \times s$ matrix $\left(\gamma_{i j}\right)$ is independent of the choice of representative of the double coset. It has the property that the sum of the i-th row is equal to μ_{i} and the sum of the j-th column is equal to λ_{j}. Moreover, it is easy to see that any such matrix arises from a double coset in this manner and determines the double coset uniquely. This establishes the correspondence between the matrices $\left(\gamma_{i j}\right)$ and the double cosets.

Next we show that a double coset supports an intertwining operator if and only if each $\gamma_{i j} \leqslant 1$. A double coset $S_{\mu} g S_{\lambda}$ supports an intertwining operator if and only if there exists a nonzero function $\Delta: S_{k} \rightarrow \mathbb{C}$ with support in $S_{\mu} g S_{\lambda}$ such that

$$
\begin{equation*}
\Delta(\tau h \sigma)=\varepsilon(\tau) \Delta(h) \tag{37.8}
\end{equation*}
$$

for $\tau \in S_{\mu}, \sigma \in S_{\lambda}$.
First, suppose the matrix $\left(\gamma_{i j}\right)$ is given such that for some particular i, j, we have $\gamma=\gamma_{i j}>1$. Then we may take as our representative of the double coset a matrix g such that

$$
G_{i j}=\left(\begin{array}{r}
I_{r} \\
0 \\
0
\end{array}\right) .
$$

Now there exists a transposition $\sigma \in S_{\lambda}$ and a transposition $\tau \in S_{\mu}$ such that $g=\tau g \sigma$. Indeed, we may take τ to be the transposition (12) $\in S_{\lambda_{j}} \subset S_{\lambda}$ and σ to be the transposition (12) $\in S_{\mu_{i}} \subset S_{\mu}$. Now, by (37.8),

$$
\Delta(g)=\Delta(\tau g \sigma)=-\Delta(g)
$$

so $\Delta(g)=0$ and therefore Δ is identically zero. We see that if any $\gamma_{i j}>1$, then the corresponding double coset does not support an intertwining operator.

On the other hand, if each $\gamma_{i j} \leqslant 1$, then we will show that for g a representative of the corresponding double coset, $g^{-1} S_{\mu} g \cap S_{\lambda}=\{1\}$, or

$$
\begin{equation*}
S_{\mu} g \cap g S_{\lambda}=\{g\} \tag{37.9}
\end{equation*}
$$

Indeed, suppose that $\tau \in S_{\mu}$ and $\sigma \in S_{\lambda}$ such that $\tau g=g \sigma$. Writing

$$
\tau=\left(\begin{array}{cccc}
\tau_{\mu_{1}} & & \\
& \tau_{\mu_{2}} & \\
& & \ddots .
\end{array}\right), \quad \sigma=\left(\begin{array}{cccc}
\sigma_{\lambda_{1}} & & \\
& & \sigma_{\lambda_{2}} & \\
& & & \\
& & & \ddots .
\end{array}\right)
$$

with $\tau_{\mu_{i}} \in S_{\mu_{i}}$ and $\sigma_{\lambda_{i}} \in S_{\lambda_{i}}$ and letting g be as in (37.7), we have $\tau_{\mu_{i}} G_{i j}=$ $G_{i j} \sigma_{\lambda_{j}}$. If $\tau_{\mu_{i}} \neq I$, then

$$
\tau_{\mu_{i}}\left(G_{i 1} \cdots G_{i r}\right) \neq\left(G_{i 1} \cdots G_{i r}\right)
$$

since the rows of the second matrix are distinct. Thus $\tau_{\mu_{i}} G_{i j} \neq G_{i j}$ for some i. Since $G_{i j}$ has at most one nonzero entry, it is impossible that after reordering the rows (which is the effect of left multiplication by $\tau_{\mu_{i}}$) this nonzero entry could be restored to its original position by reordering the columns (which is the effect of right multiplication by $\left.\sigma_{\lambda_{j}}^{-1}\right)$. Thus $\tau_{\mu_{i}} G_{i j} \neq G_{i j}$ implies that $\tau_{\mu_{i}} G_{i j} \neq G_{i j} \sigma_{\lambda_{j}}$. This contradiction proves (37.9).

Now (37.9) shows that each element of the double coset has a unique representation as $\tau g \sigma$ with $\tau \in S_{\mu}$ and $\sigma \in S_{\lambda}$. Hence, we may define

$$
\Delta(h)=\left\{\begin{array}{l}
\varepsilon(\tau) \text { if } h=\tau g \sigma \text { with } \tau \in S_{\mu} \text { and } \sigma \in S_{\lambda} \\
0 \text { otherwise }
\end{array}\right.
$$

and this is well-defined. Hence, such a double coset does support an intertwining operator.

Now we have asserted further that (37.6) is nonzero if and only if $\mu^{t} \succcurlyeq \lambda$ and that if $\mu^{t}=\lambda$, then the inner product is 1 . Let us ask, therefore, for given λ and μ, whether we can construct a matrix $\left(\gamma_{i j}\right)$ with each $\gamma_{i j}=0$ or 1 such that the sum of the i-th row is μ_{i} and the sum of the j-th column is λ_{j}. Let $\nu=\mu^{t}$. Then

$$
\nu_{i}=\operatorname{card}\left\{j \mid \mu_{j} \geqslant i\right\}
$$

That is, ν_{i} is the number of rows that will accommodate up to $i 1$'s. Now $\nu_{1}+\nu_{2}+\ldots+\nu_{t}$ is equal to the number of rows that will take a 1 , plus the number of rows that will take two 1 's, and so forth. Let us ask how many 1's we may put in the first t columns. Each nonzero entry must lie in a different row, so to put as many 1's as possible in the first t columns, we should put ν_{t} of them in those rows that will accommodate t nonzero entries, ν_{t-1} of them in those rows that will accommodate $t-1$ entries, and so forth. Thus $\nu_{1}+\ldots+\nu_{t}$ is the maximum number of 1's we can put in the first t columns. We need to place $\lambda_{1}+\ldots+\lambda_{t}$ ones in these rows, so in order for the construction to be possible, what we need is

$$
\lambda_{1}+\ldots+\lambda_{t} \leqslant \nu_{1}+\ldots+\nu_{t}
$$

for each t, that is, for $\nu \succcurlyeq \lambda$. It is easy to see that if $\nu=\lambda$, then the location of the ones in the matrix $\left(\gamma_{i j}\right)$ is forced so that in this case there exists a unique intertwining operator.

Corollary 37.1. If λ and μ are partitions of k, then we have $\mu^{t} \succcurlyeq \lambda^{t}$ if and only if $\lambda \succcurlyeq \mu$.

Proof. This is equivalent to the statement that $\mu^{t} \succcurlyeq \lambda$ if and only if $\lambda^{t} \succcurlyeq \mu$. In this form, this is contained in the preceding proposition from the identity (37.6) together with the characterization of the nonvanishing of that inner product. Of course, one may also give a direct combinatorial argument.

Theorem 37.1. (Jacobi-Trudi identity) Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ and $\mu=$ $\left(\mu_{1}, \cdots, \mu_{s}\right)$ be conjugate partitions of k. We have the identity

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{h}_{\lambda_{i}-i+j}\right)_{1 \leqslant i, j \leqslant r}=\operatorname{det}\left(\boldsymbol{e}_{\mu_{i}-i+j}\right)_{1 \leqslant i, j \leqslant s} \tag{37.10}
\end{equation*}
$$

in \mathcal{R}_{k}. We denote this element (37.10) as \boldsymbol{s}_{λ}. It is an irreducible character of S_{k} and may be characterized as the unique irreducible character that occurs with positive multiplicity in both $\operatorname{Ind}_{S_{\mu}}^{S_{k}}(\varepsilon)$ and $\operatorname{Ind}_{S_{\lambda}}^{S_{k}}(1)$; it occurs with multiplicity one in each of them. The $p(k)$ characters \boldsymbol{s}_{λ} are all distinct, and are all the irreducible characters of S_{k}.

Proof. Let $n \geqslant k$, so that $\mathrm{ch}^{(n)}: \mathcal{R}_{k} \rightarrow \Lambda_{k}^{(n)}$ is injective. Applying ch to (37.10) and using (37.3), we see that the left- and right-hand sides are either equal or negatives of each other. We will show that the inner product of the left-hand side with the right-hand side of (37.10) equals 1 . Since the inner product is positive definite, this will show that the left- and right-hand sides are actually equal. Moreover if $\sum d_{i} \chi_{i}$ is the decomposition of (37.10) into irreducibles, this inner product is $\sum_{i} d_{i}^{2}$, so knowing that the inner product is 1 will imply that \boldsymbol{s}_{λ} is either an irreducible character, or the negative of an irreducible character.

We claim that expanding the determinant on the left-hand side of (37.10) gives a sum of terms of the form $\pm \boldsymbol{h}_{\lambda^{\prime}}$ where each $\lambda^{\prime} \succcurlyeq \lambda$ and the term \boldsymbol{h}_{λ} occurs exactly once. Indeed, the terms in the expansion of the determinant are of the form

$$
\boldsymbol{h}_{\lambda_{1}-1+j_{1}} \boldsymbol{h}_{\lambda_{2}-1+j_{2}} \cdots \boldsymbol{h}_{\lambda_{r}-r+j_{r}},
$$

where $\left(j_{1}, \cdots, j_{r}\right)$ is a permutation of $(1,2, \cdots, r)$. If we arrange the indices $\lambda_{i}-i+j_{i}$ into descending order as $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots$, then λ_{1}^{\prime} is greater than or equal to $\lambda_{1}-1+j_{1}$. Moreover, $j_{1} \geqslant 1$ so

$$
\lambda_{1}^{\prime} \geqslant \lambda_{1}-1+j_{1} \geqslant \lambda_{1}
$$

and similarly $j_{1}+j_{2} \geqslant 3$ so

$$
\lambda_{1}^{\prime}+\lambda_{2}^{\prime} \geqslant\left(\lambda_{1}-1+j_{1}\right)+\left(\lambda_{2}-2+j_{2}\right) \geqslant \lambda_{1}+\lambda_{2}
$$

and so forth.
Similarly, expanding the right-hand side gives a sum of terms of the form $\pm \boldsymbol{e}_{\mu^{\prime}}$, where $\mu^{\prime} \succcurlyeq \mu$, and the term \boldsymbol{e}_{μ} also occurs exactly once.

Now let us consider $\left\langle\boldsymbol{h}_{\lambda^{\prime}}, \boldsymbol{e}_{\mu^{\prime}}\right\rangle$. By Proposition 37.5, if this is nonzero we have $\left(\mu^{\prime}\right)^{t} \succcurlyeq \lambda^{\prime}$. Since $\lambda^{\prime} \succcurlyeq \lambda$ and $\mu^{\prime} \succcurlyeq \mu$, which implies $\mu^{t} \succcurlyeq\left(\mu^{\prime}\right)^{t}$ by Corollary 37.1, we have

$$
\lambda=\mu^{t} \succcurlyeq\left(\mu^{\prime}\right)^{t} \succcurlyeq \lambda^{\prime} \succcurlyeq \lambda .
$$

Thus we must have $\lambda^{\prime}=\lambda$. It is easy to see that this implies that $\left(j_{1}, \cdots, j_{r}\right)=$ $(1,2, \cdots, r)$, so the monomial e_{λ} occurs exactly once in the expansion of $\operatorname{det}\left(\boldsymbol{h}_{\lambda_{i}-i+j}\right)$. A similar analysis applies to $\operatorname{det}\left(\boldsymbol{e}_{\mu_{i}-i+j}\right)$.

We see that the inner product of the left- and right-hand sides of (37.10) equals 1 , which implies everything except that $\boldsymbol{s}_{\boldsymbol{\lambda}}$ and not $-\boldsymbol{s}_{\boldsymbol{\lambda}}$ is an irreducible character of S_{k}. To see this, we form the inner product $\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{h}_{\mu}\right\rangle$. The same considerations show that this inner product is 1 . Since \boldsymbol{h}_{μ} is a proper character (it is the character of $\left.\operatorname{Ind}_{S_{\mu}}^{S_{k}}(1)\right)$ this implies that it is \boldsymbol{s}_{λ}, and not $-\boldsymbol{s}_{\lambda}$, is an irreducible character.

We have just noted that \boldsymbol{s}_{λ} occurs with positive multiplicity in \boldsymbol{h}_{λ}, which is the character of the representation $\operatorname{Ind}_{S_{\lambda}}^{S_{k}}(1)$. Similar considerations show that $\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{e}_{\mu}\right\rangle=1$ and \boldsymbol{e}_{λ} is the character of the representation $\operatorname{Ind}_{S_{\mu}}^{S_{k}}(\epsilon)$. By Proposition 37.5, $\left\langle\boldsymbol{e}_{\mu}, \boldsymbol{h}_{\lambda}\right\rangle=1$, so there cannot be any other representation that occurs with positive multiplicity in both.

This characterization of s_{λ} shows that it cannot equal s_{μ} for any $\mu \neq \lambda$, so the irreducible characters \boldsymbol{s}_{λ} are all distinct. Their number is $p(k)$, which is also the number of conjugacy classes in S_{k} (that is, the total number of irreducible representations). We have therefore constructed all of them.

Theorem 37.2. If λ and μ are conjugate partitions, and if ι is the involution of Theorem 36.3, then ${ }^{\iota} \boldsymbol{s}_{\lambda}=s_{\mu}$ and ${ }^{\iota} s_{\lambda}=s_{\mu}$.

Proof. Since ${ }^{\iota} \boldsymbol{h}_{\lambda}=\boldsymbol{e}_{\lambda}$ and ${ }^{\iota} \boldsymbol{e}_{\lambda}=\boldsymbol{h}_{\lambda}$, this follows from the Jacobi-Trudi identity.

EXERCISES

Exercise 37.1. Let λ and μ be partitions of k. Show that

$$
\left\langle\boldsymbol{h}_{\lambda}, \boldsymbol{h}_{\mu}\right\rangle=\left\langle\boldsymbol{e}_{\lambda}, \boldsymbol{e}_{\mu}\right\rangle
$$

and that this inner product is equal to the number of $r \times s$ matrices with each coefficient a nonnegative integer such that the sum of the i-th row is equal to λ_{i}, and the sum of the j-th column is equal to μ_{j}.

Exercise 37.2. Give a combinatorial proof of Corollary 37.1.
Zelevinsky [133] shows how the ring \mathcal{R} may be given the structure of a graded Hopf algebra. This extra algebraic structure (actually introduced earlier by Geissinger) encodes all the information about the representations of S_{k} that comes
from Mackey theory. Moreover, a similar structure exists in a ring $\mathcal{R}(q)$ analogous to \mathcal{R}, constructed from the representations of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$, which we will consider in Chapter 49. Thus Zelevinsky is able to give a unified discussion of important aspects of the two theories. In the next exercises, we will establish the basic fact that \mathcal{R} is a Hopf algebra.

Let A be a commutative ring. A graded A-module R is an A-module R with a sequence $\left\{R_{0}, R_{1}, R_{2}, \cdots\right\}$ of submodules such that $R=\bigoplus R_{i}$, and a homomorphism $R \longrightarrow S$ of graded A-modules is a homomorphism that takes R_{i} into S_{i}. The tensor product $R \otimes S=R \otimes_{A} S$ of two graded A-modules is a graded A-module with

$$
(R \otimes S)_{m}=\bigoplus_{k+l=m} R_{k} \otimes S_{l}
$$

A graded A-algebra is an A-algebra R in which $R_{0}=A$ and the multiplication satisfies $R_{k} \cdot R_{l} \subset R_{k+l}$. This means that the map $m: R \otimes R \longrightarrow R$ such that $m(x \otimes y)=x y$ is a homomorphism of graded A-modules. From this point of view, we may formulate the definition of a graded A-algebra as follows: it is a graded A-module R with $R_{0}=A$, and a graded A-module homomorphism $m: R \otimes R \longrightarrow R$ such that the diagram

is commutative. This is a reformulation of the associative law. We also assume that the maps $R_{0} \otimes R_{i}=A \otimes R_{i} \longrightarrow R_{i}$ and $R_{i} \otimes R_{0}=R_{i} \otimes A \longrightarrow R_{i}$ induced by m are the canonical isomorphisms in which $m(a \otimes r)=m(r \otimes a)=a r$ for $a \in A, r \in R_{i}$. Formulated this way, we may dualize the notion of a graded A-algebra, obtaining the notion of a graded A-coalgebra. Dualization in this context means formulating the concept diagrammatically and then reversing the arrows. Thus, in a coalgebra, the multiplication $m: R \otimes R \longrightarrow R$ is replaced by a comultiplication, which is the homomorphism $R \longrightarrow R \otimes R$ of graded algebras such that the diagram

is commutative. We again assume that $R_{0}=A$, and we assume that the maps $R_{i} \longrightarrow R_{0} \otimes R_{i}=A \otimes R_{i}$ and $R_{i} \longrightarrow R_{i} \otimes R_{0}=R_{i} \otimes A$ induced by m^{*} are the canonical isomorphisms, mapping $r \in R_{i}$ to $1 \otimes r$ or $r \otimes 1$.

Exercise 37.3. Suppose that $k+l=m$. Let \otimes denote $\otimes_{\mathbb{Z}}$. The group $\mathcal{R}_{k} \otimes \mathcal{R}_{l}$ can be identified with the free Abelian group identified with the irreducible representations of $S_{k} \times S_{l}$. (Explain.) So restriction of a representation from S_{m} to $S_{k} \times S_{l}$ gives a group homomorphism $\mathcal{R}_{m} \longrightarrow \mathcal{R}_{k} \otimes \mathcal{R}_{l}$. Combining these maps gives a map

$$
m^{*}: \mathcal{R}_{m} \longrightarrow \bigoplus_{k+l=m} \mathcal{R}_{k} \otimes \mathcal{R}_{l}=(\mathcal{R} \otimes \mathcal{R})_{m}
$$

Show that this homomorphism of graded \mathbb{Z}-algebras makes \mathcal{R} into a graded coalgebra.

If R and S are graded A-algebras, then we can make $R \otimes S$ into a graded A algebra in which the multiplication sends $(r \otimes s) \otimes\left(r^{\prime} \otimes s^{\prime}\right) \longrightarrow m\left(r \otimes r^{\prime}\right) \otimes m\left(s \otimes s^{\prime}\right)$. Making use of the transposition map $\tau: S \otimes R \longrightarrow R \otimes S$, we can formulate this multiplication as the composition

$$
(R \otimes S) \otimes(R \otimes S) \xrightarrow{1 \otimes \tau \otimes 1} R \otimes R \otimes S \otimes S \quad \begin{aligned}
& m \otimes m \\
& \\
& R \otimes S .
\end{aligned}
$$

Dually, if R and S are graded A-coalgebras, we can make $R \otimes S$ into a graded A-coalgebra, in which the comultiplication is the composition

$$
R \otimes S \xrightarrow{m^{*} \otimes m^{*}} R \otimes R \otimes S \otimes S \xrightarrow{1 \otimes \tau^{-1} \otimes 1}(R \otimes S) \otimes(R \otimes S) .
$$

Exercise 37.4. Let R be a graded algebra that is also a graded coalgebra. Show that the three statements are equivalent.
(i) The multiplication $m: R \otimes R \longrightarrow R$ is a homomorphism of coalgebras.
(ii) The comultiplication $m^{*}: R \longrightarrow R \otimes R$ is a homomorphism of algebras.
(iii) The following diagram is commutative:

If the equivalent conditions of Exercise 37.4 are satisfied, then R is called a Hopf algebra.

Exercise 37.5. (Zelevinsky [133]) (i) Let $k+l=p+q=m$. Representing elements of the symmetric group as matrices, show that a complete set of double coset representatives for $\left(S_{p} \times S_{q}\right) \backslash S_{m} /\left(S_{k} \times S_{l}\right)$ consists of the matrices

$$
\left(\begin{array}{cccc}
I_{a} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{c} \\
0 & 0 & I_{d} & 0 \\
0 & I_{b} & 0 & 0
\end{array}\right),
$$

where $a+b=k, c+d=l, a+c=p$, and $b+d=q$.
(ii) Use (i) and Mackey theory to prove that \mathcal{R} is a grade Hopf algebra over \mathbb{Z}.

Hint: Both parts are similar to parts of the proof of Proposition 37.5.

Schur Polynomials and GL (n, \mathbb{C})

Now let $s_{\mu}\left(x_{1}, \cdots, x_{n}\right)$ be the symmetric polynomial $\mathrm{ch}^{(n)}\left(s_{\mu}\right)$; we will use the same notation s_{μ} for the element $\operatorname{ch}\left(s_{\mu}\right)$ of the inverse limit ring Λ defined by (36.10). These are the Schur polynomials.

Theorem 38.1. Assume that $n \geqslant l(\lambda)$. We have

$$
s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=\frac{\left|\begin{array}{cccc}
x_{1}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{1}+n-1} & \cdots & x_{n}^{\lambda_{1}+n-1} \tag{38.1}\\
x_{1}^{\lambda_{2}+n-2} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{n}^{\lambda_{2}+n-2} \\
\vdots & & & \vdots \\
x_{1}^{\lambda_{n}} & x_{2}^{\lambda_{n}} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right|}{\left|\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \\
x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\
\vdots & & & \vdots \\
x_{1} & x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right|},
$$

provided that n is greater than or equal to the length of the partition k, so that we may denote $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ (possibly with trailing zeros). In this case $s_{\lambda} \neq 0$.

It is worth recalling that the Vandermonde determinant in the denominator can be factored:

$$
\left|\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \\
x_{1}^{n-2} & x_{2}^{n-2} & \cdots & x_{n}^{n-2} \\
\vdots & & & \vdots \\
x_{1} & x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right|=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

It is also worth noting, since it is not immediately obvious from the expression (38.1), that the Schur polynomial s_{λ} in $n+1$ variables restricts to the Schur
polynomial also denoted s_{λ} under the map (36.9). This is of course clear from Proposition 36.6 and the fact that $\operatorname{ch}\left(\boldsymbol{s}_{\lambda}\right)=s_{\lambda}$.
Proof. Let $e_{k}^{(i)}$ be the k-th elementary symmetric matrix in $n-1$ variables

$$
x_{1}, \cdots, x_{i-i}, x_{i+1}, \cdots, x_{n}
$$

omitting x_{i}. We have, using (35.1) and (35.2) and omitting one variable in (35.1),

$$
\begin{aligned}
\sum_{k=0}^{\infty}(-1)^{k} e_{k}^{(i)} t^{k} & =\prod_{j \neq i}^{n}\left(1-x_{j} t\right) \\
\sum_{k=0}^{\infty} h_{k} t^{k} & =\prod_{i=1}^{n}\left(1-x_{i} t\right)^{-1}
\end{aligned}
$$

and therefore

$$
\left[\sum_{k=0}^{\infty}(-1)^{k} e_{k}^{(i)} t^{k}\right]\left[\sum_{k=0}^{\infty} h_{k} t^{k}\right]=\left(1-t x_{i}\right)^{-1}=1+t x_{i}+t^{2} x_{i}^{2}+\cdots
$$

Comparing the coefficients of t^{r} in this identity, we have

$$
\sum_{k=0}^{\infty}(-1)^{k} e_{k}^{(i)} h_{r-k}=x_{i}^{r}
$$

(Our convention is that $e_{k}^{(i)}=h_{k}=0$ if $k<0$, and also note that $e_{k}^{(i)}=0$ if $k \geqslant n$.) Therefore, we have

$$
\begin{gathered}
\left(\begin{array}{cccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & \cdots & h_{\lambda_{1}+n-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & \cdots & h_{\lambda_{2}+n-2} \\
\vdots & \vdots & & \vdots \\
h_{\lambda_{n}-n+1} & h_{\lambda_{n}-n+2} & \cdots & h_{\lambda_{n}}
\end{array}\right)\left(\begin{array}{cccc}
\pm e_{n-1}^{(1)} \pm e_{n-1}^{(2)} & \cdots & \pm e_{n-1}^{(n)} \\
\mp e_{n-2}^{(1)} \mp e_{n-2}^{(2)} & \cdots & \mp e_{n-2}^{(n)} \\
\vdots & & & \vdots \\
e_{0}^{(1)} & e_{0}^{(2)} & \cdots & e_{0}^{(n)}
\end{array}\right) \\
\\
\left(\begin{array}{cccc}
x_{1}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{1}+n-1} & \cdots & x_{n}^{\lambda_{1}+n-1} \\
x_{1}^{\lambda_{2}+n-2} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{2}^{\lambda_{2}+n-2} \\
\vdots & & & \vdots \\
x_{1}^{\lambda_{n}} & x_{2}^{\lambda_{n}} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right) .
\end{gathered}
$$

Denote the determinant of the second factor on the left-hand side by D. Taking determinants,

$$
s_{\lambda} D=\left|\begin{array}{cccc}
x_{1}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{1}+n-1} & \cdots & x_{n}^{\lambda_{1}+n-1} \tag{38.2}\\
x_{1}^{\lambda_{2}+n-2} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{n}^{\lambda_{2}+n-2} \\
\vdots & & & \vdots \\
x_{1}^{\lambda_{n}} & x_{2}^{\lambda_{n}} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right|
$$

Hence, we have only to prove that D is equal to the denominator in (38.1), and this follows from (38.2) by taking $\lambda=(0, \cdots, 0)$ since $s_{(0, \cdots, 0)}=1$.

Suppose that V and W are vector spaces over a field of characteristic zero and $B: V \times \cdots \times V \longrightarrow W$ is a symmetric k-linear map. Let $Q: V \longrightarrow V$ be the function $Q(v)=B(v, \cdots, v)$. The function B can be reconstructed from Q, and this process is called polarization. For example, if $k=2$ we have

$$
B(v, w)=\frac{1}{2}(Q(v+w)-Q(v)-Q(w)),
$$

as we may see by expanding the right-hand side and using $B(v, w)=B(w, v)$.

Proposition 38.1. Let U and W be vector spaces over a field of characteristic zero and let $B: U \times \cdots \times U \longrightarrow W$ be a symmetric k-linear map. Let Q : $U \rightarrow W$ be the function $Q(u)=B(u, \cdots, u)$. If $u_{1}, \cdots, u_{k} \in U$, and if $S \subset I=\{1,2, \cdots, k\}$, let $u_{S}=\sum_{i \in S} u_{i}$. We have

$$
B\left(u_{1}, \cdots, u_{k}\right)=\frac{1}{k!}\left[\sum_{S \subseteq I}(-1)^{k-|S|} Q\left(u_{S}\right)\right] .
$$

Proof. Expanding $Q\left(u_{S}\right)=B\left(u_{S}, \cdots, u_{S}\right)$ and using the k-linearity of B, we have

$$
Q\left(u_{S}\right)=\sum_{i_{1}, \cdots, i_{k} \in S} B\left(u_{i_{1}}, u_{i_{2}}, \cdots, u_{i_{k}}\right) .
$$

Therefore

$$
\begin{aligned}
& \sum_{S \subseteq I}(-1)^{k-|S|} Q\left(u_{S}\right)= \sum_{1 \leqslant i_{1} \leqslant k} B\left(u_{i_{1}}, \cdots, u_{i_{k}}\right) \sum_{S \supseteq\left\{i_{1}, \cdots, i_{k}\right\}}(-1)^{k-|S|} . \\
& \vdots \\
& 1 \leqslant i_{k} \leqslant k
\end{aligned}
$$

Suppose that there are repetitions among the list i_{1}, \cdots, i_{k}. Then there will be some $j \in I$ such that $j \notin\left\{i_{1}, \cdots, i_{k}\right\}$, and pairing those subsets containing j with those not containing j, we see that the sum $\sum_{S \supseteq\left\{i_{1}, \cdots, i_{k}\right\}}(-1)^{k-|S|}=0$. Hence, we need only consider those terms where $\left\{i_{1}, \cdots, i_{k}\right\}$ is a permutation of $\{1, \cdots, k\}$. Remembering that B is symmetric, these terms all contribute equally and the result follows.

Theorem 38.2. Let λ be a partition of k, and let $n \geqslant l(\lambda)$. Then there exists an irreducible representation π_{λ} of $\mathrm{GL}(n, \mathbb{C})$ with character χ_{λ} such that if $g \in \mathrm{GL}(n, \mathbb{C})$ has eigenvalues t_{1}, \cdots, t_{n}, then

$$
\begin{equation*}
\chi_{\lambda}(g)=s_{\lambda}\left(t_{1}, \cdots, t_{n}\right) . \tag{38.3}
\end{equation*}
$$

The restriction of π_{λ} to $U(n)$ is an irreducible representation of $U(n)$. If $\mu \neq \lambda$ is another partition of k with $n \geqslant l(\mu)$, then χ_{λ} and χ_{μ} are distinct.

Proof. We know that the representation exists by applying Theorem 36.1 to the irreducible representation $\left(\rho, N_{\rho}\right)$ of S_{k} with character \boldsymbol{s}_{λ}. The problem is to prove the irreducibility of the module $V_{\rho}=\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} N_{\rho}$, whose character is χ_{λ} by Theorem 36.1. (As in Theorem 36.1, we are taking $V=\mathbb{C}^{n}$.)

Let B be the ring of endomorphisms of $\otimes^{k} V$ that commute with the action of S_{k}. We will show that B is spanned by the linear transformations

$$
\begin{equation*}
v_{1} \otimes \cdots \otimes v_{n} \longrightarrow g v_{1} \otimes \cdots \otimes g v_{n}, \quad g \in \operatorname{GL}(n, \mathbb{C}) \tag{38.4}
\end{equation*}
$$

We have an isomorphism $\bigotimes^{k} \operatorname{End}(V) \cong \operatorname{End}\left(\bigotimes^{k} V\right)$. In this isomorphism, $f_{1} \otimes \cdots \otimes f_{k} \in \otimes^{k} \operatorname{End}(V)$ corresponds to the endomorphism $v_{1} \otimes \cdots \otimes v_{k} \longrightarrow$ $f_{1}\left(v_{1}\right) \otimes \cdots \otimes f_{k}\left(v_{k}\right)$. Conjugation in End $\left(\otimes^{k} V\right)$ by an element of $\sigma \in S_{k}$ in the action (36.1) on $\otimes^{k} V$ corresponds to the transformation

$$
f_{1} \otimes \cdots \otimes f_{k} \longrightarrow f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(k)}
$$

of $\bigotimes^{k} \operatorname{End}(V)$. If $\xi \in \bigotimes^{k} \operatorname{End}(V)$ commutes with this action, then ξ is a linear combination of elements of the form $B\left(f_{1}, \cdots, f_{k}\right)$, where $B: \operatorname{End}(V) \times \cdots \times$ $\operatorname{End}(V) \longrightarrow \bigotimes^{k} \operatorname{End}(V)$ is the symmetric k-linear map

$$
B\left(f_{1}, \cdots, f_{k}\right)=\sum_{\sigma \in S_{k}} f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(k)}
$$

It follows from Proposition 38.1 that the vector space of such elements of $\bigotimes^{k} \operatorname{End}(V)$ is spanned by those of the form $Q(f)=B(f, \cdots, f)$ with $f \in \operatorname{End}(V)$. Since $\operatorname{GL}(n, \mathbb{C})$ is dense in $\operatorname{End}(V)$, the elements $Q(f)$ with f invertible span the same vector space. This proves that the transformations of the form (38.4) span the space of transformations of $\otimes^{k} V$ commuting with the action of S_{k}.

We temporarily restrict the action of $\mathrm{GL}(n, \mathbb{C}) \times S_{k}$ on $\bigotimes^{k} V$ to the compact subgroup $U(n) \times S_{k}$. Representations of a compact group are completely reducible, and the irreducible representations of $U(n) \times S_{k}$ are of the form $\pi \otimes \rho$, where π is an irreducible representation of $U(n)$ and ρ is an irreducible representation of S_{k}. Thus, we write

$$
\begin{equation*}
\bigotimes^{k} V \cong \sum_{i} \pi_{i} \otimes \rho_{i} \tag{38.5}
\end{equation*}
$$

where the π_{i} and ρ_{i} are irreducible representations of $U(n)$ and S_{k}, respectively. We take the π_{i} to be left $U(n)$-modules and the ρ_{i} to be right $S_{k^{-}}$ modules. This is because the commuting actions we have defined on $\bigotimes^{k} V$ have $U(n)$ acting on the left and S_{k} acting on the right.

The subspace of $\otimes^{k} V$ corresponding to $\pi_{i} \otimes \rho_{i}$ is actually $\operatorname{GL}(n, \mathbb{C})$ invariant. This is because it is a complex subspace invariant under the Lie
algebra action of $\mathfrak{u}(n)$ and hence is invariant under the action of the complexified Lie algebra $\mathfrak{u}(n)+i \mathfrak{u}(n)=\mathfrak{g l}(n, \mathbb{C})$ and therefore under its exponential, $\mathrm{GL}(n, \mathbb{C})$. So we may regard the decomposition (38.5) as a decomposition with respect to $\mathrm{GL}(n, \mathbb{C}) \times S_{k}$.

We claim that there are no repetitions among the isomorphism classes of the representations ρ_{i} of S_{k} that occur. This is because if $\rho_{i} \cong \rho_{j}$, then if we denote by f an intertwining map $\rho_{i} \longrightarrow \rho_{j}$ and by τ an arbitrary nonzero linear transformation from the space of π_{i} to the space of π_{j}, then $\tau \otimes f$ is a map from the space of $\pi_{i} \otimes \rho_{i}$ to the space of $\pi_{j} \otimes \rho_{j}$ that commutes with the action of S_{k}. Extending it by zero on direct summands in (38.5) beside $\pi_{i} \otimes \rho_{i}$ gives an endomorphism of $\bigotimes^{k} V$ that commutes with the action of S_{k}. It therefore is in the span of the endomorphisms (38.4). But this is impossible because those endomorphisms leave $\pi_{i} \otimes \rho_{i}$ invariant and this one does not. This contradiction shows that the ρ_{i} all have distinct isomorphism classes.

It follows from this that at most one ρ_{i} can be isomorphic to the contragredient representation of ρ_{λ}. Thus, in $V_{\rho}=\left(\otimes^{k} V\right) \otimes_{\mathbb{C}\left[S_{k}\right]} N_{\rho}$ at most one term can survive, and that term will be isomorphic to π_{i} as a $\operatorname{GL}(n, \mathbb{C}) \bmod -$ ule for this unique i. We know that V_{ρ} is nonzero since by Theorem 38.1 the polynomial $s_{\lambda} \neq 0$ under our hypothesis that $l(\lambda) \leqslant n$. Thus, such a π_{i} does exist, and it is irreducible as a $U(n)$-module a fortiori as a GL (n, \mathbb{C})-module.

It remains to be shown that if $\mu \neq \lambda$, then $\chi_{\mu} \neq \chi_{\lambda}$. Indeed, the Schur polynomials s_{μ} and s_{λ} are distinct since the partition λ can be read off from the numerator in (38.1).

We have constructed an irreducible representation of $\operatorname{GL}(n, \mathbb{C})$ for every partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ of length $\leqslant n$.

Proposition 38.2. Suppose that $n \geqslant l(\lambda)$. Let

$$
\lambda^{\prime}=\left(\lambda_{1}-\lambda_{n}, \lambda_{2}-\lambda_{n}, \cdots, \lambda_{n-1}-\lambda_{n}, 0\right)
$$

In the ring $\Lambda^{(n)}$ of symmetric polynomials in n variables, we have

$$
\begin{equation*}
s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=e_{n}\left(x_{1}, \cdots, x_{n}\right)^{\lambda_{n}} s_{\lambda^{\prime}}\left(x_{1}, \cdots, x_{n}\right) \tag{38.6}
\end{equation*}
$$

In terms of the characters of $\mathrm{GL}(n, \mathbb{C})$, we have

$$
\begin{equation*}
\chi_{\lambda}(g)=\operatorname{det}(g)^{\lambda_{n}} \chi_{\lambda^{\prime}}(g) \tag{38.7}
\end{equation*}
$$

Note that $e_{n}\left(x_{1}, \cdots, x_{n}\right)=x_{1} \cdots x_{n}$. Caution: this identity is special to $\Lambda^{(n)}$. The corresponding statement is not true in Λ.

Proof. It follows from (38.1) that $s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ is divisible by $\left(x_{1} \cdots x_{n}\right)^{\lambda_{n}}$. Indeed, every entry of the first column of the matrix in the numerator is divisible by $x_{1}^{\lambda_{n}}$, so we may pull $x_{1}^{\lambda_{n}}$ out of the first column, $x_{2}^{\lambda_{n}}$ out of the second column, and so forth, obtaining (38.6).

If the eigenvalues of g are t_{1}, \cdots, t_{n}, then $e_{n}\left(t_{1}, \cdots, t_{n}\right)=t_{1} \cdots t_{n}=$ $\operatorname{det}(g)$ and (38.7) follows from (38.6) and (38.3).

Although we have constructed many irreducible characters of $\mathrm{GL}(n, \mathbb{C})$, it is not true that every character is a χ_{λ} for some partition λ. We are missing those of the form $\operatorname{det}(g)^{-m} \chi_{\lambda}(g)$, where $m>0$ and χ_{λ} is not divisible by $\operatorname{det}(g)^{m}$. We may slightly expand the parametrization of the irreducible characters of $\mathrm{GL}(n, \mathbb{C})$ as follows. Let λ be a sequence of n integers, $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$. (We no longer assume that the λ are nonnegative; if $\lambda_{n}<0$, such a λ is not a partition.) Then we can define a character of $\mathrm{GL}(n, \mathbb{C})$ by (38.7) since even if λ is not a partition, λ^{\prime} is still a partition. We will denote this representation by π_{λ}, and its character by χ_{λ}.

Let us regard $\operatorname{GL}(n, \mathbb{C})$ as an algebraic group. A function $f: \mathrm{GL}(n, \mathbb{C}) \longrightarrow$ \mathbb{C} is regular if $f(g)$ is a polynomial in the matrix entries $g_{i j}$ and in $\operatorname{det}(g)^{-1}$. A representation $\mathrm{GL}(n, \mathbb{C}) \longrightarrow \mathrm{GL}(m, \mathbb{C})$ is algebraic if its matrix entries are polynomial functions.

Theorem 38.3. Every finite-dimensional representation of the group $U(n)$ extends uniquely to an algebraic representation of $\mathrm{GL}(n, \mathbb{C})$. The irreducible complex representations of $U(n)$, or equivalently the irreducible algebraic complex representations of $\mathrm{GL}(n, \mathbb{C})$, are precisely the π_{λ} parametrized by integer sequences $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$.

Proof. In the proof of Proposition 27.4, we introduced an algebraic group \mathcal{G} (there denoted \mathcal{G}_{2}) such that $\mathcal{G}(\mathbb{R}) \cong U(n)$ and $\mathcal{G}(\mathbb{C}) \cong \mathrm{GL}(n, \mathbb{C})$. It follows from Proposition 27.3 that every irreducible algebraic representation of $U(n)$ extends uniquely to an algebraic representation of $\operatorname{GL}(n, \mathbb{C})$. We have not yet argued that every irreducible representation of $U(n)$ is algebraic, but we will prove that now.

Let T be the diagonal torus of $U(n)$. Let $e_{i} \in X^{*}(T)$ be the character $\boldsymbol{e}_{i}(t)=t_{i}$. If $1 \leqslant i, j \leqslant n$ and $i \neq j$, let $\alpha_{i j}=\boldsymbol{e}_{i}-\boldsymbol{e}_{j}$. These are the roots. We choose the ordering in which the positive roots are $\Phi^{+}=\left\{\alpha_{i j} \mid 1 \leqslant i<j \leqslant n\right\}$. Then, in the notations of Chapter $25, X^{*}(T) \cap \mathcal{C}^{+}$consists of the characters

$$
\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) \mapsto t_{1}^{\lambda_{1}} \cdots t_{n}^{\lambda_{n}}, \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

We now observe that the irreducible representation with this highest-weight vector is π_{λ} since (38.1) agrees with the Weyl character formula in the form (25.16).

The representations π_{λ} are algebraic. Indeed, if $\lambda_{n} \geqslant 0$, then λ is a partition of k for some k, and the coefficients of $\pi_{\lambda}(g)$ are polynomials of degree k in the $g_{i j}$. If $\lambda_{n} \leqslant 0$, the representation is one of these multiplied by a negative power of the determinant and the result is still true.

We now see that every finite-dimensional representation of $U(n)$ extends to an algebraic representation of $\mathrm{GL}(n, \mathbb{C})$. Indeed, it is enough to do this for irreducibles, and we have determined that the characters of the π_{λ}, which are
algebraic, exhaust the characters of irreducible representations, as enumerated in the Weyl character formula.

Proposition 38.3. Suppose that $l(\lambda)>n$. Then $s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=0$ in $\Lambda^{(n)}$.
Proof. If $N=l(\lambda)$, then $\lambda=\left(\lambda_{1}, \cdots, \lambda_{N}\right)$, where $\lambda_{N} \neq 0$ and $N>n$. Apply the homomorphism r_{N-1} defined by (36.9), noting that $r_{N-1}\left(e_{N}\right)=0$, since e_{N} is divisible by x_{N}, and r_{N-1} consists of setting $x_{N}=0$. It follows from (38.6) that r_{N-1} annihilates s_{λ}. We may apply r_{N-2}, etc., until we reach $\Lambda^{(n)}$ and so $s_{\lambda}=0$ in $\Lambda^{(n)}$.

Theorem 38.4. If λ is a partition of k let ρ_{λ} denote the irreducible representation of S_{k} affording the character \boldsymbol{s}_{λ} constructed in Theorem 37.1. If moreover $l(\lambda) \leqslant n$, let π_{λ} denote the irreducible representation of $\mathrm{GL}(n, \mathbb{C})$ constructed in Theorem 38.2. Let $V=\mathbb{C}^{n}$ denote the standard module of $\mathrm{GL}(n, \mathbb{C})$. The $\mathrm{GL}(n, \mathbb{C}) \times S_{k}$ module $\bigotimes^{k} V$ is isomorphic to $\bigoplus_{\lambda} \pi_{\lambda} \otimes \rho_{\lambda}$, where the sum is over partitions of k of length $\leqslant n$.

Proof. Most of this was proved in the proof of Theorem 38.2. Particularly, we saw there that each irreducible representation of S_{k} occurring in (38.5) occurs at most once and is paired with an irreducible representation of GL (n, \mathbb{C}). If $l(\lambda) \leqslant n$, we saw in the proof of Theorem 38.2 that ρ_{λ} does occur and is paired with π_{λ}. The one fact that was not proved there is that ρ_{λ} with $l(\lambda)>n$ do not occur, and this follows from Proposition 38.3.

Schur Polynomials and $\boldsymbol{S}_{\boldsymbol{k}}$

Frobenius [42] discovered that the characters of the symmetric group can be computed using symmetric functions. We will explain this from our point of view. We highly recommend Curtis [30] as an account, both historical and mathematical, of the work of Frobenius and Schur on representation theory.

In this chapter we will regard the elements of \mathcal{R}_{k} as class functions on S_{k}. (See Remark 36.1.)

The conjugacy classes of S_{k} are parametrized by the partitions as follows. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ be a partition of k. Let \mathcal{C}_{λ} be the conjugacy class consisting of products of disjoint cycles of lengths $\lambda_{1}, \lambda_{2}, \cdots$. Thus, if $k=7$ and $\lambda=(3,3,1)$, then \mathcal{C}_{λ} consists of the conjugates of $(123)(456)(7)=(123)(456)$. We say that the partition λ is the cycle type of the permutations in the conjugacy class \mathcal{C}_{λ}. Let $z_{\lambda}=\left|S_{k}\right| /\left|\mathcal{C}_{\lambda}\right|$.

The support of $\sigma \in S_{k}$ is the set of $x \in\{1,2,3, \cdots, k\}$ such that $\sigma(x) \neq x$.

Proposition 39.1. Let m_{r} be the number of i such that $\lambda_{i}=r$. Then

$$
\begin{equation*}
z_{\lambda}=\prod_{r=1}^{k} r^{m_{r}} m_{r}! \tag{39.1}
\end{equation*}
$$

Proof. z_{λ} is the order of the centralizer of a representative element $g \in \mathcal{C}_{\lambda}$. This centralizer is easily described.

First, we consider the case where g contains only cycles of length r in its decomposition into disjoint cycles. In this case (denoting $m_{r}=m$), $k=r m$ and we may write $g=c_{1} \cdots c_{m}$, where c_{m} is a cycle of length r. The centralizer $C_{S_{k}}(g)$ contains a normal subgroup N of order r^{m} generated by c_{1}, \cdots, c_{m}. The quotient $C_{S_{k}}(g) / N$ can be identified with S_{m} since it acts by conjugation on the m cyclic subgroups $\left\langle c_{1}\right\rangle, \cdots,\left\langle c_{m}\right\rangle$. Thus $\left|C_{S_{k}}(g)\right|=r^{m} m$!.

In the general case where g has cycles of different lengths, its centralizer is a direct product of groups like the one just described.

We showed in the previous chapter that the irreducible characters of S_{k} are also parametrized by the partitions of k - namely to a partition μ there corresponds an irreducible representation \boldsymbol{s}_{μ}. Our aim is to compute $\boldsymbol{s}_{\mu}(g)$ when $g \in \mathcal{C}_{\lambda}$ using symmetric functions.

Proposition 39.2. The character values of the irreducible representations of S_{k} are rational integers.

Proof. Using the Jacobi-Trudi identity (Theorem 37.1), \boldsymbol{s}_{λ} is a sum of terms of the form $\pm \boldsymbol{h}_{\mu}$ for various partitions μ. Each \boldsymbol{h}_{μ} is the character induced from the trivial character of S_{μ}, so it has integer values.

Let $\boldsymbol{p}_{\lambda}(k \geqslant 1)$ be the conjugacy class indicator, which we define to be the function

$$
\boldsymbol{p}_{\lambda}(g)=\left\{\begin{array}{c}
z_{\lambda} \text { if } g \in \mathcal{C}_{\lambda} \\
0 \text { otherwise }
\end{array}\right.
$$

As a special case, \boldsymbol{p}_{k} will denote the indicator of the conjugacy class of the k-cycle, corresponding to the partition $\lambda=(k)$. The term "conjugacy class indicator" is justified by the following result.

Proposition 39.3. If $g \in \mathcal{C}_{\lambda}$, then $\left\langle\boldsymbol{s}_{\mu}, \boldsymbol{p}_{\lambda}\right\rangle=\boldsymbol{s}_{\mu}(g)$.
Proof. We have

$$
\left\langle\boldsymbol{s}_{\mu}, \boldsymbol{p}_{\lambda}\right\rangle=\frac{1}{\left|S_{k}\right|} \sum_{x \in \mathcal{C}_{\lambda}} z_{\lambda} \boldsymbol{s}_{\mu}(x)
$$

The summand is constant on \mathcal{C}_{λ} and equals $z_{\lambda} s_{\mu}(g)$ for any fixed representative g. The cardinality of \mathcal{C}_{λ} is $\left|S_{k}\right| / z_{\lambda}$ and the result follows.

It is clear that the \boldsymbol{p}_{λ} are orthogonal. More precisely, we have

$$
\left\langle\boldsymbol{p}_{\lambda}, \boldsymbol{p}_{\mu}\right\rangle=\left\{\begin{array}{c}
z_{\lambda} \text { if } \lambda=\mu, \tag{39.2}\\
0 \text { otherwise }
\end{array}\right.
$$

This is clear since \boldsymbol{p}_{λ} is supported on the conjugacy class \mathcal{C}_{λ}, which has cardinality $\left|S_{k}\right| / z_{\lambda}$.

We defined \boldsymbol{p}_{λ} as a class function. We now show it is a generalized character.

Proposition 39.4. If λ is a partition of k, then $\boldsymbol{p}_{\lambda} \in \mathcal{R}_{k}$.
Proof. The inner products $\left\langle\boldsymbol{p}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle$ are rational integers by Propositions 39.2 and 39.3. By Schur orthogonality, we have $\boldsymbol{p}_{\lambda}=\sum_{\mu}\left\langle\boldsymbol{p}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle \boldsymbol{s}_{\mu}$, so $\boldsymbol{p}_{\lambda} \in \mathcal{R}_{k}$.

Proposition 39.5. If $h=l(\lambda)$, so $\lambda=\left(\lambda_{1}, \cdots, \lambda_{h}\right)$ and $\lambda_{h}>0$, then

$$
\boldsymbol{p}_{\lambda}=\boldsymbol{p}_{\lambda_{1}} \boldsymbol{p}_{\lambda_{2}} \cdots \boldsymbol{p}_{\lambda_{h}}
$$

Proof. From the definitions, $\boldsymbol{p}_{\lambda_{1}} \cdots \boldsymbol{p}_{\lambda_{h}}$ is induced from the class function f on the subgroup S_{λ} of S_{k} whose value on $\left(\sigma_{1}, \cdots, \sigma_{h}\right)$ is

$$
\left\{\begin{array}{c}
\lambda_{1} \cdots \lambda_{h} \text { if each } \sigma_{i} \text { is a } \lambda_{i} \text {-cycle } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The formula (34.13) may be used to compute this induced class function. It is clear that $\boldsymbol{p}_{\lambda_{1}} \cdots \boldsymbol{p}_{\lambda_{h}}$ is supported on the conjugacy class of cycle type λ, and so it is a constant multiple of \boldsymbol{p}_{λ}. We write $\boldsymbol{p}_{\lambda_{1}} \cdots \boldsymbol{p}_{\lambda_{h}}=c \boldsymbol{p}_{\lambda}$ and use a trick to show that $c=1$. By Proposition 39.3, since $\boldsymbol{h}_{k}=\boldsymbol{s}_{(k)}$ is the trivial character of S_{k}, we have $\left\langle\boldsymbol{h}_{k}, \boldsymbol{p}_{\lambda}\right\rangle_{S_{k}}=1$. On the other hand, by Frobenius reciprocity, $\left\langle\boldsymbol{h}_{k}, \boldsymbol{p}_{\lambda_{1}} \cdots \boldsymbol{p}_{\lambda_{h}}\right\rangle_{S_{k}}=\left\langle\boldsymbol{h}_{k}, f\right\rangle_{S_{\lambda}}$. As a class function, \boldsymbol{h}_{k} is just the constant function on S_{k} equal to 1 , so this inner product is

$$
\prod_{i}\left\langle\boldsymbol{h}_{\lambda_{i}}, \boldsymbol{p}_{\lambda_{i}}\right\rangle_{S_{\lambda_{i}}}=1
$$

Therefore $c=1$.
Proposition 39.6. We have

$$
\begin{equation*}
k \boldsymbol{h}_{k}=\sum_{r=1}^{k} \boldsymbol{p}_{r} \boldsymbol{h}_{k-r} \tag{39.3}
\end{equation*}
$$

Proof. Let λ be a partition of k. Let m_{s} be the number of λ_{i} equal to s. We will prove

$$
\begin{equation*}
\left\langle\boldsymbol{p}_{r} \boldsymbol{h}_{k-r}, \boldsymbol{p}_{\lambda}\right\rangle=r m_{r} . \tag{39.4}
\end{equation*}
$$

By Frobenius reciprocity, this inner product is $\left\langle f, \boldsymbol{p}_{\lambda}\right\rangle_{S_{r} \times S_{k-r}}$, where f is the function on $S_{r} \times S_{k-r}$ whose value on (σ, τ), with $\sigma \in S_{r}$ and $\tau \in S_{k-r}$, is

$$
\left\{\begin{array}{l}
r \text { if } \sigma \text { is an } r \text {-cycle } \\
0 \text { otherwise }
\end{array}\right.
$$

The value of $f \boldsymbol{p}_{\lambda}$ restricted to $S_{r} \times S_{k-r}$ will be zero on (σ, τ) unless σ is an r-cycle (since $f(\sigma, \tau)$ must be nonzero) and τ has cycle type λ^{\prime}, where λ^{\prime} is the partition obtained from λ by removing one part of length r (since $\boldsymbol{p}_{\lambda}(\sigma, \tau)$ must be nonzero). The number of such pairs (σ, τ) is $\left|S_{r}\right| \cdot\left|S_{k-r}\right|$ divided by the product of the orders of the centralizers in S_{r} and S_{k-r}, respectively, of an r-cycle and of a permutation of cycle type λ^{\prime}. That is,

$$
\frac{\left|S_{r}\right| \cdot\left|S_{k-r}\right|}{r \cdot r^{m_{r}-1}\left(m_{r}-1\right)!\prod_{s \neq r} s^{m_{s}} m_{s}!}
$$

The value of $f \boldsymbol{p}_{\lambda}$ on these conjugacy classes is $r z_{\lambda}$. Therefore

$$
\left\langle f, \boldsymbol{p}_{\lambda}\right\rangle_{S_{r} \times S_{k-r}}=\frac{1}{\left|S_{r}\right| \cdot\left|S_{k-r}\right|}\left[\frac{\left|S_{r}\right| \cdot\left|S_{k-r}\right|}{r \cdot r^{m_{r}-1}\left(m_{r}-1\right)!\prod_{s \neq r} s^{m_{s}} m_{s}!}\right] r z_{\lambda}
$$

which equals $r m_{r}$. This proves (39.4).

We note that since λ is a partition of k, and since λ has m_{r} cycles of length r, we have $k=\sum_{r=1}^{k} r m_{r}$. Therefore

$$
\left\langle\sum_{r=1}^{k} \boldsymbol{p}_{r} \boldsymbol{h}_{k-r}, \boldsymbol{p}_{\lambda}\right\rangle=\sum_{r} r m_{r}=k=\left\langle k \boldsymbol{h}_{k}, \boldsymbol{p}_{\lambda}\right\rangle
$$

Because this is true for every λ, we obtain (39.3).
Let $p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots \in \Lambda_{k}$, where p_{k} is defined by (35.7).
Proposition 39.7. We have

$$
\begin{equation*}
k h_{k}=\sum_{r=1}^{k} p_{r} h_{k-r} \tag{39.5}
\end{equation*}
$$

Proof. We recall from (35.2) that

$$
\sum_{k=0}^{\infty} h_{k} t^{k}=\prod_{i=1}^{n}\left(1-x_{i} t\right)^{-1}
$$

which we differentiate logarithmically to obtain

$$
\frac{\sum_{k=0}^{\infty} k h_{k} t^{k-1}}{\sum_{k=0}^{\infty} h_{k} t^{k}}=\sum_{i=1}^{n} \frac{d}{d t} \log \left(1-x_{i} t\right)^{-1}
$$

Since

$$
\frac{d}{d t} \log \left(1-x_{i} t\right)^{-1}=\sum_{r=1}^{\infty} x_{i}^{r} t^{r-1}
$$

we obtain

$$
\sum_{k=1}^{\infty} k h_{k} t^{k-1}=\left[\sum_{k=0}^{\infty} h_{k} t^{k}\right] \sum_{r=1}^{\infty} p_{r} t^{r-1}
$$

Equating the coefficients of t^{k-1}, the result follows.
Theorem 39.1. We have $\operatorname{ch}\left(\boldsymbol{p}_{\lambda}\right)=p_{\lambda}$.
Proof. We have $\boldsymbol{p}_{\lambda}=\boldsymbol{p}_{\lambda_{1}} \boldsymbol{p}_{\lambda_{2}} \cdots$. Hence, it is sufficient to show that $\operatorname{ch}\left(\boldsymbol{p}_{k}\right)=$ p_{k}. This follows from the fact that they satisfy the same recursion formula compare (39.5) with (39.3) - and that $\operatorname{ch}\left(\boldsymbol{h}_{k}\right)=h_{k}$.

Now we may determine the irreducible characters of S_{k}.
Theorem 39.2. Express each symmetric polynomial p_{λ} as a linear combination of the s_{μ} :

$$
p_{\lambda}=\sum_{\mu} c_{\lambda \mu} s_{\mu}
$$

Then the coefficient $c_{\lambda \mu}$ is the value of the irreducible character \boldsymbol{s}_{μ} on elements of the conjugacy class \mathcal{C}_{μ}.

Proof. Since $n \geqslant k, \operatorname{ch}: \mathcal{R}_{k} \rightarrow \Lambda_{k}$ is injective, and it follows that

$$
\boldsymbol{p}_{\lambda}=\sum_{\mu} c_{\lambda \mu} \boldsymbol{s}_{\mu}
$$

Taking the inner product of this relation with \boldsymbol{s}_{μ}, we see that

$$
c_{\lambda \mu}=\left\langle\boldsymbol{p}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle
$$

The result follows from Proposition 39.3.
As an example, let us verify the irreducible characters of S_{3}. We have

$$
\begin{array}{lrl}
s_{(3)}=h_{3}= & \sum x_{i}^{3}+\sum_{i \neq j} x_{i}^{2} x_{j}+\sum_{i<j<k} x_{i} x_{j} x_{k} \\
s_{(21)}= & \sum_{i \neq j} x_{i}^{2} x_{j} & +2 \sum_{i<j<k} x_{i} x_{j} x_{k} \\
s_{(111)}=e_{(3)}= & & \sum_{i<j<k} x_{i} x_{j} x_{k}
\end{array}
$$

and

$$
\begin{aligned}
& p_{(3)}=\sum x_{i}^{3} \\
& p_{(21)}=\sum x_{i}^{3}+\sum_{i \neq j} x_{i}^{2} x_{j}, \\
& p_{(111)}=\sum x_{i}^{3}+3 \sum_{i \neq j} x_{i}^{2} x_{j}+6 \sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

so

$$
\begin{aligned}
& p_{(111)}=s_{(3)}+s_{(111)}+2 s_{(21)} \\
& p_{(3)}=s_{(3)}+s_{(111)}-s_{(21)} \\
& p_{(21)}=s_{(3)}-s_{(111)}
\end{aligned}
$$

We see that these coefficients are precisely the coefficients in the character table of S_{3} :

	1	(123)	(12)
$\boldsymbol{s}_{(3)}$	1	1	1
$\boldsymbol{s}_{(111)}$	1	1	-1
$\boldsymbol{s}_{(21)}$	2	-1	0

Before we leave the representation theory of the symmetric group, let us recall the involution ι of Proposition 36.3 and Theorem 37.2, which interchanges \boldsymbol{s}_{λ} with \boldsymbol{s}_{μ} where $\mu=\lambda^{t}$ is the conjugate partition. It has a concrete interpretation in this context.

Lemma 39.1. Let H be a subgroup of the finite group G. Let χ be a character of H, and let ρ be a one-dimensional character of G, which we may restrict to H. The induced character $(\rho \chi)^{G}$ equals $\rho \chi^{G}$.

Thus, it does not matter whether we multiply by ρ before or after inducing to G.

Proof. This may be proved either directly from the definition of the induced representation or by using (34.13).

Theorem 39.3. If \boldsymbol{f} is a class function on S_{k}, its involute ${ }^{\iota} \boldsymbol{f}$ is the result of multiplying \boldsymbol{f} by the alternating character ε of S_{k}.

We refrain from denoting ${ }^{\iota} \boldsymbol{f}$ as $\varepsilon \boldsymbol{f}$ because the graded ring \mathcal{R} has a different multiplication.

Proof. Let us denote by $\tau: \mathcal{R}_{k} \longrightarrow \mathcal{R}_{k}$ the linear map that takes a class function f on S_{k} and multiplies it by ε, and assemble the τ in different degrees to a linear map of \mathcal{R} to itself. We want to prove that τ and ι are the same. By the definition of the \boldsymbol{e}_{k} and \boldsymbol{h}_{k}, they are interchanged by τ, and by Theorem 37.2 they are interchanged by ι. Since the \boldsymbol{e}_{k} generate \mathcal{R} as a ring, the result will follow if we check that τ is a ring homomorphism.

Applying Lemma 39.1 with $G=S_{k+l}, H=S_{k} \times S_{l}$, and $\rho=\varepsilon$ shows that multiplying the characters χ and η of S_{k} and S_{l} each by ε to obtain the characters ${ }^{\tau} \chi$ and ${ }^{\tau} \eta$ and then inducing the character ${ }^{\tau} \chi \otimes^{\tau} \eta$ of $S_{k} \times S_{l}$ to S_{k+l} gives the same result as inducing $\chi \otimes \eta$ and multiplying it by ε. This shows that τ is a ring homomorphism.

EXERCISES

Exercise 39.1. Compute the character table of S_{4} using symmetric polynomials by the method of this chapter.

Random Matrix Theory

In this chapter, we will work not with $\operatorname{GL}(n, \mathbb{C})$ but with its compact subgroup $U(n)$. As in the last chapter, we regard elements of \mathcal{R}_{k} as generalized characters on S_{k}. If $\boldsymbol{f} \in \mathcal{R}_{k}$, then $f=\operatorname{ch}^{(n)}(\boldsymbol{f}) \in \Lambda_{k}^{(n)}$ is a symmetric polynomial in n variables, homogeneous of weight k. Then $\psi_{f}: U(n) \longrightarrow \mathbb{C}$, defined by (35.6), is the function on $U(n)$ obtained by applying f to the eigenvalues of $g \in U(n)$. We will denote $\psi_{f}=\mathrm{Ch}^{(n)}(\boldsymbol{f})$. Thus, $\mathrm{Ch}^{(n)}$ maps the additive group of generalized characters on S_{k} to the additive group of generalized characters on $U(n)$. It extends by linearity to a map from the Hilbert space of class functions on S_{k} to the Hilbert space of class functions on $U(n)$.

Proposition 40.1. Let \boldsymbol{f} be a class function on S_{k}. Write $\boldsymbol{f}=\sum_{\lambda} c_{\lambda} \boldsymbol{s}_{\lambda}$, where the sum is over the partitions of k. Then

$$
|\boldsymbol{f}|^{2}=\sum_{\lambda}\left|c_{\lambda}\right|^{2}, \quad\left|\mathrm{Ch}^{(n)}(\boldsymbol{f})\right|^{2}=\sum_{l(\lambda) \leqslant n}\left|c_{\lambda}\right|^{2}
$$

Proof. The \boldsymbol{s}_{λ} are orthonormal by Schur orthogonality so $|\boldsymbol{f}|^{2}=\sum\left|c_{\lambda}\right|^{2}$. By Theorem 38.2, $\mathrm{Ch}^{(n)}\left(s_{\lambda}\right)$ are distinct irreducible characters when λ runs through the partitions of k with length $\leqslant n$, while, by Proposition 38.3, $\mathrm{Ch}^{(n)}\left(s_{\lambda}\right)=0$ if $l(\lambda)>n$. Therefore, we may write

$$
\mathrm{Ch}^{(n)}(f)=\sum_{l(\lambda) \leqslant n} c_{\lambda} \mathrm{Ch}^{(n)}\left(s_{\lambda}\right)
$$

and the $\mathrm{Ch}^{(n)}\left(\boldsymbol{s}_{\lambda}\right)$ in this decomposition are orthonormal by Schur orthogonality on $U(n)$. Thus $\left|\mathrm{Ch}^{(n)}(f)\right|^{2}=\sum_{l(\lambda) \leqslant n}\left|c_{\lambda}\right|^{2}$.
Theorem 40.1. The map $\mathrm{Ch}^{(n)}$ is a contraction if $n<k$ and an isometry if $n \geqslant k$. In other words, if \boldsymbol{f} is a class function on S_{k},

$$
\left|\mathrm{Ch}^{(n)}(\boldsymbol{f})\right| \leqslant|f|
$$

with equality when $n \geqslant k$.

Proof. This follows immediately from Proposition 40.1 since if $n \geqslant k$ every partition of k has length $\leqslant n$.

Theorem 40.1 is the basis of a powerful method of transferring computations from the unitary group to the symmetric group. We will explain a striking example of Diaconis and Shahshahani [33], who showed by this method that the traces of large random unitary matrices are normally distributed.

A measure is called a probability measure if its total volume is 1 . Suppose that X and Y are topological spaces and that X is endowed with a Borel probability measure $d \mu_{X}$. Let $f: X \longrightarrow Y$ be a continuous function. We can push the measure $d \mu_{X}$ forward to probability measure $d \mu_{Y}$ on Y, defined by

$$
\int_{Y} \phi(y) d \mu_{Y}(y)=\int_{X} \phi(f(x)) d \mu_{X}(x)
$$

for measurable functions on Y. Concretely, this measure gives the distribution of the values $f(x)$ when $x \in X$ is a random variable.

For example, the trace of a Haar random unitary matrix $g \in U(n)$ is distributed with a measure $d \mu_{n}$ on \mathbb{C} satisfying

$$
\begin{equation*}
\int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(z) d \mu_{n}(z) \tag{40.1}
\end{equation*}
$$

We say that a sequence ν_{n} of Borel probability measures on a space X converges weakly to a measure ν if $\int_{X} \phi(x) d \nu_{n}(x) \longrightarrow \int_{X} \phi(x) d \nu(x)$ for all bounded continuous functions ϕ on X. We will see that the measures μ_{n} converge weakly as $n \longrightarrow \infty$ to a fixed Gaussian measure

$$
\begin{equation*}
d \mu(z)=\frac{1}{\pi} e^{-\left(x^{2}+y^{2}\right)} d x \wedge d y, \quad z=x+i y \tag{40.2}
\end{equation*}
$$

Let us consider how surprising this is! As n varies, the number of eigenvalues increases and one might expect the standard deviation of the traces to increase with n. This is what would happen were the eigenvalues of a random symmetric matrix uncorrelated. That it converges to a fixed Gaussian measure means that the eigenvalues of a random unitary matrix are quite evenly distributed around the circle.

Intuitively, the eigenvalues "repel" and tend not to lie too close together. This is reflected in the property of the trace - that its distribution does not spread out as n is increased. This can be regarded as a reflection of (18.3). Because of the factor $\left|t_{i}-t_{j}\right|^{2}$, matrices with close eigenvalues have small Haar measure in $U(n)$. Dyson [39] gave the following analogy. Consider the eigenvalues of a Haar random matrix distributed on the unit circle to be like the distribution of charged particles in a Coulomb gas. At a certain temperature ($T=\frac{1}{2}$), this model gives the right distribution. The exercises introduce Dyson's "pair correlation" function that quantifies the tendency of the eigenvalues to repel at close ranges. Figure 40.1 shows the probability density

$$
\begin{equation*}
R_{2}(1, \theta)=n^{2}-\frac{\sin ^{2}(n \theta / 2)}{\sin ^{2}(\theta / 2)} \tag{40.3}
\end{equation*}
$$

that there are eigenvalues at both $e^{i t}$ and $e^{i(t+\theta)}$ as a function of θ (for $n=10$). (Consult the exercises for the definition of R_{m} and a proof that R_{2} is given by (40.3).) We can see from this figure that the probability is small when θ is small, but is essentially independent of θ if θ is moderate.

Fig. 40.1. The pair correlation $R_{2}\left(1, e^{i \theta}\right)$ when $n=10$.

Weak convergence requires that for any continuous bounded function on \mathbb{C} we have

$$
\lim _{n \longrightarrow \infty} \int_{\mathbb{C}} \phi(z) d \mu_{n}(z)=\int_{\mathbb{C}} \phi(z) d \mu(z),
$$

or in other words

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(x+i y) d \mu(z) \tag{40.4}
\end{equation*}
$$

Remarkably, if $\phi(z)$ is a polynomial in z and \bar{z}, this identity is exactly true for sufficiently large n, depending only on the degree of the polynomial! Of course, a polynomial is not a bounded continuous function, but we will deduce weak convergence from this fact about polynomial functions.

Proposition 40.2. Let $k, l \geqslant 0$. Then

$$
\int_{U(n)} \operatorname{tr}(g)^{k} \overline{\operatorname{tr}(g)^{l}} d g=0 \quad \text { if } k \neq l
$$

while

$$
\int_{U(n)}|\operatorname{tr}(g)|^{2 k} d g \leqslant k!
$$

with equality when $n \geqslant k$.

Proof. If $k \neq l$, then the variable change $g \longrightarrow e^{i \theta} g$ multiplies the left-hand side by $e^{i(k-l) \theta} \neq 1$ for θ in general position, so the integral vanishes in this case.

Assume that $k=l$. We show that

$$
\begin{equation*}
\int_{U(n)}|\operatorname{tr}(g)|^{2 k} d g=k! \tag{40.5}
\end{equation*}
$$

provided $k \leqslant n$. Note that if $V=\mathbb{C}^{n}$ is the standard module for $U(n)$, then $\operatorname{tr}(g)^{k}$ is the trace of g acting on $\bigotimes^{k} V$ as in (38.4). As in (36.6), we may decompose

$$
\bigotimes^{k} V=\bigoplus_{\lambda} d_{\lambda} V_{\lambda}
$$

where d_{λ} is the degree of the irreducible representation of S_{k} with character s_{λ}, and V_{λ} is an irreducible module of $U(n)$ by Theorem 38.2. The L_{2}-norm of $f(g)=\operatorname{tr}(g)^{k}$ can be computed by Proposition 40.1, and we have

$$
\int_{U(n)}|\operatorname{tr}(g)|^{2 k} d g=|f|^{2}=\sum_{\lambda} d_{\lambda}^{2}
$$

Of course, the sum of the squares of the degrees of the irreducible representations of S_{k} is $\left|S_{k}\right|=k!$, and (40.5) is proved.

If $k>n$, then the same method can be used to evaluate the trace, and we obtain $\sum_{\lambda} d_{\lambda}^{2}$, where now the sum is restricted to partitions of length $\leqslant n$. This is $<k$!.

Theorem 40.2. Suppose that $\phi(z)$ is a polynomial in z and \bar{z} of degree $\leqslant 2 n$. Then

$$
\begin{equation*}
\int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(z) d \mu(z) \tag{40.6}
\end{equation*}
$$

where $d \mu$ is the measure (40.2).
Proof. It is sufficient to prove this if $\phi(z)=z^{k} \bar{z}^{l}$. If $\operatorname{deg}(\phi) \leqslant 2 n$, then $k+l \leqslant$ $2 n$ so either $k \neq l$ or both $k, l \leqslant n$, and in either case Proposition 40.2 implies that the left-hand side equals 0 if $k \neq l$ and $k!$ if $k=l$. What we must therefore show is

$$
\int_{\mathbb{C}} z^{k} \bar{z}^{l} d \mu(z)=\left\{\begin{array}{c}
k!\text { if } k=l \\
0 \text { if } k \neq l
\end{array}\right.
$$

The measure $d \mu(z)$ is rotationally symmetric, and if $k \neq l$, then replacing z by $e^{i \theta} z$ multiplies the left-hand side by $e^{i \theta(k-l)}$, so the integral is zero in that case. Assume therefore that $\phi(x+i y)=|z|^{2 k}$. Then using polar coordinates (so $z=x+i y=r e^{i \theta}$) the integral equals

$$
\int_{\mathbb{C}}|z|^{2 k} d \mu(z)=\frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right)^{k} e^{-\left(x^{2}+y^{2}\right)} d x d y=
$$

$$
\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} r^{2 k} e^{-2 r} r d r d \theta=2 \int_{0}^{\infty} r^{2 k+1} e^{-2 r} d r=\Gamma(k+1)=k!
$$

and the theorem is proved.
This establishes (40.4) when ϕ is a polynomial - indeed the sequence becomes stationary for large n. However, it does not establish weak convergence. To this end, we will study the Fourier transforms of the measures μ_{n} and μ.

The Fourier transform of a probability measure ν on \mathbb{R}^{N} is called its characteristic function. Concretely,

$$
\hat{\nu}\left(y_{1}, \cdots, y_{N}\right)=\int_{\mathbb{R}^{N}} e^{i\left(x_{1} y_{1}+\ldots+x_{N} y_{N}\right)} d \nu(x), \quad x=\left(x_{1}, \cdots, x_{N}\right)
$$

Theorem 40.3. Let $\nu_{1}, \nu_{2}, \nu_{3}, \cdots$ and ν be probability measures on \mathbb{R}^{N}. Suppose that the characteristic functions $\widehat{\nu_{i}}\left(y_{1}, \cdots, y_{N}\right) \longrightarrow \hat{\nu}\left(y_{1}, \cdots, y_{N}\right)$ pointwise for all $\left(y_{1}, \cdots, y_{N}\right) \in \mathbb{R}^{N}$. Then the measures ν_{i} converge weakly to ν.

Proof omitted. A proof may be found in Billingsley [10], Theorem 26.3 (when $N=1$) and Section 28 (for general N). The precise statement we need is on p. 383 before Theorem 29.4.

In the case at hand, we wish to compare probability measures on $\mathbb{C}=\mathbb{R}^{2}$, and it will be most convenient to define the Fourier transform as a function of $w=u+i v \in \mathbb{C}$. Let

$$
\hat{\mu}(w)=\int_{\mathbb{C}} e^{i(z w+\overline{z w})} d \mu(z)
$$

and similarly for the $\hat{\mu}_{n}$.
Proposition 40.3. The functions $\hat{\mu}_{n}$ converge uniformly on compact subsets of \mathbb{C} to $\hat{\mu}$.

Proof. The function $\hat{\mu}$ is easily computed. As the Fourier transform of a Gaussian distribution, $\hat{\mu}$ is also Gaussian and in fact $\hat{\mu}(w)=e^{-|w|^{2}}$. We write this as a power series:

$$
\hat{\mu}(w)=F(|w|), \quad F(r)=\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} r^{2 k}
$$

The radius of convergence of this power series is ∞.
We have

$$
\hat{\mu}_{n}(w)=\int_{\mathbb{C}}\left[\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{i^{k+l} z^{k} w^{k} \bar{z}^{l} \bar{w}^{l}}{k!l!}\right] d \mu_{n}(z)=
$$

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{i^{k+l}}{k!l!}\left[\int_{\mathbb{C}} z^{k} \bar{z}^{l} d \mu_{n}(z)\right] w^{k} \bar{w}^{l}
$$

The interchange of the summation and the integration is justified since the measure $d \mu_{n}$ is compactly supported, and the series is uniformly convergent when z is restricted to a compact set. By Proposition 40.2 and the definition (40.1) of μ_{n}, the integral inside brackets vanishes unless $k=l$, and we may write

$$
\begin{gathered}
\hat{\mu}_{n}(w)=F_{n}(|w|), \quad F_{n}(r)=\sum_{k=0}^{\infty} a_{k, n} \frac{(-1)^{k}}{k!} r^{2 k} \\
a_{k, n}=\frac{1}{k!} \int_{\mathbb{C}}|z|^{2 k} d \mu_{n}(z)
\end{gathered}
$$

By Proposition 40.2 the coefficients $a_{k, n}$ satisfy $0 \leqslant a_{k, n} \leqslant 1$ with equality when $k>n$. We have

$$
\left|F(r)-F_{n}(r)\right|=\left|\sum_{k=n}^{\infty}\left(1-a_{k, n}\right) \frac{(-1)^{k}}{k!} r^{2 k}\right| \leqslant \sum_{k=n}^{\infty} \frac{r^{2 k}}{k!}
$$

which converges to 0 uniformly as $n \longrightarrow \infty$ when r is restricted to a compact set.

Corollary 40.1. The measures μ_{n} converge weakly to μ.
Proof. This follows immediately from the criterion of Theorem 40.3.
Since we have not proved Theorem 40.3, let us point out that we can immediately prove (40.4) for a fairly big set of test functions ϕ. For example, if ϕ is the Fourier transform of an integrable function ψ with compact support, we can write

$$
\int_{U(n)} \phi(\operatorname{tr}(g)) d g=\int_{\mathbb{C}} \phi(z) d \mu_{n}(z)=\int_{\mathbb{C}} \psi(w) \hat{\mu}_{n}(w) d u \wedge d v, \quad w=u+i v
$$

by the Plancherel formula and, since we have proved that $\hat{\mu}_{n} \longrightarrow \mu$ uniformly on compact sets (40.4) is clear for such ϕ.

Diaconis and Shahshahani [33] proved a much stronger statement to the effect that the quantities

$$
\operatorname{tr}(g), \operatorname{tr}\left(g^{2}\right), \cdots, \operatorname{tr}\left(g^{r}\right)
$$

where g is a Haar random element of $U(n)$, are distributed like the moments of r independent Gaussian random variables. Strikingly, what the proof requires is the full representation theory of the symmetric group in the form of Theorem 39.1!

Proposition 40.4. We have

$$
\begin{equation*}
\int_{U(n)}|\operatorname{tr}(g)|^{2 k_{1}}\left|\operatorname{tr}\left(g^{2}\right)\right|^{2 k_{2}} \cdots\left|\operatorname{tr}\left(g^{r}\right)\right|^{2 k_{r}} d g \leqslant \prod_{j=1}^{r} j^{k_{j}} k_{j}! \tag{40.7}
\end{equation*}
$$

with equality provided $k_{1}+2 k_{2}+\cdots+r k_{r} \leqslant n$.
Proof. Let $k=k_{1}+2 k_{2}+\cdots+r k_{r}$, and let λ be the partition of k containing k_{1} entries equal to $1, k_{2}$ entries equal to 2 , and so forth. By Theorem 39.1, we have $\mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\lambda}\right)=\psi_{\boldsymbol{p}_{\lambda}}$. This is the function

$$
g \mapsto \operatorname{tr}(g)^{k_{1}} \operatorname{tr}\left(g^{2}\right)^{k_{2}} \cdots \operatorname{tr}\left(g^{r}\right)^{k_{r}}
$$

since $p_{\lambda}=p_{\lambda_{1}} \cdots p_{\lambda_{r}}$, and applying $p_{\lambda_{i}}$ to the eigenvalues of g gives $\operatorname{tr}\left(g^{\lambda_{i}}\right)$.
The left-hand side of (40.7) is thus the L^{2} norm of $\mathrm{Ch}^{(n)}$, and if $k \leqslant n$, then by Theorem 40.1 we may compute this L^{2} norm in S_{k}. It equals

$$
\frac{1}{\left|S_{k}\right|} \sum_{\sigma \in S_{k}}\left|\boldsymbol{p}_{\lambda}(\sigma)\right|^{2}=z_{\lambda}
$$

by (39.2). This is the right-hand side of (40.7). If $k>n$, the proof is identical except that Theorem 40.1 only gives an inequality in (40.7).

Theorem 40.4. (Diaconis and Shahshahani) The joint probability distribution of the $\left(\operatorname{tr}(g), \operatorname{tr}\left(g^{2}\right), \cdots, \operatorname{tr}\left(g^{r}\right)\right)$ near $\left(z_{1}, \cdots, z_{r}\right) \in \mathbb{C}^{r}$ is a measure weakly converging to

$$
\begin{equation*}
\prod_{j=1}^{r} \frac{1}{j} \pi e^{-\pi\left|z_{j}\right|^{2} / j} d x_{j} \wedge d y_{j} \tag{40.8}
\end{equation*}
$$

Thus, the distributions of $\operatorname{tr}(g), \operatorname{tr}\left(g^{2}\right), \cdots, \operatorname{tr}\left(g^{r}\right)$ are as a sequence of independent random variables in Gaussian distributions.

Proof. Indeed, this follows along the lines of Corollary 40.1 using the fact that the moments of the measure (40.8)

$$
\int_{\mathbb{C}}\left|z_{1}\right|^{2 k_{1}}\left|z_{2}\right|^{2 k_{2}} \cdots\left|z_{r}\right|^{2 k_{r}} \prod_{j=1}^{r} \frac{1}{j} \pi e^{-\pi\left|z_{j}\right|^{2} / j} d x_{j} \wedge d y_{j}=\prod_{j=1}^{r} j^{k_{j}} k_{j}!
$$

agree with (40.7).
Let us end with some general remarks about random matrix theory. By an ensemble we mean a topological space whose elements are matrices, given a probability measure. Random matrix theory is concerned with the statistical distribution of the eigenvalues of the matrices in the ensemble, particularly local statistical facts such as the spacing of these eigenvalues.

The original focus of random matrix theory was not on unitary matrices but on random Hermitian matrices. The reason for this had to do with the
origin of the theory in nuclear physics. In quantum mechanics, an observable quantity such as energy or angular momentum is associated with a Hermitian operator acting on a Hilbert space whose elements correspond to possible states of a physical system. An eigenvector corresponds to a state in which the observable has a definite value, which equals the eigenvalue of the operator on that eigenvector. The Hermitian operator corresponding to the energy level of the physical system (a typical observable) is called the Hamiltonian. A Hamiltonian operator is typically positive definite.

It was observed by Wigner and his collaborators that although the spectra of atomic nuclei (emitting or absorbing neutrons) were hopeless to calculate from first principles, the spacing of the eigenvalues still obeyed statistical laws that could be studied. To this end, random Hermitian operators were studied, first by Wigner, Gaudin, Mehta and Dyson. The book of Mehta [97] is a good guide to this subject and this physics-inspired literature.

Although the Hilbert space in which the Hermitian operator corresponding to an observable acts is infinite-dimensional, one may truncate the operator, replacing the Hilbert space with a finite-dimensional invariant subspace. The operator is then realized as a Hermitian matrix.

To study the local properties of the eigenvalues, one seeks to give the real vector space of Hermitian matrices a probability measure which is invariant under the action of the unitary group by conjugation, since one is interested in the eigenvalues, and these are preserved under conjugation. The usual way is to assume that the matrix entries are independent random variables with normal (i.e. Gaussian) distributions. This probability space is called the Gaussian Unitary Ensemble (GUE). Two other ensembles were also studied, intended to model physical systems with time reversal symmetry. There are two types of symmetry, depending on whether reversing the direction of time multiplies the operator by ± 1. The ensemble modeling systems whose Hamilton is unchanged under time-reversal consists of real symmetric matrices and is called the Gaussian Orthogonal Ensemble (GOE). The ensemble modeling systems whose Hamiltonian is antisymmetric under time-reversal can be represented by quaternionic Hermitian matrices and is called the Gaussian Symplectic Ensemble (GSE). See Dyson [39] and Mehta [97] for further information about this point.

The space of positive definite Hermitian matrices is an open subset of the space of all Hermitian matrices, and this space is isomorphic to the Type IV symmetric space $\mathrm{GL}(n, \mathbb{C}) / U(n)$, under the map which associates with the coset $g U(n)$ in the symmetric space the Hermitian matrix $g^{t} \bar{g}$. Similarly the positive-definite parts of the GOE and GSE are GL $(n, \mathbb{R}) / O(n)$ and $\mathrm{GL}(n, \mathbb{H}) / \operatorname{Sp}(2 n)$ with associated probability measures.

Dyson [39] shifted focus from the Gaussian ensembles to the circular ensembles that are the compact duals of the symmetric spaces $\mathrm{GL}(n, \mathbb{C}) / U(n)$, $\mathrm{GL}(n, \mathbb{R}) / O(n)$ and $\mathrm{GL}(n, \mathbb{H}) / \mathrm{Sp}(2 n)$. For example, by Theorem 31.1 , the dual of $\mathrm{GL}(n, \mathbb{C}) / U(n)$ is just $U(n)$. Haar measure makes this symmetric space into the Circular Unitary Ensemble (CUE). The ensemble is called circular
because the eigenvalues of a unitary matrix lie on the unit circle instead of the real line. It is the CUE that we have studied in this chapter. Note that in the GUE, we cannot use Haar measure to make $\mathrm{GL}(n, \mathbb{C}) / U(n)$ into a measure space, since we want a probability measure on each ensemble, but the noncompact group $\mathrm{GL}(n, \mathbb{C})$ has infinite volume. This is an important advantage of the CUE over the GUE.

The insight which allowed Dyson to replace the Gaussian ensembles by their circular analogs was that as far as the local statistics of random matrices are concerned - for examples, with matters of spacing of eigenvalues - the circular ensembles are faithful mirrors of the Gaussian ones.

The Circular Orthogonal and Symplectic Ensembles (COE and CSE) are similarly the measure spaces $U(n) / O(n)$ and $U(2 n) / \operatorname{Sp}(2 n)$ with their unique invariant probability measures.

In recent years, random matrix theory has found a new field of applicability in the study of the zeros of the Riemann zeta function and similar arithmetic data. The observation that the distribution of the zeros of the Riemann zeta function should have a local distribution similar to that of the eigenvalues of a random Hermitian matrix in the GUE originated in a conversation between Dyson and Montgomery, and was confirmed numerically by Odlyzko. See Katz and Sarnak [75] and Conrey [29] for surveys of this field, and Keating and Snaith [77] for a typical paper from the extensive literature. The paper of Keating and Snaith is important because it marked a paradigm shift away from the study of the spacing of the zeros of $\zeta(s)$ to the distribution of the values of $\zeta\left(\frac{1}{2}+i t\right)$, which are, in the new paradigm, related to the values of the characteristic polynomial of a random matrix.

EXERCISES

Let $m \leqslant n$. The m-level correlation function of Dyson [39] for unitary statistics is a function R_{m} on \mathbb{T}^{m} defined by the requirement that if f is a test function on \mathbb{T}^{m} (piecewise continuous, let us say) then

$$
\begin{equation*}
\int_{\mathbb{T}^{m}} R_{m}\left(t_{1}, \cdots, t_{m}\right) f\left(t_{1}, \cdots, t_{m}\right) d t_{1} \cdots d t_{m}=\int_{U(n)} \sum^{*} f\left(t_{i_{1}}, \cdots, t_{i_{m}}\right) d g \tag{40.9}
\end{equation*}
$$

where the sum is over all distinct m-tuples $\left(i_{1}, \cdots, i_{m}\right)$ of distinct integers between 1 and n, and t_{1}, \cdots, t_{n} are the eigenvalues of g. Intuitively, this function gives the probability density that t_{1}, \cdots, t_{n} are the eigenvalues of $g \in U(n)$.

The purpose of the exercises is to prove (and generalize) Dyson's formula

$$
\begin{equation*}
R_{m}\left(t_{1}, \cdots, t_{m}\right)=\operatorname{det}\left(s_{n}\left(\theta_{j}-\theta_{k}\right)\right)_{j, k}, \quad t_{i}=e^{i \theta_{j}} \tag{40.10}
\end{equation*}
$$

where

$$
s_{n}(\theta)=\left\{\begin{array}{cc}
\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} & \text { if } \theta \neq 0 \\
n & \text { if } \theta=0
\end{array}\right.
$$

As a special case, when $m=2$, the graph of the "pair correlation" $R_{2}\left(1, e^{i \theta}\right)$ may be found in Figure 40.1. This shows graphically the repulsion of the zeros - as we can see, the probability of two zeros being close together is small, but for moderate distances there is no correlation.

Exercise 40.1. If $m=n$, prove that

$$
R_{n}\left(t_{1}, \cdots, t_{n}\right)=\operatorname{det}\left(A \cdot{ }^{t} \bar{A}\right), \quad A=\left(\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & \cdots & t_{2}^{n-1} \\
\vdots & & & \vdots \\
1 & t_{n} & \cdots & t_{n}^{n-1}
\end{array}\right)
$$

(Since $n=m$, the matrix A is square and we have $\operatorname{det}\left(A \cdot{ }^{t} \bar{A}\right)=|\operatorname{det}(A)|^{2}$. Reduce to the case where the test function f is symmetric. Then use the Weyl integration formula.)

Exercise 40.2. Show that

$$
R_{m}\left(x_{1}, \cdots, x_{m}\right)=\frac{1}{(n-m)!} \int_{\mathbb{T}^{n-m}} R_{n}\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

Exercise 40.3. Prove that when $m \leqslant n$ we have

$$
R_{m}\left(t_{1}, \cdots, t_{m}\right)=\operatorname{det}\left(A \cdot{ }^{t} \bar{A}\right), \quad A=\left(\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & \cdots & t_{2}^{n-1} \\
\vdots & & & \vdots \\
1 & t_{m} & \cdots & t_{m}^{n-1}
\end{array}\right)
$$

Observe that if $m<n$, then A is not square, so we may no longer factor the determinant. Deduce Dyson's formula (40.10).

Exercise 40.4. (Bump, Diaconis and Keller [20]) Generalize Dyson's formula as follows. Let λ be a partition of length $\leqslant n$. The measure $\left|\chi_{\lambda}(g)\right|^{2} d g$ is a probability measure, and we may define an m-level correlation function for it exactly as in (40.9). Denote this as $R_{m, \lambda}$. Prove that

$$
R_{m, \lambda}\left(t_{1}, \cdots, t_{n}\right)=\operatorname{det}\left(A \cdot{ }^{t} \bar{A}\right), \quad A=\left(\begin{array}{cccc}
t_{1}^{-\lambda_{1}} & t_{1}^{1-\lambda_{2}} & \cdots & t_{1}^{-\lambda_{n}+n-1} \\
t_{2}^{-\lambda_{1}} & t_{2}^{1-\lambda_{2}} & \cdots & t_{2}^{-\lambda_{n}+n-1} \\
\vdots & & & \\
t_{m}^{-\lambda_{1}} & t_{m}^{1-\lambda_{2}} & \cdots & t_{m}^{-\lambda_{n}+n-1}
\end{array}\right)
$$

Minors of Toeplitz Matrices

Let $f(t)=\sum_{n=-\infty}^{\infty} d_{n} t^{n}$ be a Laurent series representing a function $f: \mathbb{T} \longrightarrow$ \mathbb{C} on the unit circle. We consider the Toeplitz matrix

$$
T_{n-1}(f)=\left(\begin{array}{cccc}
d_{0} & d_{1} & \cdots & d_{n-1} \\
d_{-1} & d_{0} & \cdots & d_{n-2} \\
\vdots & \vdots & & \vdots \\
d_{1-n} & d_{2-n} & \cdots & d_{0}
\end{array}\right) .
$$

Szegö [116] considered the asymptotics of $D_{n-1}(f)=\operatorname{det}\left(T_{n-1}(f)\right)$ as $n \longrightarrow$ ∞. He proved, under certain assumptions, that if

$$
f(t)=\exp \left(\sum_{-\infty}^{\infty} c_{n} t^{n}\right)
$$

then

$$
\begin{equation*}
D_{n-1}(f) \sim \exp \left(n c_{0}+\sum_{k=1}^{\infty} k c_{k} c_{-k}\right) \tag{41.1}
\end{equation*}
$$

In other words, the ratio is asymptotically 1 as $n \longrightarrow \infty$. See Böttcher and Silbermann [14] for the history of this problem and applications of Szegö's Theorem.

A generalization of Szegö's Theorem was given by Bump and Diaconis [19], who found that the asymptotics of minors of Toeplitz matrices had a similar formula. Very strikingly, the irreducible characters of the symmetric group appear in the formula.

One may form a minor of a Toeplitz matrix by either striking some rows and columns or by shifting some rows and columns. For example, if we strike the second row and first column of $T_{4}(f)$, we get

$$
\left(\begin{array}{cccc}
d_{1} & d_{2} & d_{3} & d_{4} \\
d_{-1} & d_{0} & d_{1} & d_{2} \\
d_{-2} & d_{-1} & d_{0} & d_{1} \\
d_{-3} & d_{-2} & d_{-1} & d_{0}
\end{array}\right)
$$

This is the same result as we would get by simply shifting the indices in $T_{3}(f)$; that is, it is the determinant $\operatorname{det}\left(d_{\lambda_{i}-i+j}\right)_{1 \leqslant i, j \leqslant 4}$ where λ is the partition (1). The most general Toeplitz minor has the form $\operatorname{det}\left(d_{\lambda_{i}-\mu_{j}-i+j}\right)$, where λ and μ are partitions. The asymptotic formula of Bump and Diaconis holds λ and μ fixed and lets $n \longrightarrow \infty$.

The formula with μ omitted (that is, for $\left.\operatorname{det}\left(d_{\lambda_{i}-i+j}\right)\right)$ is somewhat simpler to state than the formula, involving Laguerre polynomials, with both λ and μ. We will content ourselves with the special case where μ is trivial.

We will take the opportunity in the proof of Theorem 41.1 to correct a minor error in [19]. The statement before (3.4) of [19] that "... the only terms that survive have $\alpha_{k}=\beta_{k}$ " is only correct for terms of degree $\leqslant n$. We thank Barry Simon for pointing this out.

If λ is a partition, let χ_{λ} denote the character of $U(n)$ defined in Chapter 38 .

We will use the notation like that at the end of Chapter 25, which we review next. Although we hark back to Chapter 25 for our notation, the only "deep" fact that we need from Part II of this book is the Weyl integration formula. For example, the Weyl character formula in the form that we need it is identical to the combination of (38.1) and (38.3). The proof of Theorem 41.1 in [19], based on the Jacobi-Trudi and Cauchy identities, did not make use of the Weyl integration formula, so even this aspect of the proof can be made independent of Part II.

Let T be the diagonal torus in $U(n)$. We will identify $X^{*}(T) \cong \mathbb{Z}^{n}$ by mapping the character (25.14) to $\left(k_{1}, \cdots, k_{n}\right)$. If $\chi \in X^{*}(T)$ we will use the "multiplicative" notation e^{χ} for χ so as to be able to form linear combinations of characters yet still write $X^{*}(T)$ additively. The Weyl group W can be identified with the symmetric group S_{n} acting on $X^{*}(T)=\mathbb{Z}^{n}$ by permuting the characters. Let \mathcal{E} be the free Abelian group on $X^{*}(T)$. (This differs slightly from the use of \mathcal{E} at the end of Chapter 25.)

Elements of \mathcal{E} are naturally functions on T. Since each conjugacy class of $U(n)$ has a representative in T, and two elements of T are conjugate in G if and only if they are equivalent by W, class functions on G are the same as W-invariant functions on W. In particular, a W-invariant element of \mathcal{E} may be regarded as a function on the group. We write the Weyl character formula in the form (25.16) with $\delta=(n-1, n-2, \cdots, 1,0)$ as in (25.15).

If λ and μ are partitions of length $\leqslant n$, let

$$
D_{n-1}^{\lambda, \mu}(f)=\operatorname{det}\left(d_{\lambda_{i}-\mu_{j}-i+j}\right)
$$

It is easy to see that this is a minor in a larger Toeplitz matrix.
Theorem 41.1. (Heine, Szegö, Bump, Diaconis) Let $f \in L^{1}(\mathbb{T})$ be given, with $f(t)=\sum_{n=-\infty}^{\infty} d_{n} t^{n}$. Let λ and μ be partitions of length $\leqslant n$. Define a function $\Phi_{n, f}$ on $U(n)$ by $\Phi_{n, f}(g)=\prod_{i=1}^{n} f\left(t_{i}\right)$, where t_{i} are the eigenvalues of $g \in U(n)$. Then

$$
D_{n-1}^{\lambda, \mu}(f)=\int_{U(n)} \Phi_{n, f}(g) \overline{\chi_{\lambda}(g)} \chi_{\mu}(g) d g
$$

If λ and μ are trivial, this is the classical Heine-Szegö identity. Historically, a "Hermitian" precursor of this formula may be found in Heine's 1878 treatise on spherical functions, but the "unitary" version seems due to Szegö. The following proof of the general case is different from that given by Bump and Diaconis, who deduced this formula from the Jacobi-Trudi identity.

Proof. By the Weyl integration formula in the form (25.17), and the Weyl character formula in the form (25.16), we have

$$
\begin{aligned}
& \int_{U(n)} \Phi_{n, f}(g) \overline{\chi_{\lambda}(g)} \chi_{\mu}(g) d g= \\
& \frac{1}{n!} \int_{\mathbb{T}} \Phi_{n, f}(t)\left(\sum_{w \in W}(-1)^{l(w)} e^{w(\mu+\delta)}\right)\left(\sum_{w^{\prime} \in W}(-1)^{l\left(w^{\prime}\right)} e^{-w^{\prime}(\lambda+\delta)}\right) d t= \\
& \frac{1}{n!} \int_{\mathbb{T}} \Phi_{n, f}(t)\left(\sum_{w, w^{\prime} \in W}(-1)^{l(w)+l\left(w^{\prime}\right)} e^{w(\mu+\delta)-w^{\prime}(\lambda+\delta)}\right) d t .
\end{aligned}
$$

Interchanging the order of summation and integration, replacing w by $w^{\prime} w$, and then making the variable change $t \longmapsto w^{\prime} t$, we get

$$
\frac{1}{n!} \sum_{w^{\prime} \in W}\left[\sum_{w \in W} \int_{T} \Phi_{n, f}(t)\left((-1)^{l(w)} e^{w(\mu+\delta)-\lambda-\delta}\right) d t\right]
$$

Each w^{\prime} contributes equally, and we may simply drop the summation over w^{\prime} and the $1 / n$! to get

$$
\sum_{w \in W} \int_{T} \Phi_{n, f}(t)\left((-1)^{l(w)} e^{w(\mu+\delta)-\lambda-\delta}\right) d t
$$

Now, as a function on T, the weight $e^{w(\mu+\delta)-\lambda-\delta}$ has the effect

$$
\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) \longmapsto \prod_{i=1}^{n} t_{i}^{\mu_{w(i)}+(n-w(i))-\lambda_{i}-(n-i)}=\prod_{i=1}^{n} t_{i}^{\mu_{w(i)}-w(i)-\lambda_{i}+i}
$$

Thus, the integral is

$$
\begin{aligned}
\sum_{w \in W}(-1)^{l(w)} \prod_{i=1}^{n} & \int_{\mathbb{T}}\left(\sum_{-\infty}^{\infty} d_{k} t_{i}^{k}\right) t_{i}^{\mu_{w(i)}-w(i)-\lambda_{i}+i} d t= \\
& \sum_{w \in W}(-1)^{l(w)} \prod_{i=1}^{n} d_{-\mu_{w(i)}+w(i)+\lambda_{i}-i}
\end{aligned}
$$

Since the Weyl group is S_{n} and $(-1)^{l(w)}$ is the sign character, by the definition of the determinant, this is the determinant $D_{n-1}^{\lambda, \mu}(f)$.

As we already mentioned, we will only consider here the special case where μ is $(0, \cdots, 0)$. We refer to [19] for the general case. If μ is trivial, then Theorem 41.1 reduces to the formula

$$
\begin{equation*}
D_{n-1}^{\lambda}(f)=\int_{U(n)} \Phi_{n, f}(g) \overline{\chi_{\lambda}(g)} d g \tag{41.2}
\end{equation*}
$$

where

$$
D_{n-1}^{\lambda}(f)=\operatorname{det}\left(d_{\lambda_{i}-i+j}\right)
$$

Theorem 41.2. (Szegö, Bump, Diaconis) Let

$$
f(t)=\exp \left(\sum_{-\infty}^{\infty} c_{k} t^{k}\right)
$$

where we assume that

$$
\sum_{k}\left|c_{k}\right|<\infty, \quad \text { and } \quad \sum_{k}\left|k \| c_{k}\right|^{2}<\infty
$$

Let λ be a partition of m. Let $\boldsymbol{s}_{\lambda}: S_{k} \longrightarrow \mathbb{Z}$ be the irreducible character associated with λ. If $\xi \in S_{m}$, let $\gamma_{k}(\xi)$ denote the number of k-cycles in the decomposition of ξ into a product of disjoint cycles, and define

$$
\Delta(f, \xi)=\prod_{k=1}^{\infty}\left(k c_{k}\right)^{\gamma_{k}(\xi)}
$$

(The product is actually finite.) Then

$$
D_{n-1}^{\lambda}(f) \sim \frac{1}{m!} \sum_{\xi \in S_{m}} s_{\lambda}(\xi) \Delta(f, \xi) \exp \left(n c_{0}+\sum_{k=1}^{\infty} k c_{k} c_{-k}\right)
$$

Proof. Our assumption that $\sum\left|c_{k}\right|<\infty$ implies that

$$
\int_{U(n)} \exp \left(\sum\left|c_{k}\right|\left|\operatorname{tr}\left(g^{k}\right)\right|\right) d g<\infty
$$

which is enough to justify all of the following manipulations. (We will use the assumption that $\sum\left|k c_{k}\right|^{2}<\infty$ later.)

First, take λ to be trivial, so that $m=0$. This special case is Szegö's original theorem. By (41.2),

$$
D_{n-1}(f)=\int_{U(n)} \exp \left(\sum_{k} c_{k} \operatorname{tr}\left(g^{k}\right)\right) d g=\int_{U(n)} \prod_{k} \exp \left(c_{k} \operatorname{tr}\left(g^{k}\right)\right) d g
$$

We can pull out the factor $\exp \left(n c_{0}\right)$ since $\operatorname{tr}(1)=n$, substitute the series expansion for the exponential function, and group together the contributions for k and $-k$. We get

$$
\begin{aligned}
& e^{n c_{0}} \int_{U(n)} \prod_{k}\left[\sum_{\alpha_{k}=0}^{\infty} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}\right]\left[\sum_{\alpha_{k}=0}^{\infty} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!} \overline{\operatorname{tr}\left(g^{k}\right)}{ }^{\beta_{k}}\right] d g= \\
& e^{n c_{0}} \sum_{\left(\alpha_{k}\right)} \sum_{\left(\beta_{k}\right)} \int_{U(n)}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}\right)\left(\prod_{k} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!}{\overline{\operatorname{tr}}\left(g^{k}\right)}^{\beta_{k}}\right) d g,
\end{aligned}
$$

where the sum is now over all sequences $\left(\alpha_{k}\right)$ and $\left(\beta_{k}\right)$ of nonnegative integers. The integrand is multiplied by $e^{i \theta\left(\sum k \alpha_{k}-\sum k \beta_{k}\right)}$ when we multiply g by $e^{i \theta}$. This means that the integral is zero unless $\sum k \alpha_{k}=\sum k \beta_{k}$. Assuming this, we look more closely at these terms. By Theorem 39.1, in notation introduced in Chapter 40, the function $g \longmapsto \prod_{k} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}$ is $\mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\nu}\right)$, where ν is a partition of $r=\sum k \alpha_{k}=\sum k \beta_{k}$ with $\alpha_{k}=\alpha_{k}(\nu)$ parts of size k, and similarly we will denote by σ the partition of r with β_{k} parts of size k. This point was discussed in the last chapter in connection with (40.7). We therefore obtain

$$
D_{n-1}^{\lambda}(f)=e^{n c_{0}} \sum_{r=0}^{\infty} C(r, n)
$$

where

$$
C(r, n)=\sum_{\nu, \sigma \text { partitions of } r}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}} c_{-k}^{\beta_{k}}}{\alpha_{k}!\beta_{k}!}\right)\left\langle\mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\nu}\right), \mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\sigma}\right)\right\rangle
$$

Now consider the terms with $r \leqslant n$. When $r \leqslant n$, by Theorem 40.1, the characteristic map from \mathcal{R}_{r} to the space of class functions in $L^{2}(G)$ is an isometry, and if $\nu=\nu^{\prime}$, then by (39.2) we have

$$
\left\langle\mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\nu}\right), \operatorname{Ch}^{(n)}\left(\boldsymbol{p}_{\sigma}\right)\right\rangle_{U(n)}=\left\langle\boldsymbol{p}_{\nu}, \boldsymbol{p}_{\sigma}\right\rangle_{S_{r}}=\left\{\begin{array}{c}
z_{\nu} \text { if } \nu=\sigma \\
0 \text { otherwise }
\end{array}\right.
$$

(This is the same fact we used in the proof of Proposition 40.4.) Thus, when $r \leqslant n$, we have $C(r, n)=C(r)$ where, using the explicit form (39.1) of z_{ν}, we have

$$
\begin{array}{r}
C(r)=e^{n c_{0}} \sum_{\nu \text { a partition of } r} z_{\nu}\left(\prod_{k} \frac{\left(c_{k} c_{-k}\right)^{\alpha_{k}}}{\left(\alpha_{k}!\right)^{2}}\right)= \\
e^{n c_{0}} \sum_{\nu \text { a partition of } r}\left(\prod_{k} \frac{\left(k c_{k} c_{-k}\right)^{\alpha_{k}}}{\alpha_{k}!}\right) .
\end{array}
$$

Now

$$
\sum_{r} C(r)=e^{n c_{0}} \prod_{k} \sum_{\alpha_{k}=0}^{\infty}\left(\frac{\left(k c_{k} c_{-k}\right)^{\alpha_{k}}}{\alpha_{k}!}\right)=e^{n c_{0}} \prod_{k} \exp \left(k c_{k} c_{-k}\right)
$$

so as $n \longrightarrow \infty$, the series $\sum_{r} C(r, n)$ stabilizes to the series $\sum_{r} C(r)$ that converges to the right-hand side of (41.1).

To prove (41.1), we must bound the tails of the series $\sum_{r} C(r, n)$. It is enough to show that there exists an absolutely convergent series $\sum_{r}|D(r)|<$ ∞ such that $|C(r, n)| \leqslant|D(r)|$. First, let us consider the case where $c_{k}=\overline{c_{-k}}$. In this case, we may take $D(r)=C(r)$. The absolute convergence of the series $\sum|D(r)|$ follows from our assumption that $\sum|k|\left|c_{k}\right|^{2}<\infty$ and the Cauchy-Schwarz inequality. In this case,

$$
C(r, n)=\left\|\sum_{\nu \text { a partition of } r}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!}\right) \mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\nu}\right)\right\|^{2}
$$

where, as before, $\alpha_{k}=\alpha_{k}(\nu)$ is the number of parts of size k of the partition ν and the inner product is taken in $U(n)$. Invoking the fact from Theorem 40.1 that the $\mathrm{Ch}^{(n)}$ is a contraction, this is bounded by

$$
C(r, n)=\left\|\sum_{\nu \text { a partition of } r}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!}\right) \boldsymbol{p}_{\nu}\right\|^{2}
$$

where now the inner product is taken in S_{r}, and of course this is $C(r)$. If we do not assume $c_{k}=\overline{c_{-k}}$, we may use the Cauchy-Schwarz inequality and bound $C(r, n)$ by

$$
\left\|\sum_{\nu \text { a partition of } r}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!}\right) \mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\nu}\right)\right\| \cdot\left\|\sum_{\sigma \text { a partition of } r}\left(\prod_{k} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!}\right) \mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\sigma}\right)\right\|
$$

Each norm is dominated by the corresponding norm in R_{k} and, proceeding as before, we obtain the same bound with c_{k} replaced by $\max \left(\left|c_{k}\right|,\left|c_{-k}\right|\right)$.

Now (41.1) is proved, which is the special case with λ trivial. We turn now to the general case.

We will make use of the identity

$$
\boldsymbol{s}_{\lambda}=\sum_{\mu \text { a partition of } m} z_{\mu}^{-1} \boldsymbol{s}_{\lambda}\left(\xi_{\mu}\right) \boldsymbol{p}_{\mu}
$$

in the ring of class functions on S_{m}, where for each μ, ξ_{μ} is a representative of the conjugacy class \mathcal{C}_{μ} of cycle type μ. This is clear since $z_{\mu}^{-1} \boldsymbol{p}_{\mu}$ is the characteristic function of \mathcal{C}_{μ}, so this function has the correct value at every group element. Applying the characteristic map in the ring of class functions on $U(n)$, we have

$$
\chi_{\lambda}=\sum_{\mu \text { a partition of } m} z_{\mu}^{-1} \boldsymbol{s}_{\lambda}\left(\xi_{\mu}\right) \mathrm{Ch}^{(n)}\left(\boldsymbol{p}_{\mu}\right)
$$

For each μ, let $\gamma_{k}\left(\xi_{\mu}\right)$ be the number of cycles of length k in the decomposition of ξ_{μ} into a product of disjoint cycles. By Theorem 39.1, we may write this identity

$$
\chi_{\lambda}=\sum_{\mu \text { a partition of } m} z_{\mu}^{-1} s_{\lambda}\left(\xi_{\mu}\right) \prod_{k} \operatorname{tr}\left(g^{k}\right)^{\gamma_{k}\left(\xi_{\mu}\right)}
$$

Now, proceeding as before from (41.2), we see that $D_{n-1}^{\lambda}(f)$ equals

$$
\begin{array}{r}
e^{n c_{0}} \sum_{\mu \text { a partition of } m} z_{\mu}^{-1} s_{\lambda}\left(\xi_{\mu}\right) \times \\
\int_{U(n)} \prod_{k}\left(\sum_{\alpha_{k}=0}^{\infty} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}\right)\left(\sum_{\beta_{k}=0}^{\infty} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!} \overline{\operatorname{tr}\left(g^{k}\right)}{ }^{\beta_{k}+\gamma_{k}\left(\xi_{\mu}\right)}\right) d g .
\end{array}
$$

Since S_{m} contains $m!/ z_{\lambda}$ elements of cycle type μ and \boldsymbol{s}_{λ} has the same value $s_{\lambda}\left(\xi_{\mu}\right)$ on all of them, we may write this as

$$
\begin{array}{r}
e^{n c_{0}} \frac{1}{m!} \sum_{\xi \in S_{m}} s_{\lambda}(\xi) \times \\
\sum_{\left(\alpha_{k}\right)} \sum_{\left(\beta_{k}\right)} \int_{U(n)}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}\right)\left(\prod_{k} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!} \frac{\left.\operatorname{tr}^{k}\left(g^{k}\right)^{\beta_{k}+\gamma_{k}(\xi)}\right) d g}{} .\right.
\end{array}
$$

As in the previous case, the contribution vanishes unless $\sum k \alpha_{k}=\sum k \beta_{k}+m$, and we assume this. We get

$$
D_{n-1}^{\lambda}(f)=e^{n c_{0}} \frac{1}{m!} \sum_{\xi \in S_{m}} s_{\lambda}(\xi) \sum_{r=0}^{\infty} C(r, n, \xi)
$$

where now

$$
\begin{aligned}
& C(r, n, \xi)= \\
& \sum_{\left(\alpha_{k}\right)} \sum_{\left(\beta_{k}\right)} \int_{U(n)}\left(\prod_{k} \frac{c_{k}^{\alpha_{k}}}{\alpha_{k}!} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}}\right)\left(\prod_{k} \frac{c_{-k}^{\beta_{k}}}{\beta_{k}!} \overline{\operatorname{tr}\left(g^{k}\right)^{\beta_{k}+\gamma_{k}(\xi)}}\right) d g .
\end{aligned}
$$

If $r \leqslant n$, then (as before) the contribution is zero unless $\alpha_{k}=\beta_{k}+\gamma_{k}$. In this case,

$$
\int_{U(n)} \prod_{k} \operatorname{tr}\left(g^{k}\right)^{\alpha_{k}} \overline{\operatorname{tr}\left(g^{k}\right)^{\beta_{k}+\gamma_{k}}} d g=\prod_{k}\left(\beta_{k}+\gamma_{k}\right)!k^{\beta_{k}+\gamma_{k}}
$$

and using this value, we see that when $r \leqslant n$ we have $C(r, n, \xi)=C(r, \xi)$, where

$$
C(r, \xi)=\Delta(f, \xi) \sum_{\substack{\left(\beta_{k}\right) \\ \sum k \beta_{k}=r}} \frac{\left(k c_{k} c_{-k}\right)^{\beta_{k}}}{\beta_{k}!} .
$$

The series is

$$
\sum_{r} C(r, \xi)=\Delta(f, \xi) \exp \left(n c_{0}+\sum_{k=1}^{\infty} k c_{k} c_{-k}\right)
$$

so the result will follow as before if we can show that $|C(r, n, \xi)|<|D(r, \xi)|$ where $\sum|D(r, \xi)|<\infty$. The method is the same as before, based on the fact that the characteristic map is a contraction, and we leave it to the reader.

EXERCISES

Exercise 41.1. (Bump, Diaconis and Keller [20]) (i) If f is a continuous function on \mathbb{T}, show that there is a well-defined continuous function $u_{f}: U(n) \longrightarrow$ $U(n)$ such that if $t_{i} \in \mathbb{T}$ and $h \in U(n)$, we have

$$
\left.u_{f}\left(h\left(\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) h^{-1}\right)=h\left(\begin{array}{lll}
f\left(t_{1}\right) & & \\
& \ddots & \\
& & \\
& & \\
& & \\
& & \\
&
\end{array}\right) h_{n}\right) .
$$

(ii) If g is an $n \times n$ matrix, with $n \geqslant m$, let $E_{m}(g)$ denote the sum of the $\binom{n}{m}$ principal $m \times m$ minors of g. Thus, if $n=4$, then $E_{2}(g)$ is

$$
\left|\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right|+\left|\begin{array}{ll}
g_{11} & g_{13} \\
g_{31} & g_{33}
\end{array}\right|+\left|\begin{array}{ll}
g_{11} & g_{14} \\
g_{41} & g_{44}
\end{array}\right|+\left|\begin{array}{ll}
g_{22} & g_{23} \\
g_{32} & g_{33}
\end{array}\right|+\left|\begin{array}{ll}
g_{22} & g_{24} \\
g_{42} & g_{44}
\end{array}\right|+\left|\begin{array}{ll}
g_{33} & g_{34} \\
g_{43} & g_{44}
\end{array}\right| .
$$

Prove that if $f(t)=\sum d_{k} t^{k}$, then

$$
\int_{U(n)} E_{m}\left(u_{f}(g)\right) \overline{\chi_{\lambda}(g)} \chi_{\mu}(g) d g=E_{m}\left(T_{n-1}^{\mu, \lambda}\right)
$$

where $T_{n-1}^{\mu, \lambda}$ is the $n \times n$ matrix whose i, j-th entry is $d_{\lambda_{i}-\mu_{j}-i+j}$. (Hint: Deduce this from the special case $m=n$.)

Branching Formulae and Tableaux

If $G \supset H$ are groups, a branching rule is an explicit description of how representations of G decompose into irreducibles when restricted to H. By Frobenius reciprocity, this is equivalent to asking how representations of H decompose into irreducibles on induction to G. In this chapter, we will obtain the branching rule for the symmetric groups.

Suppose that λ is a partition of k and that μ is a partition of l with $k \leqslant l$. We write $\lambda \subseteq \mu$ or $\lambda \supseteq \mu$ if the diagram of λ is contained in the diagram of μ. Concretely this means that $\lambda_{i} \leqslant \mu_{i}$ for all i. If $\lambda \neq \mu$, we write $\lambda \subset \mu$ or $\mu \supset \lambda$.

We will denote by ρ_{λ} the irreducible representation of S_{k} parametrized by λ. We follow the notation of the last chapter in regarding elements of \mathcal{R}_{k} as generalized characters of S_{k}. Thus \boldsymbol{s}_{λ} is the character of the representation ρ_{λ}.

Proposition 42.1. Let λ be a partition of k, and let μ be a partition of $k-1$. Then

$$
\left\langle s_{\lambda}, s_{\mu} e_{1}\right\rangle=\left\{\begin{array}{l}
1 \text { if } \lambda \supset \mu, \\
0 \text { otherwise } .
\end{array}\right.
$$

Proof. Applying ch, it is sufficient to show that

$$
e_{1} s_{\mu}=\sum_{\lambda \supset \mu} s_{\lambda}
$$

We work in $\Lambda^{(n)}$ for any sufficiently large n; of course $n=k$ is sufficient. Let Δ denote the denominator in (38.1), and let

$$
M=\left|\begin{array}{cccc}
x_{1}^{\mu_{n}} & x_{2}^{\mu_{n}} & \cdots & x_{n}^{\mu_{n}} \tag{42.1}\\
x_{1}^{\mu_{n-1}+1} & x_{2}^{\mu_{n-1}+1} & \cdots & x_{n}^{\mu_{n-1}+1} \\
\vdots & \vdots & & \vdots \\
x_{1}^{\mu_{1}+n-1} & x_{2}^{\mu_{1}+n-1} & \cdots & x_{n}^{\mu_{1}+n-1}
\end{array}\right|
$$

By (38.1), we have $s_{\mu}=M / \Delta$ and $e_{1}=\sum x_{i}$, so

$$
\Delta e_{1} s_{\mu}=\sum_{i=1}^{n} x_{i} M=\sum_{i=1}^{n}\left|\begin{array}{ccccc}
x_{1}^{\mu_{n}} & \cdots & x_{i}^{\mu_{n}+1} & \cdots & x_{n}^{\mu_{n}} \tag{42.2}\\
\vdots & & \vdots & & \vdots \\
x_{1}^{\mu_{n-j}+j} & \cdots & x_{i}^{\mu_{n-j}+j+1} & \cdots & x_{n}^{\mu_{n-j}+j} \\
\vdots & & \vdots & & \vdots \\
x_{1}^{\mu_{1}+n-1} & \cdots & x_{i}^{\mu_{1}+n} & \cdots & x_{n}^{\mu_{1}+n-1}
\end{array}\right|
$$

We claim that this equals

$$
\sum_{j=1}^{n}\left|\begin{array}{ccccc}
x_{1}^{\mu_{n}} & \cdots & x_{i}^{\mu_{n}} & \cdots & x_{n}^{\mu_{n}} \tag{42.3}\\
\vdots & & \vdots & & \vdots \\
x_{1}^{\mu_{n-j}+j+1} & \cdots & x_{i}^{\mu_{n-j}+j+1} & \cdots & x_{n}^{\mu_{n-j+j+1}} \\
\vdots & & \vdots & & \vdots \\
x_{1}^{\mu_{1}+n-1} & \cdots & x_{i}^{\mu_{1}+n-1} & \cdots & x_{n}^{\mu_{1}+n-1}
\end{array}\right| .
$$

In (42.2), we have increased the exponent in exactly one column of M by one and then summed over columns; in (42.3), we have increased the exponent in exactly one row of M by one and then summed over rows. In either case, expanding the determinants and summing over i or j gives the result of first expanding M and then in each resulting monomial increasing the exponent of exactly one x_{i} by one. These are the same set of terms, so (42.2) and (42.3) are equal.

In (42.3), not all terms may be nonzero. Two consecutive rows will be the same if $\mu_{n-j}+j+1=\mu_{n-j+1}+j+1$, that is, if $\mu_{n-j}=\mu_{n-j+1}$. In this case, the determinant is zero. Discarding these terms, (42.3) is the sum of all s_{λ} as λ runs through those partitions of k that contain μ.
Theorem 42.1. Let λ be a partition of k and let μ be a partition of $k-1$. The following are equivalent.
(i) The representation ρ_{λ} occurs in the representation of S_{k} induced from the representation S_{μ} of $S_{k-1} \subset S_{k}$; in this case it occurs with multiplicity one.
(ii) The representation ρ_{μ} occurs in the representation of S_{k} restricted from the representation S_{λ} of $S_{k} \supset S_{k-1}$; in this case it occurs with multiplicity one.
(iii) The partition $\mu \subset \lambda$.

Proof. Statements (i) and (ii) are equivalent by Frobenius reciprocity. Noting that S_{1} is the trivial group, we have $S_{k-1}=S_{k-1} \times S_{1}$. By definition, $\boldsymbol{s}_{\mu} \boldsymbol{e}_{1}$ is the character of S_{k} induced from the character $\boldsymbol{s}_{\mu} \otimes \boldsymbol{e}_{1}$ of $S_{k-1} \times S_{1}$. With this in mind, this Theorem is just a paraphrase of Proposition 42.1.

A representation is multiplicity-free if in its decomposition into irreducibles, no irreducible occurs with multiplicity greater than 1.
Corollary 42.1. If ρ is an irreducible representation of S_{k-1}, then the representation of S_{k} induced from ρ is multiplicity-free; and if τ is an irreducible representation of S_{k} then the representation of S_{k-1} restricted from τ is multiplicity-free.

Proof. This is an immediate consequence of the theorem.
Let λ be a partition of k. By a standard (Young) tableau of shape λ, we mean a labeling of the diagram of λ by the integers 1 through k in such a way that entries increase in each row and column. As we explained earlier, we represent the diagram of a partition by a series of boxes. This is more convenient than a set of dots since we can then represent a tableau by putting numbers in the boxes to indicate the labeling.

For example, the standard tableaux of shape $(3,2)$ are:

1	3	4
2	5	

The following theorem makes use of the following chain of groups:

$$
S_{k} \supset S_{k-1} \supset \cdots \supset S_{1}
$$

These have the remarkable property that the restriction of each irreducible representation of S_{i} to S_{i-1} is multiplicity-free and the branching rule is explicitly known. Although this is a rare phenomenon, there are a couple of other important cases:

$$
U(n) \supset U(n-1) \supset \cdots \supset U(1)
$$

and

$$
O(n) \supset O(n-1) \supset \cdots \supset O(2)
$$

Theorem 42.2. If λ is a partition of k, the degree of the irreducible representation ρ_{λ} of S_{k} associated with λ is equal to the number of standard tableaux of shape λ.

Proof. Removing the top box (labeled k) from a tableau of shape λ results in another tableau, of shape μ (say), where $\mu \subset \lambda$. Thus, the set of tableaux of shape λ is in bijection with the set of tableaux of shape μ, where μ runs through the partitions of $k-1$ contained in λ.

The restriction of ρ_{λ} to S_{k-1} is the direct sum of the irreducible representations ρ_{μ}, where μ runs through the partitions of $k-1$ contained in λ, and by induction the degree of each such ρ_{μ} equals the number of tableaux of shape μ. The result follows.

There are a number of important matters regarding tableaux that we will discuss only briefly. Fulton [44] and Stanley [115] have extensive discussions of tableaux, but for a definitive short treatment we recommend Knuth [85] as a good place to start. First, there is the Robinson-Schensted correspondence, a bijection between pairs of standard tableaux of the same shape and
permutations. In many places, it is possible to substitute combinatorial arguments based on the Robinson-Schensted correspondence or an important generalization of it due to Knuth.

A very famous formula, due to Frame, Robinson, and Thrall, for the number of tableaux of shape λ - that is, the degree of ρ_{k} - is the hook length formula. It is the fastest way in practice to compute this dimension. For a variety of proofs see Fulton [44], Knuth [85], Macdonald [95], Manivel [96], Sagan [105] (with anecdote), and Stanley [115].

For each box B in the diagram of λ, the hook at B consists of B, all boxes to the right and below. The hook length is the length of the hook. For example, Figure 42.1 shows a hook for the partition $\lambda=(5,5,4,3,3)$ of 20 . This hook has length 5.

Theorem 42.3. (Hook length formula) Let λ be a partition of k. The number of standard tableaux of shape λ equals k ! divided by the product of the lengths of the hooks.

For the example, we have indicated the lengths of the hooks in Figure 42.1. By the hook length formula, we see that the number of tableaux of shape λ is

$$
\frac{20!}{9 \cdot 8 \cdot 7 \cdot 4 \cdot 2 \cdot 8 \cdot 7 \cdot 6 \cdot 3 \cdot 1 \cdot 6 \cdot 5 \cdot 4 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 1}=34,641,750
$$

and this is the degree of the irreducible representation ρ_{λ} of S_{20}.
Proof. A proof (suggested by Goodman and Wallach [47]) is sketched in the exercises.

9	8	7	4	2
8	7	6	3	1
6	5	4	1	
4	3	2		
3	2	1		

Fig. 42.1. The hook length formula for $\lambda=(5,5,4,3,3)$.

Proposition 42.1 is a special case of Pieri's formula, which we explain and prove. First, we give a bit of background on the Littlewood-Richardson rule, of which Pieri's formula is itself a special case.

The multiplicative structure of the ring $\mathcal{R} \cong \Lambda$ is of intense interest. If λ and μ are partitions of r and k, respectively, then we can decompose

$$
\boldsymbol{s}_{\lambda} \boldsymbol{s}_{\mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} \boldsymbol{s}_{\nu}
$$

where the sum is over partitions ν of $r+k$. The coefficients $c_{\lambda \mu}^{\nu}$ are called the Littlewood-Richardson coefficients. They are integers since the \boldsymbol{s}_{ν} are a \mathbb{Z}-basis of the free Abelian group \mathcal{R}_{r+k}.

Applying $\mathrm{ch}^{(n)}$, we may also write

$$
s_{\lambda} s_{\mu}=\sum_{\lambda} c_{\lambda \mu}^{\nu} s_{\nu}
$$

as a decomposition of Schur polynomials, or $\chi_{\lambda} \chi_{\mu}=\sum c_{\lambda \mu}^{\nu} \chi_{\nu}$ in terms of the irreducible characters of $U(n)$ parametrized by λ, μ, and ν. Using the fact that the s_{λ} are orthonormal, we have also

$$
c_{\lambda \mu}^{\nu}=\left\langle\boldsymbol{s}_{\lambda} \boldsymbol{s}_{\mu}, \boldsymbol{s}_{\nu}\right\rangle .
$$

Proposition 42.2. The coefficients $c_{\lambda \mu}^{\nu}$ are nonnegative integers.
Proof. We have two ways of seeing this based on two concrete interpretations of the Schur functions as characters of representations.

On the one hand, working in \mathcal{R}, we note that $s_{\lambda} s_{\mu}$ is the character of S_{r+k} induced from the character $\boldsymbol{s}_{\lambda} \otimes \boldsymbol{s}_{\mu}$ of $S_{k} \times S_{r}$. In its decomposition into irreducibles, the coefficient of s_{ν} is $c_{\lambda \mu}^{\nu}$. Because it is the multiplicity of an irreducible character in a character, it is nonnegative.

Alternatively, on the other hand, working in $\Lambda^{(n)}$ for $n \geqslant r+k$, the coefflcients $c_{\lambda \mu}^{\nu}$ have the following interpretation. Let π_{λ} and π_{μ} be the irreducible representations of $U(n)$ parametrized by λ and μ, respectively, and if χ_{λ} and χ_{μ} are their characters, then for $g \in U(n)$ the value $\chi_{\lambda}(g)=s_{\lambda}\left(t_{1}, \cdots, t_{n}\right)$, where the t_{i} are the eigenvalues of g. The product $\chi_{\lambda} \chi_{\mu}$ of these characters is the character $\pi_{\lambda} \otimes \pi_{\mu}$, and the Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$ are the multiplicities into its decomposition into irreducibles. They are therefore nonnegative.

Given that the Littlewood-Richardson coefficients are nonnegative integers, a natural question is to ask for a combinatorial interpretation. Can $c_{\lambda \mu}^{\nu}$ be realized as the cardinality of some set? The answer is yes, and this interpretation is known as the Littlewood-Richardson rule. We refer to Fulton [44], Stanley [115], or Macdonald [95] for a full discussion of the LittlewoodRichardson rule.

Even just to state the Littlewood-Richardson rule in full generality is slightly complex, and we will content ourselves with a particularly important special case. This is where $\lambda=(r)$ or $\lambda=(1, \cdots, 1)$, so $\boldsymbol{s}_{\lambda}=\boldsymbol{h}_{r}$ or \boldsymbol{e}_{r}. This simple and useful case of the Littlewood-Richardson rule is called Pieri's formula. We will now state and prove it.

If $\mu \subset \lambda$ are partitions, we call the pair (μ, λ) a skew partition and denote it $\lambda \backslash \mu$. Its diagram is the set-theoretic difference between the diagrams of λ
and μ. We call the skew partition $\lambda \backslash \mu$ a vertical strip if its diagram does not contain more than one box in any given row. It is called a horizontal strip if its diagram does not contain more than one box in any given column.

For example, if $\mu=(3,3)$, then the partitions λ of 8 such that $\lambda \backslash \mu$ is a vertical strip are $(4,4),(4,3,1)$, and $(3,3,1,1)$. The diagrams of these skew partitions are the shaded regions in Figure 42.2.

Fig. 42.2. Vertical strips.

Theorem 42.4. (Pieri's formula) Let μ be a partition of k, and let $r \geqslant 0$. Then $\boldsymbol{s}_{\mu} \boldsymbol{e}_{r}$ is the sum of the \boldsymbol{s}_{λ} as λ runs through the partitions of $k+r$ containing μ such that $\lambda \backslash \mu$ is a vertical strip. Also, $\boldsymbol{s}_{\mu} \boldsymbol{h}_{r}$ is the sum of the \boldsymbol{s}_{λ} as λ runs through the partitions of $k+r$ such that $\lambda \backslash \mu$ is a vertical strip.

Proof. Since by Theorem 36.3 and Theorem 37.2 applying the involution ι interchanges \boldsymbol{e}_{r} and \boldsymbol{h}_{r} and also interchanges \boldsymbol{s}_{μ} and \boldsymbol{s}_{λ}, the second statement follows from the first, which we prove.

The proof that $\boldsymbol{s}_{\mu} \boldsymbol{e}_{r}$ is the sum of the \boldsymbol{s}_{λ} as λ runs through the partitions of $k+r$ containing μ such that $\lambda \backslash \mu$ is a vertical strip is actually identical to the proof of Proposition 42.1. Choose $n \geqslant k+r$ and, applying ch, it is sufficient to prove the corresponding result for Schur polynomials.

With notations as in that proof, we see that $\Delta e_{r} s_{\mu}$ equals the sum of $\binom{k}{r}$ terms, each of which is obtained by multiplying M, defined by (42.1), by a monomial $x_{i_{1}} \cdots x_{i_{r}}$, where $i_{1}<\cdots<i_{r}$. Multiplying M by $x_{i_{1}} \cdots x_{i_{r}}$ amounts to increasing the exponent of $x_{i_{r}}$ in the i_{r}-th column by one. Thus, we get $\Delta e_{r} s_{\mu}$ if we take M, increase the exponents in r columns each by one, and then add the resulting $\binom{k}{r}$ determinants.

We claim that this gives the same result as taking M, increasing the exponents in r rows each by one, and then adding the resulting $\binom{k}{r}$ determinants. Indeed, either way, we get the result of taking each monomial occurring in the expansion of the determinant M, increasing the exponents of exactly r of the x_{i} each by one, and adding all resulting terms.

Thus $e_{r} s_{\mu}$ equals the sum of all terms (38.1) where $\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is obtained from $\left(\mu_{1}, \cdots, \mu_{n}\right)$ by increasing exactly r of the μ_{i} by one. Some of these terms may not be partitions, in which case the determinant in the numerator of (38.1) will be zero since it will have repeated rows. The terms that remain
will be the partitions of $k+r$ of length such that $\lambda \backslash \mu$ is a vertical strip. (These partitions all have length $\leqslant n$ because we chose n large enough. Thus $e_{r} s_{\mu}$ is the sum of s_{λ} for these λ, as required.

EXERCISES

Exercise 42.1. Since the h_{k} generate the ring \mathcal{R}, knowing how to multiply them gives complete information about the multiplication in \mathcal{R}. Thus, Pieri's formula contains full information about the Littlewood-Richardson coefficients. This exercise gives a concrete illustration. Using Pieri's formula (or the Jacobi-Trudi identity), check that

$$
h_{2} h_{1}-h_{3}=s_{(21)}
$$

Use this to show that

$$
s_{(21)} s_{(21)}=s_{(42)}+s_{(411)}+s_{(33)}+2 s_{(321)}+s_{(3111)}+s_{(222)}+s_{(2211)}
$$

Exercise 42.2. Let λ be a partition of k into at most n parts. Prove that the number of standard tableaux of shape λ is

$$
\int_{U(n)} \operatorname{tr}(g)^{k} \overline{\chi_{\lambda}(g)} d g
$$

(Hints: Use Theorems 42.2 and 38.4.)
Exercise 42.3. Let $\left(k_{1}, \cdots, k_{r}\right)$ be a sequence of integers whose sum is k. The multinomial coefficient if all $k_{i} \geqslant 0$ is

$$
\binom{k}{k_{1}, \cdots, k_{r}}=\left\{\begin{array}{cl}
\frac{k!}{k_{1}!\cdots k_{r}!} & \text { if all } k_{i} \geqslant 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(i) Show that this multinomial coefficient is the coefficient of $t_{1}^{k_{1}} \cdots t_{r}^{k_{r}}$ in the expansion of $\left(\sum_{i=1}^{r} t_{i}\right)^{k}$.
(ii) Prove that if λ is a partition of k into at most n parts, then the number of standard tableaux of shape λ is

$$
\sum_{w \in S_{n}}(-1)^{l(w)}\binom{k}{\lambda_{1}-1+w(1), \lambda_{2}-2+w(2), \cdots, \lambda_{n}-n+w(n)} .
$$

For example, let $\lambda=(3,2)=(3,2)$ and $k=5$. The sum is

$$
\binom{5}{3,2}-\binom{5}{4,1}=10-5=5
$$

the number of standard tableaux with shape λ. (Hint: Adapt the proof of Theorem 41.1.)

Exercise 42.4. (Frobenius) Let λ be a partition of k into at most n parts. Let $\mu=\lambda+\delta$, where $\delta=(n-1, n-2, \cdots, 1,0)$. Show that the number of standard tableaux of shape λ is

$$
\frac{k!}{\prod_{i} \mu_{i}!}\left(\prod_{i<j}\left(\mu_{i}-\mu_{j}\right)\right) .
$$

Hint: Show that

$$
\frac{\prod_{i} \mu_{i}!}{k!} \sum_{w \in S_{n}}(-1)^{l(w)}\binom{k}{\mu_{1}-n+w(1), \mu_{2}-n+w(2), \cdots, \mu_{n}-n+w(n)}
$$

is a polynomial of degree $\frac{1}{2} n(n-1)$ in μ_{1}, \cdots, μ_{n}, and that it vanishes when $\mu_{i}=\mu_{j}$.
Exercise 42.5. Prove the hook length formula.

The Cauchy Identity

Suppose that $\alpha_{1}, \cdots, \alpha_{n}$ and $\beta_{1}, \cdots, \beta_{m}$ are two sets of variables. The Cauchy identity asserts that

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1-\alpha_{i} \beta_{j}\right)^{-1}=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right) \tag{43.1}
\end{equation*}
$$

where the sum is over all partitions λ (of all k). The series is absolutely convergent if all $\left|\alpha_{i}\right|,\left|\beta_{i}\right|<1$. It can also be regarded as an equality of formal power series. This identity is well-known and useful.

We will prove the Cauchy identity in this chapter, using ideas that reveal an underlying reason why the identity is true. The Cauchy identity will lead us to compare the ring of matrix coefficients of $U(n)$ with the coordinate ring of the affine algebraic group $\mathrm{GL}(n, \mathbb{C})$. From this point of view, (43.1) is extremely conceptual in its meaning. A central role is played in this discussion by the action of $\mathrm{GL}(n) \times \mathrm{GL}(m)$ on $\operatorname{Mat}_{n \times m}(\mathbb{C})$. This action is discussed in the very insightful and recommended exposition of Howe [63], which has many connections with the themes of this and other chapters in this book.

We will give an alternative proof in the exercises. The alternative proof is shorter but (we feel) less insightful. Other purely algebraic proofs can easily be found in the literature: for example, in Macdonald [95], Section I. 4 (page 67) or Stanley [115], Theorem 7.12 .1 (page 322). The proof in Stanley is a direct application of the Robinson-Schensted-Knuth correspondence. The Cauchy identity is a point of very direct connection between representation theory and combinatorics.

To motivate the discussion, we prove first a statement about finite groups.
Proposition 43.1. Let G be a finite group. Consider the action of $G \times G$ on $\mathbb{C}[G]$ by left and right translation: $(g, h): \xi \longrightarrow g \xi h^{-1}$. The module $\mathbb{C}[G]$ is then isomorphic to

$$
\bigoplus_{i} \pi_{i} \otimes \hat{\pi}_{i}
$$

where π_{i} runs through the irreducible representations of G, and $\hat{\pi}_{i}$ denotes the contragredient representation of π_{i}. If $\Delta=\{(g, g) \mid g \in G\}$ is the image of G in $G \times G$ under the diagonal embedding, this representation is isomorphic to the representation of $G \times G$ induced from the trivial representation of Δ.

Proof. We show first that the representation of $G \times G$ on $\mathbb{C}[G]$ is induced from the trivial representation of G. Indeed, the space V_{Π} of this induced representation consists of all functions $f: G \times G \longrightarrow \mathbb{C}$ such that $f((g, g)(x, y))=$ $f(x, y)$, and the action of $G \times G$ on these functions is by right translation: $(\Pi(g, h) f)(x, y)=f(x g, y h)$. This is simply the definition of the induced representation.

If f is such a function, let $F(g)=f(1, g)$. Then

$$
f(g, h)=f\left((g, g)\left(1, g^{-1} h\right)\right)=F\left(g^{-1} h\right)
$$

so there is a bijection between V_{Π} and the space W of all functions $F: G \longrightarrow$ \mathbb{C}. In the second representation, the action is $(g, h) F(x)=(g, h) f(1, x)=$ $f(g, x h)=F\left(g^{-1} x h\right)$. We can identify a function $F: G \longrightarrow \mathbb{C}$ in W with an element of $\mathbb{C}[G]$, namely the element $\sum_{g \in G} F(g) g$. Here $G \times G$ acts on both $\mathbb{C}[G]$ and on W by left and right translation, and it is easy to see that this identification is $G \times G$-equivariant. We have proved that, as a $G \times G$-module, $\mathbb{C}[G]$ is isomorphic to the representation of $G \times G$ induced from the trivial character of Δ.

We may now determine the decomposition of $\mathbb{C}[G]$ into irreducibles of $G \times G$ by Frobenius reciprocity. Every irreducible representation of $G \times G$ has the form $\pi \otimes \tau$, where $\left(\pi, V_{\pi}\right)$ and $\left(\tau, V_{\tau}\right)$ are irreducible representations of G. Its multiplicity in the representation of $G \times G$ induced from the trivial representation is the dimension of

$$
\operatorname{Hom}_{G \otimes G}\left(\pi \otimes \tau, \operatorname{Ind}_{\Delta}^{G \times G}(1)\right) \cong \operatorname{Hom}_{\Delta}(\pi \otimes \tau, 1)
$$

An element of $\operatorname{Hom}_{\Delta}(\pi \otimes \tau, 1)$ is a linear functional $\Lambda: V_{\pi} \otimes V_{\tau} \longrightarrow \mathbb{C}$ that satisfies

$$
\Lambda\left(\pi(g) v \otimes \tau(g) v^{\prime}\right)=\Lambda\left(v \otimes v^{\prime}\right)
$$

Of course, we may write $\Lambda\left(v \otimes v^{\prime}\right)=B\left(v, v^{\prime}\right)$, where $B: V_{\pi} \times V_{\tau} \longrightarrow \mathbb{C}$ is a bilinear form satisfying $B\left(\pi(g) v, \tau(g) v^{\prime}\right)=B\left(v, v^{\prime}\right)$. Such a form satisfies $B\left(\pi(g) v, \tau(g) v^{\prime}\right)=B\left(v, v^{\prime}\right)$. Such a form exists if and only if π and τ are contragredient, and if it does exist it is unique. The statement follows.

This result extends to compact groups. A suitable replacement for the group algebra is needed. We recall that a matrix coefficient of a finitedimensional representation of a compact group G is a function of the form $g \mapsto L(\pi(g) v)$, where (π, V) is a finite-dimensional representation of G, not necessarily irreducible, $v \in V$, and $L: V \longrightarrow \mathbb{C}$ is a linear functional. The matrix coefficients form a \mathbb{C}-algebra (Proposition 2.3). It is of course infinite-dimensional if G is not a finite group. If (π, V) is an irreducible
representation, we say that a matrix coefficient is a matrix coefficient of (π, V) if it can be written as a finite sum $\sum_{i=1}^{h} L_{i}\left(\pi(g) v_{i}\right)$ with $v_{i} \in V$ and $L_{i} \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$. We note that although such a function can be written in the form $L^{\prime}\left(\pi^{\prime}(g) v^{\prime}\right)$, where $\left(\pi^{\prime}, V^{\prime}\right)$ is a different representation of $G, v^{\prime} \in V^{\prime}$, and $L^{\prime} \in \operatorname{Hom}_{\mathbb{C}}\left(V^{\prime}, \mathbb{C}\right)$, we cannot in general take $\left(\pi^{\prime}, V^{\prime}\right)=(\pi, V)$.

Proposition 43.2. Let G be a compact group. Let \mathcal{M} be the ring of matrix coefficients of G. The group $G \times G$ acts on \mathcal{M} by left and right translation. Specifically, there is a representation $\Pi: G \times G \longrightarrow \operatorname{End}(\mathcal{M})$ such that

$$
\Pi(g, h) f(x)=f\left(h^{-1} x g\right), \quad g, h \in G, f \in \mathcal{M}, x \in G
$$

Let $\pi_{i}(i \in I)$ be the irreducible representations of G, and let $\hat{\pi}_{i}$ denote the contragredient representation of π_{i}. Let \mathcal{M}_{i} be the finite-dimensional vector space of matrix coefficients of π_{i}. Then $\mathcal{M}=\bigoplus_{i} \mathcal{M}_{i}$ and $\mathcal{M}_{i} \cong \pi_{i} \otimes \hat{\pi}_{i}$ as $G \times G$-modules, where \mathcal{M} and \mathcal{M}_{i} are given the $G \times G$-module structure induced from the representation Π. Therefore $\mathcal{M} \cong \bigoplus_{i} \pi_{i} \otimes \hat{\pi}_{i}$.

Proof. The space of matrix coefficients is closed under left and right translation (Theorem 2.1), so the representation Π exists. Let V_{i} be the space on which π_{i} acts. By Schur orthogonality (Theorem 2.3), the spaces \mathcal{M}_{i} are orthogonal subspaces of $L^{2}(G)$. Every element of \mathcal{M} can be written as a finite sum of matrix coefficients of irreducible representations, so $\mathcal{M}=\bigoplus_{i} \mathcal{M}_{i}$ as an algebraic direct sum. Moreover, by Proposition 2.10, the space \mathcal{M}_{i} affords a representation isomorphic to $\pi_{i} \otimes \hat{\pi}_{i}$, and the result is proved.

Proposition 43.3. Let (π, V) be an irreducible finite-dimensional algebraic representation of $\mathrm{GL}(n, \mathbb{C})$. Let π^{\prime} be the representation of $\mathrm{GL}(n, \mathbb{C})$ on the same space such that $\pi^{\prime}(g)=\pi\left({ }^{t} g^{-1}\right)$. Then $\pi^{\prime} \cong \hat{\pi}$, the contragredient representation of π.

Proof. We recall from Theorem 38.3 that the irreducible algebraic representations of $\operatorname{GL}(n, \mathbb{C})$ correspond bijectively with the irreducible representations of $U(n)$, so it is sufficient to prove that π^{\prime} and $\hat{\pi}$ are equivalent as representations of $U(n)$. The key point is that every element of $g \in U(n)$ is conjugate to its transpose. To see this, we note that $h g h^{-1}=d$ is diagonal, for some $h \in U(n)$ by the spectral theorem. Taking transposes, $d={ }^{t} d$ is conjugate to ${ }^{t} g$, so g is conjugate to ${ }^{t} g$.

If χ is the character π and $\hat{\chi}$ is the character of $\hat{\pi}$, then $\hat{\chi}(g)=\overline{\chi(g)}=$ $\chi\left(g^{-1}\right)$ for $g \in U(n)$ (Proposition 2.6). Since g and ${ }^{t} g$ are conjugate, we have $\chi\left(g^{-1}\right)=\chi\left({ }^{t} g^{-1}\right)$, so $\hat{\chi}$ agrees with the character of π^{\prime}, implying that π^{\prime} and $\hat{\pi}$ are equivalent representations.

If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, where $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$, let \mathcal{M}_{λ} be the space of matrix coefficients of the representation π_{λ} of $U(n)$ parametrized by λ as in Theorem 38.3.

Proposition 43.4. Let $G=U(n)$. Let \mathcal{M} be the space of matrix coefficients of G, and let $\Pi^{\prime}: G \times G \longrightarrow \operatorname{End}(\mathcal{M})$ be the action $\Pi^{\prime}(g, h) f(x)=f\left({ }^{t} h x g\right)$. Giving \mathcal{M} and \mathcal{M}_{λ} the $G \times G$-module structure corresponding to the representation Π^{\prime}, we have $\mathcal{M}_{\lambda} \cong \pi_{\lambda} \otimes \pi_{\lambda}$. Therefore

$$
\begin{equation*}
\mathcal{M} \cong \sum_{\lambda} \pi_{\lambda} \otimes \pi_{\lambda} \tag{43.2}
\end{equation*}
$$

as $G \times G$-modules, where π_{λ} runs through the irreducible representations of G.

Proof. This follows on Propositions 43.2 and 43.3. Compose the action of $G \times G$ in Proposition 43.2 with the outer automorphism $g \longrightarrow^{t} g^{-1}$ on one of the two components.

Having reached this point, the right-hand side of (43.2) is starting to resemble the right-hand side of (43.1). Assuming that $n=m$, if we apply the character of $\pi_{\lambda} \otimes \pi_{\lambda}$ to the conjugacy class of $(g, h) \in U(n) \times U(n)$, where g has eigenvalues $\left(x_{1}, \cdots, x_{n}\right)$ and h has eigenvalues (y_{1}, \cdots, y_{n}), then we obtain one term of the series (43.1). (Of course, for such values, since $\left|x_{i}\right|=\left|y_{i}\right|=1$, the series (43.1) does not converge.)

We make note of one substantial difference between (43.1) and (43.2). In (43.2), all sequences λ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ appear, while in (43.1) only partitions - those λ with $\lambda_{n} \geqslant 0$ - are present.

To proceed further, we will interpret the ring \mathcal{M} of matrix coefficients of $U(n)$ as regular functions on the affine variety $\mathrm{GL}(n, \mathbb{C})$. We review a bit of algebraic geometry, taking the point of view that since we are working over an algebraically closed field \mathbb{C} we may identify an affine complex variety with its set of complex points.

The regular functions on an affine variety form a ring, the coordinate ring or affine ring of the variety. If X is an affine variety with coordinate ring A, and if $0 \neq f \in A$, then the principal open set $X_{f}=\{x \in X \mid f(x) \neq 0\}$ has a natural interpretation as an affine variety. To see this, one embeds $X_{f} \longrightarrow X \times \mathbb{A}^{1}$, where \mathbb{A}^{1} is the affine line, by mapping $x \in X_{f}$ to $\left(x, f(x)^{-1}\right)$. The image of X_{f} under this embedding is

$$
\left\{(x, y) \in X \times \mathbb{A}^{1} \mid f(x) y-1=0\right\}
$$

This is a closed subset of $X \times \mathbb{A}^{1}$ in both the complex or Zariski topologies, and it is by means of this mapping of X_{f} onto a Zariski closed set that we regard X_{f} itself as an affine variety. The coordinate ring of X_{f} is $A\left[f^{-1}\right]$.

As an example, $\mathrm{GL}(n)$ is a principal open set in Mat_{n}, and for this reason it is an affine variety. If $1 \leqslant i, j \leqslant n$, let $x_{i j}$ be the function on $\operatorname{GL}(n, \mathbb{C})$ whose value on a matrix $g=\left(g_{i j}\right)$ is $g_{i j}$. Each function $x_{i j}$ extends uniquely to $\operatorname{Mat}_{n}(\mathbb{C})$. The coordinate ring of $\operatorname{Mat}_{n}(\mathbb{C})$ is the ring $\mathbb{C}\left[x_{11}, \cdots, x_{n n}\right]$ of polynomials in n^{2} indeterminates, and the coordinate ring of $\mathrm{GL}(n, \mathbb{C})$ is the
ring $\mathbb{C}\left[x_{11}, \cdots, x_{n n}, \operatorname{det}^{-1}\right]$. We will denote by Σ° and Σ, respectively, the coordinate rings of $\operatorname{Mat}_{n}(\mathbb{C})$ and $\mathrm{GL}(n, \mathbb{C})$.

Let \mathcal{M}° be the sum of the \mathcal{M}_{λ}, where λ is a partition (that is, where $\left.\lambda_{n} \geqslant 0\right)$.

Theorem 43.1. Every matrix coefficient of $U(n)$ is the restriction of a unique regular function on $\mathrm{GL}(n, \mathbb{C})$. Thus \mathcal{M} may be identified with the coordinate ring of $\mathrm{GL}(n, \mathbb{C})$. The subspace \mathcal{M}° of \mathcal{M} is a subring corresponding to the coordinate ring of $\operatorname{Mat}_{n}(\mathbb{C})$.

Proof. Let us show that polynomial functions on $\mathrm{GL}(n, \mathbb{C})$ are determined by their restrictions to $U(n)$. Suppose that $f: \mathrm{GL}(n, \mathbb{C}) \longrightarrow \mathbb{C}$ is a polynomial function that vanishes on $U(n)$. Let $X, Y \in \mathfrak{u}(n)$. The function $f(\exp (X+t Y))$ vanishes for real values of t since if $t \in \mathbb{R}$, then $\exp (X+t Y) \in U(n)$. Since f is a polynomial, and $\exp : \mathfrak{g l}(n, \mathbb{C}) \longrightarrow \mathrm{GL}(n, \mathbb{C})$ is analytic, $f(\exp (X+t Y))$ is analytic as a function of t and it therefore vanishes for all t, in particular $f(\exp (X+i Y))=0$. Now $\mathfrak{g l}(n, \mathbb{C})=\mathfrak{u}(n)+i \mathfrak{u}(n)$, so this shows that f vanishes in a neighborhood of the identity. Since it is a polynomial, it is therefore zero.

We saw in Theorem 38.3 that the irreducible representations of $U(n)$ are restrictions of algebraic representations of $\operatorname{GL}(n, \mathbb{C})$, so their matrix coefficients are regular. This means that we have an embedding of \mathcal{M} into the coordinate ring of $\mathrm{GL}(n, \mathbb{C})$. We have to show that every regular function f on $\operatorname{GL}(n, \mathbb{C})$ is a matrix coefficient of $U(n)$.

Let us first prove this when f is regular on $\operatorname{Mat}_{n}(\mathbb{C})$. Thus f is a polynomial in the $x_{i j}$ not involving det^{-1}, and we will show that $f \in \mathcal{M}$. We may as well assume that f is homogeneous of degree k. Then f is a matrix coefficient by the criterion of Theorem 2.1: a function whose left and right translates span a finite-dimensional vector space is a matrix coefficient. Translating on the left or right produces another homogeneous polynomial of degree k, so the left and right translates are contained in a finite-dimensional vector space and are therefore matrix coefficients.

But we will prove a bit more. Still assuming that f is a homogeneous polynomial of degree k in the $x_{i j}$ (not involving det^{-1}), we will show that $f \in \mathcal{M}_{k}$, where

$$
\mathcal{M}_{k}=\bigoplus_{\substack{\lambda \text { a partition of } k \\ l(\lambda) \leqslant n}} \mathcal{M}_{\lambda}
$$

and in fact \mathcal{M}_{k} consists of the restrictions to $U(n)$ of homogeneous polynomials of degree k. By Theorem 38.4, $\bigotimes^{k} V \cong \bigoplus_{\lambda} d_{\lambda} \pi_{\lambda}$ as a GL(n, \mathbb{C})-module, where the sum is over partitions of k of length $\leqslant k$, and d_{λ} is the degree of the irreducible representation of S_{k} indexed by λ. Since $\otimes^{k} V$ contains exactly the representations whose matrix coefficients make up \mathcal{M}_{k}, we infer that \mathcal{M}_{k} is spanned by functions $L((g \otimes \cdots \otimes g) \xi)$, where $\xi \in \bigotimes^{k} V$ and L is a linear functional on $\bigotimes^{k} V$. We may as well take $\xi=x_{1} \otimes \cdots \otimes x_{k}$ and $L=L_{1} \otimes \cdots \otimes L_{k}$, where $L_{k} \in \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$. Then $L((g \otimes \cdots \otimes g) \xi)=\prod L_{i}\left(g x_{i}\right)$ is a product
of matrix coefficients of the standard representation on V. Such a function is a homogeneous polynomial of degree k in the $x_{i j}$, and every homogeneous polynomial of degree k is a linear combination of polynomials of this type. This proves the identification of \mathcal{M}_{k} with the homogeneous polynomials of degree k and the identification of $\mathcal{M}^{\circ}=\bigoplus \mathcal{M}_{k}$ with the coordinate ring of $\operatorname{Mat}_{n}(\mathbb{C})$.

If f is an arbitrary polynomial in the $x_{i j}$ and det^{-1}, then the function $\operatorname{det}^{N}(g) f(g)$ will be a polynomial in the $x_{i j}$ not involving det^{-1} for sufficiently large N. Thus, by what we have already proved, $g \mapsto \operatorname{det}^{N}(g) f(g)$ is a matrix coefficient of $U(n)$ for sufficiently large N. Writing this as a sum of matrix coefficients for irreducible representations and noting that when $\operatorname{det}^{N}(g) f(g)$ is a matrix coefficient for π, we see that f is a matrix coefficient for $\operatorname{det}^{-N} \otimes \pi$. This proves the identification of the coordinate ring of $\operatorname{GL}(n, \mathbb{C})$ with \mathcal{M}.

Theorem 43.2. Let $G=\mathrm{GL}(n, \mathbb{C})$. Let Σ° be the ring of polynomials on $\operatorname{Mat}_{n}(\mathbb{C})$, and let $\Pi^{\circ}: G \times G \longrightarrow \operatorname{End}\left(\Sigma^{\circ}\right)$ be the action $\Pi^{\circ}(g, h) f(x)=$ $f\left({ }^{t} g x h\right)$. Then

$$
\begin{equation*}
\Pi^{\circ} \cong \sum_{\lambda} \pi_{\lambda} \otimes \pi_{\lambda} \tag{43.3}
\end{equation*}
$$

as $G \times G$-representations, where λ runs through all partitions of length $\leqslant n$.
Proof. We have switched the two components $(g, h) \in G \times G$ from their locations in Proposition 43.4. The reason that the representation there was written $\Pi^{\prime}(g, h) f(x)=f\left({ }^{t} h x g\right)$ instead of $f\left({ }^{t} g x h\right)$ was that we preferred the summand \mathcal{M}_{λ} to correspond to the factor $\pi_{\lambda} \otimes \pi_{\lambda}$ rather than to its contragredient. There is no reference to \mathcal{M}_{λ} in this statement, so we switch them to their more natural locations.

Let $\Sigma \supset \Sigma^{\circ}$ be the coordinate ring of $\operatorname{GL}(n, \mathbb{C})$. The decomposition of Σ over $U(n) \times U(n)$ is then given by Proposition 43.4. For the subring Σ°, the term $\pi_{\lambda} \otimes \pi_{\lambda}$ only occurs when the matrix coefficients of π_{λ} are polynomials not involving det^{-1}, and by Theorem 43.1 this happens precisely when λ is a partition. This proves (43.7) as a decomposition over $U(n) \times U(n)$, and it follows that it is valid over $\operatorname{GL}(n, \mathbb{C})$.

If V is a vector space, the exterior and symmetric algebras

$$
\bigvee V=\bigoplus_{k=0}^{\infty}\left(V^{k} V\right), \quad \bigwedge V=\bigoplus_{k=0}^{\infty}\left(\wedge^{k} V\right)
$$

are naturally modules for $\mathrm{GL}(V)$.
Remark 43.1. The symmetric algebra over the dual space V^{*} can be identified with the ring of polynomial functions on V. Indeed, we have a symmetric k linear mapping from $V^{*} \times \cdots \times V^{*} \longrightarrow P_{k}$, where P_{k} is the vector space of homogeneous polynomials on V of degree k; this map takes $\left(v_{1}^{*}, \cdots, v_{k}^{*}\right)$ to the polynomial function mapping $x \longrightarrow v_{1}^{*}(x) \cdots v_{k}^{*}(x)$. The induced map
$\vee^{k} V^{*} \longrightarrow P_{k}$ is an isomorphism, and putting these maps together, we obtain an isomorphism of graded rings of $\bigvee V^{*}$ with the ring of polynomial functions on V.

If $\rho: G \longrightarrow \mathrm{GL}(V)$ is a representation, then $\bigvee V$ and $\bigwedge V$ become modules for G and we may ask for their decomposition into irreducible representations of V. For some representations ρ, this question will have a simple answer, and for others the answer will be complex. The very simplest case is where $G=\mathrm{GL}(V)$. In this case, each $\vee^{k} V$ is itself irreducible, and each $\wedge^{k} V$ is either irreducible (if $k<\operatorname{dim}(V)$) or zero.

We can encode the solution to this question with generating functions

$$
P_{\rho}^{\vee}(g ; t)=\sum_{k=0}^{\infty} \operatorname{tr}\left(g \mid \vee^{k} V\right) t^{k}, \quad P_{\rho}^{\wedge}(g ; t)=\sum_{k=0}^{\infty} \operatorname{tr}\left(g \wedge^{k} V\right) t^{k}
$$

Proposition 43.5. Suppose that $\rho: G \longrightarrow \mathrm{GL}(V)$ is a representation and $\gamma_{1}, \cdots, \gamma_{d}$ are the eigenvalues of $\rho(g)$. Then

$$
\begin{equation*}
P_{\rho}^{\vee}(g, t)=\prod_{i}\left(1-t \gamma_{i}\right)^{-1}, \quad P_{\rho}^{\wedge}(g, t)=\prod_{i}\left(1+t \gamma_{i}\right) \tag{43.4}
\end{equation*}
$$

Proof. The traces of $\rho(g)$ on $\vee^{k} V$ and $\wedge^{k} V$ are

$$
h_{k}\left(\gamma_{1}, \cdots, \gamma_{d}\right) \quad \text { and } \quad e_{k}\left(\gamma_{1}, \cdots, \gamma_{d}\right)
$$

so this is a restatement of (35.1) and (35.2).
We see that for all $g, P_{\rho}^{\vee}(g, t)$ is convergent if $t<\max \left(\left|\gamma_{i}\right|^{-1}\right)$ and has meromorphic continuation in t, while $P_{\rho}^{\wedge}(g, t)$ is a polynomial in t of degree equal to the dimension of V. We will denote $P_{\rho}^{\vee}(g)=P_{\rho}^{\vee}(g, 1)$ and $P_{\rho}^{\wedge}(g)=$ $P_{\rho}^{\wedge}(g, 1)$. Then we can write (43.4) in the less redundant form

$$
\begin{equation*}
P_{\rho}^{\vee}(g)=\prod_{i}\left(1-\gamma_{i}\right)^{-1}, \quad P_{\rho}^{\wedge}(g)=\prod_{i}\left(1+\gamma_{i}\right) \tag{43.5}
\end{equation*}
$$

Theorem 43.3. (Cauchy) Suppose $\alpha_{1}, \cdots, \alpha_{n}$ and $\beta_{1}, \cdots, \beta_{m}$ are complex numbers of absolute value <1. Then

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1-\alpha_{i} \beta_{j}\right)^{-1}=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right) \tag{43.6}
\end{equation*}
$$

The sum is over all partitions λ.
Proof. First, assume that $n=m$. We consider the action of $\operatorname{GL}(n, \mathbb{C}) \times$ $\operatorname{GL}(n, \mathbb{C})$ on the dual complex vector space $\operatorname{Mat}_{n}(\mathbb{C})^{*}$ in which $(g, h) \in$ $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(n, \mathbb{C})$ maps $v^{*} \in \operatorname{Mat}_{n}(\mathbb{C})^{*}$ to the functional $X \longrightarrow v^{*}\left({ }^{t} g X h\right)$. Denoting this representation ρ, if g and h have eigenvalues $\alpha_{1}, \cdots, \alpha_{n}$ and
$\beta_{1}, \cdots, \beta_{n}$, then the eigenvalues of $\rho(g)$ are the $\alpha_{i} \beta_{j}$. Indeed, we may check this when g is diagonal, in which case the coordinate functions $x_{i j}$ are eigenvectors. Therefore $P_{\rho}^{\vee}(g, t)=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1-\alpha_{i} \beta_{j}\right)^{-1}$.

On the other hand, the symmetric algebra over $\operatorname{Mat}_{n}(\mathbb{C})^{*}$ is the ring of polynomial functions on this ring, whose decomposition is given by Theorem 43.2. Thus, if t is sufficiently small,
$\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1-t \alpha_{i} \beta_{j}\right)^{-1}=\sum_{k}\left[\sum_{\lambda \text { a partition of } k} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right)\right] t^{k}$.
If $\left|\alpha_{i}\right|,\left|\beta_{j}\right|<1$, then the left-hand side is holomorphic inside $|t| \leqslant 1$, so the radius of convergence is at least 1 , and taking $t=1$ the result is proved when $n=m$.

If $n>m$, we may specialize $\beta_{m+1}, \cdots, \beta_{n} \longrightarrow 0$. Setting one parameter to zero takes a Schur polynomial s_{λ} in n variables to the corresponding Schur polynomial in $n-1$ variables by Proposition 36.6, and the left-hand side of (43.6) is similarly well-behaved.

We can now generalize Theorem 43.2 to give a correspondence between $\mathrm{GL}(n)$ and $\mathrm{GL}(m)$ when n and m are possibly distinct. In the following theorem, representations of both $\mathrm{GL}(n, \mathbb{C})$ and $\mathrm{GL}(m, \mathbb{C})$ occur. To distinguish the two, we will modify the notation introduced before Theorem 38.3 as follows. If λ is a partition (of any k) of length $\leqslant n$, or more generally an integer sequence $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$, we will denote by π_{λ} the representation of $\operatorname{GL}(n, \mathbb{C})$ parametrized by λ. On the other hand, if μ is a partition of length $\leqslant m$, or more generally an integer sequence $\mu=\left(\mu_{1}, \cdots, \mu_{m}\right)$ with $\mu_{1} \geqslant \mu_{2} \geqslant \cdots$, we will denote by π_{μ}^{\prime} the representation of $\operatorname{GL}(m, \mathbb{C})$ parametrized by μ.

Theorem 43.4. Let $G=\operatorname{GL}(n, \mathbb{C})$ and $G^{\prime}=\mathrm{GL}(m, \mathbb{C})$. Let Σ° be the ring of polynomials on the space $\operatorname{Mat}_{n \times m}(\mathbb{C})$ of $n \times m$ complex matrices. Let Π° : $G \times G^{\prime} \longrightarrow \operatorname{End}(\Sigma)$ be the action $\Pi^{\circ}(g, h) f(x)=f\left({ }^{t} g x h\right)$. If λ is a partition, let π_{λ} and π_{λ}^{\prime} denote the irreducible representations of G and G^{\prime}, respectively, parametrized by the partition λ. Then

$$
\begin{equation*}
\Sigma^{\circ} \cong \sum_{\lambda} \pi_{\lambda} \otimes \pi_{\lambda}^{\prime} \tag{43.7}
\end{equation*}
$$

as $G \times G^{\prime}$-modules, where λ runs through all partitions, and Σ° is regarded as a $G \times G^{\prime}$-module by means of the representation Π°.

The terms where the length λ is greater than n or m are zero and may be discarded.

Proof. This follows immediately from Proposition 43.5 and Theorem 43.3. In Proposition 43.5 , take G to be $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(m, \mathbb{C})$ and take the representation to be Π°. The eigenvalues are the $\alpha_{i} \beta_{j}$, and the symmetric algebra decomposition is therefore given by Theorem 43.3.

There is a dual Cauchy identity.
Theorem 43.5. Suppose $\alpha_{1}, \cdots, \alpha_{n}$ and $\beta_{1}, \cdots, \beta_{m}$ are complex numbers of absolute value <1. Then

$$
\begin{equation*}
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(1+\alpha_{i} \beta_{j}\right)=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda^{t}}\left(\beta_{1}, \cdots, \beta_{m}\right) \tag{43.8}
\end{equation*}
$$

Note that now each partition λ is paired with its conjugate partition λ^{t}. This may be regarded as a decomposition of the exterior algebra on $\operatorname{Mat}_{n}(\mathbb{C})^{*}$.

Proof. Let $\alpha_{1}, \cdots, \alpha_{n}$ be fixed complex numbers, and let $\Lambda^{(m)}$ be the ring of symmetric polynomials in $\beta_{1}, \cdots, \beta_{m}$ with integer coefficients. We recall from Theorems 36.3 and 37.2 that Λ has an involution ι that interchanges s_{λ} and $s_{\lambda^{\prime}}$. We have to be careful how we use ι because it does not induce an involution of $\Lambda^{(m)}$. Indeed, it is possible that in $\Lambda^{(m)}$ one of s_{λ} and $s_{\lambda^{\prime}}$ is zero and the other is not, so no involution exists that simply interchanges them.

We write the Cauchy identity in the form

$$
\prod_{i=1}^{n}\left[\sum_{k=0}^{\infty} \alpha_{i}^{k} h_{k}\left(\beta_{1}, \cdots, \beta_{m}\right)\right]=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}\left(\beta_{1}, \cdots, b_{m}\right)
$$

This is true for all m, and therefore we may write

$$
\prod_{i=1}^{n}\left[\sum_{k=0}^{\infty} \alpha_{i}^{k} h_{k}\right]=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}
$$

where the h_{k} on the left and the second occurrence of s_{λ} on the right are regarded as elements of the ring Λ, which is the inverse limit (36.10), and α_{i} and $s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ are regarded as complex numbers. To this identity we may apply ι and obtain

$$
\prod_{i=1}^{n}\left[\sum_{k=0}^{\infty} \alpha_{i}^{k} e_{k}\right]=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda^{\prime}}
$$

and now we specialize from Λ to $\Lambda^{(m)}$ and obtain (43.8).

EXERCISES

Exercise 43.1. Give two proofs that (in the notations of Chapter 39)

$$
\sum_{k} h_{k}=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}
$$

where the sum on the right is over all partitions. For the first proof, working in \mathcal{R}_{k}, prove that

$$
\boldsymbol{h}_{k}=\sum_{\lambda \text { a partition of } k} z_{\lambda}^{-1} \boldsymbol{p}_{\lambda}
$$

by describing these two class functions on S_{k} explicitly; then apply ch and use Theorem 39.1. For the second proof, show that

$$
\begin{equation*}
\prod_{i}\left(1-\alpha_{i} t\right)^{-1}=\sum_{\lambda} z_{\lambda} p_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) t^{|\lambda|} \tag{43.9}
\end{equation*}
$$

by writing the left-hand side as

$$
\prod_{i} \exp \left(\sum_{k} \frac{\alpha_{i}^{k}}{k} t^{k}\right)=\prod_{k} \exp \left(\frac{p_{k}\left(\alpha_{1}, \cdots, \alpha_{k}\right)}{k} t^{k}\right)
$$

expanding and making use of (39.1).
Exercise 43.2. Prove Cauchy's identity as follows.
(i) Let V be a vector space over a field F and $B: V \times V \longrightarrow F$ be a nondegenerate bilinear form. Let x_{1}, \cdots, x_{n} be a basis of V, and let $x_{1}^{*}, \cdots, x_{n}^{*}$ be the dual basis, so $B\left(x_{i}, x_{j}^{*}\right)=\delta_{i j}$ (Kronecker δ). Show first that $\sum_{i} x_{i} \otimes x_{i}^{*} \in V \otimes V$ is independent of the choice of basis x_{i}.
(ii) Take $F=\mathbb{Q}$ and $V=\mathbb{Q} \otimes \mathcal{R}_{k}$ in (i), and show that $\sum_{\lambda} \boldsymbol{s}_{\lambda} \otimes \boldsymbol{s}_{\lambda}=\sum z^{-1} \boldsymbol{p}_{\lambda} \otimes$ \boldsymbol{p}_{λ}, where the sum is over partitions λ of k. Apply the characteristic map and obtain the identity

$$
\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) s_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right)=\sum_{\lambda} z^{-1} p_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) p_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right)
$$

(iii) Observe from the definition of the power sum polynomials that

$$
p_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) p_{\lambda}\left(\beta_{1}, \cdots, \beta_{m}\right)=p_{\lambda}\left(\alpha_{1} \beta_{1}, \cdots, \alpha_{1} \beta_{m}, \alpha_{2} \beta_{1}, \cdots, \alpha_{n} \beta_{m}\right)
$$

where on the right-hand side the argument includes all $n m$ values $\alpha_{i} \beta_{j}$. Use (43.9) to deduce Cauchy's formula.

Exercise 43.3. Let $\alpha_{1}, \cdots, \alpha_{m}$ be given with $\left|\alpha_{i}\right|<1$. Let $f(t)=\prod_{i}\left(1-t \alpha_{i}\right)^{-1}$. Consider $\Phi_{n, f}$ in Theorem 41.1. From the Cauchy identity, if $g \in U(n)$ has eigenvalues t_{1}, \cdots, t_{n}, write

$$
\Phi_{n, f}=\prod_{i, j}\left(1-\alpha_{i} t_{j}\right)^{-1}
$$

Apply Theorem 41.1 and get a proof of the Jacobi-Trudi identity. What can you do with the dual Cauchy identity?

Unitary Branching Rules

Let $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$ and $\mu_{1} \geqslant \cdots \geqslant \mu_{n-1}$ be integer sequences. As in Theorem 38.3, they parametrize irreducible algebraic representations of $\mathrm{GL}(n, \mathbb{C})$ and $\mathrm{GL}(n-1, \mathbb{C})$, as we have seen in Theorem 38.3. We embed GL $(n-1, \mathbb{C}) \longrightarrow$ $\mathrm{GL}(n, \mathbb{C})$ by

$$
g \longmapsto\left(\begin{array}{cc}
g & \tag{44.1}\\
& 1
\end{array}\right) .
$$

It is natural to ask when the restriction of π_{λ} to $\mathrm{GL}(n-1, \mathbb{C})$ contains π_{μ}. Since algebraic representations of $\mathrm{GL}(n, \mathbb{C})$ correspond precisely to representations of its maximal compact subgroup, this is equivalent to asking for the branching rule from $U(n)$ to $U(n-1)$.

This question has a simple and beautiful answer in Theorem 44.1 below. We say that the integer sequences $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{n-1}\right)$ interlace if

$$
\lambda_{1} \geqslant \mu_{1} \geqslant \lambda_{2} \geqslant \mu_{2} \geqslant \ldots \geqslant \mu_{n-1} \geqslant \lambda_{n}
$$

Proposition 44.1. Suppose that λ_{n} and μ_{n-1} are nonnegative, so the integer sequences λ and μ are partitions. Then λ and μ interlace if and only if $\lambda \supset \mu$ and the skew partition $\lambda \backslash \mu$ is a horizontal strip.

This is obvious if one draws a diagram.
Proof. Assume that $\lambda \supset \mu$ and $\lambda \backslash \mu$ is a horizontal strip. Then $\lambda_{j} \geqslant \mu_{j}$ because $\lambda \supset \mu$. We must show that $\mu_{j} \geqslant \lambda_{j+1}$. If it is not, $\lambda_{j} \geqslant \lambda_{j+1}>\mu_{j}$, which implies that the diagram of $\lambda \backslash \mu$ contains two entries in the $\mu_{j}+1$ column, namely in the j and $j+1$ rows, which is a contradiction since $\lambda \backslash \mu$ was assumed to be a horizontal strip. We have proved that λ and μ interlace. The converse is similar.

In the following theorem, representations of both $\mathrm{GL}(n, \mathbb{C})$ and $\mathrm{GL}(n-$ $1, \mathbb{C})$ occur. To distinguish the two, we will modify the notation introduced before Theorem 38.3 as follows. If λ is a partition (of any k) of length $\leqslant n$, or more generally an integer sequence $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$, we
will denote by π_{λ} the representation of $\operatorname{GL}(n, \mathbb{C})$ parametrized by λ. On the other hand, if μ is a partition of length $\leqslant n-1$, or more generally an integer sequence $\mu=\left(\mu_{1}, \cdots, \mu_{n-1}\right)$ with $\mu_{1} \geqslant \mu_{2} \geqslant \cdots$, we will denote by π_{μ}^{\prime} the representation of $\mathrm{GL}(n-1, \mathbb{C})$ parametrized by μ.

Theorem 44.1. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\mu=\left(\mu_{1}, \cdots, \mu_{n-1}\right)$ be integer sequences with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$ and $\mu_{1} \geqslant \mu_{2} \geqslant \cdots$. Then the restriction of π_{λ} to $\mathrm{GL}(n-1, \mathbb{C})$ contains a copy of π_{μ}^{\prime} if and only if λ and μ interlace. The restriction of π_{λ} is multiplicity-free.

Proof. Let us prove this first when λ and μ are partitions. Let $U=\operatorname{Mat}_{n}(\mathbb{C})$. Let $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(n, \mathbb{C})$ act on the ring Σ° of polynomials on $\operatorname{Mat}_{n}(\mathbb{C})$ by the action $\Pi^{\circ}(g, h) f(x)=f\left({ }^{t} g x h\right)$. As explained in Remark 43.1, we may identify Σ° with the symmetric algebra over U^{*}, and the homogeneous polynomials of degree k are then identified with $\vee^{k} U^{2}$. Then, by Theorem 43.2, as $G \times G$ modules,

$$
\begin{equation*}
\vee^{k} U^{*} \cong \bigoplus_{\lambda \text { a partition of } k} \pi_{\lambda} \otimes \pi_{\lambda} \tag{44.2}
\end{equation*}
$$

We write $U=U_{1} \oplus U_{2}$, where $U_{1}=\operatorname{Mat}_{n \times(n-1)}(\mathbb{C})$ and $U_{2}=\operatorname{Mat}_{n \times 1}(\mathbb{C}) \cong$ \mathbb{C}^{n}. In this decomposition, we are splitting a square matrix $u \in U$ into a rectangular matrix $u_{1} \in U_{1}$ consisting of its first $n-1$ columns and its last column $u_{2} \in U_{2}$ thus:

$$
u=\left(\begin{array}{|c|c}
u_{1} & u_{2} \\
&) . . . ~
\end{array}\right.
$$

The decomposition $U_{1} \otimes U_{2}$ is preserved by $\operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(n-1, \mathbb{C})$, where $\mathrm{GL}(n-1, \mathbb{C})$ is embedded in $\mathrm{GL}(n, \mathbb{C})$ via (44.1). In the action on the symmetric algebra, with $g \in \mathrm{GL}(n, \mathbb{C})$ and $g^{\prime} \in \mathrm{GL}(n-1, \mathbb{C})$ the action is

$$
\Pi^{\circ}\left(g, g^{\prime}\right) f(u)=f\left(\binom{g^{t}}{\hline}\left(\begin{array}{|cc|}
\hline u_{1} & u_{2} \tag{44.3}\\
\hline 0 & 1
\end{array}\right)\left(\begin{array}{|cc|}
\hline g^{\prime} & 0 \\
\hline & \\
\hline
\end{array}\right)\right.
$$

Since $U^{*} \cong U_{1}^{*} \oplus U_{2}^{*}$, the symmetric algebra decomposes as

$$
\bigvee U^{*}=\left(\bigvee U_{1}^{*}\right) \bigotimes\left(\bigvee U_{2}^{*}\right)
$$

a tensor product of graded rings. In other words,

$$
\begin{equation*}
\mathrm{V}^{k} U^{*}=\bigoplus_{l=0}^{k} \vee^{l} U_{1}^{*} \otimes \vee^{k-l} U_{2}^{*} \tag{44.4}
\end{equation*}
$$

By Remark 43.1 , we can identify $\vee^{l} U_{1}^{*}$ as a $\mathrm{GL}(n, \mathbb{C}) \times \mathrm{GL}(n-1, \mathbb{C})$-module with the space of homogeneous polynomials of degree l on U_{1}. By Theorem 43.4, it has the decomposition

$$
\vee^{l} U_{1}^{*}=\bigoplus_{\mu \text { a partition of } l} \pi_{\mu} \otimes \pi_{\mu}^{\prime}
$$

where we are denoting by π_{μ} and π_{μ}^{\prime} the representations of $\operatorname{GL}(n, \mathbb{C})$ and $\mathrm{GL}(n-1, \mathbb{C})$, respectively, parametrized by μ.

By Remark 43.1, the space $\vee^{k-l} U_{2}^{*}$ can be identified with the space of all homogeneous polynomials of degree $k-1$, and in the action of $\mathrm{GL}(n, \mathbb{C})$ on this space, $g \in \operatorname{GL}(n, \mathbb{C})$ takes a polynomial f to the polynomial $u \longmapsto$ $f\left({ }^{t} g \cdot u\right)$. This representation is the $k-l$-th symmetric power of the standard representation, $\pi_{(k-l)}$, corresponding to the partition $(k-l)$ of $k-l$. On the other hand, $\mathrm{GL}(n-1)$ acts trivially on $\vee^{k-1} U_{2}^{*}$ since in (44.3) the matrix g^{\prime} does not "see" u_{2}. Thus, in (44.4) we have

$\bigoplus_{\mu \text { partition of } l}\left(\pi_{\mu} \otimes \pi_{(k-l)}\right) \otimes \pi_{\mu}^{\prime}$.
μ a partition of l
The decomposition of the $\mathrm{GL}(n, \mathbb{C})$ module $\pi_{\mu} \otimes \pi_{(k-l)}$ is known by Pieri's formula. By Theorem 42.4, π_{λ} occurs in $\pi_{\mu} \otimes \pi_{(k-l)}$ if and only if $\lambda \backslash \mu$ is a vertical strip, which by Proposition 44.1 means that λ and μ must interlace. Therefore

$$
\vee^{l} U_{1}^{*} \otimes V^{k-l} U_{2}^{*} \cong \bigoplus_{\substack{\mu \text { a partition of } l \\ \lambda \text { a partition of } k \\ \mu, \lambda \text { interlace }}} \pi_{\lambda} \otimes \pi_{\mu}^{\prime}
$$

Comparing this with (44.2), we see that π_{μ}^{\prime} occurs in the restriction of π_{λ} if and only if λ and μ interlace, so the theorem is proved if λ and μ are partitions.

In the general case, let r be a large positive integer. By Proposition $38.2, \operatorname{det}^{r} \otimes \pi_{\lambda} \cong \pi_{\lambda^{\prime}}$, where $\lambda^{\prime}=\left(\lambda_{1}+r, \lambda_{2}+r, \cdots, \lambda_{n}+r\right)$, and similarly $\operatorname{det}^{r} \otimes \pi_{\mu}^{\prime} \cong \pi_{\mu^{\prime}}^{\prime}$ where $\mu^{\prime}=\left(\mu_{1}+r, \cdots \mu_{n-1}+r\right)$. Now $\pi_{\mu^{\prime}}^{\prime}$ occurs in the restriction of $\pi_{\lambda^{\prime}}$ if and only if π_{μ}^{\prime} occurs in the restriction of π_{λ}, and λ^{\prime} is interlaced with μ^{\prime} if and only if λ is interlaced with μ. We may choose r large enough that μ and λ are partitions, in which case we are already done.

We can now give a combinatorial formula for the degree of the irreducible representation π_{λ} of $\mathrm{GL}(n, \mathbb{C})$, where $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$. A Gelfand-Tsetlin pattern of degree n consists of n decreasing integer sequences of lengths $n, n-1, \cdots, 1$ such that each adjacent pair interlaces. For example, if the top row is $3,2,1$, there are eight possible Gelfand-Tsetlin patterns:

$3 \quad 21$	$3 \quad 21$	$3 \quad 21$
31	31	22
2	1	2
$3 \quad 21$		$3 \quad 21$
21	and	21.
2		1

Theorem 44.2. The degree of the irreducible representation π_{λ} of $\mathrm{GL}(n, \mathbb{C})$ equals the number of Gelfand-Tsetlin patterns whose top row is λ.

Thus $\operatorname{dim}\left(\pi_{(3,2,1)}\right)=8$.
Proof. The proof is identical in structure to Theorem 42.2. The GelfandTsetlin patterns of shape λ can be counted by noting that striking the top row gives a Gelfand-Tsetlin pattern whose top row is a partition μ of length $n-1$ that interlaces with λ. By induction, the number of such patterns is equal to the dimension of π_{μ}^{\prime}, and the result now follows from the branching rule of Theorem 44.1.

Branching rules for the orthogonal and symplectic groups are discussed in Goodman and Wallach [47], Chapter 8. King [78] is a useful survey of branching rules for classical groups.

The Involution Model for $\boldsymbol{S}_{\boldsymbol{k}}$

Let $\sigma_{1}=1, \sigma_{2}=(12), \sigma_{3}=(12)(34), \cdots$ be the conjugacy classes of involutions in S_{k}. It was shown by Klyachko and by Inglis, Richardson, and Saxl [67] that it is possible to specify a set of characters $\psi_{1}, \psi_{2}, \psi_{3}, \cdots$ of degree 1 of the centralizers of $\sigma_{1}, \sigma_{2}, \sigma_{3}, \cdots$ such that the direct sum of the induced representations of the ψ_{i} contains every irreducible representation exactly once. In the next chapter, we will see that translating this fact and related ones to the unitary group gives classical facts about symmetric and exterior algebra decompositions due to Littlewood [93].

If (π, V) is a self-contragredient irreducible complex representation of a compact group G, we may classify π as orthogonal (real) or symplectic (quaternionic). We will now explain this classification due to Frobenius and Schur [43]. We recall that the contragredient representation to (π, V) is the representation $\hat{\pi}: G \longrightarrow \mathrm{GL}\left(V^{*}\right)$ on the dual space V^{*} of V defined by $\hat{\pi}(g)=\pi\left(g^{-1}\right)^{*}$, which is the adjoint of $\pi\left(g^{-1}\right)$. Its character is the complex conjugate of the character of π.

Proposition 45.1. The irreducible complex representation π is self-contragredient if and only if there exists a nondegenerate bilinear form $B: V \times V \longrightarrow$ \mathbb{C} such that

$$
\begin{equation*}
B(\pi(g) v, \pi(g) w)=B(v, w) \tag{45.1}
\end{equation*}
$$

The form B is unique up to a scalar multiple. We have $B(w, v)=\epsilon B(v, w)$, where $\epsilon= \pm 1$.

Proof. To emphasize the symmetry between V and V^{*}, let us write the dual pairing $V \times V^{*} \longrightarrow \mathbb{C}$ in the symmetrical form $L(v)=\llbracket v, L \rrbracket$. The contragredient representation thus satisfies $\llbracket \pi(g) v, L \rrbracket=\llbracket v, \hat{\pi}\left(g^{-1}\right) L \rrbracket$, or $\llbracket \pi(g) v, \hat{\pi}(g) L \rrbracket=\llbracket v, L \rrbracket$. Any bilinear form $B: V \times V \longrightarrow \mathbb{C}$ is of the form $B(v, w)=\llbracket v, \lambda(w) \rrbracket$, where $\lambda: V \longrightarrow V^{*}$ is a linear isomorphism. It is clear that (45.1) is satisfied if and only if λ intertwines π and $\hat{\pi}$.

Since π and $\hat{\pi}$ are irreducible, Schur's Lemma implies that λ, if it exists, is unique up to a scalar multiple, and the same conclusion follows for B. Now
$(v, w) \mapsto B(w, v)$ has the same property as B, and so $B(w, v)=\epsilon B(v, w)$ for some constant ϵ. Applying this identity twice, $\epsilon^{2} B(v, w)=B(v, w)$ so $\epsilon= \pm 1$.

If (π, V) is self-contragredient, let ϵ_{π} be the constant ϵ in Proposition 45.1; otherwise let $\epsilon_{\pi}=0$. If $\epsilon_{\pi}=1$, then we say that π is orthogonal or real; if $\epsilon_{\pi}=-1$, we say that π is symplectic or quaternionic. We call ϵ_{π} the Frobenius-Schur number of π.

Theorem 45.1. (Frobenius and Schur) Let (π, V) be an irreducible representation of the compact group G. Then

$$
\epsilon_{\pi}=\int_{G} \chi\left(g^{2}\right) d g .
$$

Proof. We have $p_{2}=h_{2}-e_{2}$ in $\Lambda^{(n)}$. Indeed, $p_{2}\left(x_{1}, \cdots, x_{n}\right)$ equals

$$
\begin{aligned}
\sum_{i} x_{i}^{2} & =\left(\sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j}\right)-\left(\sum_{i<j} x_{i} x_{j}\right) \\
& =h_{2}\left(x_{1}, \cdots, x_{n}\right)-e_{2}\left(x_{1}, \cdots, x_{n}\right) .
\end{aligned}
$$

By (35.8) and Proposition 35.2, this means that

$$
\chi\left(g^{2}\right)=\operatorname{tr}\left(\vee^{2} \pi(g)\right)-\operatorname{tr}\left(\wedge^{2} \pi(g)\right)
$$

We see that ϵ_{π} is

$$
\int_{G} \operatorname{tr}\left(\vee^{2} \pi(g)\right) d g-\int_{G} \operatorname{tr}\left(\wedge^{2} \pi(g)\right) d g .
$$

Thus, what we need to know is that $\mathrm{V}^{2} \pi(g)$ contains the trivial representation if and only if $\epsilon_{\pi}=1$, while $\wedge^{2} \pi(g)$ contains the trivial representation if and only if $\epsilon_{\pi}=-1$.

If $\vee^{2} \pi(g)$ contains the trivial representation, let $\xi \in \vee^{2} V$ be a $\vee^{2} \pi(g)$ fixed vector. Let \langle,$\rangle be a G$-invariant inner product on V. There is induced a G-invariant Hermitian inner product on $\vee^{2} V$ such that $\left\langle v_{1} \vee v_{2}, w_{1} \vee w_{2}\right\rangle=$ $\left\langle v_{1}, v_{2}\right\rangle\left\langle w_{1}, w_{2}\right\rangle$, and we may define a symmetric bilinear form on V by $B(v, w)=\langle v \vee w, \xi\rangle$. Thus $\epsilon_{\pi}=1$.

Conversely, if $\epsilon_{\pi}=1$, let B be a symmetric invariant bilinear form. By the universal property of the symmetric square, there exists a linear form $L: \vee^{2} V \longrightarrow \mathbb{C}$ such that $B(v, w)=L(v \vee w)$, and hence a vector $\xi \in \vee^{2} V$ such that $B(v, w)=\langle v \vee w, \xi\rangle$, which is a $\vee^{2} \pi(g)$-fixed vector.

The case where $\epsilon_{\pi}=-1$ is identical using the exterior square.
Proposition 45.2. Let (π, V) be an irreducible complex representation of the compact group G. Then π is the complexification of a real representation if and only if $\epsilon_{\pi}=1$. If this is true, $\pi(G)$ is conjugate to a subgroup of the orthogonal group $O(n)$.

Proof. First, suppose that $\pi: G \longrightarrow \mathrm{GL}(V)$ is the complexification of a real representation. This means that there exists a real vector space V_{0} and a homomorphism $\pi_{0}: G \longrightarrow \mathrm{GL}\left(V_{0}\right)$ such that $V \cong \mathbb{C} \otimes_{\mathbb{R}} V_{0}$ as G-modules. Every compact subgroup of $\mathrm{GL}\left(V_{0}\right) \cong \mathrm{GL}(n, \mathbb{R})$ is conjugate to a subgroup of $O(n)$. Indeed, if $\langle\langle\rangle$,$\rangle is a positive definite symmetric bilinear form on V_{0}$, then averaging it gives another positive definite symmetric bilinear form

$$
B_{0}(v, w)=\int_{G}\left\langle\left\langle\pi_{0}(g) v, \pi_{0}(g) w\right\rangle\right\rangle d g
$$

that is G-invariant. Choosing a basis of V_{0} that is orthonormal with respect to this basis, the matrices of $\pi_{0}(g)$ will all be orthogonal. Extending B_{0} by linearity to a symmetric bilinear form on V, which we identify with $\mathbb{C} \otimes V_{0}$, gives a symmetric bilinear form showing that $\epsilon_{\pi}=1$.

Conversely, if $\epsilon_{\pi}=1$, there exists a G-invariant symmetric bilinear form B on V. We will make use of both B and a G-invariant inner product \langle,$\rangle on V$. They differ in that B is linear in the second variable, while the inner product is conjugate linear. If $w \in V$, consider the linear functional $v \mapsto B(v, w)$. Every linear functional is the inner product with a unique element of V, so there exists $\lambda(w) \in V$ such that $B(v, w)=\langle v, \lambda(w)\rangle$. The map $\lambda: V \longrightarrow V$ is \mathbb{R}-linear but not \mathbb{C}-linear; in fact, it is complex antilinear. Let $V_{0}=\{v \in$ $V \mid \lambda(v)=v\}$. It is a real vector space. We may write every element $v \in V$ as a sum $v=u+i w$, where $u, w \in V_{0}$, taking $u=\frac{1}{2}(v+\lambda(v))$ and $w=\frac{1}{2 i}(v-\lambda(v))$. This decomposition is unique since $\lambda(v)=u-i w$, and we may solve for u and w. Therefore $V=V_{0} \oplus i V_{0}$ and V is the complexification of V_{0}. Since B and H are both G-invariant, it is easy to see that $\lambda \circ \pi(g)=\pi(g) \circ \lambda$, so π leaves V_{0}-invariant and induces a real representation on it whose complexification is π.

Theorem 45.2. Let G be a finite group. Let $\mu: G \longrightarrow \mathbb{C}$ be the sum of the irreducible characters of G.
(i) Suppose that $\epsilon_{\pi}=1$ for every irreducible representation π. Then, for any $g \in G, \mu(g)$ is the number of solutions to the equation $x^{2}=g$ in G.
(ii) Suppose that $\mu(1)$ is the number of solutions to the equation $x^{2}=1$. Then $\epsilon_{\pi}=1$ for all irreducible representations π.

Proof. If π is an irreducible representation of G, let χ_{π} be its character. We will show

$$
\begin{equation*}
\sum_{\text {irreducible } \pi} \chi_{\pi}(g) \epsilon_{\hat{\pi}}=\#\left\{x \in G \mid x^{2}=g\right\} \tag{45.2}
\end{equation*}
$$

Indeed, by Theorem 45.1, the left-hand side equals

$$
\sum_{\chi} \chi(g) \frac{1}{|G|} \sum_{x \in G} \overline{\chi\left(x^{2}\right)}=\sum_{x \in G}\left[\frac{1}{|G|} \sum_{\chi} \chi(g) \overline{\chi\left(x^{2}\right)}\right]
$$

Let C be the conjugacy class of g. By Schur orthogonality, the expression in brackets equals $1 /|C|$ if x^{2} is conjugate to g and zero otherwise. Each element
of the conjugacy class will have the same number of square roots, so counting the number of solutions to $x^{2} \sim g$ (where \sim denotes conjugation) and then dividing by $|C|$ gives the number of solutions to $x^{2}=g$. This proves (45.2).

Now (45.2) clearly implies (i). It also implies (ii) because, taking $g=1$, each coefficient $\chi_{\pi}(1)$ is a positive integer, so

$$
\sum_{\text {irreducible } \pi} \chi_{\pi}(1) \epsilon_{\hat{\pi}}=\sum_{\text {irreducible } \pi} \chi_{\pi}(1)
$$

is only possible if all ϵ_{π} are equal to 1 .
Let K be a field and F a subfield. Let V be a K-vector space. If $\pi: G \longrightarrow$ $\mathrm{GL}(V)$ is a representation of a group G over K, we say that π is defined over F if there exists an F-vector space V_{0} and a representation $\pi_{0}: G \longrightarrow \mathrm{GL}\left(V_{0}\right)$ over F such that π is isomorphic to the representation of G on the K-vector space $K \otimes_{F} V_{0}$. The dimension over K of V must clearly equal the dimension of V_{0} as an F-vector space.

Theorem 45.3. Every irreducible representation of S_{k} is defined over \mathbb{Q}.
Proof. The construction of Theorem 37.1 contained no reference to the ground field and works just as well over \mathbb{Q}. Specifically, our formulation of Mackey theory was valid over an arbitrary field, so if λ and μ are conjugate partitions, the computation of Proposition 37.5 shows that there is a unique intertwining operator $\operatorname{Ind}_{S_{\lambda}}^{S_{k}}(\varepsilon) \longrightarrow \operatorname{Ind}_{S_{\mu}}^{S_{k}}(1)$, where we are now considering representations over \mathbb{Q}. The image of this intertwining operator is a rational representation whose complexification is the representation ρ_{λ} of S_{k} parametrized by λ.

In this chapter, we will call an element $x \in G$ an involution if $x^{2}=1$. Thus, the identity element is considered an involution by this definition. If $G=S_{k}$, then by Theorem 45.3 every irreducible representation is defined over \mathbb{Q}, a fortiori over \mathbb{R}, and so by Theorem 45.2 we have $\epsilon_{\pi}=1$ for all irreducible representations π. Therefore, the number of involutions is equal to the sum of the degrees of the irreducible characters, and moreover the sum of the irreducible characters evaluated at $g \in S_{k}$ equals the number of solutions to $x^{2}=g$. In particular, it is a nonnegative integer.

It is possible to prove that the sum of the degrees of the irreducible representations of G is equal to the number of involutions when $G=S_{k}$ using the Robinson-Schensted correspondence (see Knuth [85], Section 5.1.4, or Stanley [115], Corollary 7.13.9). Indeed, both numbers are equal to the number of standard tableaux.

Let G be a group (such as S_{k}) having the property that all $\epsilon_{\pi}=1$, so the number of involutions of G is the sum of the degrees of the irreducible representations. Let x_{1}, \cdots, x_{h} be representatives of the conjugacy classes of involutions. The cardinality of a conjugacy class x is the index of its centralizer $C_{G}(x)$, so $\sum\left[G: C_{G}\left(x_{i}\right)\right]$ is the number of involutions of G. Since this is the sum of the degrees of the irreducible characters of G, it becomes a natural
question to ask whether we may specify characters ψ_{i} of degree 1 of $C_{G}\left(x_{i}\right)$ such that the direct sum of the induced characters ψ_{i}^{G} contains each irreducible character exactly once. If so, these data comprise an involution model for G. Involution models do not always exist, even if all $\epsilon_{\pi}=1$.

A complete set of representatives of the conjugacy classes of S_{k} are 1, (12), $(12)(34), \cdots$. To describe their centralizers, we first begin with the involution $(12)(34)(56) \cdots(2 r-1,2 r) \in S_{2 r}$. Its centralizer, as described in Proposition 39.1, has order $2^{r} r$!. It has a normal subgroup of order 2^{r} generated by the transpositions (12), (34), \cdots, and the quotient is isomorphic to S_{r}. We denote this group $B_{2 r}$. It is isomorphic to the Weyl group of Cartan type B_{r}.

Now consider the centralizer in S_{k} of (12)(34) $\cdots(2 r-1,2 r)$ where $2 r<$ k. It is contained in $S_{2 r} \times S_{k-2 r}$, where the second $S_{k-2 r}$ acts on $\{2 r+$ $1,2 r+2, \cdots, k\}$ and equals $B_{2 r} \times S_{k-2 r}$. The theorem of Klyachko, Inglis, Richardson, and Saxl is that we may specify characters of these groups whose inductions to S_{k} contain every irreducible character exactly once. There are two ways of doing this: we may put the alternating character on $S_{k-2 k}$ and the trivial character on $B_{2 r}$, or conversely we may put the alternating character (restricted from $S_{2 r}$) on $B_{2 r}$ and the trivial character on $S_{k-2 r}$.

Let $\omega_{2 r}$ be the character of $S_{2 r}$ induced from the trivial character of $B_{2 r}$.
Proposition 45.3. The restriction of $\omega_{2 r}$ to $S_{2 r-1}$ is isomorphic to the character of $S_{2 r-1}$ induced from the character $\omega_{2 r-2}$ to $S_{2 r-1}$.

Proof. First, let us show that $B_{2 r} \backslash S_{2 r} / S_{2 r-1}$ consists of a single double coset. Indeed, $S_{2 r}$ acts transitively on $X=\{1,2, \cdots, 2 r\}$, and the stabilizer of $2 r$ is $S_{2 r-1}$. Therefore, we can identify $S_{2 r} / S_{2 r-1}$ with X and $B_{2 r} \backslash S_{2 r} / S_{2 r-1}$ with $B_{2 r} \backslash X$. Since $B_{2 r}$ acts transitively on X, the claim is proved.

Thus we can compute the restriction of $\omega_{2 r}$ to $S_{2 r-1}$ by Corollary 34.2 to Theorem 34.2, taking $H_{1}=B_{2 r}, H_{2}=S_{2 r-1}, G=S_{2 r}, \pi=1$, with $\gamma=1$ the only double coset representative. We see that the restriction of $\omega_{2 r}=\operatorname{Ind}_{H_{1}}^{G}(1)$ is the same as the induction of 1 from $H_{\gamma}=B_{2 r} \cap S_{2 r-1}=B_{2 r-2}$ to H_{2}. Inducing in stages first from $B_{2 r-2}$ to $S_{2 r-2}$ and then to $S_{2 r-1}$, this is the same as the character of $S_{2 r-1}$ induced from $\omega_{2 r-2}$.

We are preparing to compute $\omega_{2 r}$. The key observation of Inglis, Richardson, and Saxl is that Proposition 45.3, plus purely combinatorial considerations, contains enough information to do this.

We call a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ even if every λ_{i} is an even integer.
If λ is a partition, let $R_{i} \lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{i-1}, \lambda_{i}+1, \lambda_{i+1}, \cdots\right)$ be the result of incrementing the i-th part. In applying this raising operator, we must always check that the resulting sequence is a partition. For this, we need either $i=1$ or $\lambda_{i}<\lambda_{i-1}$. Similarly, we have the lowering operator $L_{i} \lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{i-1}, \lambda_{i}-1, \lambda_{i+1}, \cdots\right)$, which is a partition if $\lambda_{i}>\lambda_{i+1}$.

Lemma 45.1. Every partition of $2 r-1$ having exactly one odd part is contained in a unique even partition of $2 r$.

Proof. Let μ be a partition of $2 r-1$ having exactly one odd part μ_{i}. The unique even partition of $2 r$ containing μ is $R_{i} \mu$. Note that this is a partition since $i=1$ or $\mu_{i}<\mu_{i-1}$. (We cannot have μ_{i} and μ_{i-1} both equal since one is odd and the other even.)

Proposition 45.4. Let S be a set of partitions of $2 r$. Assume that:
(i) every partition of $2 r-1$ contained in an element of S has exactly one odd part;
(ii) every partition of $2 r-1$ with exactly one odd part is contained in a unique element of S; and
(iii) the trivial partition $(2 r) \in S$.

Then S consists of the set S_{0} of even partitions of $2 r$.
Proof. First, we show that S contains S_{0}. Assume on the contrary that $\lambda \in S_{0}$ is not in S. We assume that the counterexample λ is minimal with respect to the partial order, so if $\lambda^{\prime} \in S_{0}$ with $\lambda^{\prime} \prec \lambda$, then $\lambda^{\prime} \in S$. Let $i=l(\lambda)$. We note that $i>1$ since if $i=1$, then λ is the unique partition of $2 r$ of length 1 , namely ($2 r$), which is impossible since $\lambda \notin S$ while $(2 r) \in S$ by assumption (iii).

Let $\mu=L_{i} \lambda$. It is a partition since we are decrementing the last nonzero part of λ. It has a unique odd part μ_{i}, so by (ii) there is a unique $\tau \in S$ such that $\mu \subset \tau$. Evidently, $\tau=R_{j} \mu$ for some j. Let us consider what j can be.

We show first that j cannot be $>i$. If it were, we would have $j=i+1$ because i is the length of μ and λ. Now assuming $\tau=R_{i+1} \mu=R_{i+1} L_{i} \lambda$, we can obtain a contradiction as follows. We have $\tau_{i-1}=\lambda_{i-1} \geqslant \lambda_{i}>\lambda_{i}-1=\tau_{i}$, so $\nu=L_{i-1} \tau$ is a partition. It has three odd parts, namely ν_{i-1}, ν_{i} and ν_{i+1}. This contradicts (i) for $\nu \subset \tau \in S$.

Also j cannot equal i. If it did, we would have $\tau=R_{i} L_{i} \lambda=\lambda$, a contradiction since $\tau \in S$ while $\lambda \notin S$.

Therefore $j<i$. Let $\sigma=R_{j} L_{i} \tau=R_{j}^{2} L_{i}^{2} \lambda$. Note that σ is a partition. Indeed, either $j=1$ or else $\tau_{j} \neq \tau_{j-1}$ since one is odd and the other one is even, and we are therefore permitted to apply R_{j}. Furthermore, $\tau_{i} \neq \tau_{i+1}$ since one is odd and the other one even, so we are permitted to apply L_{i}.

Since λ is even, σ is even, and since $j<i, \sigma \prec \lambda$. By our induction hypothesis, this implies that $\sigma \in S$. Now let $\theta=L_{i} \tau=L_{j} \sigma$. This is easily seen to be a partition with exactly one odd part (namely θ_{j}), and it is contained in two distinct elements of S, namely τ and σ. This contradicts (ii).

This contradiction shows that $S \supset S_{0}$. We can now show that $S=S_{0}$. Otherwise, S contains S_{0} and some other partition $\lambda \notin S_{0}$. Let μ be any partition of $2 r-1$ contained in λ. Then μ has exactly one odd part by (i), so by Lemma 45.1 it is contained in some element $\lambda^{\prime} \in S_{0} \subset S$. Since $\lambda \notin S_{0}, \lambda$ and λ^{\prime} are distinct elements of S both containing μ, contradicting (ii).

Theorem 45.4. The character $\omega_{2 r}$ of $S_{2 r}$ is multiplicity-free. It is the sum of all irreducible characters \boldsymbol{s}_{λ} with λ an even partition of $2 r$.

Proof. By induction, we may assume that this is true for $S_{2 r-2}$. The restriction of $\omega_{2 r}$ to $S_{2 r-1}$ is the same as the character induced from $w_{2 r-2}$ by Proposition 45.3. Using the branching rule for the symmetric groups, its irreducible constituents consist of all s_{μ}, where μ is a partition of $S_{2 r-1}$ containing an even partition of $2 r-2$, and clearly this is the set of partitions of $2 r-1$ having exactly one odd part. There are no repetitions.

We see immediately that $\omega_{2 r}$ is multiplicity-free since its restriction to $S_{2 r-1}$ is multiplicity-free. Let S be the set of partitions λ of $2 r$ such that \boldsymbol{s}_{λ} is contained in $\omega_{2 r}$. Again using the branching rule for symmetric groups, we see that this set satisfies conditions (i) and (ii) of Proposition 45.4 and condition (iii) is clear by Frobenius reciprocity. The result now follows from Proposition 45.4.

We may now show that S_{k} has an involution model. The centralizer of the involution (12)(34) $\cdots(2 r-1, r)$ is $B_{2 r} \times S_{k-2 r}$.
Theorem 45.5. (Klyachko, Inglis, Richardson and Saxl) Every irreducible character of S_{k} occurs with multiplicity 1 in the sum

$$
\bigoplus_{2 r \leqslant k} \operatorname{Ind}_{B_{2 r} \times S_{k-2 r}}^{S_{k}}(1 \otimes \varepsilon),
$$

where ε is the alternating character of $S_{k-2 r}$.
Proof. We will show that $\operatorname{Ind}_{B_{2 r} \times S_{k-2 r}}^{S_{k}}(1 \otimes \varepsilon)$ is the sum of the \boldsymbol{s}_{λ} as λ runs through the partitions of k having exactly $k-2 r$ odd parts. Indeed, it is obvious that if λ is a partition of k, there is a unique even partition μ such that $\lambda \supset \mu$ and $\lambda \backslash \mu$ is a vertical strip; the partition μ is obtained by decrementing each odd part of λ. Since $\omega_{2 r}$ is the sum of all s_{λ} where λ is a partition of $2 r$ into even parts, it follows from Pieri's formula that the character $\omega_{2 r} \boldsymbol{e}_{k-2 r}$ is the sum of all s_{λ} where λ is a partition of k having exactly $k-2 r$ odd parts.

We note that the number of odd parts of any partition λ of k is congruent to k modulo 2 because $k=\sum \lambda_{i}$. The result follows by summing over r.

EXERCISES

The first exercise generalizes Theorem 45.1 of Frobenius and Schur. Suppose that G is a compact group and $\theta: G \longrightarrow G$ an involution (that is, an automorphism satisfying $\theta^{2}=1$). Let (π, V) be an irreducible representation of G. If $\pi \cong{ }^{\theta} \pi$, where ${ }^{\theta} \pi: V \longrightarrow V$ is the "twisted" representation ${ }^{\theta} \pi(g)=\pi\left({ }^{\theta} g\right)$, then by an obvious variant of Proposition 45.1 there exists a symmetric bilinear form $B: V \times V \longrightarrow \mathbb{C}$ such that

$$
\begin{equation*}
B_{\theta}\left(\pi(g) v, \pi\left({ }^{\theta} g\right) w\right)=B_{\theta}(v, w) \tag{45.3}
\end{equation*}
$$

In this case, the twisted Frobenius-Schur number $\epsilon_{\theta}(\pi)$ is defined to be the constant equal to ± 1 such that

$$
B(v, w)=\epsilon_{\theta}(\pi) B(w, v)
$$

If $\pi \not ¥^{\theta} \pi$ we define $\epsilon_{\theta}(\pi)=0$. The goal is to prove the following theorem.

Theorem (Kawanaka and Matsuyama [76]) Let G be a compact group and θ an involution of G. Let (π, V) be an irreducible representation with character χ. Then

$$
\begin{equation*}
\epsilon_{\theta}(\pi)=\int_{G} \chi\left(g \cdot{ }^{\theta} g\right) d g \tag{45.4}
\end{equation*}
$$

Exercise 45.1. Assuming the hypotheses of the stated theorem, define a group H that is the semidirect product of G by a cyclic group $\langle t\rangle$ generated by an element t of order 2 such that $t g t^{-1}={ }^{\theta} g$ for $g \in G$. Thus, the index $[G: H]=2$. The idea is to use Theorem 45.1 for the group H to obtain the theorem of Kawanaka and Matsuyama for G. Proceed as follows.

Case 1: Assume that $\pi \cong{ }^{\theta} \pi$. In this case, show that there exists an endomorphism $T: V \longrightarrow V$ such that $T \circ \pi(g)=\pi\left({ }^{\theta} g\right) \circ T$ and $T^{2}=1_{V}$. Extend π to a representation π_{H} of H such that $\pi_{H}(t)=T$. Let $B_{\theta}: V \times V \longrightarrow \mathbb{C}$ satisfy (45.3). Then $B(v, w)=B_{\theta}(v, T w)$ satisfies (45.1), as does $B(T v, T w)=B_{\theta}(T v, w)$. Thus, there exists a constant δ such that $B(T v, T w)=\delta B(v, w)$. Show that $\delta^{2}=1$ and that

$$
\begin{equation*}
\epsilon_{\theta}(\pi)=\delta \epsilon(\pi) . \tag{45.5}
\end{equation*}
$$

Apply Theorem 45.1 to the representation π_{H}, bearing in mind that the Haar measure on H restricted to G is only half the Haar measure on G because both measures are normalized to have total volume 1. This gives

$$
\begin{equation*}
\epsilon\left(\pi_{H}\right)=\frac{1}{2}\left(\epsilon(\pi)+\int_{G} \chi\left(g \cdot{ }^{\theta} g\right) d g\right) . \tag{45.6}
\end{equation*}
$$

Now observe that if π_{H} is self-contragredient, then the nondegenerate form that it stabilizes must be a multiple of B. Deduce that if $\delta=1$ then π_{H} is self-contragredient and $\epsilon\left(\pi_{H}\right)=\epsilon(\pi)$, while if $\delta=-1$, then $\epsilon\left(\pi_{H}\right)=0$. In either case reconcile, (45.5) and (45.6) to prove (45.4).

Case 2: Assume that $\pi \not{ }^{\theta} \pi$. In this case, show that the induced representation $\operatorname{Ind}_{G}^{H}(\pi)$ is irreducible and call it π_{H}. Show that

$$
\epsilon\left(\pi_{H}\right)=e(\pi)+\int_{G} \chi\left(g \cdot{ }^{\theta} g\right) d g
$$

Show using direct constructions with bilinear forms on V and V^{H} that if either $\epsilon(\pi)$ or $\epsilon_{\theta}(\pi)$ is nonzero, then π_{H} is self-contragredient, while if π_{H} is self-contragredient, then exactly one of $\epsilon(\pi)$ or $\epsilon_{\theta}(\pi)$ is nonzero, and whichever one is nonzero equals $\epsilon\left(\pi_{H}\right)$.

Exercise 45.2. Let G be a finite group and let θ be an involution. Let $\mu: G \longrightarrow \mathbb{C}$ be the sum of the irreducible characters of G. If $\mu(1)$ equals the number of solutions to the equation $x \cdot{ }^{\theta} x=1$, then show that $\epsilon_{\theta}(\pi)=1$ for all irreducible representations π. If this is true, show that $\mu(g)$ equals the number of solutions to $x \cdot{ }^{\theta} x=g$ for all $g \in G$.

For example, if $G=\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$, it was shown independently by Gow [48] and Klyachko [80] that the conclusions to Exercise 45.2 are satisfied when $G=\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ and θ is the automorphism $g \longmapsto{ }^{t} g^{-1}$.

For the next group of exercises, the group $B_{2 k}$ is a Coxeter group with generators

$$
(13)(24), \quad(35)(46), \quad \cdots \quad,(2 k-3,2 k-1)(2 k-2,2 k)
$$

and $(2 k-1,2 k)$. It is thus a Weyl group of Cartan type B_{k} with order $k!2^{k}$. It has a linear character $\xi_{2 k}$ having value -1 on these "simple reflections." This is the character $(-1)^{l(w)}$ of Proposition 21.12. Let $\eta_{2 k}=\operatorname{Ind}_{B_{2 k}}^{S_{2 k}}\left(\xi_{2 k}\right)$ be the character of $S_{2 k}$ induced from this linear character of $B_{2 k}$. The goal of this exercise will be to prove analogs of Theorem 45.4 and the other results of this chapter for $\eta_{2 k}$.

Exercise 45.3. Prove the analog of Proposition 45.3. That is, show that inducing the restriction of $\eta_{2 r}$ to $S_{2 r-1}$ is isomorphic to the character of $S_{2 r-1}$ induced from the character $\eta_{2 r-2}$ to $S_{2 r-1}$.

Let $\mathcal{S}_{2 k}$ be the set of characters \boldsymbol{s}_{λ} of $S_{2 k}$ where λ is a partition of $2 k$ such that if μ is the conjugate partition, then $\mu_{i}=\lambda_{i}+1$ for all i such that $\lambda_{i} \geqslant i$. For example, the partition $\lambda=(5,5,4,3,3,2)$ has conjugate $(6,6,5,3,2)$, and the hypothesis is satisfied. Visually, this assumption means that the diagram of λ can be assembled from two congruent pieces, as in Figure 45.1. We will describe these as the "top piece" and the "bottom piece," respectively.

Fig. 45.1. The diagram of a partition of class $\mathcal{S}_{2 k}$ when $k=11$.

Let $\mathcal{T}_{2 k+1}$ be the set of partitions of $2 k+1$ whose diagram contains an element of $\mathcal{S}_{2 k}$.

Exercise 45.4. Prove that if $\lambda \in \mathcal{T}_{2 k+1}$, then there are unique partitions $\mu \in \mathcal{S}_{2 k}$ and $\nu \in \mathcal{S}_{2 k+2}$ such that the diagram of λ contains the diagram of μ and is contained in the diagram of ν. (Hint: The diagrams of the skew partitions $\lambda-\mu$ and $\nu-\lambda$, each consisting of a single node, must be corresponding nodes of the top piece and bottom piece.)

Exercise 45.5. Let Σ be a set of partitions of $2 k+2$. Assume that every partition λ of $2 k+1$ is contained in an element of Σ if and only if $\lambda \in \mathcal{T}_{2 k+1}$, in which case it is contained in a unique element of Σ. Show that $\Sigma=S_{2 k+2}$. (This is an analog of Proposition 45.4. It is not necessary to assume any condition corresponding to (iii) of the proposition.)

Exercise 45.6. Show that $\eta_{2 k}$ is multiplicity-free and that the representations occurring in it are precisely the \boldsymbol{s}_{λ} with $\lambda \in \mathcal{S}_{2 k}$.

Some Symmetric Algebras

The results of the last chapter can be translated into statements about the representation theory of $U(n)$. For example, we will see that every irreducible representation of $U(n)$ occurs exactly once in the decomposition of the symmetric algebra of $V \oplus \wedge^{2} V$, where $V=\mathbb{C}^{n}$ is the standard module of $U(n)$. The results of this chapter are also proved in Goodman and Wallach [47], Littlewood [93], and Macdonald [95].

Proposition 46.1. Let $V=\mathbb{C}^{n}$ be regarded as a $\mathrm{GL}(n, \mathbb{C})$-module in the usual way. Then

$$
\vee^{k}\left(\vee^{2} V\right) \cong\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]} \omega_{2 k}
$$

as $\mathrm{GL}(n, \mathbb{C})$-modules. It is the direct sum of the π_{λ} as λ runs through all even partitions of k.

Proof. Let us note that it is sufficient to prove that

$$
\begin{equation*}
\vee^{k}\left(\vee^{2} V\right) \cong\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }} \tag{46.1}
\end{equation*}
$$

as $\mathrm{GL}(n, \mathbb{C})$-modules. Indeed, assuming this, the right-hand side is isomorphic to

$$
\begin{gathered}
\left(\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]} \mathbb{C}_{\left[S_{2 k}\right]}\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }} \cong \\
\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]}\left(\mathbb{C}_{\left[S_{2 k}\right]} \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}\right) \cong\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]} \omega_{2 k}
\end{gathered}
$$

To prove (46.1), we will use the universal properties of the symmetric power and tensor products to construct inverse maps

$$
\vee^{k}\left(\vee^{2} V\right) \longleftrightarrow\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}
$$

where $\mathbb{C}_{\text {trivial }}$ is \mathbb{C} regarded as a $\mathbb{C}\left[B_{2 k}\right]$-module with the trivial action of $B_{2 k}$. Here $B_{2 k} \subset S_{2 k}$ acts on $\bigotimes^{k} V$ on the right by the action (36.1).

First, we note that the map

$$
\left(v_{1}, \cdots, v_{2 k}\right) \longmapsto\left(v_{1} \vee v_{2}\right) \vee \cdots \vee\left(v_{2 k-1} \vee v_{2 k}\right)
$$

commutes with the right action of $B_{2 k}$. It is $2 k$-linear and hence induces a map
$\alpha: \bigotimes^{2 k} V \longrightarrow \vee^{k}\left(\vee^{2} V\right), \quad \alpha\left(v_{1} \otimes \cdots \otimes v_{2 k}\right)=\left(v_{1} \vee v_{2}\right) \vee \cdots \vee\left(v_{2 k-1} \vee v_{2 k}\right)$, and $\alpha(\xi \sigma)=\alpha(\xi)$ for $\sigma \in B_{2 k}$. Thus, the map

$$
\left(\bigotimes^{2 k} V\right) \times \mathbb{C}_{\text {trivial }} \longrightarrow \vee^{k}\left(\vee^{2} V\right), \quad(\xi, t) \mapsto t \alpha(\xi)
$$

is $\mathbb{C}\left[B_{2 k}\right]$-balanced and there is an induced map

$$
\begin{gathered}
\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }} \longrightarrow \vee^{k}\left(\vee^{2} V\right) \\
\left(v_{1} \otimes \cdots \otimes v_{2 k}\right) \otimes t \mapsto t\left(v_{1} \vee v_{2}\right) \vee \cdots \vee\left(v_{2 k-1} \vee v_{2 k}\right)
\end{gathered}
$$

As for the other direction, we first note that for $v_{3}, v_{4}, \cdots, v_{2 k}$ fixed, using the fact that $\otimes_{\mathbb{C}\left[B_{2 k}\right]}$ is $B_{2 k}$-balanced, the map

$$
\left(v_{1}, v_{2}\right) \longmapsto\left(v_{1} \otimes v_{2} \otimes v_{3} \otimes \cdots \otimes v_{2 k}\right) \otimes 1 \in\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}
$$

is symmetric and bilinear, so there is induced a map

$$
\begin{gathered}
\mu_{v_{3}, v_{4}, \cdots, v_{2 k}}: \vee^{2} V \longrightarrow\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }} \\
\mu_{v_{3}, \cdots, v_{4}}\left(v_{1} \vee v_{2}\right)=\left(v_{1} \otimes v_{2} \otimes v_{3} \otimes \cdots \otimes v_{2 k}\right) \otimes 1
\end{gathered}
$$

Now with $\xi_{1} \in \mathrm{~V}^{2} V$ and $v_{5}, \cdots, v_{2 k}$ fixed, the map

$$
\left(v_{3}, v_{4}\right) \longmapsto \mu_{v_{3}, v_{4}, \cdots, v_{2 k}}\left(\xi_{1}\right)
$$

is symmetric and bilinear, so there is induced a map

$$
\begin{gathered}
\nu_{\xi, v_{5}, \cdots, v_{2 k}}: \vee^{2} V \longrightarrow\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }} \\
\nu_{\xi, v_{5}, \cdots, v_{2 k}}\left(v_{3} \vee v_{4}\right)=\mu_{v_{3}, v_{4}, \cdots, v_{2 k}}\left(\xi_{1}\right)
\end{gathered}
$$

With $v_{5}, \cdots, v_{2 k}$ fixed, denote by

$$
\mu_{v_{5}, \cdots, v_{2 k}}: \vee^{2} V \times \vee^{2} V \longrightarrow\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}
$$

the map $\mu_{v_{5}, \cdots, v_{2 k}}\left(\xi_{1}, \xi_{2}\right)=\nu_{\xi_{1}, v_{5}, \cdots, v_{2 k}}\left(\xi_{2}\right)$. Continuing in this way, we eventually construct a k-linear map $\mu: \vee^{2} V \times \cdots \vee^{2} V \longrightarrow\left(\otimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}$ such that

$$
\mu\left(v_{1} \vee v_{2}, \cdots, v_{2 k-1} \vee v_{2 k}\right)=\left(v_{1} \otimes \cdots \otimes v_{2 k}\right) \otimes 1
$$

Using the fact that $\otimes_{\mathbb{C}\left[B_{2 k}\right]}$ is $B_{2 k}$-balanced, the map μ is symmetric and hence induces a map $\vee^{k}\left(\vee^{2} V\right) \longrightarrow\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[B_{2 k}\right]} \mathbb{C}_{\text {trivial }}$ that is the inverse of the map previously constructed. We have now proved (46.1).

Theorem 46.1. Let $V=\mathbb{C}^{n}$ be regarded as a $\mathrm{GL}(n, \mathbb{C})$-module in the usual way. Then

$$
\vee^{k}\left(\vee^{2} V\right) \cong \bigoplus_{\lambda \text { an even permutation of } 2 k} \pi_{\lambda}
$$

Proof. This follows from Proposition 46.1, Theorem 38.4, and the explicit decomposition of Theorem 45.4.

Theorem 46.2. (D. E. Littlewood) Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers, $\left|\alpha_{i}\right|<1$. Then

$$
\begin{equation*}
\prod_{1 \leqslant i \leqslant j \leqslant n}\left(1-\alpha_{i} \alpha_{j}\right)^{-1}=\sum_{\lambda \text { even }} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \tag{46.2}
\end{equation*}
$$

The sum is over even partitions.
Proof. This follows on applying (43.5) to the symmetric square representation by using Proposition 43.5 and the explicit decomposition of Theorem 46.1.

Theorem 46.3. (D. E. Littlewood) Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers, $\left|\alpha_{i}\right|<1$. Then

$$
\left[\prod_{1 \leqslant i \leqslant n}\left(1+\alpha_{i}\right)\right]\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(1-\alpha_{i} \alpha_{j}\right)^{-1}\right]=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right)
$$

The sum is over all partitions.
Proof. The coefficient of t^{k} in

$$
\begin{gathered}
{\left[\prod_{1 \leqslant i \leqslant n}\left(1+t \alpha_{i}\right)\right]\left[\prod_{1 \leqslant i \leqslant j \leqslant n}\left(1-t^{2} \alpha_{i} \alpha_{j}\right)^{-1}\right]=} \\
{\left[\sum_{k} e_{k} t^{k}\right]\left[\sum_{\lambda \text { an even partition of } 2 r} s_{\lambda} t^{2 r}\right]}
\end{gathered}
$$

is

$$
\sum_{2 r \leqslant k} e_{k-2 r}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \sum_{\lambda \text { an even partition of } 2 r} s_{\lambda} .
$$

This is the image of $e_{k-2 r} \omega_{2 r}$ under the characteristic map, and it equals the sum of the s_{λ} for all partitions of k by Theorem 45.5. Taking $t=1$, the result follows.

A polynomial character of $\operatorname{GL}(n, \mathbb{C})$ is one whose matrix coefficients are polynomials in the coordinates functions $g_{i j}$ not involving det^{-1}. As we know, they are exactly the characters of π_{λ} where $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is a partition. We may express Theorem 46.3 as saying that every polynomial character of $\mathrm{GL}(n, \mathbb{C})$ occurs exactly once in the algebra $(\bigwedge V) \otimes \bigvee\left(\bigvee^{2} V\right)$, which is the tensor product of the exterior algebra over V with the symmetric algebra over the exterior square representation.

There are dual forms of these results. Let $\tilde{\omega}_{2 k}=\operatorname{Ind}_{B_{2 k}}^{S_{2 k}}(\varepsilon)$ be the character of $S_{2 k}$ obtained by inducing the alternating character ε from $B_{2 k}$.

Proposition 46.2. The character $\tilde{\omega}_{2 k}$ is the sum of the \boldsymbol{s}_{λ}, where λ runs through all the partitions of k such that the conjugate partition λ^{t} is even.

Proof. This may be deduced from Theorem 45.4 as follows. Applying this with $G=S_{2 k}, H=B_{2 k}$, and $\rho=\varepsilon$, we see that $\tilde{\omega}_{2 k}$ is the same as $\omega_{2 k}$ multiplied by the character ε. By Theorem 39.3, this is ${ }^{\iota} \omega_{2 k}$, and by Theorems 45.4, and 37.2 , this is the sum of the \boldsymbol{s}_{λ} with λ^{t} even.

Theorem 46.4. Let $V=\mathbb{C}^{n}$ be regarded as a $\mathrm{GL}(n, \mathbb{C})$-module in the usual way. Then

$$
\vee^{k}\left(\wedge^{2} V\right) \cong\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]} \tilde{\omega}_{2 k}
$$

as $\mathrm{GL}(n, \mathbb{C})$-modules. It is the direct sum of the π_{λ} as λ runs through all conjugates of even partitions of k.

Proof. Similar to Theorem 46.1.
Theorem 46.5. (D. E. Littlewood) Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers, $\left|\alpha_{i}\right|<1$. Then

$$
\begin{equation*}
\prod_{1 \leqslant i<j \leqslant n}\left(1-\alpha_{i} \alpha_{j}\right)^{-1}=\sum_{\lambda^{t} \mathrm{even}} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \tag{46.3}
\end{equation*}
$$

The sum is over even partitions.
Proof. Similar to Theorem 46.2.

Theorem 46.6. (D. E. Littlewood) Let $\alpha_{1}, \cdots, \alpha_{n}$ be complex numbers, $\left|\alpha_{i}\right|<1$. Then

$$
\left[\prod_{1 \leqslant i \leqslant n}\left(1-\alpha_{i}\right)^{-1}\right]\left[\prod_{1 \leqslant i<j \leqslant n}\left(1-\alpha_{i} \alpha_{j}\right)^{-1}\right]=\sum_{\lambda} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right)
$$

The sum is over all partitions.
Proof. Similar to Theorem 46.3, and actually equivalent to Theorem 46.3 using the identity $\left(1+\alpha_{i}\right)\left(1-\alpha_{i}^{2}\right)^{-1}=\left(1-\alpha_{i}\right)^{-1}$.

EXERCISES

Exercise 46.1. Let $\eta_{2 k}$ be the character of $S_{2 k}$ from the exercises of the last chapter, and let $\mathcal{S}_{2 k}$ be the set of partitions of $2 k$ defined there. Show that

$$
\wedge^{k}\left(\wedge^{2} V\right) \cong\left(\bigotimes^{2 k} V\right) \otimes_{\mathbb{C}\left[S_{2 k}\right]} \eta_{2 k}
$$

and deduce that

$$
\wedge^{k}\left(\wedge^{2} V\right) \cong \bigoplus_{\lambda \in \mathcal{S}_{2 k}} \pi_{\lambda}
$$

Prove also that

$$
\wedge^{k}\left(\vee^{2} V\right) \cong \bigoplus_{t_{\lambda} \in \mathcal{S}_{2 k}} \pi_{\lambda}
$$

Exercise 46.2. Prove the identities

$$
\begin{aligned}
& \prod_{1 \leqslant i<j \leqslant n}\left(1+\alpha_{i} \alpha_{j}\right)=\sum_{k} \sum_{\lambda \in \mathcal{S}_{2 k}} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right), \\
& \prod_{1 \leqslant i \leqslant j \leqslant n}\left(1+\alpha_{i} \alpha_{j}\right)=\sum_{k} \sum_{t \lambda \in \mathcal{S}_{2 k}} s_{\lambda}\left(\alpha_{1}, \cdots, \alpha_{n}\right) .
\end{aligned}
$$

Explain why, in contrast with (46.2) and (46.3) there are only finitely many nonzero terms on the right-hand side in these identities.

Gelfand Pairs

We recall that a representation θ of a compact group G is called multiplicityfree if in its decomposition into irreducibles,

$$
\begin{equation*}
\theta=\bigoplus_{i} d_{i} \pi_{i} \tag{47.1}
\end{equation*}
$$

each irreducible representation π_{i} occurs with multiplicity $d_{i}=0$ or 1 . A common situation that we have seen already several times is for a group $G \supset H$ to have the property that for some representation τ of H the induced representation $\operatorname{Ind}_{H}^{G}(\tau)$ is multiplicity-free.

Of course, we have only defined induced representations when H and G are finite. Assuming H and G are finite, saying that $\operatorname{Ind}_{H}^{G}(\tau)$ is multiplicity-free means that each irreducible representation π of G, when restricted to H, can contain at most one copy of τ, and formulated this way, the statement makes sense even if H and G are infinite.

The most striking examples we have seen are when $H=S_{k-1}$ and $G=S_{k}$ and when $H=U(n-1)$ and $G=U(n)$. In these examples every irreducible representation τ of H has this "multiplicity one" property. Such examples are fairly rare. A far more common circumstance is for a single representation τ of H to have the multiplicity one property. For example, we showed in Theorem 45.4 that inducing the trivial representation from the group $B_{2 k}$ of $S_{2 k}$ produces a multiplicity-free representation. However, this would not be true for some other irreducible representations.

Proposition 47.1. Suppose θ is a representation of a finite group G. A necessary and sufficient condition that θ be multiplicity-free is that the ring $\operatorname{End}_{G}(\theta)$ be commutative.

Proof. In the decomposition (47.1), we have $\operatorname{End}_{G}(\theta)=\bigoplus \operatorname{Mat}_{d_{i}}(\mathbb{C})$. This is commutative if and only if all $d_{i} \leqslant 1$.

Let G be a group, finite for the time being, and H a subgroup. Then (G, H) is called a Gelfand pair if the representation of G induced by the trivial representation of H is multiplicity-free. We also refer to H as a Gelfand subgroup. More generally, if π is an irreducible representation of H, then (G, H, π) is called a Gelfand triple if π^{G} is multiplicity-free. See Gross [50] for a lively discussion of Gelfand pairs.

From Proposition 47.1, Gelfand pairs are characterized by the commutativity of the endomorphism ring of an induced representation. To study it, we make use of Mackey theory.

Proposition 47.2. Let G be a finite group, and let H_{1}, H_{2}, H_{3} be subgroups. Let $\left(\pi_{i}, V_{i}\right)$ be complex representations of H_{1}, H_{2}, and H_{3} and let L_{1} : $V_{1}^{G} \longrightarrow V_{2}^{G}$ and $L_{2}: V_{2}^{G} \longrightarrow V_{3}^{G}$ be intertwining operators. Let Δ_{1} : $G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ and $\Delta_{2}: G \longrightarrow \operatorname{Hom}\left(V_{2}, V_{3}\right)$ correspond to L_{1} and L_{2} as in Theorem 34.1. Then $\Delta_{2} * \Delta_{1}: G \longrightarrow \operatorname{Hom}\left(V_{1}, V_{3}\right)$ corresponds to $L_{2} \circ L_{1}: V_{1}^{G} \longrightarrow V_{3}^{G}$, where the convolution is

$$
\Delta_{2} * \Delta_{1}(g)=\sum_{\gamma \in H_{2} \backslash G} \Delta_{2}\left(g \gamma^{-1}\right) \circ \Delta_{1}(\gamma)
$$

Proof. Note that, using (34.7), the summand $\Delta_{2}\left(g \gamma^{-1}\right) \Delta_{1}(\gamma)$ does not depend on the choice of representative $\gamma \in H_{2} \backslash G$. The result is easily checked.

Theorem 47.1. Let H be a subgroup of the finite group G, and let (π, V) be a representation of H. Then (G, H, π) is a Gelfand triple if and only if the convolution algebra \mathcal{H} of functions $\Delta: G \longrightarrow \operatorname{End}_{\mathbb{C}}(V)$ satisfying

$$
\Delta\left(h_{2} g h_{1}\right)=\pi\left(h_{2}\right) \circ \Delta(g) \circ \pi\left(h_{1}\right), \quad h_{1}, h_{2} \in H
$$

is commutative.
We call a convolution ring \mathcal{H} of this type a Hecke algebra.
Proof. By Proposition 47.2, this condition is equivalent to the commutativity of the endomorphism ring $\operatorname{End}_{G}\left(V^{G}\right)$, so this follows from Proposition 47.1.

In this chapter, an involution of a group G is a map $\iota: G \rightarrow G$ of order 2 that is anticommutative:

$$
{ }^{\iota}\left(g_{1} g_{2}\right)={ }^{\iota} g_{2}{ }^{\iota} g_{1}
$$

Similarly, an involution of a ring R is an additive map of order 2 that is anticommutative for the ring multiplication.

A common method of proving that such a ring is commutative is to exhibit an involution and then show that this involution reduces to the identity map.

Theorem 47.2. Let H be a subgroup of the finite group G, and suppose that G admits an involution fixing H such that every double coset of H is invariant: $H g H=H^{\iota} g H$. Then H is a Gelfand subgroup.

Proof. The ring \mathcal{H} of Theorem 47.1 is just the convolution ring of H-biinvariant functions on G. We have an involution on this ring:

$$
{ }^{\iota} \Delta(g)=\Delta\left({ }^{\iota} g\right)
$$

It is easy to check that

$$
{ }^{\iota}\left(\Delta_{1} * \Delta_{2}\right)={ }^{\iota} \Delta_{2} *{ }^{\iota} \Delta_{1} .
$$

On the other hand, each Δ is constant on each double coset, and these are invariant under ι by hypothesis, so ι is the identity map. This proves that \mathcal{H} is commutative, so (G, H) is a Gelfand pair.

Let S_{n} denote the symmetric group. We can embed $S_{n} \times S_{m} \rightarrow S_{n+m}$ by letting S_{n} act on the first n elements of the set $\{1,2,3, \cdots, n+m\}$ and letting S_{m} act on the last m elements.

Proposition 47.3. The subgroup $S_{n} \times S_{m}$ is a Gelfand subgroup of S_{n+m}.
We already know this: the representation of S_{n+m} induced from the trivial character of $S_{n} \times S_{m}$ is the product in the ring \mathcal{R} of \boldsymbol{h}_{n} by \boldsymbol{h}_{m}. By Pieri's formula, one computes, assuming without loss of generality that $n>m$,

$$
\boldsymbol{h}_{n} \boldsymbol{h}_{m}=\sum_{k=0}^{m} \boldsymbol{s}_{(n+m-k, k)}
$$

Thus, the induced representation is multiplicity-free. We prove this again to illustrate Theorem 47.2.

Proof. Let $H=S_{n} \times S_{m}$ and $G=S_{n+m}$. We take the involution ι in Theorem 47.2 to be the inverse map $g \longrightarrow g^{-1}$. We must check that each double coset is ι-stable.

It will be convenient to represent elements of S_{n+m} by permutation matrices. We will show that each double coset $H g H$ has a representative of the form

$$
\left(\begin{array}{cccc}
I_{r} & 0 & 0 & 0 \tag{47.2}\\
0 & 0_{n-r} & 0 & I_{n-r} \\
0 & 0 & I_{m-n+r} & 0 \\
0 & I_{n-r} & 0 & 0_{n-r}
\end{array}\right) .
$$

Here I_{n} and 0_{n} are the $n \times n$ identity and zero matrices, and the remaining 0 matrices are rectangular blocks.

We start with g in block form,

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A, B, C and D are subpermutation matrices - that is, matrices with only 1's and 0's, and with at most one nonzero entry in each row and column.

Here A is $n \times n$ and D is $m \times m$. Let r be the rank of A. Then clearly B and C both must have rank $n-r$, and so D has rank $m-n+r$.

Multiplying A on the left by an element of S_{n}, we may arrange its rows so that its nonzero entries lie in the first r rows. Then multiplying on the right by an element of S_{n}, we may put these in the upper left-hand corner. Similarly, we may arrange that D has its nonzero entries in the upper left-hand corner. Now the form of the matrix is

$$
\left(\begin{array}{cccc}
T_{r} & 0 & 0 & 0 \\
0 & 0_{n-r} & 0 & U_{n-r} \\
0 & 0 & V_{m-n+r} & 0 \\
0 & W_{n-r} & 0 & 0_{n-r}
\end{array}\right)
$$

where the sizes of the square blocks are indicated by subscripts. The matrices T, U, V, and W are permutation matrices (invertible). Left multiplication by element of $S_{r} \times S_{n-r} \times S_{m-n+r} \times S_{n-r}$ can now replace these four matrices by identity matrices. This proves that (47.2) is a complete set of double coset representatives.

Since these double coset representatives are all invariant under the involution, by Theorem 47.2 it follows that $S_{n} \times S_{m}$ is a Gelfand subgroup.

Proposition 47.4. Suppose that (G, H, ψ) is a Gelfand triple, and let (π, V) be an irreducible representation of G. Then there exists at most one space \mathcal{M} of functions on G satisfying

$$
\begin{equation*}
M(h g)=\psi(h) M(g), \quad(h \in H) \tag{47.3}
\end{equation*}
$$

such that \mathcal{M} is closed under right translation and such that the representation of G on \mathcal{M} by right translation is isomorphic to π.

The space \mathcal{M} is called a model of π, meaning a concrete realization of the representation in a space of functions on G.

Proof. This is just Frobenius reciprocity. The space of functions satisfying (47.3) is $\operatorname{Ind}_{H}^{G}(\psi)$, so \mathcal{M}, if it exists, is the image of an element of $\operatorname{Hom}_{G}\left(V, \operatorname{Ind}_{H}^{G}(\psi)\right)$. This is one-dimensional since the induced representation is assumed multiplicity-free.

We turn now to Gelfand pairs in compact groups. We will obtain a result similar to Theorem 47.1 by a different method.

Let $C(G)$ be the space of continuous functions on the compact group G. It is a ring (without unit) under convolution. If $\phi \in C(G)$, and if (π, V) is a finitedimensional representation, let $\pi(\phi): V \longrightarrow V$ denote the endomorphism

$$
\pi(\phi) v=\int_{G} \phi(g) \pi(g) v d g
$$

One checks easily that if $\phi, \psi \in C(G)$, then

$$
\pi(\phi * \psi)=\pi(\phi) \circ \pi(\psi)
$$

Let H be a closed subgroup of G. Let \mathcal{H} be the subring of $C(G)$ consisting of functions that are both left- and right-invariant under H. If (π, V) is a representation of G, let V^{H} denote the space of H-fixed vectors.

Theorem 47.3. Let H be a closed subgroup of the compact group G. Let \mathcal{H} be the subring of $C(G)$ consisting of functions that are both left- and rightinvariant under H. If \mathcal{H} is commutative, then V^{H} is at most one-dimensional for every irreducible representation (π, V) of G.

In this case, extending the definition from the case of finite groups, we say (G, H) is a Gelfand pair or that H is a Gelfand subgroup of G.
Proof. Let $\xi, \eta \in V^{H}$. For $g \in G$, let

$$
\phi_{\xi, \eta}(g)=\overline{\langle\pi(g) \xi, \eta\rangle}
$$

where \langle,$\rangle is an invariant inner product on V$ (Proposition 2.1). It is easy to see that $\phi_{\xi, \eta} \in \mathcal{H}$. We will prove that

$$
\begin{equation*}
\pi\left(\phi_{\xi, \eta}\right) v=\frac{1}{\operatorname{dim}(V)}\langle v, \xi\rangle \eta \tag{47.4}
\end{equation*}
$$

Indeed, taking the inner product of the left-hand side with an arbitrary vector $\theta \in V$, Schur orthogonality (Theorem 2.4) gives

$$
\begin{aligned}
&\left\langle\pi\left(\phi_{\xi, \eta}\right) v, \theta\right\rangle=\int_{G}\langle\pi(g) v, \theta\rangle \overline{\langle\pi(g) \xi, \eta\rangle} d g= \\
& \frac{1}{\operatorname{dim}(V)}\langle v, \xi\rangle\langle\eta, \theta\rangle
\end{aligned}
$$

and since this is true for every θ, we have (47.4).
Now we show that the image of $\pi\left(\phi_{\eta, \xi} * \phi_{\xi, \eta}\right)$ is $\mathbb{C} \eta$. Indeed, applying (47.4) twice, we see that

$$
\pi\left(\phi_{\eta, \xi} * \phi_{\xi, \eta}\right) v=\pi\left(\phi_{\eta, \xi}\right) \circ \pi\left(\phi_{\xi, \eta}\right) v=\frac{1}{\operatorname{dim}(V)^{2}}\langle v, \xi\rangle\langle\eta, \eta\rangle \xi
$$

The image of this is contained in the linear span of η, and taking $v=\xi$ shows that the map is nonzero. Since \mathcal{H} is assumed commutative, this also equals $\pi\left(\phi_{\xi, \eta} * \phi_{\eta, \xi}\right)$. Hence, its image is also equal to $\mathbb{C} \xi$, and so we see that ξ and η both belong to the same one-dimensional subspace of V.

To give an example where we can verify the hypotheses of Theorem 47.3, let $G=\mathrm{SO}(n+1)$, and let $H=\mathrm{SO}(n)$, which we embed into the upper left-hand corner of G :

$$
g \longmapsto\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right)
$$

We also embed $K=\mathrm{SO}(2)$ into the lower right-hand corner:

$$
\left(\begin{array}{cc}
a & b \tag{47.5}\\
-b & a
\end{array}\right) \longmapsto\left(\begin{array}{c|c|}
\hline I_{n-1} & 0 \\
\hline 0 & a
\end{array}\right)
$$

Proposition 47.5. With $G=\mathrm{SO}(n+1), H=\mathrm{SO}(n)$, and $K=\mathrm{SO}(2)$ embedded as explained above, every double coset in $H \backslash G / H$ has a representative in K.

Proof. Let $g \in G$. Write the last column of g in the form

$$
\left(\begin{array}{c}
b v_{1} \\
b v_{2} \\
\vdots \\
b v_{n} \\
a
\end{array}\right)=\binom{b v}{a}, \quad v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

where $b^{2}+a^{2}=1$ and v has length 1 . Complete v to an orthogonal matrix $h \in H$. Then it is simple to check that the last column of $h^{-1} g$ is

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
b \\
a
\end{array}\right)
$$

so with k the matrix in (47.5), the last column of $k^{-1} h^{-1} g$ is

$$
\xi_{0}=\left(\begin{array}{c}
0 \tag{47.6}\\
\vdots \\
0 \\
1
\end{array}\right)
$$

This implies that $k^{-1} h^{-1} g \in O(n)$, so g and k lie in the same double coset.
Theorem 47.4. The subgroup $\mathrm{SO}(n)$ of $\mathrm{SO}(n+1)$ is a Gelfand subgroup.
Proof. With $G=\mathrm{SO}(n+1), H=\mathrm{SO}(n)$, and $K=\mathrm{SO}(2)$ embedded as explained above, we exhibit an involution of G, namely

$$
g \mapsto\left(\begin{array}{cc}
I_{n} & \\
& -1
\end{array}\right){ }^{t} g\left(\begin{array}{ll}
I_{n} & \\
& -1
\end{array}\right)
$$

This involution maps H to itself and is the identity on matrices in $O(2)$. Hence, the involution of \mathcal{H} that it induces is the identity, and \mathcal{H} is therefore commutative.

Now let us think a bit about what this means in concrete terms. The quotient G / H may be identified with the sphere S^{n}. Indeed, thinking of S^{n} as the unit sphere in \mathbb{R}^{n+1}, G acts transitively and H is the stabilizer of a point in S^{n}.

Consequently, we have an action of G on $L^{2}\left(S^{n}\right)$, and this may be thought of as the representation induced from the trivial representation of $O(n)$.

Theorem 47.5. Let (π, V) be an irreducible representation of $O(n+1)$. Then there exists at most one subspace of $L^{2}\left(S^{n}\right)$ that is invariant under the action of $O(n+1)$ and affords a representation isomorphic to π.

This gives us a concrete model for at least some representations of $O(n+1)$.
Proof. Let $\phi: V \rightarrow L^{2}\left(S^{n}\right)$ be an intertwining operator. It is sufficient to show that ϕ is uniquely determined up to a constant multiple. The $O(n+1)$ equivariance of ϕ amounts to the formula

$$
\begin{equation*}
\phi(\pi(g) v)(x)=\phi(v)\left(g^{-1} x\right) \tag{47.7}
\end{equation*}
$$

for $g \in O(n+1), v \in V$, and $x \in S^{n}$.
Let $\langle\cdot, \cdot\rangle$ be an invariant Hermitian form on V. This form is nondegenerate, so every linear functional on V is of the form $v \rightarrow\langle v, \eta\rangle$ for some vector η. In particular, with $\xi_{0} \in S^{n}$ as in (47.6), there exists a vector $\eta \in V$ such that

$$
\phi(v)\left(\xi_{0}\right)=\langle v, \eta\rangle
$$

By (47.7), we have

$$
\phi(v)\left(\pi(g) \xi_{0}\right)=\left\langle\pi\left(g^{-1}\right) v, \eta\right\rangle=\langle v, \pi(g) \eta\rangle
$$

This makes it clear that ϕ is determined by η, and it also shows that η is $O(n)$ invariant since $\xi_{0} \in S^{n}$ is $O(n)$-fixed. Since the space of $O(n)$-fixed vectors is at most one-dimensional, the theorem is proved.

Proposition 47.6. If $g \in U(n)$, then there exist k_{1} and $k_{2} \in O(n)$ such that $k_{1} g k_{2}$ is diagonal.

Proof. Let $x=g^{t} g$. This is a unitary symmetric matrix. By Proposition 31.2, there exists $k_{1} \in O(n)$ such that $k_{1} x k_{1}^{-1}$ is diagonal. It is unitary, so its diagonal entries have absolute value 1. Taking their square roots, we find a unitary diagonal matrix d such that $k_{1} x k_{1}^{-1}=d^{2}$. This means that $\left(d^{-1} k_{1} g\right)^{t}\left(d^{-1} k_{1} g\right)=1$, so $k_{2}^{-1}=d^{-1} k_{1} g$ is orthogonal and $k_{1} g k_{2}=d$.

Theorem 47.6. The group $O(n)$ is a Gelfand subgroup of $U(n)$.
Proof. Let $G=U(n)$ and $H=O(n)$, and let \mathcal{H} be the ring of Theorem 47.3. The transpose involution of G preserves H and thus induces an involution of \mathcal{H}. By Proposition 47.6, every double coset in $H \backslash G / H$ has a diagonal representative, so this involution is the identity map, and it follows that \mathcal{H} is commutative. Therefore H is a Gelfand subgroup.

EXERCISES

Exercise 47.1. Let G be any compact group. Let $H=G \times G$, and embed G into H diagonally, that is, by the map $g \longmapsto(g, g)$. Use the involution method to prove that G is a Gelfand subgroup of H. (Compare Propositions 43.1 and 43.2.)

Exercise 47.2. Use the involution method to show that $O(n)$ is a Gelfand subgroup of $U(n)$.

Exercise 47.3. Show that every irreducible representation of $O(3)$ has an $O(2)$ fixed vector, and deduce that $L^{2}\left(S^{2}\right)$ is the (Hilbert space) direct sum of all irreducible representations of $O(3)$, each with multiplicity one.

Exercise 47.4. (Gelfand and Graev) Let $G=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ and let N be the subgroup of upper triangular unipotent matrices. Let $\psi: \mathbb{F}_{q} \longrightarrow \mathbb{C}^{\times}$be a nontrivial additive character. Define a character ψ_{N} of N by

$$
\psi_{N}\left(\begin{array}{cccc}
1 & x_{12} & x_{13} & \cdots
\end{array} x_{1 n}\left(\begin{array}{ccc}
\\
& 1 & x_{23}
\end{array} \cdots x_{2 n}\right)=\psi\left(x_{12}+x_{23}+\cdots+x_{n-1, n}\right) .\right.
$$

The object of this exercise is to show that $\operatorname{Ind}_{G}^{N}\left(\psi_{N}\right)$ is multiplicity-free. This Gelfand-Graev representation is important because it contains most irreducible representations of the group; those it contains are therefore called generic. We will denote by Φ the root system of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ and by Φ^{+}the positive roots $\alpha_{i j}$ such that $i<j$. Let Σ be the simple positive roots $\alpha_{i, i+1}$.
(i) Show that every double coset in $N \backslash G / N$ has a representative m that is a monomial matrix. In the notation of Chapter 30, this means that $m \in N(T)$, where T is the group of diagonal matrices. (Make use of the Bruhat decomposition.) Let $w \in W=N(T) / T$ be the corresponding Weyl group element.
(ii) Suppose that the double coset of $N w N$ supports an intertwining operator $\operatorname{Ind}\left(\psi_{N}\right) \longrightarrow \operatorname{Ind}\left(\psi_{N}\right)$. (See Remark 34.1.) Show that if $\alpha \in \Sigma$ and $w(\alpha) \in \Phi^{+}$, then $w(\alpha) \in \Sigma$. (Otherwise, choose x in the unipotent subgroup corresponding to the root α such that $m x=y m$ with $\psi_{N}(x) \neq 1$ and $\psi_{N}(y)=1$, and applying Δ as in Theorem 34.1, obtain a contradiction.)
(iii) Deduce from (ii) that there exist integers n_{1}, \cdots, n_{r} such that $\sum n_{i}=n$ such that

$$
m=\left(\begin{array}{lll}
& & . \\
& M_{r} \\
M_{1} & &
\end{array}\right),
$$

where M_{i} is an $n_{i} \times n_{i}$ diagonal matrix.
(iv) Again make use of the assumption that $N w N$ supports an intertwining operator to show that M_{i} is a scalar matrix.
(v) Define an involution ι of G by

$$
g \longmapsto w_{0}{ }^{t} g w_{0}, \quad w_{0}=\left(._{1} \cdot{ }^{1}\right)
$$

Note that N and its character ψ_{N} are invariant under ι. Interpret (iv) as showing that every double coset that supports an intertwining operator $\operatorname{Ind}\left(\psi_{N}\right) \longrightarrow \operatorname{Ind}\left(\psi_{N}\right)$ has a representative that is invariant under ι, and deduce that $\operatorname{End}_{G}\left(\operatorname{Ind}\left(\psi_{N}\right)\right)$ is commutative and that $\operatorname{Ind}\left(\psi_{N}\right)$ is multiplicity-free.

Hecke Algebras

In this chapter, we will study a certain "Hecke algebra" $\mathcal{H}_{k}(q)$ that, as we will see, is a deformation of $\mathbb{C}\left[S_{k}\right]$. The ring $\mathcal{H}_{k}(q)$ can actually be defined if q is any complex number, but if q is a prime power, it has a representationtheoretic interpretation. We will see that it is the endomorphism ring of the representation of $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, where \mathbb{F}_{q} is the finite field with q elements, induced from the trivial representation of the Borel subgroup B of upper triangular matrices in G. The fact that it is a deformation of $\mathbb{C}\left[S_{k}\right]$ amounts to a parametrization of a certain set of irreducible representations of G - the so-called unipotent ones - by partitions.

The ring $\mathcal{H}_{k}(q)$ was introduced by Iwahori [69], where the main results of this section may be found. I will refrain from describing this ring as the "Iwahori-Hecke algebra," as some call it, since the term "Iwahori-Hecke algebra" is frequently used by workers in automorphic forms to describe another ring, the affine Hecke algebra, which we will next briefly describe. (The literature is about evenly divided on whether the term "Iwahori-Hecke algebra" refers to $\mathcal{H}_{k}(q)$ or to the affine Hecke algebra.)

If instead of $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ we take $G=\mathrm{GL}\left(k, \mathbb{Q}_{p}\right)$, where \mathbb{Q}_{p} is the p adic field, and we take B to be the Iwahori subgroup consisting of elements g of $K=\mathrm{GL}\left(k, \mathbb{Z}_{p}\right)$ that are upper triangular modulo p, then one obtains the affine Hecke algebra, which is is similar to $\mathcal{H}_{k}(q)$ but infinite-dimensional. It was introduced by Iwahori and Matsumoto [71]. The role of the Bruhat decomposition in the proofs requires a generalization of the Tits' system described in Iwahori [70]. This Hecke algebra contains a copy of $\mathcal{H}_{k}(p)$. On the other hand, it also contains the ring of K-bi-invariant functions, the so-called spherical Hecke algebra (Satake [107], Tamagawa [117]). The spherical Hecke algebra is commutative since K is a Gelfand subgroup of G. The spherical Hecke algebra is (when $k=2$) essentially the portion corresponding to the prime p of the original Hecke algebra introduced by Hecke [55] to explain the appearance of Euler products as the L-series of automorphic forms. See Howe [62] and Rogawski [102] for the representation theory of the affine Hecke algebra.

Since we will show that the ring $\mathcal{H}_{k}(q)$ is a deformation of $\mathbb{C}\left[S_{k}\right]$, and that its representation theory is the same as the representation theory of the symmetric group, one might therefore ask whether the Frobenius-Schur duality between the representations of S_{k} and $U(n)$, which has been a great theme for us, can be extended to representations of this Hecke algebra. The answer is affirmative. The role of $U(n)$ is played by a "quantum group," which is not actually a group at all but a Hopf algebra. Frobenius-Schur duality in this quantum context is due to Jimbo [73] and is summarized in Chari and Pressley [25], Section 10.2.

The algebra $\mathcal{H}_{k}(q)$ has appeared in a variety of different contexts in mathematics, such as in the construction by Jones [74] of a polynomial knot invariant or the study by Diaconis and Ram [32] of the Metropolis algorithm.

Let F be a field. Let $G=\mathrm{GL}(k, F)$ and, as in Chapter 30 , let B be the Borel subgroup of upper triangular matrices in G. A subgroup P containing B is called a standard parabolic subgroup. (More generally, any conjugate of a standard parabolic subgroup is called parabolic.)

Let k_{1}, \cdots, k_{r} be positive integers such that $\sum_{i} k_{i}=k$. Then S_{k} has a subgroup isomorphic to $S_{k_{1}} \times \ldots \times S_{k_{r}}$ in which the first $S_{k_{1}}$ acts on $\left\{1, \cdots, k_{1}\right\}$, the second $S_{k_{2}}$ acts on $\left\{k_{1}+1, \cdots, k_{1}+k_{2}\right\}$, and so forth. Let Σ denote the set of $k-1$ transpositions $\{(1,2),(2,3), \cdots,(k-1, k)\}$.

Lemma 48.1. Let J be any subset of Σ. Then there exist integers k_{1}, \cdots, k_{r} such that the subgroup of S_{k} generated by J is $S_{k_{1}} \times \ldots \times S_{k_{r}}$.

Proof. If J contains $(1,2),(2,3), \cdots,\left(k_{1}-1, k_{1}\right)$, then the subgroup they generate is the symmetric group $S_{k_{1}}$ acting on $\left\{1, \cdots, k_{1}\right\}$. Taking k_{1} as large as possible, assume that J omits $\left(k_{1}, k_{1}+1\right)$. Taking k_{2} as large as possible such that J contains $\left(k_{1}+1, k_{1}+2\right), \cdots,\left(k_{1}+k_{2}-1, k_{1}+k_{2}\right)$, the subgroup they generate is the symmetric group $S_{k_{2}}$ acting on $\left\{k_{1}+1, \cdots, k_{1}+k_{2}\right\}$, and so forth. Thus J contains generators of each factor in $S_{k_{1}} \times \ldots \times S_{k_{r}}$ and does not contain any element that is not in this product, so this is the group it generates.

The notations from Chapter 30 will also be followed. Let T be the maximal torus of diagonal elements in G, N the normalizer of T, and $W=N / T$ the Weyl group. Moreover, Φ will be the set of all roots, Φ^{+}the positive roots, and Σ the simple positive roots. Concretely, elements of Φ are the $k^{2}-k$ rational characters of T of the form

$$
\alpha_{i j}\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right)=t_{i} t_{j}^{-1}
$$

where $1 \leqslant i, j \leqslant n, \Phi^{+}$consists of $\left\{\alpha_{i j} \mid i<j\right\}$, and $\Sigma=\left\{\alpha_{i, i+1}\right\}$. Identifying W with S_{k}, the set Σ in Lemma 48.1 is then the set of simple reflections.

Let J be any subset of Σ. Let W_{J} be the subgroup of W generated by the s_{α} with $\alpha \in \Sigma$. Then, by Lemma 48.1, we have (for suitable k_{i})

$$
\begin{equation*}
W_{J} \cong S_{k_{1}} \times \cdots \times S_{k_{r}} \tag{48.1}
\end{equation*}
$$

Let N_{J} be the preimage of W_{J} in N under the canonical projection to W. Let P_{J} be the group generated by B and N_{J}. Then

$$
P_{J}=\left\{\left(\begin{array}{cccc}
G_{11} & G_{12} & \cdots & G_{1 r} \tag{48.2}\\
0 & G_{22} & \cdots & G_{2 r} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & G_{r r}
\end{array}\right)\right\}
$$

where each $G_{i j}$ is a $k_{i} \times k_{j}$ block. The group P_{J} is a semidirect product $P_{J}=M_{J} U_{J}=U_{J} M_{J}$, where M_{J} is characterized by the condition that $G_{i j}=0$ unless $i=j$, and the normal subgroup U_{J} is characterized by the condition that each $G_{i i}$ is a scalar multiple of the identity matrix in $\mathrm{GL}\left(k_{i}\right)$. The groups P_{J} with J a proper subset of Σ are called the standard parabolic subgroups, and more generally any subgroup conjugate to a P_{J} is called parabolic. The subgroup U_{J} is the unipotent radical of P_{J} (that is, its maximal normal unipotent subgroup), and M_{J} is called the standard Levi subgroup of P_{J}. Evidently,

$$
\begin{equation*}
M_{J} \cong \mathrm{GL}\left(k_{1}, F\right) \times \cdots \times \mathrm{GL}\left(k_{r}, F\right) \tag{48.3}
\end{equation*}
$$

Any subgroup conjugate in P_{J} to M_{J} (which is not normal) would also be called a Levi subgroup.

As in Chapter 30, we note that a double coset $B \omega B$, or more generally $P_{I} \omega P_{J}$ with $I, J \subset \Sigma$, does not depend on the choice $\omega \in N$ of representative for an element $w \in W$, and we will use the notation $B w B=C(w)$ or $P_{I} w P_{J}$ for this double coset. Let $B_{J}=M_{J} \cap B$. This is the standard "Borel subgroup" of M_{J}.

Proposition 48.1. (i) Let $J \subseteq \Sigma$. Then

$$
M_{J}=\bigcup_{w \in W_{J}} B_{J} w B_{J} \quad \text { (disjoint) }
$$

(ii) Let $I, J \subseteq \Sigma$. Then, if $w \in W$, we have

$$
\begin{equation*}
B W_{I} w W_{J} B=P_{I} w P_{J} \tag{48.4}
\end{equation*}
$$

(iii) The canonical map $w \longmapsto P_{I} w P_{J}$ from $W \longrightarrow P_{I} \backslash G / P_{J}$ induces a bijection

$$
W_{I} \backslash W / W_{J} \cong P_{I} \backslash G / P_{J}
$$

Proof. For (i), we have (48.3) for suitable k_{i}. Now B_{J} is the direct product of the Borel subgroups of these $\mathrm{GL}\left(k_{i}, F\right)$, and W_{J} is the direct product (48.1).

Part (i) follows directly from the Bruhat decomposition for $\mathrm{GL}(k, F)$ as proved in Chapter 30.

As for (ii), since $B W_{I} \subset P_{I}$ and $W_{J} B \subset P_{J}$, we have $B W_{I} w W_{J} B \subseteq$ $P_{I} w P_{J}$. To prove the opposite inclusion, we first note that

$$
\begin{equation*}
w B W_{J} \subseteq B w W_{J} B \tag{48.5}
\end{equation*}
$$

Indeed, any element of W_{J} can be written as $s_{1} \cdots s_{r}$, where $s_{i}=s_{\alpha_{i}}$, with $\alpha_{i} \in J$. Using Axiom TS3 from Chapter 30, we have

$$
w B s_{1} \cdots s_{r} \subset B w B s_{2} \cdots s_{r} B \cup B w s_{1} B s_{2} \cdots s_{r} B
$$

and, by induction on r, both sets on the right are contained in $B w W_{J} B$. This proves (48.5). A similar argument shows that

$$
\begin{equation*}
W_{I} B w W_{J} \subseteq B W_{I} w W_{J} B \tag{48.6}
\end{equation*}
$$

Now, using (i),

$$
P_{I} w P_{J}=U_{I} M_{I} w M_{J} U_{J} \subset U_{I} B_{I} W_{I} B_{I} w B_{J} W_{J} B_{J} U_{J} \subset B W_{I} B w B W_{J} B
$$

Applying (48.5) and (48.6), we obtain $B W_{I} w W_{J} B \supseteq P_{I} w P_{J}$, whence (48.4).
As for (iii), since by the Bruhat decomposition $w \longmapsto B w B$ is a bijection $W \longrightarrow B \backslash G / B$, (48.4) implies that $w \longrightarrow P_{I} w P_{J}$ induces a bijection $W_{I} \backslash W / W_{J} \longrightarrow P_{I} \backslash G / P_{J}$.

To proceed further, we will assume that $F=\mathbb{F}_{q}$ is a finite field. We recall from Chapter 36 that \mathcal{R}_{k} denotes the free Abelian group generated by the isomorphism classes of irreducible representations of the symmetric group S_{k}, or, as we sometimes prefer, the additive group of generalized characters. It can be identified with the character ring of S_{k}. However, we do not need its ring structure, only its additive structure and its inner product, in which the distinct isomorphism classes of irreducible representations form an orthonormal basis.

Similarly, let $\mathcal{R}_{k}(q)$ be the free Abelian group generated by the isomorphism classes of irreducible representations of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ or equivalently the additive group of generalized characters. Like \mathcal{R}_{k}, we can make $\mathcal{R}_{k}(q)$ into the k-homogeneous part of a graded ring, a point we will take up in the next chapter.

Proposition 48.2. Let H be a group, and let M_{1} and M_{2} be subgroups of H. Then in the character ring of H, the inner product of the characters induced from the trivial characters of M_{1} and M_{2}, respectively, is equal to the number of double cosets in $M_{1} \backslash H / M_{2}$.

Proof. By the geometric form of Mackey's Theorem (Theorem 34.1), the space of intertwining maps from $\operatorname{Ind}_{M_{1}}^{H}(1)$ to $\operatorname{Ind}_{M_{2}}^{H}(1)$ is isomorphic to the space of functions $\Delta: H \longrightarrow \operatorname{Hom}(\mathbb{C}, \mathbb{C}) \cong \mathbb{C}$ that satisfy $\Delta\left(m_{2} h m_{1}\right)=\Delta(h)$ for
$m_{i} \in M_{i}$. Of course, a function has this property if and only if it is constant on double cosets, so the dimension of the space of such functions is equal to the number of double cosets. On the other hand, the dimension of the space of intertwining operators equals the inner product in the character ring by (2.8).

Theorem 48.1. There is a unique isometry of \mathcal{R}_{k} into $\mathcal{R}_{k}(q)$ in which for each subset I of Σ the representation $\operatorname{Ind}_{W_{I}}^{W}(1)$ maps to the representation $\operatorname{Ind}_{P_{I}}^{G}(1)$. This mapping takes irreducible representations to irreducible representations.

Proof. If $I \subseteq \Sigma$, let χ_{I} denote the character of S_{k} induced from the trivial character of W_{I}, and let $\chi_{I}(q)$ denote the character of G induced from the trivial character of P_{I}.

We note that the representations χ_{I} of \mathcal{R}_{k} span \mathcal{R}_{k}. Indeed, by the definition of the multiplication in \mathcal{R}, inducing the trivial representation from $S_{k_{1}} \times \cdots \times S_{k_{r}}$ to S_{k}, where $\sum k_{i}=k$, gives the representation denoted

$$
\boldsymbol{h}_{k_{1}} \boldsymbol{h}_{k_{2}} \cdots \boldsymbol{h}_{k_{r}}
$$

which is χ_{I}. Expanding the right-hand side of (37.10) expresses each \boldsymbol{s}_{λ} as a linear combination of such representations, and by Theorem 37.1 the \boldsymbol{s}_{λ} span \mathcal{R}_{k}; hence so do the χ_{I}.

We would like to define a map $\mathcal{R}_{k} \longrightarrow \mathcal{R}_{k}(q)$ by

$$
\begin{equation*}
\sum_{I} n_{I} \chi_{I} \longmapsto \sum_{I} n_{I} \chi_{I}(q) \tag{48.7}
\end{equation*}
$$

where the sum is over subsets of Σ. We need to verify that this is well-defined and an isometry.

By Proposition 48.1, if $I, J \subseteq \Sigma$, the cardinality of $W_{I} \backslash W / W_{J}$ equals the cardinality of $P_{I} \backslash G / P_{J}$. By Proposition 48.2, it follows that

$$
\begin{equation*}
\left\langle\chi_{I}, \chi_{J}\right\rangle_{S_{k}}=\left\langle\chi_{I}(q), \chi_{J}(q)\right\rangle_{\mathrm{GL}\left(k, \mathbb{F}_{q}\right)} \tag{48.8}
\end{equation*}
$$

Now, if $\sum n_{I} \chi_{I}(q)=0$, we have

$$
\begin{aligned}
& \left\langle\sum_{I} n_{I} \chi_{I}, \sum_{I} n_{I} \chi_{I}\right\rangle_{S_{k}}=\sum_{I, J} n_{I} n_{J}\left\langle\chi_{I}, \chi_{J}\right\rangle_{S_{k}}= \\
& \sum_{I, J} n_{I} n_{J}\left\langle\chi_{I}(q), \chi_{J}(q)\right\rangle_{\mathrm{GL}\left(k, \mathbb{F}_{q}\right)}=\left\langle\sum_{I} n_{I} \chi_{I}(q), \sum_{I} n_{I} \chi_{I}(q)\right\rangle_{\mathrm{GL}\left(k, \mathbb{F}_{q}\right)}=0
\end{aligned}
$$

so $\sum n_{I} \chi_{I}=0$. Therefore (48.7) is well-defined, and (48.8) shows that it is an isometry.

It remains to be shown that irreducible characters go to irreducible characters. Indeed, if χ is an irreducible character of $W=S_{k}$, and if $\hat{\chi}$ is the
corresponding character of $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, then $\langle\hat{\chi}, \hat{\chi}\rangle=\langle\chi, \chi\rangle=1$, so either $\hat{\chi}$ or $-\hat{\chi}$ is an irreducible character, and it is sufficient to show that $\hat{\chi}$ occurs with positive multiplicity in some proper character of G. Indeed, $\chi=s_{\lambda}$ for some partition λ, and by (37.10) this means that χ appears with multiplicity one in the character induced from the trivial character of S_{λ}. Consequently, $\hat{\chi}$ occurs with multiplicity one in $\operatorname{Ind}_{P_{I}}^{G}(1)$, where I is any subset of Σ such that $W_{I} \cong S_{\lambda}$. This completes the proof.

If λ is a partition, let $\boldsymbol{s}_{\lambda}(q), \boldsymbol{h}_{k}(q)$, and $\boldsymbol{e}_{k}(q)$ denote the images of the characters $\boldsymbol{s}_{\lambda}, \boldsymbol{h}_{k}$, and \boldsymbol{e}_{k}, respectively, of S_{k} under the isomorphism of Theorem 48.1. Thus $\boldsymbol{h}_{k}(q)$ is the trivial character. The character $\boldsymbol{e}_{k}(q)$ is called the Steinberg character of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$. The characters $\boldsymbol{s}_{\lambda}(q)$ are the unipotent characters of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. This is not a proper definition of the term unipotent character because the construction as we have described it depends on the fact that the unipotent characters are precisely those that occur in $\operatorname{Ind}_{B}^{G}(1)$. This is true for $G=\mathrm{GL}(n, \mathbb{F})$ but not (for example) for $\operatorname{Sp}\left(4, \mathbb{F}_{q}\right)$. See Deligne and Lusztig [31] and Carter [22] for unipotent characters of finite groups of Lie type and Vogan [122] for an extended meditation on unipotent representations.

Proposition 48.3. As a virtual representation, the alternating character \boldsymbol{e}_{k} of S_{k} admits the following expression:

$$
e_{k}=\sum_{J \subseteq \Sigma}(-1)^{|J|} \operatorname{Ind}_{W_{J}}^{W}(1)
$$

Proof. We recall that $\boldsymbol{e}_{k}=\boldsymbol{s}_{\lambda}$, where λ is the partition $(1, \cdots, 1)$ of K. The right-hand side of (37.10) gives

$$
\boldsymbol{e}_{k}=\left|\begin{array}{ccccc}
\boldsymbol{h}_{1} & \boldsymbol{h}_{2} & \boldsymbol{h}_{3} & \cdots & \boldsymbol{h}_{k} \\
1 & \boldsymbol{h}_{1} & \boldsymbol{h}_{2} & \cdots & \boldsymbol{h}_{k-1} \\
0 & 1 & \boldsymbol{h}_{1} & \cdots & \boldsymbol{h}_{k-2} \\
\vdots & \vdots & \vdots & & \\
0 & 0 & 0 & \cdots & \boldsymbol{h}_{1}
\end{array}\right| .
$$

Expanding this gives a sum of exactly 2^{k-1} monomials in the \boldsymbol{h}_{i}, which are in one-to-one correspondence with the subsets J of Σ. Indeed, let J be given, and let $k_{1}, k_{2}, k_{3}, \cdots$ be as in Lemma 48.1. Then there is a monomial that has $|J|$ 1's taken from below the diagonal; namely, if $\alpha_{i, i+1} \in \Sigma$, then there is a 1 taken from the $i+1, i$ position, and there is an $\boldsymbol{h}_{k_{1}}$ taken from the $1, k_{1}$ position, an $\boldsymbol{h}_{k_{2}}$ taken from the $k_{1}+1, k_{1}+k_{2}$ position, and so forth. This monomial equals $(-1)^{|J|} \boldsymbol{h}_{k_{1}} \boldsymbol{h}_{k_{2}} \cdots$, which is $(-1)^{|J|}$ times the character induced from the trivial representation of $W_{J}=S_{k_{1}} \times S_{k_{2}} \times \cdots$.

Theorem 48.2. As a virtual representation, the Steinberg representation $\boldsymbol{e}_{k}(q)$ of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ admits the following expression:

$$
e_{k}(q)=\sum_{J \subseteq \Sigma}(-1)^{|J|} \operatorname{Ind}_{P_{J}}^{P}(1)
$$

Proof. This follows immediately from Proposition 48.3 on applying the mapping of Theorem 48.1.

For our next considerations, there is no reason that F needs to be finite, so we return to the case where $G=\mathrm{GL}(k, F)$ of a general field F. We will denote by U the group of upper triangular unipotent matrices in $\mathrm{GL}(k, F)$.

Proposition 48.4. Suppose that S is any subset of Φ such that if $\alpha \in S$, then $-\alpha \notin S$, and if $\alpha, \beta \in S$ and $\alpha+\beta \in \Phi$, then $\alpha+\beta \in S$. Let U_{S} be the set of $g=\left(g_{i j}\right)$ in $\mathrm{GL}(k, F)$ such that $g_{i i}=1$, and if $i \neq j$, then $g_{i j}=0$ unless $\alpha_{i j} \in S$. Then U_{S} is a group.

Proof. Let \tilde{S} be the set of (i, j) such that the root $\alpha_{i j} \in S$. Translating the hypothesis on S into a statement about \tilde{S}, if $(i, j) \in \tilde{S}$ we have $i<j$, and

$$
\begin{equation*}
\text { if both }(i, j) \text { and }(j, k) \text { are in } \tilde{S} \text {, then } i \neq k \text { and }(i, k) \in \tilde{S} . \tag{48.9}
\end{equation*}
$$

From this it is easy to see that if g and h are in U_{S}, then so are g^{-1} and $g h$.

As a particular case, if $w \in W$, then $S=\Phi^{+} \cap w \Phi^{-}$satisfies the hypothesis of Proposition 48.4, and we denote

$$
U_{\Phi^{+} \cap w \Phi^{-}}=U_{w}^{-}
$$

Similarly, $S=\Phi^{+} \cap w \Phi^{+}$meets this hypothesis, and we denote

$$
U_{\Phi^{+} \cap w \Phi^{+}}=U_{w}^{+}
$$

Finally, let U be the group of all upper triangular unipotent matrices in G, which was denoted N in Chapter 30.

Let $l(w)$ denote the length of the Weyl group element, which (as in Chapter 21) is the smallest k such that w can be written as a product of k simple reflections.

Proposition 48.5. Let $F=\mathbb{F}_{q}$ be finite, and let $w \in W$. We have

$$
\left|U_{w}^{-}\right|=q^{l(w)}
$$

Proof. By Propositions 21.2 and 21.5 , the cardinality of $S=\Phi^{+} \cap w^{-1} \Phi^{-}$is $l(w)$, so this follows from the definition of U_{S}.

Proposition 48.6. Let $w \in W$. The multiplication $\operatorname{map} U_{w}^{+} \times U_{w}^{-} \longrightarrow U$ is bijective.

Proof. We will prove this if F is finite, the only case we need. In this case $U_{w}^{+} \cap U_{w}^{-}=\{1\}$ by definition since the sets $\Phi^{+} \cap w \Phi^{-}$and $\Phi^{+} \cap w \Phi^{+}$are disjoint. Thus, if $u_{1}^{+} u_{1}^{-}=u_{2}^{+} u_{2}^{-}$with $u_{i}^{ \pm} \in U_{w}^{ \pm}$, then $\left(u_{2}^{+}\right)^{-1} u_{1}^{+}=u_{2}^{-}\left(u_{1}^{-}\right)^{-1} \in$ $U_{w}^{+} \cap U_{w}^{-}$so $u_{1}^{ \pm}=u_{2}^{ \pm}$. Therefore, the multiplication map $U_{w}^{+} \times U_{w}^{-} \longrightarrow U$ is injective. To see that it is surjective, note that

$$
\left|U_{w}^{-}\right|=q^{\left|\Phi^{+} \cap w \Phi^{-}\right|}, \quad\left|U_{w}^{+}\right|=q^{\left|\Phi^{+} \cap w \Phi^{+}\right|}
$$

so the order of $U_{w}^{+} \times U_{w}^{-}$is $q^{\left|\Phi^{+}\right|}=|U|$, and the surjectivity is now clear.
We are interested in the size of the double coset $B w B$. In geometric terms, G / B can be identified with the space of F-rational points of a projective algebraic variety, and the closure of $B w B / B$ is an algebraic subvariety in which $B w B / B$ is an open subset; the dimension of this "Schubert cell" turns out to be $l(w)$.

If $F=\mathbb{F}_{q}$, an equally good measure of the size of $B w B$ is its cardinality. It can of course be decomposed into right cosets of B, and its cardinality will be the order of B times the cardinality of the quotient $B w B / B$.

Proposition 48.7. Let $F=\mathbb{F}_{q}$ be finite, and let $w \in W$. The order of $B w B / B$ is $q^{l(w)}$.

Proof. We will show that $u^{-} \longmapsto u^{-} w B$ is a bijection $U_{w}^{-} \longrightarrow B w B / B$. The result then follows from Proposition 48.5.

Note that every right coset in $B w B / B$ is of the form $b w B$ for some $b \in B$. Using Proposition 48.6, we may write $b \in B$ uniquely in the form $u^{-} u^{+} t$ with $u^{ \pm} \in U_{w}^{ \pm}$and $t \in T$. Now $w^{-1} u^{+} t w=w^{-1} u^{+} w \cdot w^{-1} t w \in B$ because $w^{-1} u^{+} w \in U$ and $w^{-1} t w \in T$. Therefore $b w B=u^{-} w B$.

It is now clear that the map $u^{-} \longmapsto u^{-} w B$ is surjective. We must show that it is injective; in other words, if $u_{1}^{-} w B=u_{2}^{-} w B$ for $u_{i}^{-} \in U_{w}^{-}$, then $u_{1}^{-}=u_{2}^{-}$. Indeed, if $u^{-}=\left(u_{1}^{-}\right)^{-1} u_{2}^{-}$then $w^{-1} u^{-} w \in B$ from the equality of the double cosets. On the other hand, $w^{-1} u^{-} w$ is lower triangular by the definition of U_{w}^{-}. It is both upper triangular and lower triangular, and unipotent, so $u^{-}=1$.

With k and q fixed, let \mathcal{H} be the convolution ring of B-bi-invariant functions on G. The dimension of \mathcal{H} equals the cardinality of $B \backslash G / B$, which is $|W|=k$! by the Bruhat decomposition. A basis of \mathcal{H} consists of the functions $\phi_{w}(w \in W)$, where ϕ_{w} is the characteristic function of the double coset $\mathcal{C}(w)=B w B$. We normalize the convolution as follows:

$$
\left(f_{1} * f_{2}\right)(g)=\frac{1}{|B|} \sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1} g\right)=\frac{1}{|B|} \sum_{x \in G} f_{1}(g x) f_{2}\left(x^{-1}\right)
$$

With this normalization, the characteristic function f_{1} of B serves as a unit in the ring.

The ring \mathcal{H} is a normed ring with the L^{1} norm. That is, we have

$$
\left|f_{1} * f_{2}\right| \leqslant\left|f_{1}\right| \cdot\left|f_{2}\right|,
$$

where

$$
|f|=\frac{1}{|B|} \sum_{x \in G}|f(x)| .
$$

There is also an augmentation map, that is, a \mathbb{C}-algebra homomorphism $\epsilon: \mathcal{H} \longrightarrow \mathbb{C}$ given by

$$
\epsilon(f)=\frac{1}{|B|} \sum_{x \in G} f(x) .
$$

By Proposition 48.7, we have

$$
\begin{equation*}
\epsilon\left(\phi_{w}\right)=q^{l(w)} . \tag{48.10}
\end{equation*}
$$

Proposition 48.8. Let $w, w^{\prime} \in W$ such that $l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)$. Then

$$
\phi_{w w^{\prime}}=\phi_{w} \phi_{w^{\prime}} .
$$

Proof. By Proposition 30.1, we have $\mathcal{C}\left(w w^{\prime}\right)=\mathcal{C}(w) \mathcal{C}\left(w^{\prime}\right)$. Therefore $\phi_{w} * \phi_{w^{\prime}}$ is supported in $\mathcal{C}\left(w w^{\prime}\right)$ and is hence a constant multiple of $\phi_{w w^{\prime}}$. Writing $\phi_{w} * \phi_{w^{\prime}}=c \phi_{w w^{\prime}}$, applying the augmentation ϵ, and using (48.10), we see that $c=1$.

Proposition 48.9. Let $s \in W$ be a simple reflection. Then

$$
\phi_{s} * \phi_{s}=q \phi_{1}+(q-1) \phi_{s} .
$$

Proof. By (30.2), we have $\mathcal{C}(s) \mathcal{C}(s) \subseteq \mathcal{C}(1) \cup \mathcal{C}(s)$. Therefore, there exist constants λ and μ such that $\phi_{s} * \phi_{s}=\lambda \phi_{1}+\mu \phi_{s}$. Evaluating both sides at the identity gives $\lambda=q$. Now applying the augmentation and using the special cases $\epsilon\left(\phi_{s}\right)=q, \epsilon\left(f_{1}\right)=1$ of (48.10), we have $q^{2}=\lambda \cdot 1+\mu \cdot q=q+\mu q$, so $\mu=q-1$.

Let q be a nonzero element of a field containing \mathbb{C}, and let $R=\mathbb{C}\left[q, q^{-1}\right]$. Thus q might be a complex number, in which case the ring $R=\mathbb{C}$ or it might be transcendental over \mathbb{C}, in which case the ring R will be the ring of Laurent polynomials over \mathbb{C}.

We will define a $\operatorname{ring} \mathcal{H}_{k}(q)$ as an algebra over R. Specifically, $\mathcal{H}_{k}(q)$ is the free $\mathbb{C}[q]$-algebra on generators $f_{s_{\alpha_{i}}}(i=1, \cdots, k-1)$ subject to the relations

$$
\begin{gather*}
f_{s_{\alpha_{i}}}^{2}=q+(q-1) f_{s_{\alpha_{i}}}, \tag{48.11}\\
f_{s_{\alpha_{i}}} * f_{s_{s_{i+1}}} * f_{s_{\alpha_{i}}}=f_{s_{\alpha_{i+1}}} * f_{s_{\alpha_{i}}} * f_{s_{\alpha_{i+1}}}, \tag{48.12}\\
f_{s_{\alpha_{i}}} * f_{s_{\alpha_{j}}}=f_{s_{\alpha_{i}}} * f_{s_{\alpha_{j}}} \quad \text { if }|i-j|>1 . \tag{48.13}
\end{gather*}
$$

We note that $f_{s_{\alpha}}$ is invertible, with inverse $q^{-1} f_{\alpha_{i}}+q^{-1}-1$, by (48.11).

Although $\mathcal{H}_{k}(q)$ is thus defined as an abstract ring, its structure reflects that of the Weyl group W of $\mathrm{GL}(k)$, which, as we have seen, is a Coxeter group. We recall what this means. Let $s_{\alpha_{1}}, \cdots, s_{\alpha_{k-1}}$ be the simple reflections of W. By Theorem 28.1, the group W has a presentation with generators $s_{\alpha_{i}}$ and relations

$$
\begin{gathered}
s_{\alpha_{i}}^{2}=1 \\
s_{\alpha_{i}} s_{\alpha_{i+1}} s_{\alpha_{i}}=s_{\alpha_{i+1}} s_{\alpha_{i}} s_{\alpha_{i+1}}, \quad 1 \leqslant i \leqslant k-2 \\
s_{\alpha_{i}} s_{\alpha_{j}}=s_{\alpha_{j}} s_{\alpha_{i}} \text { if }|i-j|>1
\end{gathered}
$$

Of course, since $s_{\alpha_{i}}^{2}=1$, the relation $s_{\alpha_{i}} s_{\alpha_{i+1}} s_{\alpha_{i}}=s_{\alpha_{i+1}} s_{\alpha_{i}} s_{\alpha_{i+1}}$ is just another way of writing $\left(s_{\alpha_{i}} s_{a_{i+1}}\right)^{3}=1$.

Proposition 48.10. If $q=1$, the Hecke ring $\mathcal{H}_{k}(1)$ is isomorphic to the group ring of S_{k}.

Proof. This is clear from Theorem 28.1 since if $q=1$ the defining relations of the ring $\mathcal{H}_{k}(1)$ coincide with the Coxeter relations presenting S_{k}.

If $w \in W$ is arbitrary, we want to associate an element f_{w} of $\mathcal{H}_{k}(q)$ extending the definition of the generators. The next result will make this possible. (Of course, f_{w} is already defined if w is a simple reflection.)

Proposition 48.11. Suppose that $w \in W$ with $l(w)=r$, and suppose that $w=s_{1} \cdots s_{r}=s_{1}^{\prime} \cdots s_{r}^{\prime}$ are distinct decompositions of minimal length into simple reflections. Then

$$
\begin{equation*}
f_{s_{1}} * \cdots * f_{s_{r}}=f_{s_{1}^{\prime}} * \cdots * f_{s_{r}^{\prime}} \tag{48.14}
\end{equation*}
$$

Proof. Let B be the braid group generated by $u_{\alpha_{i}}$ parametrized by the simple roots α_{i}, with $n\left(u_{\alpha_{i}}, u_{\alpha_{j}}\right)$ equal to the order (2 or 3) of $s_{\alpha_{i}} s_{\alpha_{j}}$. Let $s_{i}=s_{\beta_{i}}$ and $s_{i}^{\prime}=s_{\gamma_{i}}$ with $\beta_{i}, \gamma_{i} \in \Sigma$, and let $u_{i}=u_{\alpha_{i}}, u_{i}^{\prime}=u_{\beta_{i}}$ be the corresponding elements of B. By Proposition 28.1, we have

$$
\begin{equation*}
u_{1} \cdots u_{r}=u_{1}^{\prime} \cdots u_{r}^{\prime} \tag{48.15}
\end{equation*}
$$

Since the $f_{\alpha_{i}}$ satisfy the braid relations, there is a homomorphism of B into the group of invertible elements of $\mathcal{H}_{k}(q)$ such that $u_{\alpha_{i}} \longmapsto f_{\alpha_{i}}$. Applying this homomorphism to (48.15), we obtain (48.14).

If $w \in W$, let $w=s_{1} \cdots s_{r}$ be a decomposition of w into $r=l(w)$ simple reflections, and define

$$
f_{w}=f_{s_{1}} * \cdots * f_{s_{r}}
$$

According to Proposition 48.11, this f_{w} is well-defined.
Theorem 48.3. (Iwahori) The f_{w} form a basis of $\mathcal{H}_{k}(q)$ as a free R-module. Thus, the rank of $\mathcal{H}_{k}(q)$ is $|W|$.

Proof. First, assume that q is transcendental, so that R is the ring of Laurent polynomials in q. We will deduce the corresponding statement when $q \in \mathbb{C}$ at the end.

Let us check that

$$
\begin{equation*}
\sum_{w \in W} R f_{w}=\mathcal{H}_{k}(q) \tag{48.16}
\end{equation*}
$$

It is sufficient to show that this R-submodule is closed under right multiplication by generators f_{s} of W with s a simple reflection. If $l(w s)=l(w)+1$, then $f_{w} f_{s}=f_{w s}$. On the other hand, if $l(w s)=l(w)-1$, then writing $w^{\prime}=w s$ we have $f_{w} f_{s}=f_{w^{\prime} s} f_{s}=f_{w^{\prime}} f_{s}^{2}$, which by (48.11) is a linear combination of $f_{w^{\prime}}$ and $f_{w^{\prime}} f_{s}=f_{w}$.

It remains to be shown that the sum (48.16) is direct. If not, there will be some Laurent polynomials $c_{w}(q)$, not all zero, such that

$$
\sum_{w} c_{w}(q) f_{w}=0
$$

There exists a rational prime p such that $c_{w}(p)$ are not all zero. Let \mathcal{H} be the convolution ring of B-bi-invariant functions on $\mathrm{GL}\left(k, \mathbb{F}_{p}\right)$. It follows from Propositions 48.8 and 48.9 that (48.11), (48.12), and (48.13) are all satisfied by the standard generators of \mathcal{H}, so we have a homomorphism $\mathcal{H}_{k}(q) \longrightarrow$ \mathcal{H} mapping each f_{w} to the corresponding generator ϕ_{w} of \mathcal{H} and mapping $q \longmapsto p$. The images of the f_{w} are linearly independent in \mathcal{H}, yet since the $c_{w}(p)$ are not all zero, we obtain a relation of linear independence. This is a contradiction.

The result is proved if q is transcendental. If $0 \neq q_{0} \in \mathbb{C}$, then there is a homomorphism $R \longrightarrow \mathbb{C}$, and a compatible homomorphism $\mathcal{H}_{k}(q) \longrightarrow$ $\mathcal{H}_{k}\left(q_{0}\right)$, in which $q \longmapsto q_{0}$. What we must show is that the R-basis elements f_{w} remain linearly independent when projected to $\mathcal{H}_{k}\left(q_{0}\right)$. To prove this, we note that in $\mathcal{H}_{k}(q)$ we have

$$
f_{w} f_{w^{\prime}}=\sum_{w^{\prime \prime} \in W} a_{w, w^{\prime}, w^{\prime \prime}}\left(q, q^{-1}\right) f_{w^{\prime \prime}}
$$

where $a_{w, w^{\prime}, w^{\prime \prime}}$ is a polynomial in q and q^{-1}. We may construct ring $\tilde{\mathcal{H}}_{k}\left(q_{0}\right)$ over \mathbb{C} with basis elements \tilde{f}_{w} indexed by W and specialized ring structure constants $a_{w, w^{\prime}, w^{\prime \prime}}\left(q_{0}, q_{0}{ }^{-1}\right)$. The associative law in $\mathcal{H}_{k}(q)$ boils down to a polynomial identity that remains true in this new ring, so this ring exists. Clearly, the identities (48.11), (48.12), and (48.13) are true in the new ring, so there exists a homomorphism $\mathcal{H}_{k}\left(q_{0}\right) \longrightarrow \tilde{\mathcal{H}}_{k}\left(q_{0}\right)$ mapping the f_{w} to the \tilde{f}_{w}. Since the \tilde{f}_{w} are linearly independent, so are the f_{w} in $\mathcal{H}_{k}\left(q_{0}\right)$.

Let us return to the case where q is a prime power.
Theorem 48.4. Let q be a prime power. Then the Hecke algebra $\mathcal{H}_{k}(q)$ is isomorphic to the convolution ring of B-bi-invariant functions on $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$,
where B is the Borel subgroup of upper triangular matrices in $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$. In this isomorphism, the standard basis element $f_{w}(w \in W)$ corresponds to the characteristic function of the double coset $B w B$.

Proof. It follows from Propositions 48.8 and 48.9 that (48.11), (48.12), and (48.13) are all satisfied by the elements ϕ_{w} in the ring \mathcal{H} of B-bi-invariant functions on $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$, so there exists a homomorphism $\mathcal{H}_{k}(q) \longrightarrow \mathcal{H}$ such that $f_{w} \longmapsto \phi_{w}$. Since the $\left\{f_{w}\right\}$ are a basis of $\mathcal{H}_{k}(q)$ and the ϕ_{w} are a basis of \mathcal{H}, this ring homomorphism is an isomorphism.

EXERCISES

Exercise 48.1. Show that any subgroup of $\operatorname{GL}(n, F)$ containing B is of the form (48.2).

Exercise 48.2. For $G=\mathrm{GL}(3)$, describe U_{w}^{+}and U_{w}^{-}explicitly for each of the six Weyl group elements.

Exercise 48.3. Let G be a finite group and H a subgroup. Let \mathcal{H} be the "Hecke algebra" of H bi-invariant functions, with multiplication being the convolution product normalized by

$$
\left(f_{1} * f_{2}\right)(g)=\frac{1}{|H|} \sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1} g\right) .
$$

If (π, V) is an irreducible representation of G, let V^{H} be the subspace of H-fixed vectors. Then V^{H} becomes a module over \mathcal{H} with the action

$$
\begin{equation*}
f \cdot v=|H|^{-1} \sum_{g \in G} f(g) \pi(g) v \tag{48.17}
\end{equation*}
$$

$f \cdot v=|H|^{-1} \sum_{g \in G} f(g) \pi(g) v$. Show that V^{H}, if nonzero, is irreducible as an \mathcal{H} module. (Hint: If W is a nonzero invariant subspace of V^{H}, and $v \in V^{H}$, then since V is irreducible, we have $f_{1} \cdot w=v$ for some function f_{1} on G, where $f_{1} \cdot w$ is defined as in (48.17) even though $f_{1} \notin \mathcal{H}$. Show that $f \cdot w=v$, where $f=\varepsilon * f_{1} * \varepsilon$ and ε is the characteristic function of H. Observe that $f \in \mathcal{H}$ and conclude that $V^{H}=W$.)

Exercise 48.4. In the setting of Exercise 48.3, show that $(\pi, V) \longmapsto V^{H}$ is a bijection between the isomorphism classes of irreducible representations of G with $V^{H} \neq 0$ and isomorphism classes of irreducible \mathcal{H}-modules.

Exercise 48.5. Show that if (π, V) is an irreducible representation of $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ with character $\boldsymbol{s}_{\lambda}(q)$, then the degree of the corresponding representation of $\mathcal{H}_{k}(q)$ is the degree of the irreducible character \boldsymbol{s}_{λ} of S_{k}. (Thus, the degree d_{λ} of \boldsymbol{s}_{λ} is the dimension of V^{B}.) Show that d_{λ} is the multiplicity of $\boldsymbol{s}_{\lambda}(q)$ in $\operatorname{Ind}_{B}^{G}(1)$.

Exercise 48.6. Assume that q is a prime. Prove that

$$
\mathcal{H}_{k}(q) \cong \bigoplus_{\lambda \text { a partition of } \mathbf{k}} \operatorname{Mat}_{d_{\lambda}}(\mathbb{C}) \cong \mathbb{C}\left[S_{k}\right]
$$

Exercise 48.7. Prove that the degree of the irreducible character $\boldsymbol{s}_{\lambda}(q)$ of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is a polynomial in q whose value when $q=1$ is the degree d_{λ} of the irreducible character \boldsymbol{s}_{λ} of S_{k}.

Exercise 48.8. An element of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ is called semisimple if it is diagonalizable over the algebraic closure of \mathbb{F}_{q}. A semisimple element is called regular if its eigenvalues are distinct. If λ is a partition of k, let c_{λ} be a regular semisimple element of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ such that

$$
c_{\lambda}=\left(\begin{array}{ccc}
c_{1} & & \\
& \ddots & \\
& & c_{r}
\end{array}\right), \quad c_{i} \in \operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)
$$

and such that the eigenvalues of c_{i} generate $\mathbb{F}_{q^{\lambda}}$. Of course, c_{λ} isn't completely determined by this description. Such a c_{λ} will exist (for k fixed) if q is sufficiently large. Show that, if $k=2$, then the unipotent characters of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ have the following values:

	$c_{(11)}$	$c_{(2)}$
$\boldsymbol{s}_{(11)}$	1	1
$\boldsymbol{s}_{(2)}$	1	-1

Note that this is the character table of S_{2}. More generally, prove that in the notation of Chapter 39 , the value of the character $\boldsymbol{s}_{\mu}(q)$ on the conjugacy class c_{λ} of $\mathrm{GL}(k, \mathbb{C})$ equals the value of the character \boldsymbol{s}_{μ} on the conjugacy class \mathcal{C}_{λ} of S_{k}.

The Philosophy of Cusp Forms

There are four theories that deserve to be studied in parallel. These are:

- the representation theory of symmetric groups S_{k};
- the representation theory of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$;
- the representation theory of $\mathrm{GL}(k, F)$ where F is a local field;
- the theory of automorphic forms on GL (k).

In this description, a local field is \mathbb{R}, \mathbb{C}, or a field such as the p-adic field \mathbb{Q}_{p} that is complete with respect to a non-Archimedean valuation. Roughly speaking, each successive theory can be thought of as an elaboration of its predecessor. Both similarities and differences are important. We list some parallels between the four theories in Table 49.1.

The plan of this chapter is to discuss all four theories in general terms, giving proofs only for the second stage in this tower of theories, the representation theory of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$. (The first stage is already adequately covered.) Although the third and fourth stages are outside the scope of this book, our goal is to prepare the reader for their study by exposing the parallels with the finite field case.

There is one important way in which these four theories are similar: there are certain representations that are the "atoms" from which all other representations are built and a "constructive process" from which the other representations are built. Depending on the context, the "atomic" representations are called cuspidal or discrete series representations. The constructive process is parabolic induction or Eisenstein series. The constructive process usually (but not always) produces an irreducible representation.

Harish-Chandra [52] used the term "philosophy of cusp forms" to describe this parallel, which will be the subject of this chapter. One may substitute any reductive group for $\mathrm{GL}(k)$ and most of what we have to say will be applicable. But $\mathrm{GL}(k)$ is enough to fix the ideas.

In order to explain the philosophy of cusp forms, we will briefly summarize the theory of Eisenstein series before discussing (in a more serious way) a part of the representation theory of $\mathrm{GL}(k)$ over a finite field. The reader
only interested in the latter may skip the paragraphs on automorphic forms. When we discuss automorphic forms, we will prove nothing and state exactly what seems relevant in order to see the parallel. For $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, we prove more, but mainly what we think is essential to see the parallel. Our treatment is greatly influenced by Howe [61] and Zelevinsky [133]. To go deeper into the representation theory of the finite groups of Lie type, Carter [22] is an exceedingly useful reference.

For the symmetric groups, there is only one "atom" - the trivial representation of S_{1}. The constructive process is ordinary induction from $S_{k} \times S_{l}$ to S_{k+l}, which was the multiplication \circ in the ring \mathcal{R} introduced in Chapter 36. The element that we have identified as atomic was called \boldsymbol{h}_{1} there. It does not generate the ring \mathcal{R}. However, \boldsymbol{h}_{1}^{k} is the regular representation (or character) of S_{k}, and it contains every irreducible representation. To construct every irreducible representation of S_{k} from this single irreducible representation of S_{1}, the constructive process embodied in the multiplicative structure of the ring \mathcal{R} must be supplemented by a further procedure. This is the extraction of an irreducible from a bigger representation \boldsymbol{h}_{1}^{k} that includes it. This extraction amounts to finding a description for the "Hecke algebra" that is the endomorphism ring of \boldsymbol{h}_{1}^{k}. This "Hecke algebra" is isomorphic to the group ring of S_{k}.

For the groups $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, let us construct a graded ring $\mathcal{R}(q)$ analogous to the ring \mathcal{R} in Chapter 36. The homogeneous part $\mathcal{R}_{k}(q)$ will be the free Abelian group on the set of isomorphism classes of irreducible representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, which may be identified with the character ring of this group, except that the multiplicative structure of the character ring is not used; see Remark 36.1. Instead, there is a multiplication $\mathcal{R}_{k}(q) \times \mathcal{R}_{l}(q) \longrightarrow \mathcal{R}_{k+l}(q)$, called parabolic induction. Consider the maximal parabolic subgroup $P=M U$ of $\operatorname{GL}\left(k+l, \mathbb{F}_{q}\right)$, where

$$
M \cong \mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(l, \mathbb{F}_{q}\right)=\left\{\left.\left(\begin{array}{ll}
g_{1} & \\
& g_{2}
\end{array}\right) \right\rvert\, g_{1} \in \mathrm{GL}\left(k, \mathbb{F}_{q}\right), g_{2} \in \mathrm{GL}\left(l, \mathbb{F}_{q}\right)\right\}
$$

and

$$
U=\left\{\left.\left(\begin{array}{rr}
I_{k} & X \\
& I_{l}
\end{array}\right) \right\rvert\, X \in \operatorname{Mat}_{k \times l}\left(\mathbb{F}_{q}\right)\right\} .
$$

The group P is a semidirect product, since U is normal, and the composition

$$
M \longrightarrow P \longrightarrow P / U
$$

is an isomorphism. So given a representation $\left(\pi_{1}, V_{1}\right)$ of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ and a representation $\left(\pi_{2}, V_{2}\right)$ of $\mathrm{GL}\left(l, \mathbb{F}_{q}\right)$, one may regard the representation $\pi_{1} \otimes \pi_{2}$ of M as a representation of $P / U \cong M$ and pull it back to a representation of P in which U acts trivially. Inducing from P to $\mathrm{GL}\left(k+l, \mathbb{F}_{q}\right)$ gives a representation that we will denote $\pi_{1} \circ \pi_{2}$. By the definition of the induced representation, it acts by right translation on the space $V_{1} \circ V_{2}$ of all functions $f: G \longrightarrow V_{1} \otimes V_{2}$ such that

$$
f\left(\left(\begin{array}{cc}
g_{1} & * \\
& g_{2}
\end{array}\right) h\right)=\left(\pi_{1}\left(g_{1}\right) \otimes \pi_{2}\left(g_{2}\right)\right) f(g)
$$

With this multiplication, $\mathcal{R}(q)=\bigoplus \mathcal{R}_{k}(q)$ is a graded ring (Exercise 49.1). Inspired by ideas of Philip Hall, Green [49] defined the ring $\mathcal{R}(q)$ and used it systematically by in his description of the irreducible representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. Like \mathcal{R}, it can be given the structure of a Hopf algebra. See Zelevinsky [133] and Exercise 49.5.

If, imitating the construction with the symmetric group, we start with the trivial representation $\boldsymbol{h}_{1}(q)$ of $\mathrm{GL}\left(1, \mathbb{F}_{q}\right)$ and consider all irreducible representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ that occur in $\boldsymbol{h}_{1}(q)^{k}$, we get exactly the unipotent representations (that is, the $s_{k}(q)$ of Chapter 48), and this is the content of Theorem 48.1. To get all representations, we need more than this. There is a unique smallest set of irreducible representations of the $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ - the cuspidal ones - such that we can find every irreducible representation as a constituent of some representation that is a o product of cuspidal ones. We will give more precise statements later in this chapter.

At the third stage in the tower of theories, the most important representations are infinite-dimensional, and analysis is important as well as algebra in their understanding. The representation theory of algebraic groups over a local field F is divided into the case where F is Archimedean - that is, $F=\mathbb{R}$ or \mathbb{C} - and where F is non-Archimedean.

If F is archimedean, then an algebraic group over F is a Lie group, more precisely a complex analytic group when $F=\mathbb{C}$. The most important feature in the representation theory of reductive Lie groups is the Langlands classification expressing every irreducible representation as a quotient of one that is parabolically induced from discrete series representations. Usually the parabolically induced representation is itself irreducible and there is no need to pass to a quotient. See Knapp [81], Theorem 14.92 on p. 616 for the Langlands classification. Knapp [81] and Wallach [123] are comprehensive accounts of the representation theory of noncompact reductive Lie groups.

For reductive p-adic groups - that is, reductive algebraic groups over a nonArchimedean local field - the situation is similar and in some ways simpler. The most important discrete series representations are the supercuspidals. There is again a Langlands classification expressing every irreducible representation as a quotient of one parabolically induced from discrete series. Surveys of the representation theory of p-adic groups can be found in Cartier [23] and Moeglin [99]. Two useful longer articles with foundational material are Casselman [24] and Bernstein and Zelevinsky [9]. The most important foundational paper is Bernstein and Zelevinsky [8]. Chapter 4 of Bump [18] emphasizes $\mathrm{GL}(2)$ but is still useful.

The fourth of the four theories in the tower is the theory of automorphic forms. In developing this theory, Selberg and Langlands realized that certain automorphic forms were basic, and these are called cusp forms. The definitive reference for the Selberg-Langlands theory is Moeglin and Waldspurger [100]. Let us consider the basic setup.

Table 49.1. The Philosophy of Cusp Forms.

Class of groups	Atoms	Synthetic process	Analytic process	Unexpected symmetry
S_{k}	\boldsymbol{h}_{1}	induction	restriction	(trivial)
$\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$	cuspidal representations	parabolic induction	nipotent invariants	$\mathcal{R}(q)$ is commutative
$\mathrm{GL}(k, F)$ F local	discrete series	parabolic induction	Jacquet functors $r_{U, 1}$ in $[8]$	Intertwining integrals such as (49.2)
GL (k, A) $A=$ adele ring of global F	automorphic cuspidal representations	Eisenstein series	constant terms	functional equations

Let $G=\mathrm{GL}(k, \mathbb{R})$. Let Γ be a discrete subgroup of G such that $\Gamma \backslash G$ has finite volume such as $\mathrm{GL}(k, \mathbb{Z})$. An automorphic form on G with respect to Γ is a smooth complex-valued function f on G that is K-finite, \mathcal{Z}-finite, of moderate growth and automorphic, and has unitary central character. We define these terms now.

The group G acts on functions by right translation: $\rho(g) f(h)=f(h g)$. The group K is the maximal compact subgroup $O(n)$, and f is K-finite if the space of functions $\rho(\kappa) f$ with $\kappa \in K$ spans a finite-dimensional vector space.

The Lie algebra \mathfrak{g} of G also acts by right translation: if $X \in \mathfrak{g}$, then

$$
(X f)(g)=\left.\frac{d}{d t} f\left(g e^{t X}\right)\right|_{t=0}
$$

As a consequence, the universal enveloping algebra $U(\mathfrak{g})$ acts on smooth functions. Let \mathcal{Z} be its center. This is a ring of differential operators on G that are invariant under both right and left translation (Exercise 10.2). For example, it contains the Casimir element constructed in Theorem 10.2 (from the trace bilinear form B on \mathfrak{g}); in this incarnation, the Casimir element is the Laplace-Beltrami operator. The function f is called \mathcal{Z}-finite if the image of f under \mathcal{Z} is a finite-dimensional vector space.

Embed G into $2 k^{2}$-dimensional Euclidean space $\operatorname{Mat}_{k}(\mathbb{R}) \oplus \operatorname{Mat}_{k}(\mathbb{R})=$ $\mathbb{R}^{2 k^{2}}$ by

$$
g \longmapsto\left(g, g^{-1}\right) .
$$

Let $\left\|\|\right.$ denote the Euclidean norm in $\mathbb{R}^{2 k^{2}}$ restricted to G. The function f is said to be of moderate growth if $f(g)<C\|g\|^{N}$ for suitable C and N.

The function f is called automorphic with respect to Γ if $f(\gamma g)=f(g)$ for all $\gamma \in \Gamma$.

We will consider functions f such that for some character ω of \mathbb{R}_{+}^{\times}we have

$$
f\left(\left(\begin{array}{lll}
z & & \\
& \ddots & \\
& & z
\end{array}\right) g\right)=\omega(z) f(g)
$$

for all $z \in \mathbb{R}_{+}^{\times}$. The character ω is the central character. It is fixed throughout the discussion and is assumed unitary; that is, $|\omega(z)|=1$.

Let V be a vector space on which K and \mathfrak{g} both act. The actions are assumed to be compatible in the sense that both induce the same representation of $\mathrm{Lie}(K)$. We ask that V decomposes into a direct sum of finite-dimensional irreducible subspaces under K. Then V is called a (\mathfrak{g}, K)-module. If every irreducible representation of K appears with only finite multiplicity, then we say that V is admissible. For example, let (π, H) be an irreducible unitary representation of G on a Hilbert space H, and let V be the space of K-finite vectors in H. It is a dense subspace and is closed under actions of both \mathfrak{g} and K, so it is a (\mathfrak{g}, K)-module. The (\mathfrak{g}, K)-modules form a category that can be studied by purely algebraic methods, which captures the essence of the representations.

The space $\mathcal{A}(\Gamma \backslash G)$ of automorphic forms is not closed under ρ because K-finiteness is not preserved by $\rho(g)$ unless $g \in K$. Still, both K and \mathfrak{g} preserve the space $\mathcal{A}(\Gamma \backslash G)$. A subspace that is invariant under these actions and irreducible in the obvious sense is called an automorphic representation. It is a (\mathfrak{g}, K)-module.

Given an automorphic form f on $G=\mathrm{GL}(k, \mathbb{R})$ with respect to $\Gamma=$ $\mathrm{GL}(k, \mathbb{Z})$, if $k=r+t$ we can consider the constant term along the parabolic subgroup P with Levi factor $\mathrm{GL}(r) \times \mathrm{GL}(t)$. This is the function

$$
\int_{\operatorname{Mat}_{r \times t}(\mathbb{Z}) \backslash \operatorname{Mat}_{r \times t}(\mathbb{R})} f\left(\left(\begin{array}{cc}
I & X \\
& I
\end{array}\right)\left(\begin{array}{ll}
g_{1} & \\
& g_{2}
\end{array}\right)\right) d X
$$

for $\left(g_{1}, g_{2}\right) \in \mathrm{GL}(r, \mathbb{R}) \times \mathrm{GL}(t, \mathbb{R})$. If the constant term of f along every maximal parabolic subgroup vanishes then f is called a cusp form. An automorphic representation is called automorphic cuspidal if its elements are cusp forms.

Let $L^{2}(\Gamma \backslash G, \omega)$ be the space of measurable functions on g that are automorphic and have central character ω and such that

$$
\int_{\Gamma Z \backslash G}|f(g)|^{2} d g<\infty
$$

The integral is well-defined modulo Z because ω is assumed to be unitary. Cusp forms are always square-integrable - an automorphic cuspidal representation embeds as a direct summand in $L^{2}(\Gamma \backslash G, \omega)$. In particular, it is unitary.

There is a construction that is dual to the constant term in the SelbergLanglands theory, namely the construction of Eisenstein series. Let (π_{1}, V_{1}) and $\left(\pi_{2}, V_{2}\right)$ be automorphic cuspidal representations of $\mathrm{GL}(r, \mathbb{R})$ and $\mathrm{GL}(t, \mathbb{R})$, where $r+t=k$. Let $P=M U$ be the maximal parabolic subgroup with Levi factor $M=\mathrm{GL}(r, \mathbb{R}) \times \mathrm{GL}(t, \mathbb{R})$. The modular quasicharacter $\delta_{P}: P \longrightarrow \mathbb{R}_{+}^{\times}$ is

$$
\delta_{P}\left(\begin{array}{cc}
g_{1} & * \\
& g_{2}
\end{array}\right)=\frac{\left|\operatorname{det}\left(g_{1}\right)\right|^{t}}{\left|\operatorname{det}\left(g_{2}\right)\right|^{r}}
$$

by Exercise 1.2. The space of the (\mathfrak{g}, K)-module of the induced representation $\operatorname{Ind}\left(\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}\right)$ of G consists of K-finite functions $f_{s}: G \longrightarrow \mathbb{C}$ such that
any element f_{s}^{\prime} of the (\mathfrak{g}, K)-submodule of $C^{\infty}(G)$ generated by f_{s} satisfies the condition that

$$
f_{s}^{\prime}\left(\begin{array}{rr}
g_{1} & X \\
& g_{2}
\end{array}\right)
$$

is independent of X and equals $\delta_{P}^{s+1 / 2}$ times a finite linear combination of functions of the form $f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right)$, where $f_{i} \in V_{i}$. Due to the extra factor $\delta_{P}^{1 / 2}$, this induction is called normalized induction, and it has the property that if s is purely imaginary (so that $\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}$ is unitary), then the induced representation is unitary.

Then, for re(s) sufficiently large and for $f_{s} \in \operatorname{Ind}\left(\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}\right)$, the series

$$
E\left(g, f_{s}, s\right)=\sum_{P(\mathbb{Z}) \backslash \operatorname{GL}(k, \mathbb{Z})} f_{s}(\gamma g)
$$

is absolutely convergent. Here $P(\mathbb{Z})$ is the group of integer matrices in P with determinant ± 1.

Unlike cusp forms, the Eisenstein series are not square-integrable. Nevertheless, they are needed for the spectral decomposition of $\mathrm{GL}(k, \mathbb{Z}) \backslash \mathrm{GL}(k, \mathbb{R})$. This is analogous to the fact that the characters $x \longmapsto e^{2 \pi i \alpha x}$ of \mathbb{R} are not square-integrable, but as eigenfunctions of the Laplacian, a self-adjoint operator, they are needed for its spectral theory and comprise its continuous spectrum. The spectral problem for $\mathrm{GL}(k, \mathbb{Z}) \backslash \mathrm{GL}(k, \mathbb{R})$ has both a discrete spectrum (comprised of the cusp forms and residues of Eisenstein series) and a continuous spectrum. The Eisenstein series (analytically continued in s and restricted to the unitary principal series) are needed for the analysis of the continuous spectrum.

For the purpose of analytic continuation, we call a family of functions $f_{s} \in \operatorname{Ind}\left(\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}\right)$ a standard section if the restriction of the functions f_{s} to K is independent of s.

Theorem 49.1. (Selberg, Langlands) Let $r+t=k$. Let P and Q be the parabolic subgroups of $\mathrm{GL}(k)$ with Levi factors $\mathrm{GL}(r) \times \mathrm{GL}(t)$ and $\mathrm{GL}(t) \times$ $\mathrm{GL}(r)$, respectively. Suppose that $f_{s} \in \operatorname{Ind}\left(\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}\right)$ is a standard section. Then $E\left(g, f_{s}, s\right)$ has meromorphic continuation to all s. There exists an intertwining operator

$$
M(s): \operatorname{Ind}\left(\pi_{1} \otimes \pi_{2} \otimes \delta_{P}^{s}\right) \longrightarrow \operatorname{Ind}\left(\pi_{2} \otimes \pi_{1} \otimes \delta_{Q}^{-s}\right)
$$

such that the functional equation

$$
\begin{equation*}
E\left(g, f_{s}, s\right)=E\left(g, M(s) f_{s},-s\right) \tag{49.1}
\end{equation*}
$$

is true.
The intertwining operator $M(s)$ is given by an integral formula

$$
\begin{equation*}
M(s) f(g)=\int_{\operatorname{Mat}_{t \times r}(\mathbb{R})} f\left(\binom{-I_{t}}{I_{r}}\binom{I X}{I} g\right) d X \tag{49.2}
\end{equation*}
$$

This integral may be shown to be convergent if $\mathrm{re}(s)>\frac{1}{2}$. For other values of s, it has analytic continuation. This integral emerges when one looks at the constant term of the Eisenstein series with respect to Q. We will not explain this further but mention it because these intertwining integrals are extremely important and will reappear in the finite field case in the proof of Proposition 49.3.

The two constructions - constant term and Eisenstein series - have parallels in the representation theory of $\mathrm{GL}(k, F)$, where F is a local field including $F=\mathbb{R}, \mathbb{C}$, or a p-adic field. These constructions are functors between representations of GL (k, F) and those of the Levi factor of any parabolic subgroup. They are the Jacquet functors in one direction and parabolic induction in the other. (We will not define the Jacquet Functors, but they are the functors $r_{U, 1}$ in Bernstein and Zelevinsky [8].) Moreover, these constructions also descend to the case of representation theory of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$, which we look at next.

An irreducible representation (π, V) of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is called cuspidal if there are no fixed vectors for the unipotent radical of any (standard) parabolic subgroup. If $P \supseteq Q$ are parabolic subgroups and U_{P} and U_{Q} are their unipotent radicals, then $U_{P} \subseteq U_{Q}$, and it follows that a representation is cuspidal if and only if it has no fixed vectors for the unipotent radical of any (standard) maximal parabolic subgroup; these are the subgroups of the form

$$
\begin{equation*}
\left\{\left.\binom{I_{r} X}{I_{t}} \right\rvert\, X \in \operatorname{Mat}_{r \times t}\left(\mathbb{F}_{q}\right)\right\}, \quad r+t=k \tag{49.3}
\end{equation*}
$$

Proposition 49.1. Let (π, V) be a cuspidal representation of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. If U is the unipotent radical of a standard maximal parabolic subgroup of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ and if $\eta: V \longrightarrow \mathbb{C}$ is any linear functional such that $\eta(\pi(u) v)=\eta(v)$ for all $u \in U$ and all $v \in V$, then η is zero.

This means that the contragredient of a cuspidal representation is cuspidal.
Proof. Choose an invariant inner product \langle,$\rangle on V$. There exists a vector $y \in V$ such that $\eta(v)=\langle v, y\rangle$. Then

$$
\langle v, \pi(u) y\rangle=\left\langle\pi(u)^{-1} v, y\right\rangle=\eta\left(\pi(u)^{-1} v\right)=\eta(v)=\langle v, y\rangle
$$

for all $u \in U$ and $v \in V$, so $\pi(u) y=y$. Since π is cuspidal, $y=0$, whence $\eta=0$.

Proposition 49.2. Every irreducible representation (π, V) of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is a constituent in some representation $\pi_{1} \circ \ldots \circ \pi_{m}$ with the π_{i} cuspidal.

Proof. If π is cuspidal, then we may take $m=1$ and $\pi_{1}=\pi$. There is nothing to prove in this case.

If π is not cuspidal, then there exists a decomposition $k=r+t$ such that the space V^{U} of U-fixed vectors is nonzero, where U is the group (49.3). Let $P=M U$ be the parabolic subgroup with Levi factor $M=$ $\mathrm{GL}\left(r, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(t, \mathbb{F}_{q}\right)$ and unipotent radical U. Then V^{G} is an M-module since M normalizes U. Let $\rho \otimes \tau$ be an irreducible constituent of M, where ρ and τ are representations of $\mathrm{GL}\left(r, \mathbb{F}_{q}\right)$ and $\mathrm{GL}\left(t, \mathbb{F}_{q}\right)$. By induction, we may embed ρ into $\pi_{1} \circ \ldots \circ \pi_{h}$ and σ into $\pi_{h+1} \circ \ldots \circ \pi_{m}$ for some cuspidals π_{i}. Thus, we get a nonzero M-module homomorphism

$$
V^{U} \longrightarrow \rho \otimes \tau \longrightarrow\left(\pi_{1} \circ \ldots \circ \pi_{h}\right) \otimes\left(\pi_{h+1} \circ \ldots \circ \pi_{m}\right)
$$

By Frobenius reciprocity (Exercise 49.2), there is thus a nonzero $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ module homomorphism

$$
V \longrightarrow\left(\pi_{1} \circ \ldots \circ \pi_{h}\right) \circ\left(\pi_{h+1} \circ \ldots \circ \pi_{m}\right)=\pi_{1} \circ \ldots \circ \pi_{m}
$$

Since π is irreducible, this is an embedding.
The notion of a cuspidal representation can be extended to Levi factors of parabolic subgroups. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$, where the λ_{i} are positive integers whose sum is k. We do not assume $\lambda_{i} \geqslant \lambda_{i+1}$. Such a decomposition we call an ordered partition of k. Let

$$
P_{\lambda}=\left\{\left.\left(\begin{array}{cccc}
g_{11} & * & \cdots & * \\
& g_{22} & \cdots & * \\
& & \ddots & \vdots \\
& & & g_{r r}
\end{array}\right) \right\rvert\, g_{i i} \in \operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)\right\}
$$

This parabolic subgroup has Levi factor

$$
M_{\lambda}=\operatorname{GL}\left(\lambda_{1}, \mathbb{F}_{q}\right) \times \ldots \times \operatorname{GL}\left(\lambda_{r}, \mathbb{F}_{q}\right)
$$

and unipotent radical U_{λ} characterized by $g_{i i}=I_{\lambda_{i}}$. Any irreducible representation π_{λ} of M_{λ} is of the form $\otimes \pi_{i}$, where π_{i} is a representation of $\operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$. We say that π is cuspidal if each of the π_{i} is cuspidal.

Let B_{k} be the standard Borel subgroup of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, consisting of upper triangular matrices, and let $B_{\lambda}=\prod B_{\lambda_{i}}$. We regard this as the Borel subgroup of M_{λ}. A standard parabolic subgroup of M_{λ} is a proper subgroup Q containing B_{λ}. Such a subgroup has the form $\prod Q_{i}$, where each Q_{i} is either $\operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$ or a parabolic subgroup of $\operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$ and at least one Q_{i} is proper. The parabolic subgroup is maximal if exactly one Q_{i} is a proper subgroup of $\mathrm{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$ and that Q_{i} is a maximal parabolic subgroup of $\mathrm{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$. A parabolic subgroup of M_{λ} has a Levi subgroup and a unipotent radical; if Q is a maximal parabolic subgroup of M_{λ}, then the unipotent radical of Q is the unipotent radical of
the unique Q_{i} that is a proper subgroup of $\operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$, and it follows that $\pi=\otimes \pi_{i}$ is cuspidal if and only if it has no fixed vector with respect to the unipotent radical of any maximal parabolic subgroup of M_{λ}.

Parabolic induction is as we have already described it for maximal parabolic subgroups. The group $P_{\lambda}=M_{\lambda} U_{\lambda}$ is a semidirect product with the subgroup U_{λ} normal, and so the composition

$$
M_{\lambda} \longrightarrow P_{\lambda} \longrightarrow P_{\lambda} / U_{\lambda}
$$

is an isomorphism, where the first map is inclusion and the second projection. This means that the representation π_{λ} of M_{λ} may be regarded as a representation of P_{λ} in which U_{λ} acts trivially. Then $\pi_{1} \circ \cdots \circ \pi_{r}$ is the representation induced from P_{λ}.

Theorem 49.2. The multiplication in $\mathcal{R}(q)$ is commutative.
Proof. We will frame our proof in terms of characters rather than representations, so in this proof elements of $\mathcal{R}_{k}(q)$ are generalized characters of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$.

We make use of the involution $\iota: \operatorname{GL}\left(k, \mathbb{F}_{q}\right) \longrightarrow \mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ defined by

$$
{ }^{\iota} g=w_{k} \cdot{ }^{t} g^{-1} \cdot w_{k}, \quad w_{k}=\left(._{1} \cdot{ }^{1}\right) .
$$

Let $r+t=k$. The involution takes the standard parabolic subgroup P with Levi factor $M=\mathrm{GL}\left(r, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(t, \mathbb{F}_{q}\right)$ to the standard parabolic subgroup ${ }^{\iota} P$ with Levi factor ${ }^{\iota} M=\mathrm{GL}\left(t, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(r, \mathbb{F}_{q}\right)$. It induces the map $M \longrightarrow{ }^{\iota} M$ given by

$$
\left(\begin{array}{ll}
g_{1} & \\
& \\
& g_{2}
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
{ }^{\iota} g_{2} & \\
& & \\
& & { }^{\iota} g_{1}
\end{array}\right), \quad g_{1} \in \mathrm{GL}\left(r, \mathbb{F}_{q}\right), g_{2} \in \mathrm{GL}\left(t, \mathbb{F}_{q}\right)
$$

where ${ }^{\iota} g_{1}=w_{r} \cdot{ }^{t} g_{1}^{-1} \cdot w_{r}$ and ${ }^{\iota} g_{2}=w_{t} \cdot{ }^{t} g_{2}^{-1} \cdot w_{t}$. Now since every element of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ is conjugate to its transpose, if μ is the character of an irreducible representation of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ with $n=k$, r, or t, we have $\mu\left({ }^{\iota} g\right)=\overline{\mu(g)}$. Let μ_{1} and μ_{2} be the characters of representations of $\mathrm{GL}\left(r, \mathbb{F}_{q}\right)$ and $\mathrm{GL}\left(t, \mathbb{F}_{q}\right)$. Composing the character $\bar{\mu}_{2} \otimes \bar{\mu}_{1}$ of ${ }^{\iota} M$ with $\iota: M \longrightarrow{ }^{\iota} M$ and then parabolically inducing from P to $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ will give the same result as parabolically inducing the character directly from ${ }^{\iota} P$ and then composing with ι. The first way gives $\mu_{1} \circ \mu_{2}$, and the second gives the conjugate of $\bar{\mu}_{2} \circ \bar{\mu}_{1}$ (that is, $\mu_{2} \circ \mu_{1}$), and so these are equal.

Unfortunately, the method of proof in Theorem 49.2 is rather limited. We next prove a strictly weaker result by a different method based on an analog of the intertwining integrals (49.2). These intertwining integrals are very powerful tools in the representation theory of Lie and p-adic groups, and
they are closely connected with the constant terms of the Eisenstein series and with the functional equations. It is for this reason that we give a second, longer proof of a weaker statement.
Proposition 49.3. Let $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ be representations of $\mathrm{GL}\left(r, \mathbb{F}_{q}\right)$ and $\operatorname{GL}\left(t, \mathbb{F}_{q}\right)$. Then there exists a nonzero intertwining map between the representations $\pi_{1} \circ \pi_{2}$ and $\pi_{2} \circ \pi_{1}$.

Proof. Let $f \in V_{1} \circ V_{2}$. Thus $f: G \longrightarrow V_{1} \otimes V_{2}$ satisfies

$$
f\left(\left(\begin{array}{cc}
g_{1} & * \tag{49.4}\\
& g_{2}
\end{array}\right) h\right)=\left(\pi_{1}\left(g_{1}\right) \otimes \pi_{2}\left(g_{2}\right)\right) f(h), \quad g_{1} \in \mathrm{GL}\left(r, \mathbb{F}_{q}\right), g_{2} \in \mathrm{GL}\left(t, \mathbb{F}_{q}\right)
$$

Now define $M f: G \longrightarrow V_{2} \otimes V_{1}$ by

$$
M f(h)=\tau \sum_{X \in \operatorname{Mat}_{r \times t}\left(\mathbb{F}_{q}\right)} f\left(\binom{-I_{r}}{I_{t}}\binom{I X}{I} h\right)
$$

where $\tau: V_{1} \otimes V_{2} \longrightarrow V_{2} \otimes V_{1}$ is defined by $\tau\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$. Let us show that $M f \in V_{2} \circ V_{1}$. A change of variables $X \longmapsto X-Y$ in the definition of $M f$ shows that

$$
M f\left(\left(\begin{array}{rr}
I_{r} & Y \\
& I_{t}
\end{array}\right) h\right)=M f(h)
$$

Also, if $g_{1} \in \operatorname{GL}\left(r, \mathbb{F}_{q}\right)$ and $g_{2} \in \operatorname{GL}\left(t, \mathbb{F}_{q}\right)$, we have

$$
\begin{gathered}
M f\left(\left(\begin{array}{ll}
g_{2} & \\
& g_{1}
\end{array}\right) h\right)= \\
\tau \sum_{X \in \mathrm{Mat}_{r \times t}\left(\mathbb{F}_{q}\right)} f\left(\binom{g_{1}}{g_{2}}\binom{-I_{r}}{I_{t}}\binom{I g_{2}^{-1} X g_{1}}{I} h\right)
\end{gathered}
$$

Making the variable change $X \longmapsto g_{2} X g_{1}^{-1}$ and then using (49.4) and the fact that $\tau \circ\left(\pi_{1}\left(g_{1}\right) \otimes \pi_{2}\left(g_{2}\right)\right)=\left(\pi_{2}\left(g_{2}\right) \otimes \pi_{1}\left(g_{1}\right)\right) \circ \tau$ shows that

$$
M f\left(\left(\begin{array}{ll}
g_{2} & \\
& g_{1}
\end{array}\right) h\right)=\left(\pi_{2}\left(g_{2}\right) \otimes \pi_{1}\left(g_{1}\right)\right) M f(h)
$$

Thus $M f \in V_{2} \circ V_{1}$.
The map M is an intertwining operator since G acts on both the spaces of $\pi_{1} \circ \pi_{2}$ and $\pi_{2} \circ \pi_{1}$ by right translation, and $f \longmapsto M f$ obviously commutes with right translation. We must show that it is nonzero. Choose a nonzero vector $\xi \in V_{1} \otimes V_{2}$. Define

$$
f\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left\{\begin{array}{cl}
\left(\pi_{1}(A) \otimes \pi_{2}(D)\right) \xi & \text { if } C=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

where A, B, C and D are blocks, A being $r \times r$ and D being $t \times t$, etc. It is clear that $f \in V_{1} \circ V_{2}$. Now

$$
M f\binom{I_{t}}{-I_{r}}=\tau \sum_{X \in \mathrm{Mat}_{r \times t}} f\left(\binom{-I_{r}}{I_{t}}\binom{I X}{I}\binom{-I_{t}}{I_{r}}\right)
$$

and the term is zero unless $X=0$, so this equals $\tau(\xi) \neq 0$. This proves that the intertwining operator M is nonzero.

Returning momentarily to automorphic forms, the functional equation (49.1) extends to Eisenstein series in several complex variables attached to cusp forms for general parabolic subgroups. We will not try to formulate a precise theorem, but suffice it to say that if π_{i} are automorphic cuspidal representations of $\mathrm{GL}\left(\lambda_{i}, \mathbb{R}\right)$ and $s=\left(s_{1}, \cdots, s_{r}\right) \in \mathbb{C}^{r}$, and if $d_{s}: P_{\lambda}(\mathbb{R}) \longrightarrow \mathbb{C}$ is the quasicharacter

$$
d_{s}\left(\begin{array}{ccc}
g_{1} & & \\
& \ddots & \\
& & g_{r}
\end{array}\right)=\left|\operatorname{det}\left(g_{1}\right)\right|^{s_{1}} \cdots\left|\operatorname{det}\left(g_{r}\right)\right|^{s_{r}}
$$

then there is a representation $\operatorname{Ind}\left(\pi_{1} \otimes \cdots \otimes \pi_{r} \otimes d_{s}\right)$ of $\mathrm{GL}(k, \mathbb{R})$ induced parabolically from the representation $\pi_{1} \otimes \cdots \otimes \pi_{r} \otimes d_{s}$ of M_{λ}. One may form an Eisenstein series by a series that is absolutely convergent if re $\left(s_{i}-s_{j}\right)$ are sufficiently large and that has meromorphic continuation to all s_{i}. There are functional equations that permute the constituents $|\operatorname{det}|^{s_{i}} \otimes \pi_{i}$.

If some of the π_{i} are equal, the Eisenstein series will have poles. The polar divisor maps out the places where the representations $\operatorname{Ind}\left(\pi_{1} \otimes \cdots \otimes \pi_{r} \otimes d_{s}\right)$ are reducible. Restricting ourselves to the subspace of \mathbb{C}^{r} where $\sum s_{i}=0$, the following picture emerges. If all of the π_{i} are equal, then the polar divisor will consist of $r(r-1)$ hyperplanes in parallel pairs. There will be r ! points where $r-1$ hyperplanes meet in pairs. These are the points where the induced representation $\operatorname{Ind}\left(\pi_{1} \otimes \cdots \otimes \pi_{r} \otimes d_{s}\right)$ is maximally reducible. Regarding the reducibility of representations, we will see that there are both similarities and dissimilarities with the finite field case.

Returning to the case of a finite field, we will denote by T the subgroup of diagonal matrices in $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$. If α is a root, we will denote by U_{α} the one-dimensional unipotent of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ corresponding to α. Thus, if $\alpha=\alpha_{i j}$ in the notation (30.6), then X_{α} consists of the matrices of the form $I+t E_{i j}$, where $E_{i j}$ has a 1 in the i, j-th position and zeros elsewhere.

If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ is an ordered partition of k, π_{i} are representations of $\mathrm{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$, and $\pi_{\lambda}=\pi_{1} \otimes \cdots \otimes \pi_{r}$ is the corresponding representation of M_{λ}, we will use $\operatorname{Ind}\left(\pi_{\lambda}\right)$ as an alternative notation for $\pi_{1} \circ \ldots \circ \pi_{r}$.
Theorem 49.3. (Harish-Chandra) Suppose that $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ and $\mu=$ $\left(\mu_{1}, \cdots, \mu_{t}\right)$ are ordered partitions of k, and let $\pi_{\lambda}=\otimes \pi_{i}$ and $\pi_{\mu}^{\prime}=\otimes \pi_{j}^{\prime}$ be cuspidal representations of M_{λ} and M_{μ}, respectively. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}\left(k, \mathbb{F}_{q}\right)}\left(\operatorname{Ind}\left(\pi_{\lambda}\right), \operatorname{Ind}\left(\pi_{\mu}^{\prime}\right)\right)
$$

is zero unless $r=t$. If $r=t$, it is the number of permutations σ of $\{1,2, \cdots, r\}$ such that $\lambda_{\sigma(i)}=\mu_{i}$ and $\pi_{\sigma(i)} \cong \pi_{i}^{\prime}$.

See also Harish-Chandra [52], Howe [61] and Springer [114].
Proof. Let V_{i} be the space of π_{i} and let V_{i}^{\prime} be the space of π_{i}^{\prime}, so π_{λ} acts on $V=\otimes V_{i}$ and π_{μ} acts on $V^{\prime}=\otimes V_{i}^{\prime}$. By Mackey's Theorem in the geometric form of Theorem 34.1, the dimension of this space of intertwining operators is the dimension of the space of functions $\Delta: \mathrm{GL}\left(k, \mathbb{F}_{q}\right) \longrightarrow \operatorname{Hom}_{\mathbb{C}}\left(V, V^{\prime}\right)$ such that for $p \in P_{\lambda}$ and $p^{\prime} \in P_{\mu}$ we have

$$
\Delta\left(p^{\prime} g p\right)=\pi_{\mu}^{\prime}\left(p^{\prime}\right) \Delta(g) \pi_{\lambda}(p)
$$

Of course, Δ is determined by its values on a set of coset representatives for $P_{\mu} \backslash G / P_{\lambda}$, and by Proposition 48.1, these may be taken to be a set of representatives of $W_{\mu} \backslash W / W_{\mu}$, where if T is the maximal torus of diagonal elements of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, then $W=N(T) / T$, while $W_{\lambda}=N_{M_{\lambda}}(T) / T$ and $W_{\mu}=$ $N_{M_{\mu}}(T) / T$. Thus $W_{P_{\lambda}}$ is isomorphic to $S_{\lambda_{1}} \times \cdots \times S_{\lambda_{r}}$ and W_{μ} is isomorphic to $S_{\mu_{1}} \times \cdots \times S_{\mu_{t}}$.

In the terminology of Remark 34.1, let us ask under what circumstances the double coset $P_{\mu} w P_{\lambda}$ can support an intertwining operator. We assume that $\Delta(w) \neq 0$.

We will show that $w M_{\lambda} w^{-1} \supseteq M_{\mu}$. We first note that $M_{\mu} \cap w B_{k} w^{-1}$ is a (not necessarily standard) Borel subgroup of M_{μ}. This is because it contains T, and if α is any root of M_{μ}, then exactly one of U_{α} or $U_{-\alpha}$ is contained in $M_{\mu} \cap w B_{k} w^{-1}$ (Exercise 49.3). Now $M_{\mu} \cap w P_{\lambda} w^{-1}$ contains $M_{\mu} \cap w B_{k} w^{-1}$ and hence is either M_{μ} or a (not necessarily standard) parabolic subgroup of M_{μ}. We will show that it must be all of $M_{\mu} \cap w P_{\lambda} w^{-1}$ since otherwise its unipotent radical is $M_{\mu} \cap w U_{\lambda} w^{-1}$. Now, if $u \in M_{\mu} \cap w U_{\lambda} w^{-1}$, then $w^{-1} u w \in U_{\lambda}$, so

$$
\begin{equation*}
\Delta(w)=\Delta\left(u^{-1} \cdot w \cdot w^{-1} u w\right)=\pi_{\mu}^{\prime}\left(u^{-1}\right) \circ \Delta(w) \tag{49.5}
\end{equation*}
$$

This means that any element of the image of $\Delta(w)$ is invariant under $\pi_{\mu}(u)$ and hence zero by the cuspidality of π_{μ}. We are assuming that $\Delta(w)$ is nonzero, so this contradiction shows that $M_{\mu}=M_{\mu} \cap w P_{\lambda} w^{-1}$. Thus $M_{\mu} \subseteq w P_{\lambda} w^{-1}$. This actually implies that $M_{\mu} \subseteq w M_{\lambda} w^{-1}$ because if α is any root of M_{μ}, then P_{λ} contains both $w^{-1} U_{\alpha} w$ and $w^{-1} U_{-\alpha} w$, which implies that M_{λ} contains $w^{-1} U_{\alpha} w$, so $U_{\alpha} \subseteq w M_{\lambda} w^{-1}$. Therefore $w M_{\lambda} w^{-1} \supseteq M_{\mu}$.

Next let us show that $w M_{\lambda} w^{-1} \subseteq M_{\mu}$. As in the previous case, $M_{\lambda} \cap$ $w^{-1} P_{\mu} w$ contains the (not necessarily standard) Borel subgroup $M_{\lambda} \cap w^{-1} B_{\mu} w$ of M_{λ}, so either it is all of M_{λ} or a parabolic subgroup of M_{λ}. If it is a parabolic subgroup, its unipotent radical is $M_{\lambda} \cap w^{-1} U_{\mu} w$. If $u \in M_{\lambda} \cap w^{-1} U_{\mu} w$, then by (49.5) we have

$$
\Delta(w)=\Delta\left(w u w^{-1} \cdot w \cdot u^{-1}\right)=\Delta(w) \circ \pi_{\lambda}\left(u^{-1}\right)
$$

By Proposition 49.1, this implies that $\Delta(w)=0$; this contradiction implies that $M_{\lambda}=M_{\lambda} \cap w^{-1} P_{\mu} w$, and reasoning as before gives $M_{\lambda} \subseteq w^{-1} M_{\mu} w$.

Combining the two inclusions, we have proved that if the double coset $P_{\mu} w P_{\lambda}$ supports an intertwining operator, then $M_{\mu}=w M_{\lambda} w^{-1}$. This means $r=t$.

Now, since the representative w is only determined modulo left and right multiplication by M_{μ} and M_{λ}, respectively, we may assume that w takes positive roots of M_{λ} to positive roots of M_{μ}. Thus, a representative of w is a "block permutation matrix" of the form

$$
w=\left(\begin{array}{c|c|c|}
\hline w_{11} & \cdots & w_{1 r} \\
\hline \vdots & & \vdots \\
\hline w_{t 1} & \cdots & w_{t r} \\
\hline
\end{array}\right)
$$

where each $w_{i j}$ is a $\mu_{i} \times \lambda_{j}$ block, and either $w_{i j}=0$ or $\mu_{i}=\lambda_{j}$ and $w_{i j}$ is an identity matrix of this size, and there is exactly one nonzero $w_{i j}$ in each row and column. Let σ be the permutation of $\{1,2, \cdots, r\}$ such that $w_{i, \sigma(i)}$ is not zero. Thus $\lambda_{\sigma(i)}=\mu_{i}$, and if $g_{j} \in \operatorname{GL}\left(\lambda_{j}, \mathbb{F}_{q}\right)$, then we can write

$$
w\left(\begin{array}{lll}
g_{1} & & \\
& \ddots & \\
& & g_{r}
\end{array}\right)=\left(\begin{array}{lll}
g_{\sigma(1)} & & \\
& \ddots & \\
& & g_{\sigma(r)}
\end{array}\right) w .
$$

Thus

$$
\Delta(w) \circ \pi_{\lambda}\left(\begin{array}{cccc}
g_{1} & & \\
& \ddots & \\
& & g_{r}
\end{array}\right)=\pi_{\mu}^{\prime}\left(\begin{array}{lll}
g_{\sigma(1)} & & \\
& \ddots & \\
& & g_{\sigma(r)}
\end{array}\right) \circ \Delta(w)
$$

so

$$
\Delta(w) \circ\left(\pi_{1}\left(g_{1}\right) \otimes \cdots \otimes \pi_{r}\left(g_{r}\right)\right)=\left(\pi_{1}^{\prime}\left(g_{\sigma(1)}\right) \otimes \cdots \otimes \pi_{r}^{\prime}\left(g_{\sigma(r)}\right)\right) \circ \Delta(w)
$$

Since the representations π and π^{\prime} of M_{λ} and M_{μ} are irreducible, Schur's Lemma implies that $\Delta(w)$ is determined up to a scalar multiple, and moreover $\pi_{i}^{\prime} \cong \pi_{\sigma(i)}$ as a representation of $\mathrm{GL}\left(\mu_{i}, \mathbb{F}_{q}\right)=\mathrm{GL}\left(\lambda_{\sigma(i)}, \mathbb{F}_{q}\right)$.

We see that the double cosets that can support an intertwining operator are in bijection with the permutations of $\{1,2, \cdots, r\}$ such that $\lambda_{\sigma(i)}=\mu_{i}$ and $\pi_{\sigma(i)} \cong \pi_{i}^{\prime}$ and that the dimension of the space of intertwining operators that are supported on a single such coset is 1 . The theorem follows.

This theorem has some important consequences.
Theorem 49.4. Suppose that $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ is an ordered partition of k, and let $\pi_{\lambda}=\otimes \pi_{i}$ be a cuspidal representation of M_{λ}. Suppose that no $\pi_{i} \cong \pi_{j}$. Then $\pi_{1} \circ \ldots \circ \pi_{r}$ is irreducible. Its isomorphism class is unchanged if the λ_{i} and π_{i} are permuted. If $\left(\mu_{1}, \cdots, \mu_{t}\right)$ is another ordered partition of k, and $\pi_{\mu}^{\prime}=\pi_{1}^{\prime} \circ \ldots \circ \pi_{t}^{\prime}$ is a cuspidal representation of M_{μ}, with the π_{i}^{\prime} also distinct, then $\pi_{1} \circ \ldots \circ \pi_{r} \cong \pi_{1}^{\prime} \circ \ldots \circ \pi_{t}^{\prime}$ if and only if $r=t$ and there is a permutation σ of $\{1, \cdots, r\}$ such that $\mu_{i}=\lambda_{\sigma(i)}$ and $\pi_{i}^{\prime} \cong \pi_{\sigma(i)}$.

Remark 49.1. This is the usual case. If q is large, the probability that there is a repetition among a list of randomly chosen cuspidal representations is small.

Remark 49.2. The statement that the isomorphism class is unchanged if the λ_{i} and π_{i} are permuted is the analog of the functional equations of the Eisenstein series.

Proof. By Theorem 49.3, the dimension of the space of intertwining operators of $\operatorname{Ind}\left(\pi_{\lambda}\right)$ to itself is one, and it follows that this space is irreducible. The last statement is also clear from Theorem 49.3.

Suppose now that l is a divisor of k and that $k=l t$. Let π_{0} be a cuspidal representation of $\mathrm{GL}\left(l, \mathbb{F}_{q}\right)$. Let us denote by $\pi_{0}^{\circ t}$ the representation $\pi_{0} \circ \cdots \circ \pi_{0}$ (t copies). We call any irreducible constituent of $\pi_{0}^{\circ t}$ a π_{0}-monatomic irreducible representation. As a special case, if π_{0} is the trivial representation of $\operatorname{GL}\left(1, \mathbb{F}_{q}\right)$, this is the Hecke algebra identified in Iwahori's Theorem 48.3. There, we saw that the endomorphism ring of $\pi_{0}^{\circ t}$ was the Hecke algebra $\mathcal{H}_{t}(q)$, a deformation of the group algebra of the symmetric group S_{t}, and thereby obtained a parametrization of its irreducible constituents by the irreducible representations of S_{t} or by partitions of t. The following result generalizes Theorem 48.3.

Theorem 49.5. (Howlett and Lehrer) Let π_{0} be a cuspidal representation of $\mathrm{GL}\left(l, \mathbb{F}_{q}\right)$. Then the endomorphism ring $\operatorname{End}\left(\pi_{0}^{\circ t}\right)$ is naturally isomorphic to $\mathcal{H}_{t}\left(q^{l}\right)$.

Proof. We leave this to the reader (Exercise 49.6). Proofs may be found in Howlett and Lehrer [65] and Howe [61].

Corollary 49.1. There exists a natural bijection between the set of partitions λ of t and the irreducible constituents $\sigma_{\lambda(\pi)}$ of $\pi_{0}^{\circ t}$. The multiplicity of $\sigma_{\lambda(\pi)}$ in $\pi_{0}^{o t}$ equals the degree of the irreducible character $\boldsymbol{s}_{\boldsymbol{\lambda}}$ of the symmetric group S_{t} parametrized by λ.

Proof. The multiplicity of $\sigma_{\lambda(\pi)}$ in $\pi_{0}^{\circ t}$ equals the multiplicity of the corresponding module of $\mathcal{H}_{t}\left(q^{l}\right)$. By Exercise 48.5 , this is the degree of \boldsymbol{s}_{λ}.

Although we will not make use of the multiplicative structure that is contained in this theorem of Howlett and Lehrer, we may at least see immediately that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{End}\left(\pi_{0}^{\circ t}\right)\right)=t! \tag{49.6}
\end{equation*}
$$

by Theorem 49.3, taking $\mu=\lambda$ and all $\pi_{i}, \pi_{i}^{\prime}$ to be π_{0}. This is enough for the following result.

Theorem 49.6. Let $\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ be an ordered partition of k, and let $\lambda_{i}=$ $l_{i} t_{i}$. Let π_{i} be a cuspidal representation of $\mathrm{GL}\left(l_{i}, \mathbb{F}_{q}\right)$, with no two π_{i} isomorphic. Let θ_{i} be a π_{i}-monatomic irreducible representation of $\operatorname{GL}\left(\lambda_{i}, \mathbb{F}_{q}\right)$. Let
$\theta_{\lambda}=\otimes \theta_{i}$. Then $\operatorname{Ind}\left(\theta_{\lambda}\right)$ is irreducible, and every irreducible representation of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is of this type. If $\left(\mu_{1}, \cdots, \mu_{t}\right)$ is another ordered partition of k, and θ_{i}^{\prime} be a family of monatomic representations of $\mathrm{GL}\left(\mu_{i}, \mathbb{F}_{q}\right)$ with respect to another set of distinct cuspidals, and let $\theta_{\mu}^{\prime}=\otimes \theta_{i}^{\prime}$. Then $\operatorname{Ind}\left(\theta_{\lambda}\right) \cong \operatorname{Ind}\left(\theta_{\mu}^{\prime}\right)$ if and only if $r=t$, and there exists a permutation σ of $\{1, \cdots, r\}$ such that $\mu_{i}=\lambda_{\sigma(i)}$ and $\theta_{i}^{\prime} \cong \theta_{\sigma(i)}$.

Proof. We note the following general principle: χ is a character of any group, and if $\chi=\sum d_{i} \chi_{i}$ is a decomposition into subrepresentations such that

$$
\langle\chi, \chi\rangle=\sum d_{i}^{2},
$$

then the χ_{i} are irreducible and mutually nonisomorphic. Indeed, we have

$$
\sum d_{i}^{2}=\langle\chi, \chi\rangle=\sum d_{i}^{2}\left\langle\chi_{i}, \chi_{i}\right\rangle+\sum_{i \neq j} d_{i} d_{j}\left\langle\chi_{i}, \chi_{j}\right\rangle
$$

All the inner products $\left\langle\chi_{i}, \chi_{i}\right\rangle \geqslant 1$ and all the $\left\langle\chi_{i}, \chi_{j}\right\rangle \geqslant 0$, so this implies that the $\left\langle\chi_{i}, \chi_{i}\right\rangle=1$ and all the $\left\langle\chi_{i}, \chi_{j}\right\rangle=0$.

Decompose each $\pi_{i}^{\circ t_{i}}$ into a direct sum $\sum_{j} d_{i j} \theta_{i j}$ of distinct irreducibles $\theta_{i j}$ with multiplicities $d_{i j}$. The representation θ_{i} is among the $\theta_{i j}$. We have

$$
\pi_{1}^{\circ t_{1}} \circ \ldots \circ \pi_{r}^{\circ t_{r}}=\sum_{j_{1}} \cdots \sum_{j_{r}}\left(d_{1 j_{1}} \cdots d_{r j_{r}}\right) \theta_{1 j_{1}} \circ \ldots \circ \theta_{r j_{r}}
$$

The dimension of the endomorphism ring of this module is computed by Theorem 49.3. The number of permutations of the advertised type is $t_{1}!\cdots t_{r}$! because each permutation must map the d_{i} copies of π_{i} among themselves.

On the other hand, by (49.6), we have

$$
\sum_{j_{1}} \cdots \sum_{j_{r}}\left(d_{1 j_{1}} \cdots d_{r j_{r}}\right)^{2}=t_{1}!\cdots t_{r}!
$$

also. By the "general principle" stated at the beginning of this proof, it follows that the representations $\theta_{1 j_{1}} \circ \ldots \circ \theta_{r j_{r}}$ are irreducible and mutually nonisomorphic.

Next we show that every irreducible representation π is of the form $\operatorname{Ind}\left(\theta_{\lambda}\right)$. If π is cuspidal, then π is monatomic, and so we can just take $r=t_{1}=1$, $\theta_{1}=\pi_{1}$. We assume that π is not cuspidal. Then by Proposition 49.2 we may embed π into $\pi_{1} \circ \ldots \circ \pi_{m}$ for some cuspidal representations π_{i}. By Proposition 49.4, we may order these so that isomorphic π_{i} are adjacent, so π is embedded in a representation of the form $\pi_{1}^{\circ t_{1}} \circ \ldots \circ \pi_{r}^{\circ t_{r}}$, where π_{i} are nonisomorphic cuspidal representations. We have determined the irreducible constituents of such a representation, and they are of the form $\operatorname{Ind}\left(\theta_{\lambda}\right)$, where θ_{i} is π_{i}-monatomic. Hence π is of this form.

We leave the final uniqueness assertion for the reader to deduce from Theorem 49.3.

The great paper of Green [49] constructs all the irreducible representations of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$. Systematic use is made of the ring $\mathcal{R}(q)$. However, Green does not start with the cuspidal representations. Instead, Green takes as his basic building blocks certain generalized characters that are "lifts" of modular characters, described in the following theorem.

Theorem 49.7. (Green) Let G be a finite group, and let $\rho: G \longrightarrow \mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ be a representation. Let $f \in \mathbb{Z}\left[X_{1}, \cdots, X_{k}\right]$ be a symmetric polynomial with integer coefficients. Let $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$be any character. Let $\chi: G \longrightarrow \mathbb{C}$ be the function

$$
\chi(g)=f\left(\theta\left(\alpha_{1}\right), \cdots, \theta\left(\alpha_{k}\right)\right)
$$

Then θ is a generalized character.
Proof. First, we reduce to the following case: $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$is injective and $f\left(X_{1}, \cdots, X_{k}\right)=\sum X_{i}$. If this case is known, then by replacing ρ by its exterior powers we get the same result for the elementary symmetric polynomials, and hence for all symmetric polynomials. Then we can take $f\left(X_{1}, \cdots, X_{k}\right)=\sum X_{i}^{r}$, effectively replacing θ by θ^{r}. We may choose r to match any given character on a finite field containing all eigenvalues of all g, obtaining the result in full generality.

We recall that if l is a prime, a group is l-elementary if it is the direct product of a cyclic group and an l-group. According to Brauer's characterization of characters (Theorem 8.4 (a) on p. 127 of Isaacs [68]), a class function is a generalized character if and only if its restriction to every l-elementary subgroup H (for all l) is a generalized character. Thus, we may assume that G is l-elementary. If p is the characteristic of \mathbb{F}_{q}, whether $l=p$ or not, we may write $G=P \times Q$ where P is a p-group and $p \nmid|Q|$. The restriction of χ to Q is a character by Isaacs, [68], Theorem 15.13 on p . 268. The result will follow if we show that $\chi\left(g_{p} q\right)=\chi(q)$ for $g_{p} \in P, q \in Q$. Since g_{p} and q commute, using the Jordan canonical form, we may find a basis for the representation space of ρ over $\overline{\mathbb{F}}_{q}$ such that $\rho(q)$ is diagonal and $\rho\left(g_{p}\right)$ is upper triangular. Because the order of g_{p} is a power of p, its diagonal entries are 1's, so q and $g_{p} q$ have the same eigenvalues, whence $\chi\left(g_{p} q\right)=\chi(q)$.

Since the proof of this theorem of Green is purely character-theoretic, it does not directly produce irreducible representations. And the characters that it produces are not irreducible. (We will look more closely at them later.) However, Green's generalized characters have two important advantages. First, their values are easily described. By contrast, the values of cuspidal representations are easily described on the semisimple conjugacy classes, but at other classes require knowledge of "degeneracy rules" which we will not describe. Second, Green's generalized character can be extended to a generalized character of $\mathrm{GL}\left(n, \mathbb{F}_{q^{r}}\right)$ for any r, a property that ordinary characters do not have.

Still, the cuspidal characters have a satisfactory direct description, which we turn to next. Choosing a basis for $\mathbb{F}_{q^{k}}$ as a k-dimensional vector space
over \mathbb{F}_{q} and letting $\mathbb{F}_{q^{k}}^{\times}$act by multiplication gives an embedding $\mathbb{F}_{q^{k}}^{\times} \longrightarrow$ $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. Call the image of this embedding $T_{(k)}$. More generally, if $\lambda=$ $\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ is a partition of k, then T_{λ} is the group $\mathbb{F}_{q^{\lambda_{1}}}^{\times} \times \cdots \times \mathbb{F}_{q^{\lambda_{r}}}^{\times}$embedded in $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ the same way. We will call any T_{λ} - or any conjugate of such a group - a torus. An element of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is called semisimple if it is diagonalizable over the algebraic closure of \mathbb{F}_{q}. This is equivalent to assuming that it is contained in some torus. It is called regular semisimple if its eigenvalues are distinct. This is equivalent to assuming that it is contained in a unique torus.

There is a very precise duality between the conjugacy classes of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ and its irreducible representations. Some aspects of this duality are shown in Table 49.2. In each case, there is an exact numerical equivalence. For example, the number of unipotent conjugacy classes is the number of partitions of k, and this is also the number of unipotent representations, as we saw in Theorem 48.1. Again, the number of cuspidal representations equals the number of regular semisimple conjugacy classes whose eigenvalues generate $\mathbb{F}_{q^{k}}$. We will prove this in Theorem 49.8.

Table 49.2. The duality between conjugacy classes and representations.

Class Type	Representation Type
central conjugacy classes	1-dimensional representations
regular semisimple conjugacy classes	induced from distinct cuspidals
regular semisimple conjugacy classes whose eigenvalues generate $\mathbb{F}_{q^{k}}$	cuspidal representations
unipotent conjugacy classes	unipotent representations
conjugacy classes whose characteristic polynomial is a power of an irreducible	monatomic representations

To formalize this duality, and to exploit it in order to count the irreducible cuspidal representations, we will divide the conjugacy classes of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ into "types." Roughly, two conjugacy classes have the same type if their rational canonical forms have the same shape. For example, $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ has four distinct types of conjugacy classes. They are

$$
\begin{array}{ll}
\left\{\left.\left(\begin{array}{cc}
a & \\
& b
\end{array}\right) \right\rvert\, a \neq b\right\}, & \left\{\left(\begin{array}{cc}
a & \\
& a
\end{array}\right)\right\}, \\
\left\{\left(\begin{array}{cc}
a & 1 \\
& a
\end{array}\right)\right\}, & \left\{\left(\begin{array}{cc}
1 \\
-\nu^{1+q} & \nu+\nu^{q}
\end{array}\right)\right\}
\end{array}
$$

where the last consists of the conjugacy classes of matrices whose eigenvalues are ν and ν^{q}, where $\nu \in \mathbb{F}_{q^{2}}-\mathbb{F}_{q}$. In the duality, these four types of conjugacy classes correspond to the four types of irreducible representations: the $q+1$ dimensional principal series, induced from a pair of distinct characters of $\mathrm{GL}(1)$; the one-dimensional representations $\chi \circ \operatorname{det}$, where χ is a character of \mathbb{F}_{q}^{\times}; the q-dimensional representations obtained by tensoring the Steinberg representation with a one-dimensional character; and the q-1-dimensional cuspidal representations.

Let $f(X)=X^{d}+a_{d-1} X^{d-1}+\ldots+a_{0}$ be a monic irreducible polynomial over \mathbb{F}_{q} of degree d. Let

$$
U(f)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{d-1}
\end{array}\right)
$$

be the rational canonical form. Let

$$
U_{r}(f)=\left(\begin{array}{ccccc}
U(f) & I_{d} & 0 & \cdots & 0 \\
0 & U(f) & I_{d} & & \\
0 & 0 & U(f) & & \vdots \\
\vdots & & & \ddots & \\
0 & & \cdots & & U(f)
\end{array}\right)
$$

an array of $r \times r$ blocks, each of size $d \times d$. If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{t}\right)$ is a partition of r, so that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{t}$ are nonnegative integers with $|\lambda|=\sum_{i} \lambda_{i}=r$, let

$$
U_{\lambda}(f)=\left(\begin{array}{lll}
U_{\lambda_{1}}(f) & & \\
& \ddots & \\
& & U_{\lambda_{t}}(f)
\end{array}\right) .
$$

Then every conjugacy class of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ has a representative of the form

$$
\left(\begin{array}{lll}
U_{\lambda^{1}}\left(f_{1}\right) & & \tag{49.7}\\
& \ddots & \\
& & U_{\lambda^{m}\left(f_{m}\right)}
\end{array}\right)
$$

where the f_{i} are distinct monic irreducible polynomials, and each $\lambda^{i}=$ $\left(\lambda_{1}^{i}, \lambda_{2}^{i}, \cdots\right)$ is a partition. The conjugacy class is unchanged if the f_{i} and λ^{i} are permuted, but otherwise, they are uniquely determined.

Thus the conjugacy class is determined by the following data: a pair of sequences r_{1}, \cdots, r_{m} and d_{1}, \cdots, d_{m} of integers, and for each $1 \leqslant i \leqslant m$ a partition λ^{i} of r_{i} and a monic irreducible polynomial $f_{i} \in \mathbb{F}_{q}[X]$ of degree d_{i}, such that no $f_{i}=f_{j}$ if $i \neq j$. The data $\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{f_{i}\right\}\right)$ and
($\left.\left\{r_{i}^{\prime}\right\},\left\{d_{i}^{\prime}\right\},\left\{\left(\lambda^{\prime}\right)^{i}\right\},\left\{f_{i}^{\prime}\right\}\right)$ parametrize the same conjugacy class if and only if they both have the same length m and there exists a permutation $\sigma \in S_{m}$ such that $r_{i}^{\prime}=r_{\sigma(i)}, d_{i}^{\prime}=d_{\sigma(i)},\left(\lambda^{\prime}\right)^{i}=\lambda^{\sigma(i)}$ and $f_{i}^{\prime}=f_{\sigma(i)}$.

We say two conjugacy classes are of the same type if the parametrizing data have the same length m and there exists a permutation $\sigma \in S_{m}$ such that $r_{i}^{\prime}=r_{\sigma(i)}, d_{i}^{\prime}=d_{\sigma(i)},\left(\lambda^{\prime}\right)^{i}=\lambda^{\sigma(i)}$. (The f_{i} and f_{i}^{\prime} are allowed to differ.) The set of types of conjugacy classes depends on k, but is independent of q (though if q is too small, some types might be empty).

Lemma 49.1. Let $\left\{N_{1}, N_{2}, \cdots\right\}$ be a sequence of numbers, and for each N_{k} let X_{k} be a set of cardinality N_{k} (X_{k} disjoint). Let Σ_{k} be the following set. An element of Σ_{k} consists of a 4-tuple $\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{x_{i}\right\}\right)$, where $\left\{r_{i}\right\}=$ $\left\{r_{1}, \cdots, r_{m}\right\}$ and $\left\{d_{i}\right\}=\left\{d_{1}, \cdots, d_{m}\right\}$ are sequences of positive integers, such that $\sum r_{i} d_{i}=k$, together with a sequence $\left\{\lambda^{i}\right\}$ of partitions of r_{i} and an element $x_{i} \in X_{d_{i}}$, such that no x_{i} are equal. Define an equivalence relation \sim on Σ_{k} in which two elements are considered equivalent if they can be obtained by permuting the data, that is, if $\sigma \in S_{m}$ then

$$
\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{x_{i}\right\}\right) \sim\left(\left\{r_{\sigma(i)}\right\},\left\{d_{\sigma(i)}\right\},\left\{\lambda^{\sigma(i)}\right\},\left\{x_{\sigma(i)}\right\}\right)
$$

Let M_{k} be the number of equivalence classes. Then the sequence of numbers N_{k} is determined by the sequence of numbers M_{k}.

Proof. By induction on k, we may assume that the cardinalities N_{1}, \cdots, N_{k-1} are determined by the M_{k}. Let M_{k}^{\prime} be the cardinality of the set of equivalence classes of $\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{x_{i}\right\}\right) \in \Sigma_{k}$ in which no $x_{i} \in X_{k}$. Clearly M_{k}^{\prime} depends only on the cardinalities N_{1}, \cdots, N_{k-1} of the sets X_{1}, \cdots, X_{k-1} from which the x_{i} are to be drawn, so (by induction) it is determined by the M_{i}. Now we claim that $N_{k}=M_{k}-M_{k}^{\prime}$. Indeed, if given $\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{x_{i}\right\}\right) \in$ Σ_{k} of length m, if any $x_{i} \in X_{k}$, then since $\sum_{i=1}^{m} r_{i} d_{i}=k$, we must have $m=1, r_{1}=1, d_{1}=k$, and the number of such elements is exactly N_{k}.

Theorem 49.8. The number of cuspidal representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ equals the number of irreducible monic polynomials of degree k over \mathbb{F}_{q}.

Proof. We can apply the lemma with X_{k} either the set of cuspidal representations of S_{k} or with the set of monic irreducible polynomials of degree k over \mathbb{F}_{q}. We will show that in the first case, M_{k} is the number of irreducible representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, while in the second, M_{k} is the number of conjugacy classes. Since these are equal, the result follows.

If X_{k} is the set of cuspidal representations of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$, from each element $\left(\left\{r_{i}\right\},\left\{d_{i}\right\},\left\{\lambda^{i}\right\},\left\{x_{i}\right\}\right) \in \Sigma_{k}$ we can build an irreducible representation of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ as follows. First, since x_{i} is a cuspidal representation of $\mathrm{GL}\left(d_{i}, \mathbb{F}_{q}\right)$ we can build the x_{i}-monatomic representations of $\mathrm{GL}\left(d_{i} r_{i}, \mathbb{F}_{q}\right)$ by decomposing $x_{i}^{\circ r_{i}}$. By Corollary 49.1, the irreducible constituents of $x_{i}^{\circ r_{i}}$ are parametrized by partitions of r_{i}, so x_{i} and λ^{i} parametrize an x_{i}-monatomic representation π_{i} of $\mathrm{GL}\left(r_{i} d_{i}, \mathbb{F}_{q}\right)$. Let $\pi=\pi_{1} \circ \ldots \circ \pi_{m}$. By Theorem 49.4,
every irreducible representation of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is constructed uniquely (up to permutation of the π_{i}) in this way.

On the other, take X_{k} to be the set of monic irreducible polynomials of degree k over \mathbb{F}_{q}. We have explained above how the conjugacy classes of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ are parametrized by such data.

Deligne and Lusztig [31] gave a parametrization of characters of any reductive group over a finite field by characters of tori. Carter [22] is a basic reference for Deligne-Lusztig characters. Many important formulae, such as a generalization of Mackey theory to cohomologically induced representations and an extension of Green's "degeneracy rules," are obtained. This theory is very satisfactory but the construction requires l-adic cohomology. For $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$, the parametrization of irreducible characters by characters of tori can be described without resorting to such deep methods. The key point is the parametrization of the cuspidal characters by characters of $T_{(k)} \cong \mathbb{F}_{q^{k}}$. Combining this with parabolic induction gives the parametrization of more general characters by characters of other tori.

Thus let $\theta: T_{(k)} \cong \mathbb{F}_{q^{k}} \longrightarrow \mathbb{C}^{\times}$be a character such that the orbit of θ under $\operatorname{Gal}\left(\mathbb{F}_{q^{k}} / \mathbb{F}_{q}\right)$ has cardinality k. The number of $\operatorname{Gal}\left(\mathbb{F}_{q^{k}} / \mathbb{F}_{q}\right)$-orbits of such characters is

$$
\begin{equation*}
\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d} \tag{49.8}
\end{equation*}
$$

where μ is the Möbius function - the same as the number of semisimple conjugacy classes. Then exists a cuspidal character $\sigma_{k}=\sigma_{k, \theta}$ of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ whose value on a regular semisimple conjugacy class g is zero unless g conjugate to an element of $T_{(k)}$, that is, unless the eigenvalues of g are the roots $\alpha, \alpha^{q}, \cdots, \alpha^{q^{k-1}}$ of an irreducible monic polynomial of degree k in $\mathbb{F}_{q}[X]$, so that $\mathbb{F}_{q^{k}}=\mathbb{F}_{q}[\alpha]$. In this case,

$$
\sigma_{k}(g)=(-1)^{k-1} \sum_{j=0}^{k-1} \theta\left(\alpha^{q^{j}}\right)
$$

By Theorem 49.8, the number of $\sigma_{k, \theta}$ is the total number of cuspidal representations, so this is a complete list.

We will first construct σ_{k} under the assumption that θ, regarded as a character of $\mathbb{F}_{q^{k}}^{\times}$, can be extended to a character $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$that is injective. This is assumption is too restrictive, and we will later relax it. We will also postpone showing that that σ_{k} is independent of the extension of θ to $\overline{\mathbb{F}}_{q}^{\times}$. Eventually we will settle these points completely in the special case where k is a prime.

Let

$$
\begin{equation*}
\chi_{k}(g)=\sum_{i=1}^{k} \theta\left(\alpha_{i}\right) \tag{49.9}
\end{equation*}
$$

where α_{i} are the eigenvalues of $g \in \mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. By Green's Theorem, χ_{k} is a generalized character.

Proposition 49.4. Assume that θ can be extended to a character $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow$ \mathbb{C}^{\times}that is injective. Then the inner product $\left\langle\chi_{k}, \chi_{k}\right\rangle=k$.

Proof. We will first prove that this is true for q sufficiently large, then show that it is true for all q. The idea of the proof is to show that as a function of q, the inner product is $k+O\left(q^{-1}\right)$. Since it is an integer, it must equal k when q is sufficiently large.

The number of elements of $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ is $q^{k^{2}}+O\left(q^{k^{2}-1}\right)$. This is clear since G is the complement of the determinant locus in $\operatorname{Mat}_{k}\left(\mathbb{F}_{q}\right) \cong \mathbb{F}_{q}^{k^{2}}$. The set $G_{\text {reg }}$ of regular semisimple elements also has order $q^{k^{2}}+O\left(q^{k^{2}-1}\right)$ since it is the complement of the discriminant locus. Since $\left|\chi_{k}(g)\right| \leqslant k$ for all g,

$$
\left\langle\chi_{k}, \chi_{k}\right\rangle=\frac{1}{|G|} \sum_{g \in G_{\mathrm{reg}}}\left|\chi_{k}(g)\right|^{2}+O\left(q^{-1}\right)
$$

Because every regular element is contained in a unique conjugate of some T_{λ}, which has exactly $\left[G: N_{G}\left(T_{\lambda}\right)\right]$ such conjugates, this equals

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{\lambda \text { a partition of } k}\left[G: N_{G}\left(T_{\lambda}\right)\right] \sum_{g \in T_{\lambda}^{\text {reg }}}\left|\chi_{k}(g)\right|^{2}+O\left(q^{-1}\right)= \\
& \frac{1}{|G|} \sum_{\lambda}\left[G: N_{G}\left(T_{\lambda}\right)\right] \sum_{g \in T_{\lambda}}\left|\chi_{k}(g)\right|^{2}+O\left(q^{-1}\right),
\end{aligned}
$$

the last step using the fact that the complement of the $T_{\lambda}^{\text {reg }}$ in T_{λ} is of codimension one. We note that the restriction of χ_{k} to T_{λ} is the sum of k distinct characters, so

$$
\sum_{g \in T_{\lambda}}\left|\chi_{k}(g)\right|^{2}=k\left|T_{\lambda}\right| .
$$

Thus the inner product is

$$
k \times \frac{1}{|G|} \sum_{\lambda}\left[G: N_{G}\left(T_{\lambda}\right)\right]\left|T_{\lambda}\right|+O\left(q^{-1}\right)
$$

We have

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{\lambda}\left[G: N_{G}\left(T_{\lambda}\right)\right]\left|T_{\lambda}\right|=\frac{1}{|G|} \sum_{\lambda}\left[G: N_{G}\left(T_{\lambda}\right)\right]\left|T_{\lambda}^{\mathrm{reg}}\right|+O\left(q^{-1}\right) \\
& =\frac{1}{|G|}\left|G_{\mathrm{reg}}\right|+O\left(q^{-1}\right)=1+O\left(q^{-1}\right)
\end{aligned}
$$

The result is now proved for q sufficiently large.

To prove the result for all q, we will show that the inner product $\left\langle\chi_{k}, \chi_{k}\right\rangle$ is a polynomial in q. This will follow if we can show that if S is the subset of G consisting of the union of conjugacy classes of a single type, then $\left[G: C_{G}(g)\right]$ is constant for $g \in S$ and

$$
\begin{equation*}
\sum_{g \in S}\left|\chi_{k}(g)\right|^{2} \tag{49.10}
\end{equation*}
$$

is a polynomial in q. We note that for each type, the index of the centralizer of (49.7) is the same for all such matrices, and that this index is polynomial in q. Thus it is sufficient to show that the sum over the representatives (49.7) is a polynomial in q. Moreover, the value of χ_{k} is unchanged if every instance of a $U_{r}(f)$ is replaced with r blocks of $U(f)$, so we may restrict ourselves to semisimple conjugacy classes in confirming this. Thus if $k=\sum d_{i} r_{i}$, we consider the sum (49.10), where the sum is over all matrices

$$
\left(\begin{array}{lll}
U_{\left(r_{1}\right)}\left(f_{1}\right) & & \\
& \ddots & \\
& & U_{\left(r_{m}\right)}\left(f_{m}\right)
\end{array}\right)
$$

where f_{i} are distinct irreducible polynomials, each of size d_{i}, and $U_{(r)}(f)$ is the sum of r blocks of $U(f)$. It is useful to conjugate these matrices so that they are all elements of the same torus T_{λ} for some λ. The set S is then a subset of T_{λ} characterized by exclusion from certain (non-maximal) subtori.

Let us look at an example. Suppose that $\lambda=(2,2,2)$ and $k=6$. Then S consists of elements of T_{λ}, which may be regarded as $\left(\mathbb{F}_{q^{2}}\right)^{\times}$of the form (α, β, γ), where α, β and γ are distinct elements of $\mathbb{F}_{q^{2}}^{\times}-\mathbb{F}_{q}^{\times}$. Now if we sum (49.10) over all of T_{λ} we get a polynomial in q, namely $6\left(q^{2}-1\right)^{3}$. On the other hand, we must subtract from this three contributions when one of α, β and γ is in \mathbb{F}_{q}^{\times}. These are subtori of the form $T_{(2,2,1)}$. We must also subtract three contributions from subgroups of the form $T_{(2,2)}$ in which two of α, β and γ are equal. Then we must add back contributions with have been subtracted twice, etc.

In general, the set S will consist of the set T_{λ} minus subtori T_{1}, \cdots, T_{N}. If I is a subset of $\{1, \cdots, N\}$ let $T_{I}=\bigcap_{i \in I} T_{i}$. We now use the inclusion-exclusion principle in the form

$$
\sum_{g \in S}\left|\chi_{k}(g)\right|^{2}=\sum_{g \subset T_{\lambda}}\left|\chi_{k}(g)\right|^{2}+\sum_{\varnothing \neq I \subseteq\{1, \cdots, N\}}(-1)^{|I|} \sum_{g \in T_{I}}\left|\chi_{k}(g)\right|^{2}
$$

Each of the sums on the right is easily seen to be a polynomial in q, and so is (49.10).

Theorem 49.9. Assume that θ is an injective character $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$. For each k there exists a cuspidal $\sigma_{k}=\sigma_{k, \theta}$ of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ such that if g is a regular semisimple element of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ whose eigenvalues are the Galois conjugates of $\nu \in \mathbb{F}_{q^{k}}^{\times}$such that $\mathbb{F}_{q^{k}}=\mathbb{F}_{q}(\nu)$, then

$$
\begin{equation*}
\sigma_{k, \theta}(g)=(-1)^{k-1} \sum_{i=0}^{k-1} \theta\left(\nu^{q^{i}}\right) . \tag{49.11}
\end{equation*}
$$

If 1_{k} denotes the trivial character of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, then

$$
\chi_{n}=\sum_{k=1}^{n}(-1)^{k-1} \sigma_{k} \circ 1_{n-k}
$$

Note that $\sigma_{k} \circ 1_{n-k}$ is an irreducible character of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ by Theorem 49.4. So this gives the expression of χ_{n} in terms of irreducibles.

Proof. By induction, we assume the existence of σ_{k} and the decomposition of χ_{k} as stated for $k<n$, and we deduce them for $k=n$.

We will show first that

$$
\begin{equation*}
\left\langle\chi_{n}, \sigma_{k} \circ 1_{n-k}\right\rangle=(-1)^{k-1} \tag{49.12}
\end{equation*}
$$

Let $P=M U$ be the standard parabolic subgroup with Levi factor $M=$ $\mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)$ and unipotent radical U. If $m \in M$ and $u \in U$, then as matrices in $\operatorname{GL}\left(n, \mathbb{F}_{q}\right), m$ and $m u$ have the same characteristic polynomials, so $\chi_{n}(m u)=\chi_{n}(m)$. Thus in the notation of Exercise 49.2 (ii), with $\chi=\chi_{n}$, we have $\chi_{U}=\chi$ restricted to M. Therefore

$$
\left\langle\chi_{n}, \sigma_{k} \circ 1_{n-k}\right\rangle_{G}=\left\langle\chi_{n}, \sigma_{k} \otimes 1_{n-k}\right\rangle_{M}
$$

Let

$$
m=\left(\begin{array}{ll}
m_{1} & \\
& m_{2}
\end{array}\right) \in M, \quad m_{1} \in \mathrm{GL}\left(k, \mathbb{F}_{q}\right), m_{2} \in \mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)
$$

Clearly $\chi_{n}(m)=\chi_{k}\left(m_{1}\right)+\chi_{n-k}\left(m_{2}\right)$. Now using the induction hypothesis, χ_{n-k} does not contain the trivial character of $\mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)$ hence it is orthogonal to 1_{n-k} on $\operatorname{GL}\left(n-k, \mathbb{F}_{q}\right)$; so we can ignore $\chi_{n-k}\left(m_{2}\right)$. Thus

$$
\left\langle\chi_{n}, \sigma_{k} \circ 1_{n-k}\right\rangle_{G}=\left\langle\chi_{k}, \sigma_{k}\right\rangle_{\mathrm{GL}\left(k, \mathbb{F}_{q}\right)} .
$$

By the induction hypothesis, χ_{k} contains σ_{k} with multiplicity $(-1)^{k-1}$, and so (49.12) is proved.

Now $\sigma_{k} \circ 1_{n-1}$ is an irreducible representation of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$, by Theorem 49.4, and so we have exhibited $n-1$ irreducible characters, each of which occurs in χ_{n} with multiplicity ± 1. Since $\left\langle\chi_{n}, \chi_{n}\right\rangle=n$, there must be one remaining irreducible character σ_{n} such that

$$
\begin{equation*}
\chi_{n}=\sum_{k=1}^{n-1}(-1)^{k-1} \sigma_{k} \circ 1_{n-k} \pm \sigma_{n} \tag{49.13}
\end{equation*}
$$

We show now that σ_{n} must be cuspidal. It is sufficient to show that if U is the unipotent radical of the standard parabolic subgroup with Levi factor
$M=\mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)$, and if $m_{1} \in \mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ and $m_{2} \in \mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)$ then

$$
\frac{1}{|U|} \sum_{u \in U} \chi_{n}\left(u\left(\begin{array}{ll}
m_{1} & \\
& m_{2}
\end{array}\right)\right)=\frac{1}{|U|} \sum_{r=1}^{n-1}(-1)^{r-1}\left(\sigma_{r} \circ 1_{n-r}\right)\left(u\left(\begin{array}{l}
m_{1} \\
\\
\\
\\
m_{2}
\end{array}\right)\right)
$$

since by Exercise 49.2 (ii), this will show that the representation affording the character σ_{n} has no U-invariants, the definition of cuspidality. The summand on the left-hand side is independent of u, and by the definition of χ_{n} the left-hand side is just $\chi_{k}\left(m_{1}\right)+\chi_{n-k}\left(m_{2}\right)$. By Exercise 49.4, the right-hand side can also be evaluated. Using (49.11), which we have assumed inductively for σ_{r} with $r<n$, the terms $r=k$ and $r=n-k$ contribute $\chi_{k}\left(m_{1}\right)$ and $\chi_{n-k}\left(m_{2}\right)$ and all other terms are zero.

To evaluate the sign in (49.13), we compare the values at the identity to get the relation

$$
n=\sum_{k=1}^{n-1}(-1)^{k-1}\binom{n}{k}_{(q)} \prod_{j=1}^{k-1}\left(q^{j}-1\right) \pm \prod_{j=1}^{n-1}\left(q^{j}-1\right)
$$

where

$$
\binom{n}{k}_{(q)}=\frac{\prod_{j=1}^{n}\left(q^{j}-1\right)}{\left(\prod_{j=1}^{k}\left(q^{j}-1\right)\right)\left(\prod_{j=1}^{n-k}\left(q^{j}-1\right)\right)}
$$

is the Gaussian binomial coefficient, which is the index of the parabolic subgroup with Levi factor $\mathrm{GL}(k) \times \mathrm{GL}(n-k)$. Substituting $q=0$ in this identity shows that the missing sign must be $(-1)^{n-1}$.

If g is a a regular element of $T_{(k)}$ then the value of σ_{k} on a regular element of $T_{(k)}$) is now given by (49.11) since if $k<n$ then $\sigma_{k} \circ 1_{n-k}$ vanishes on g, which is not conjugate to any element of the parabolic subgroup from which $\sigma_{k} \circ 1_{n-k}$ is induced.

See Exercise 49.10 for an example showing that the cuspidal characters that we have constructed are not enough because of our assumption that θ is injective. Without attempting a completely general result, we will now give a variation of Theorem 49.9 that is sufficient to construct all cuspidal representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ when k is prime.

Proposition 49.5. Let $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$be a character. Assume that the restriction of θ to \mathbb{F}_{q}^{\times}is trivial, but that for any $0<d \leqslant k$, the restriction of θ to $\mathbb{F}_{q^{d}}^{\times}$does not factor through the norm $\operatorname{map} \mathbb{F}_{q^{d}}^{\times} \longrightarrow \mathbb{F}_{q^{r}}^{\times}$for any proper divisor r of d. Then

$$
\left\langle\chi_{k}, \chi_{k}\right\rangle=k+1
$$

Proof. The proof is similar to Proposition 49.4. It is sufficient to show this for sufficiently large q. As in that proposition, the sum is

$$
\frac{1}{|G|} \sum_{\lambda \text { a partition of } k}\left[G: N_{G}\left(T_{\lambda}\right)\right] \sum_{g \in T_{\lambda}}\left|\chi_{k}(g)\right|^{2}+O\left(q^{-1}\right)
$$

We note that $\left[N_{G}\left(T_{\lambda}\right): T_{\lambda}\right]=z_{\lambda}$, defined in (39.1). With our assumptions if the partition λ contains r parts of size 1 , the restriction of χ_{k} to T_{λ} consists of r copies of the trivial character, and $k-r$ copies of other characters, all distinct. (Exercise 49.9.) The inner product of χ_{k} with itself on T_{λ} is thus $k-r+r^{2}$. The sum is thus

$$
\sum_{\lambda} \frac{1}{z_{\lambda}}\left(k+r^{2}-r\right)+O\left(q^{-1}\right)
$$

We can interpret this as a sum over the symmetric group. If $\sigma \in S_{k}$, let $r(\sigma)$ be the number of fixed points of σ. In the conjugacy class of shape λ, there are $k!/ z_{\lambda}$ elements, and so

$$
\sum_{\lambda} \frac{1}{z_{\lambda}}\left(k+r^{2}-r\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}}\left(k+r(\sigma)^{2}-r(\sigma)\right) .
$$

Now $r(\sigma)=\boldsymbol{h}_{(k-1,1)}=\boldsymbol{s}_{(k-1,1)}+\boldsymbol{h}_{k}$ in the notation of Chapter 39. Here, of course, $\boldsymbol{h}_{k}=\boldsymbol{s}_{(k)}$ is the trivial character of S_{k} and $\boldsymbol{s}_{(k-1,1)}$ is an irreducible character of degree $k-1$. We note that $r(\sigma)^{2}-r(\sigma)$ is the value of the character $s_{(k-1,1)}^{2}+\boldsymbol{s}_{(k-1,1)}$, so the sum is

$$
\left\langle k \boldsymbol{h}_{k}+\boldsymbol{s}_{(k-1,1)}^{2}+\boldsymbol{s}_{(k-1,1)}, \boldsymbol{h}_{k}\right\rangle=k\left\langle\boldsymbol{h}_{k}, \boldsymbol{h}_{k}\right\rangle+\left\langle\boldsymbol{s}_{(k-1,1)}^{2}, \boldsymbol{h}_{k}\right\rangle+\left\langle\boldsymbol{s}_{(k-1,1)}, \boldsymbol{h}_{k}\right\rangle
$$

where the inner product is now over the symmetric group. Clearly $\left\langle\boldsymbol{h}_{k}, \boldsymbol{h}_{k}\right\rangle=1$ and $\left\langle\boldsymbol{s}_{(k-1,1)}, \boldsymbol{h}_{k}\right\rangle=0$. Since the character $\boldsymbol{s}_{(k-1,1)}$ is real and \boldsymbol{h}_{k} is the constant function equal to 1 ,

$$
\left\langle s_{(k-1,1)}^{2}, \boldsymbol{h}_{k}\right\rangle=\left\langle s_{(k-1,1)}, s_{(k-1,1)}\right\rangle=1
$$

and the result follows.
Theorem 49.10. Suppose that n is a prime, and let $\theta: \mathbb{F}_{q^{n}}^{\times} \longrightarrow \mathbb{C}^{\times}$be a character that does not factor through the norm map $\mathbb{F}_{q^{n}}^{\times} \longrightarrow \mathbb{F}_{q^{r}}^{\times}$for any proper divisor r of n. Then there exists a cuspidal character $\sigma_{n, \theta}$ of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ such that if g is a regular semisimple element with eigenvalues $\nu, \nu^{q}, \cdots \in \mathbb{F}_{q^{n}}$ then

$$
\begin{equation*}
\sigma_{n, \theta}(g)=(-1)^{n-1} \sum_{i=0}^{n-1} \theta\left(\nu^{q^{i}}\right) \tag{49.14}
\end{equation*}
$$

This gives a complete list of the cuspidal characters of $\mathbb{F}_{q^{n}}$.
The assumption that n is prime is unnecessary.

Proof. By Exercise 49.12, we can extend θ to a character of $\overline{\mathbb{F}}_{q}$ without enlarging the kernel. Thus the kernel of θ is contained in $\mathbb{F}_{q^{n}}^{\times}$and does not contain the kernel of any norm $\operatorname{map} \mathbb{F}_{q^{n}}^{\times} \longrightarrow \mathbb{F}_{q^{r}}^{\times}$for any proper divisor r of n. There are now two cases.

If χ is nontrivial on \mathbb{F}_{q}^{\times}, then we may proceed as in Theorem 49.9. We are not in the case of that theorem, since we have not assumed that the kernel of θ is trivial, and we do not guarantee that the sequence of cuspidals σ_{k} that we construct can be extended to all k. However, if $d \leqslant k$, our assumptions guarantee that the restriction of θ to $\mathbb{F}_{q^{d}}^{\times}$does not factor through the norm map to $\mathbb{F}_{q^{r}}$ for any proper divisor of d, since the kernel of θ is contained in $\mathbb{F}_{q^{n}}$, whose intersection with $\mathbb{F}_{q^{d}}$ is just \mathbb{F}_{q} since n is prime and $d<n$. In particular, the kernel of θ cannot contain the kernel of $N: \mathbb{F}_{q^{d}}^{\times} \longrightarrow \mathbb{F}_{q^{r}}^{\times}$. We get $\left\langle\chi_{k}, \chi_{k}\right\rangle=k$ for $k \leqslant n$, and proceeding as in Theorem 49.9 we get a sequence of cuspidal representations σ_{k} of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ with $k \leqslant n$ such that

$$
\chi_{k}=\sum_{r=1}^{k}(-1)^{r-1} \sigma_{r} \circ 1_{k-r}
$$

If θ is trivial on \mathbb{F}_{q}^{\times}, it is still true that the restriction of θ to $\mathbb{F}_{q^{d}}$ does not factor through the norm map to $\mathbb{F}_{q^{r}}$ for any proper divisor of d whenever $k \leqslant n$. So $\left\langle\chi_{k}, \chi_{k}\right\rangle=k+1$ by Theorem 49.5. Now, we can proceed as before, except that $\sigma_{1}=1_{1}$, so $\sigma_{1} \circ 1_{k-1}$ is not irreducible - it is the sum of two irreducible representations $\boldsymbol{s}_{(k-1,1)}(q)$ and $\boldsymbol{s}_{(k)}(q)$ of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$, in the notation of Chapter 48. Of course, $s_{(k)}(q)$ is the same as 1_{k} in the notation we have been using. The rest of the argument goes through as in Theorem 49.9. In particular the inner product formula $\left\langle\chi_{k}, \chi_{k}\right\rangle=k+1$ together with fact that $1_{1} \circ 1_{k-1}$ accounts for two representations in the decomposition of χ_{k} guarantees that σ_{k}, defined to be $\chi_{k}-\sum_{r<k}(-1)^{r} \sigma_{r} \circ 1_{k-r}$ is irreducible.

The cuspidal characters we have constructed are linearly independent by (49.14). They are equal in number to the total number of cuspidal representations, and so we have constructed all of them.

Let us consider next representations of reductive groups over local fields. The problem is to parametrize irreducible representations of Lie and p-adic groups such as $\mathrm{GL}(k, F)$, where $F=\mathbb{R}, \mathbb{C}$ or a non-Archimedean local field.

The parametrization of irreducible representations by characters of tori, which we have already seen for finite fields, extends to representations of Lie and p-adic groups such as $\mathrm{GL}(k, F)$, where $F=\mathbb{R}, \mathbb{C}$ or a non-Archimedean local field. If T is a maximal torus of $G=\mathrm{GL}(k, F)$, then the characters of T parametrize certain representations of G. As we will explain, not all admissible representations can be parametrized by characters of tori, though (as we will explain) in some sense most are so parametrized. Moreover if we expand the parametrization we can get a bijection. This is the local Langlands correspondence, which we will now discuss (though without formulating a precise statement).

In this context, a torus is the group of rational points of an algebraic group that, over the algebraic closure of F, is isomorphic to a product of r copies of the multiplicative group G_{m}. (See Chapter 27.) The torus is called anisotropic if it has no subtori isomorphic to G_{m} over F. If $F=\mathbb{R}$, an anisotropic torus is compact. For example, $\mathrm{SL}(2, \mathbb{R})$ contains two conjugacy classes of maximal tori, the diagonal torus, and the compact torus $\mathrm{SO}(2)$. Over the complex numbers, the group $\operatorname{SO}(2, \mathbb{C})$ is conjugate by the Cayley transform to the diagonal subgroup, since if $a^{2}+b^{2}=1$, then

$$
c\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) c^{-1}=\left(\begin{array}{cc}
a+b i & \\
& a-b i
\end{array}\right), \quad c=\frac{1}{\sqrt{2 i}}\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right)
$$

Thus $\mathrm{SO}(2)$ is an anisotropic torus. If G is semisimple, then G has an anisotropic maximal torus if and only if its maximal compact subgroup K has the same rank as G. An examination of Table 31.1 shows that this is sometimes true and sometimes not. For example, by Proposition 31.3, this will be the case if G / K is a Hermitian symmetric space. The group $\operatorname{SO}(n, 1)$ has anisotropic maximal tori if n is even, but not if n is odd. $\mathrm{SL}(k, \mathbb{R})$ does only if $k=2$.

If F is a local field and E / F is an extension of degree k, then, as in the case of a finite field, we may embed $E^{\times} \longrightarrow \mathrm{GL}(k, F)$, and the norm one elements will be an anisotropic torus of $\mathrm{SL}(k, F)$. From this point of view, we see why $\mathrm{SL}(2, \mathbb{R})$ is the only special linear group over \mathbb{R} that has an anisotropic maximal torus - the algebraic closure \mathbb{C} of \mathbb{R} is too small.

Let G be a locally compact group and Z its center. Let (π, V) be an irreducible unitary representation of G. By Schur's Lemma, $\pi(z)$ acts by a scalar $\omega(z)$ of absolute value 1 for $z \in Z$. Let $L^{2}(G, \omega)$ be the space of all functions f on G such that $f(z g)=\omega(z) f(g)$ and

$$
\int_{G / Z}|f(g)|^{2} d g<\infty
$$

The group G acts on $L^{2}(G, \omega)$ by right translation. The representation π is said to be in the discrete series if it can be embedded as a direct summand in $L^{2}(G, \omega)$. If G is a reductive group over a local field, the irreducible representations of G can be built up from discrete series representations of Levi factors of parabolic subgroups by parabolic induction.

Let F be a local field, and let E / F be a finite extension. Then the (relative) Weil group $W_{E / F}$ is a certain finite extension of E^{\times}. It fits in an exact sequence:

$$
1 \longrightarrow E^{\times} \longrightarrow W_{E / F} \longrightarrow \operatorname{Gal}(E / F) \longrightarrow 1
$$

If $E^{\prime} \supset E$ is a bigger field, there is a canonical map $W_{E^{\prime} / F} \longrightarrow W_{E / F}$ inducing the norm map $E^{\prime} \longrightarrow E$, and the absolute Weil group W_{F} is the inverse limit of the $W_{E / F}$. The discrete series representations of $\mathrm{GL}(k, F)$ are then parametrized by the irreducible k-dimensional complex representations
of $W_{E / F}$. This is a slight oversimplification - we are neglecting the Steinberg representation and a few other discrete series that can be parametrized by replacing $W_{E / F}$ by the slightly larger Weil-Deligne group.

This parametrization of irreducible representations of $\mathrm{GL}(k, F)$ by local Langlands correspondence. Borel [11] is still the standard reference for the Langlands correspondences. The local Langlands conjectures for GL (k) over non-Archimedean local fields of characteristic zero were proved by Harris and Taylor [53]. They also state the correspondence somewhat more precisely than Borel [11]. We gave an expository account of the correspondence in the last Section of Bump [18], which still seems to us to be useful.

Assume that $G=\mathrm{GL}(k)$ over a local field F. We now explain why most but not all discrete series representations correspond to characters of anisotropic tori. If T is a maximal torus of G, then T / Z is anisotropic if $T \cong E^{\times}$where E / F is an extension of degree k. If θ is a character of E^{\times}then inducing θ to $W_{E / F}$ gives a representation of $W_{E / F}$ of degree k. This gives a parametrization of many - even most - discrete series representations by characters of tori. In fact, if F is non-Archimedean and the residue characteristic is prime to k, then every irreducible representation is of this form. This is proved in Tate [118] (2.2.5.3). A simple proof when $k=2$ is given in Bump [18], Proposition 4.9.3.

Although the parametrization of the discrete series representations by characters of tori is thus a more complex story for local fields than for finite fields, the construction of the irreducible representations by parabolic induction still follows the same pattern as in the finite field case. An analog of Theorem 49.3 is true, and the method of proof extends - the function Δ becomes a distribution, and the corresponding analog of Mackey theory is due to Bruhat [17]. Some differences occur because of measure considerations. There are important differences between the finite field case and the local field case when reducibility occurs. The finite field statement Corollary 49.1 is both suggestive and misleading when looking at the local field case. See Zelevinsky [132]. Zelevinsky's complete results are reviewed in Harris and Taylor [53].

Turning at last to automorphic forms, characters of tori still parametrize automorphic representations, and characters of anisotropic tori parametrize automorphic cuspidal representations. Thus, if E / F is an extension of number fields with $[E: F]=k$ and A_{E} is the adele ring of E, and if θ is a character of $A_{E}^{\times} / E^{\times}$, then there should exist an automorphic representation of $\mathrm{GL}(k, F)$ whose L-function is the same as the L-function of θ. If E / F is cyclic, this is a theorem of Arthur and Clozel [3], Section 3.6. In contrast with the situation over local fields, however, where "most" discrete series are parametrized by characters of tori, the cuspidal representations obtained this way are rare. A few more are obtained if we allow parametrizations by the global Weil group, but even these are in the minority.

EXERCISES

Exercise 49.1. (Transitivity of parabolic induction) (i) Let P be a parabolic subgroup of GL (k) with Levi factor M and unipotent radical U, so $P=M U$. Suppose that Q is a parabolic subgroup of M with Levi factor M_{Q} and unipotent radical U_{Q}. Show that M_{Q} is the Levi factor of a parabolic subgroup R of GL (k) with unipotent radical $U_{Q} U$.
(ii) In the setting of (i), show that parabolic induction from M_{Q} directly to $\mathrm{GL}(k)$ gives the same result as parabolically inducing first to M, and then from M to $\mathrm{GL}(k)$.
(iii) Show that the multiplication \circ is associative and that $\mathcal{R}(q)$ is a ring.

Exercise 49.2. (Frobenius reciprocity for parabolic induction) Let $P=$ $M U$ be a parabolic subgroup of $G=\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$.
(i) Let (π, V) be a representation of G and let (σ, W) be a representation of M. Let V^{U} be the space of U-invariants in V. Since M normalizes U, V^{U} is an M-module. On the other hand, we may parabolically induce W to a representation $\operatorname{Ind}(\sigma)$ of G. Show that

$$
\operatorname{Hom}_{G}(V, \operatorname{Ind}(\sigma)) \cong \operatorname{Hom}_{M}\left(V^{U}, W\right)
$$

Hint: Make use of Theorem 34.1. We need to show that

$$
\operatorname{Hom}_{P}(V, W) \cong \operatorname{Hom}_{M}\left(V^{U}, W\right)
$$

Let V_{0} be the span of elements of the form $w-\pi(u) w$ with $u \in U$. Show that $V=V^{U} \oplus V_{0}$, as M-modules, and that any P-equivariant map $V \longrightarrow W$ factors through $V / V_{0} \cong V^{U}$.
(ii) Let χ be a character of G, and let σ be a character of M. Let $\operatorname{Ind}(\sigma)$ be the character of the representation of G parabolically induced from σ, and let χ_{U} be the function on M defined by

$$
\chi_{U}(m)=\frac{1}{|U|} \sum_{u \in U} \chi(m u) .
$$

Show that χ_{U} is a class function on M, and that

$$
\langle\chi, \operatorname{Ind}(\sigma)\rangle_{G}=\left\langle\chi_{U}, \sigma\right\rangle_{M}
$$

Conclude that χ_{U} is a character of M. (Note: Although this statement is closely related to (i), and may be deduced from it, this may also be proved using (34.14) and Frobenius reciprocity for characters, avoiding use of (i).)

Exercise 49.3. Suppose that H is a subgroup of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ containing T such that for every $\alpha \in \Phi$ the group H contains either X_{α} or $X_{-\alpha}$. Show that H is a (not necessarily standard) parabolic subgroup. If H contains exactly one of X_{α} or $X_{-\alpha}$ for each $\alpha \in S$, show that H is a (not necessarily standard) Borel subgroup. (See Exercise 21.1).

The next exercise is very analogous to the computation of the constant terms of Eisenstein series. For example, the computation around pages 39-40 of Langlands [91] is a near exact analog.

Exercise 49.4. Let $1 \leqslant k, r<n$. Let σ_{1}, σ_{2} be monatomic characters of $\operatorname{GL}\left(r, \mathbb{F}_{q}\right)$ and $\mathrm{GL}\left(n-r, \mathbb{F}_{q}\right)$ with respect to a pair of distinct cuspidal representations. Let σ denote the character of the representation $\sigma_{1} \circ \sigma_{2}$ of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$, which is irreducible by Theorem 49.6. Let $m_{1} \in \operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ and $m_{2} \in \operatorname{GL}\left(n-k, \mathbb{F}_{q}\right)$. Let U be the unipotent radical of the standard parabolic subgroup P of $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$ with Levi factor $M=\mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(n-k, \mathbb{F}_{q}\right)$. if $k=r, k \neq n-r$,

$$
\frac{1}{|U|} \sum_{u \in U} \sigma\left(u\left(m_{1}{ }^{m_{2}}\right)\right)=\left\{\begin{array}{cl}
\sigma_{1}\left(m_{1}\right) \sigma_{2}\left(m_{2}\right) & \text { if } k=r, k \neq n-r \\
\sigma_{1}\left(m_{2}\right) \sigma_{2}\left(m_{1}\right) & \text { if } k=n-r, k \neq r \\
\sigma_{1}\left(m_{1}\right)+\sigma_{1}\left(m_{2}\right) \sigma_{2}\left(m_{1}\right) & \text { if } k=r=n-r
\end{array}\right.
$$

Hint: Both sides are class functions, so it is sufficient to compare the inner products with $\rho_{1} \otimes \rho_{2}$ where ρ_{1} and ρ_{2} are irreducible representations of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$ andGL $(n-$ $\left.k, \mathbb{F}_{q}\right)$ respectively. Using Exercise 49.2 this amounts to comparing $\sigma_{1} \circ \sigma_{2}$ and $\rho_{1} \circ \rho_{2}$. To do this, explain why in the last statement in Theorem 49.6 the assumption that the θ_{i}^{\prime} are monatomic with respect to distinct cuspidals may be omitted provided this assumption is made for the θ_{i}.

Exercise 49.5. If $k+l=m$, and if $P=M U$ is the standard parabolic of $\mathrm{GL}\left(m, \mathbb{F}_{q}\right)$ with Levi factor $M=\mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(l, \mathbb{F}_{q}\right)$, then the space of U-invariants of any representation (π, V) of $\mathrm{GL}\left(m, \mathbb{F}_{q}\right)$ is an M-module. Show that this functor from representations of $\mathrm{GL}\left(m, \mathbb{F}_{q}\right)$ to representations of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right) \times \mathrm{GL}\left(l, \mathbb{F}_{q}\right)$ can be made the basis of a comultiplication in $\mathcal{R}(q)$ and that $\mathcal{R}(q)$ is a Hopf algebra.

Exercise 49.6. Prove Theorem 49.5.
Exercise 49.7. Let $G=\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$. As in Exercise 47.4, let N be the subgroup of upper triangular unipotent matrices. Let $\psi: \mathbb{F}_{q} \longrightarrow \mathbb{C}^{\times}$be a nontrivial additive character, and let ψ_{N} be the character of N defined by

$$
\psi_{N}\left(\begin{array}{cccc}
1 & x_{12} & x_{13} & \cdots
\end{array} x_{1 k}\left(\begin{array}{ccc}
\\
& 1 & x_{23} \\
& & \cdots
\end{array} x_{2 k}\right)\right.
$$

Let P be the "mirabolic" subgroup of $g \in G$ whose bottom row is $(0, \cdots, 0,1)$. (Note that P is not a parabolic subgroup.) Call an irreducible representation of P cuspidal if it has no U-fixed vector for the unipotent radical U of any standard parabolic subgroup of G. Note that U is contained in P for each such U. If $1 \leqslant r<k$ let G_{r} be $\operatorname{GL}\left(r, \mathbb{F}_{q}\right)$ embedded in G in the upper left hand corner, and let N^{r} be the subgroup of $x \in N$ in which $x_{i j}=0$ if $i<j \leqslant r$.
(i) Show that the representation $\kappa=\operatorname{Ind}_{N}^{P}(\psi)$ is irreducible. (Hint: Use Mackey theory to compute $\operatorname{Hom}_{P}(\kappa, \kappa)$.)
(ii) Let (π, V) be a cuspidal representation of P. Let L_{r} be the set of all linear functionals λ on V such that $\lambda(\pi(x) v)=\psi_{N}(x) v$ for $v \in V$ and $x \in L_{r}$. Show that if $\lambda \in L_{r}$ and $r>1$ then there exists $\gamma \in G_{r-1}$ such that $\lambda^{\prime} \in L_{r-1}$, where $\lambda^{\prime}(v)=\lambda(\pi(\gamma) v)$.
(iii) Show that the restriction of an cuspidal representation π of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ to P is a direct sum of copies of κ. Then use Exercise 47.4 to show that at most one copy can occur, so $\left.\pi\right|_{P}=\kappa$.
(iv) Show that every irreducible cuspidal representation of $\mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ has dimension $(q-1)\left(q^{2}-1\right) \cdots\left(q^{k-1}-1\right)$.

Exercise 49.8. Let $\theta: \mathbb{F}_{q^{k}}^{\times} \longrightarrow \mathbb{C}^{\times}$be a character.
(i) Show that the following are equivalent.
(a) The character θ does not factor through the norm map $\mathbb{F}_{q^{k}} \longrightarrow$
$\mathbb{F}_{q^{d}}$ for any proper divisor d of k;
(b) The character θ has k distinct conjugates under $\operatorname{Gal}\left(\mathbb{F}_{q^{k}} / \mathbb{F}_{q}\right)$;
(c) We have $\theta^{q^{r}-1} \neq 1$ for all divisors r of k.
(ii) Show that the number of such θ satisfying these equivalent conditions given by (49.8), and that this is also the number of monic irreducible polynomials of degree k over \mathbb{F}_{q}.

Exercise 49.9. Suppose that $\theta: \overline{\mathbb{F}}_{q}^{\times} \longrightarrow \mathbb{C}^{\times}$is a character. Suppose that for all $d \leqslant k$, the restriction of θ to $\mathbb{F}_{q^{d}}^{\times}$does not factor through the norm map $\mathbb{F}_{q^{d}}^{\times} \longrightarrow \mathbb{F}_{q^{r}}^{\times}$ for any proper divisor r of d. Let λ be a partition of k. Show that the restriction of θ to T_{λ} contains the trivial character multiplicity r, equal to the number of parts of λ of size 1 , and to $k-r$ other characters that are all distinct from one another.

Exercise 49.10. Obtain a character table of GL $\left(2, \mathbb{F}_{3}\right)$, a group of order 48. Show that there are three distinct characters θ of \mathbb{F}_{9}^{\times}such that θ does not factor through the norm map $\mathbb{F}_{q^{k}} \longrightarrow \mathbb{F}_{q^{d}}$ for any proper divisor of d. Of these, two (of order eight) can be extended to an injective homomorphism $\overline{\mathbb{F}}_{3}^{\times} \longrightarrow \mathbb{C}^{\times}$, but the third (of order four) cannot. If θ is this third character, then χ_{2} defined by (49.9) defines a character that splits as $\chi_{\text {triv }}+\chi_{\text {steinberg }}-\sigma_{2}$, where $\chi_{\text {triv }}$ and $\chi_{\text {steinberg }}$ are the trivial and Steinberg characters, and σ_{2} is the character of a cuspidal representation. Show also that σ_{2} differs from the sum of the two one-dimensional characters of $\mathrm{GL}\left(2, \mathrm{~F}_{3}\right)$ only on the two non-semisimple conjugacy classes, of elements of orders 3 and 6.

Exercise 49.11. Suppose that χ is an irreducible representation of $\operatorname{GL}\left(k, \mathbb{F}_{q}\right)$. Let g be a regular semisimple element whose eigenvalues generate $\mathbb{F}_{q^{k}}$. If $\chi(g) \neq 0$, show that χ is monatomic.

Exercise 49.12. Let θ be a character of \mathbb{F}_{q}. Show that there exists a character $\bar{\theta}$ of $\overline{\mathbb{F}}_{q}$ extending θ, whose kernel is the same as that of θ.

Exercise 49.13. Let θ be an injective character of $\overline{\mathbb{F}}_{q}$. Prove the following result.
Theorem. Let λ be a partition of n and let $t \in T_{\lambda}$. Then $\sigma_{k, \theta}(t)=0$ unless $\lambda=(n)$.
Hint: Assume by induction that the statement is true for all $k<n$. Write $t=\left(t_{1}, \cdots, t_{r}\right)$ where $t_{i} \in G L\left(\lambda_{i}, \mathbb{F}_{q}\right)$ has distinct eigenvalues in $\mathbb{F}_{q^{\lambda_{i}}}$. Show that

$$
\left(\sigma_{k} \circ 1_{n-k}\right)(t)=\sum_{\lambda_{i}} \sigma_{k}\left(t_{i}\right)
$$

Cohomology of Grassmannians

In this chapter, we will deviate from our usual policy of giving complete proofs in order to explain some important matters. Among other things, we will see that the ring \mathcal{R} introduced in Chapter 36 has yet another interpretation in terms of the cohomology of Grassmannians.

References for this chapter are Fulton [44], Hiller [58], Hodge and Pedoe [59], Kleiman [79], and Manivel [96].

We recall the notion of a $C W$-complex. Intuitively, this is just a space decomposed into open cells, the closure of each cell being contained in the union of cells of lower dimension - for example a simplicial complex. (See Dold [35], Chapter 5, and the appendix in Milnor and Stasheff [98].) Let \mathbb{B}_{n} be the closed unit ball in Euclidean n-space. Let \mathbb{B}_{n}° be its interior, the unit disk, and let \mathbb{S}_{n-1} be its boundary, the $n-1$ sphere. We are given a Hausdorff topological space X together with set \mathcal{S} of subspaces of X. It is assumed that X is the disjoint union of the $C_{i} \in \mathcal{S}$, which are called cells. Each space $C_{i} \in \mathcal{S}$ is homeomorphic to $\mathbb{B}_{d(i)}^{\circ}$ for some $d(i)$ by a homeomorphism $\varepsilon_{i}: \mathbb{B}_{d(i)}^{\circ} \longrightarrow C_{i}$ that extends to a continuous map $\varepsilon_{i}: \mathbb{B}_{d(i)} \longrightarrow X$. The image of $\mathbb{S}_{d(i)-1}$ under ε_{i} lies in the union of cells C_{i} of strictly lower dimension. Thus, if we define the n-skeleton

$$
X_{n}=\bigcup_{d(i) \leqslant n} C_{i},
$$

the image of $\mathbb{S}_{d(i)-1}$ under ε_{i} is contained in $X_{d(i)-1}$. It is assumed that its image is contained in only finitely many C_{i} and that X is given the Whitehead topology, in which a subset of X is closed if and only if its intersection with each C_{i} is closed.

Let K be a compact Lie group, T a maximal compact subgroup, and X the flag manifold K / T. We recall from Theorem 29.4 that X is naturally a complex analytic manifold. The reason (we recall) is that we can identify $X=G / B$ where G is the complexification of K and B is its Borel subgroup.

We have already seen in Chapter 17 that the Euler characteristic of X is equal to the order of the Weyl group W. It is possible to be a bit more precise
than this: $H^{i}(X)=0$ unless i is even and $\sum_{i} \operatorname{dim} H^{2 i}(X)=|W|$. We will explain the reason for this now.

We may give a cell decomposition making X into a CW-complex as follows. If $w \in W$, then $B w B / B$ is homeomorphic to $\mathbb{C}^{l(w)}$, where l is the length function on W. The proof is the same as Proposition 48.7: the unipotent subgroup U_{w}^{-}whose Lie algebra is

is homeomorphic to $\mathbb{C}^{l(w)}$, and $u \longmapsto u w B$ is a homeomorphism of U_{w}^{-}onto $B w B / B$. The closure $\mathcal{C}(w)$ of $B w B / B-$ known as a "closed Schubert cell" - is a union of cells of smaller dimension, so G / B becomes a CW complex. Since the homology of a CW-complex is the same as the cellular homology of its skeleton (Dold [35], Chapter 5), and all the cells in this complex have even dimension - the real dimension of $B w B / B$ is $2 l(w)$ - it follows that the homology of X is all even-dimensional.

Since X is a compact complex analytic manifold (Theorem 29.4), it is an orientable manifold, and by Poincaré duality we may associate with $\mathcal{C}(w)$ a cohomology class, and these classes span the cohomology ring $H^{*}(X)$ as a vector space.

This description can be recast in the language of algebraic geometry. A substitute for the cohomology ring was defined by Chow [28]. See Hartshorne [54], Appendix A, for a convenient synopsis of the Chow ring, and see Fulton [45] for a modern treatment. In the graded Chow ring of a nonsingular variety X, the homogeneous elements of degree r are rational equivalence classes of algebraic cycles. Here an algebraic cycle of codimension r is an element of the free Abelian group generated by the irreducible subvarieties of codimension r. Rational equivalence of cycles is an equivalence relation of algebraic deformation. For divisors, which are cycles of codimension 1 , it coincides with the familiar relation of linear equivalence. We recall that two divisors D_{1} and D_{2} are linearly equivalent if $D_{1}-D_{2}$ is the divisor of a function f in the function field of X.

The multiplication in the Chow ring is the intersection of cycles. If two subvarieties Y and Z (of codimensions m and n) are given, we say that Y and Z intersect properly if every irreducible component of $Y \cap Z$ has codimension $m+n$. (If $m+n$ exceeds the dimension of X, this means that Y and Z have an empty intersection.) Chow's Lemma asserts that Y and Z may be deformed to intersect properly. That is, there exist Y^{\prime} and Z^{\prime} rationally equivalent to Y and Z, respectively, such that Y and Z^{\prime} intersect properly. The intersection $X \cap Z$ is then a union of cycles of codimension $m+n$, whose sum in the Chow ring is $Y \cap Z$. (They must be counted with a certain intersection multiplicity.)

The "moving" process embodied by Chow's Lemma will be an issue for us when we consider the intersection pairing in Grassmannians, so let us contemplate a simple case of intersections in \mathbb{P}^{n}. Hartshorne [54], I.7, gives a beautiful and complete treatment of intersection theory in \mathbb{P}^{n}.

The space $\mathbb{P}^{n}(\mathbb{C})$, which we will come to presently, resembles flag manifolds and Grassmannians in that the Chow ring and the cohomology ring coincide. (Indeed, $\mathbb{P}^{n}(\mathbb{C})$ is a Grassmannian.) The homology of $\mathbb{P}^{n}(\mathbb{C})$ can be computed very simply since it has a cell decomposition in which each cell is an affine space $\mathbb{A}^{i} \cong \mathbb{C}^{i}$.

$$
\begin{equation*}
\mathbb{P}^{n}(\mathbb{C})=\mathbb{C}^{n} \cup \mathbb{C}^{n-1} \cup \cdots \cup \mathbb{C}^{0}, \quad \operatorname{dim}\left(\mathbb{C}^{i}\right)=2 i \tag{50.1}
\end{equation*}
$$

Each cell contributes to the homology in exactly one dimension, so

$$
H_{i}\left(\mathbb{P}^{n}(\mathbb{C})\right) \cong\left\{\begin{array}{l}
\mathbb{Z} \text { if } i \leqslant 2 n \text { is even } \\
0 \text { otherwise }
\end{array}\right.
$$

The cohomology is the same by Poincare duality. The multiplicative structure in the ring $H^{*}\left(\mathbb{P}^{n}(\mathbb{C})\right)$ is that of a truncated polynomial ring. The cohomology class of a hyperplane (\mathbb{C}^{n-1} in the decomposition (50.1)) is a generator.

Let us consider the intersection of two curves Y and Z in $\mathbb{P}^{2}(\mathbb{C})$. The intersection $Y \cdot Z$, which is the product in the Chow ring, 1 , is a cycle of degree zero, that is, just a sum of points. The rational equivalence class of a cycle of degree zero is completely determined by the number of points, and intersection theory on \mathbb{P}^{2} is fully described if we know how to compute this number.

Each curve is the locus of a homogeneous polynomial in three variables, and the degree of this polynomial is the degrees of the curves, $d(Y)$ and $d(Z)$. According to Bezout's Theorem, the number of points in the intersection of Y and Z equals $d(Y) d(Z)$.

Fig. 50.1. A curve of degree d in \mathbb{P}^{2} is linearly equvalent to d lines.

Bezout's Theorem can be used to illustrate Chow's Lemma. First, note that a curve of degree d is rationally equivalent to a sum of d lines (Figure 50.1), so Y is linearly equivalent to a sum of $d(Y)$ lines, and Z is linearly equivalent to a sum of $d(Z)$ lines. Since two lines have a unique point of intersection, the first set of $d(Y)$ lines will intersect the second set of $d(Z)$ lines in exactly $d(Y) d(Z)$ points, which is Bezout's Theorem for \mathbb{P}^{2} (Figure 50.2).

It is understood that a point of transversal intersection is counted once, but a point where Y and Z are tangent is counted with a multiplicity that can be defined in different ways.

Fig. 50.2. Bezout's Theorem via Chow's Lemma.

Fig. 50.3. The self-intersection multiplicity of a cycle in \mathbb{P}^{2}.

The intersection $Y \cdot Z$ must be defined even when the cycles Y and Z are equal. For this, one may replace Z by a rationally equivalent cycle before taking the intersection. The self-intersection $Y \cdot Y$ is computed using Chow's Lemma, which allows one copy of Y to be deformed so that its intersection with the undeformed Y is transversal. Thus, replacing Y by a rationally equivalent cycle, one may count the intersections straightforwardly (Figure 50.2).

The Chow ring often misses much of the cohomology. For example, if X is a curve of genus $g>1$, then $H^{1}(X) \cong \mathbb{Z}^{2 g}$ is nontrivial, yet the cohomology of an algebraic cycle of codimension d lies in $H^{2 d}(X)$, and is never odddimensional. However, if X is a flag variety, projective space, or Grassmannian, the Chow ring and the cohomology ring are isomorphic. The cup product corresponds to the intersection of algebraic cycles.

Let us now consider intersection theory on G / P, where P is a parabolic subgroup, that is, a proper subgroup of G containing B. For such a variety, the story is much the same as for the flag manifold - the Chow ring and the cohomology ring can be identified, and the Bruhat decomposition gives a decomposition of the space as a CW-complex. We can write

$$
B \backslash G / P \cong W / W_{P}
$$

where W_{P} is the Weyl group of the Levi factor of P. If $G=\mathrm{GL}(n)$, this is Proposition 48.1 (iii). If $w \in W$, let $\mathcal{C}(w)^{\circ}$ be the open Schubert cell BwP/P, and let $\mathcal{C}(w)$ be its closure, which is the union of $\mathcal{C}(w)^{\circ}$ and open Schubert cells of lower dimension. The closed Schubert cells $\mathcal{C}(w)$ give a basis of the cohomology.

We will discuss the particular case where $G=\mathrm{GL}(r+s, \mathbb{C})$ and P is the maximal parabolic subgroup

$$
\left\{\left.\left(\begin{array}{r}
g_{1} * \\
\\
g_{2}
\end{array}\right) \right\rvert\, g_{1} \in \mathrm{GL}(r, \mathbb{C}), g_{2} \in \mathrm{GL}(s, \mathbb{C})\right\}
$$

with Levi factor $M=\mathrm{GL}(r, \mathbb{C}) \times \mathrm{GL}(s, \mathbb{C})$. The quotient $X_{r, s}=G / P$ is then the Grassmannian, a compact complex manifold of dimension $r s$. In this case, the cohomology ring $H^{*}\left(X_{r, s}\right)$ is closely related to the ring \mathcal{R} introduced in Chapter 36.

To explain this point, let us explain how to "truncate" the ring \mathcal{R} and obtain a finite-dimensional algebra that will be isomorphic to $H^{*}\left(X_{r, s}\right)$. Suppose that \mathcal{J}_{r} is the linear span of all $\boldsymbol{s}_{\boldsymbol{\lambda}}$ such that the length of λ is $>r$. Then \mathcal{J}_{r} is an ideal, and the quotient $\mathcal{R} / \mathcal{J}_{r} \cong \Lambda^{(r)}$ by the characteristic map. Indeed, it follows from Proposition 38.3 that \mathcal{J}_{r} is the kernel of the homomorphism $\mathrm{ch}^{(n)}: \mathcal{R} \longrightarrow \Lambda^{(n)}$.

We can also consider the ideal ${ }^{\iota} \mathcal{J}_{s}$, where ι is the involution of Theorem 36.3. By Proposition 37.2, this is the span of the s_{λ} in which the length of λ^{t} is greater than s - in other words, in which $\lambda_{1}>s$. So $\mathcal{J}_{r}+{ }^{\iota} \mathcal{J}_{s}$ is the span of all \boldsymbol{s}_{λ} such that the diagram of λ does not fit in an $r \times s$ box. Therefore, the ring $\mathcal{R}_{r, s}=\mathcal{R} /\left(\mathcal{J}_{r}+{ }^{\iota} \mathcal{J}_{s}\right)$ is spanned by the images of \boldsymbol{s}_{λ} where the diagram of λ does fit in an $r \times s$ box. For example, $\mathcal{R}_{3,2}$ is spanned by $\boldsymbol{s}_{()}, \boldsymbol{s}_{(1)}, \boldsymbol{s}_{(2)}, \boldsymbol{s}_{(11)}$, $s_{(21)}, \boldsymbol{s}_{(22)}, s_{(111)}, \boldsymbol{s}_{(211)}, \boldsymbol{s}_{(221)}$, and $\boldsymbol{s}_{(222)}$. It is a free \mathbb{Z}-module of rank 10 . In general the rank of the ring $\mathcal{R}_{r, s}$ is $\binom{r+s}{r}$, which is the number of partitions of $r+s$ of length $\leqslant r$ into parts not exceeding s - that is, partitions whose diagrams fit into a box of dimensions $r \times s$.

Theorem 50.1. The cohomology ring of $X_{r, s}$ is isomorphic to $\mathcal{R}_{r, s}$. In this isomorphism, the cohomology classes of the Schubert cells correspond to the \boldsymbol{s}_{λ}, as λ runs through the partitions whose diagrams fit into an $r \times s$ box.

We will not prove this. Proofs (all rather similar and based on a method of Hodge) may be found in Fulton [44], Hiller [58], Hodge and Pedoe [59], and Manivel [96]. We will instead give an informal discussion of the result, including a precise description of the isomorphism and an example.

Let us explain how to associate a partition λ whose diagram is contained in the $r \times s$ box with a Schubert cell of codimension equal to $|\lambda|$. In fact, to every coset $w W_{P}$ in W / W_{P} we will associate such a partition.

Right multiplication by an element of $W_{P} \cong S_{r} \times S_{s}$ consists of reordering the first r columns and the last s columns. Hence, the representative w of the given coset in W / W_{P} may be chosen to be a permutation matrix such
that the entries in the first r columns are in ascending order, and so that the entries in the last s columns are in ascending order. In other words, if σ is the permutation such that $w_{\sigma(j), j} \neq 0$, then

$$
\begin{equation*}
\sigma(1)<\sigma(2)<\cdots<\sigma(r), \quad \sigma(r+1)<\sigma(r+2)<\cdots<\sigma(r+s) \tag{50.2}
\end{equation*}
$$

With this choice, we associate a partition λ as follows. We mark some of the zero entries of the permutation matrix w as follows. If $1 \leqslant j \leqslant r$, if the 1 in the i-th row is in the last s columns, and if the 1 in the j-th column is above (i, j), then we mark the (i, j)-th entry. For example, if $r=3$ and $s=2$, here are a some examples of a marked matrix:

$$
\left(\begin{array}{lllll}
1 & & & & \tag{50.3}\\
& 1 & & & \\
\bullet & \bullet & & 1 & \\
& & 1 & & \\
\bullet & \bullet & \bullet & & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & & & & \\
\bullet & & & 1 & \\
& 1 & & & \\
& & 1 & & \\
\bullet & \bullet & \bullet & & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & & & & \\
\bullet & & & 1 & \\
\bullet & & & & 1 \\
& 1 & & & \\
& & 1 & &
\end{array}\right)
$$

Now, we collect the marked columns and read off the permutation. For each row containing marks, there will be a part of the permutation equal to the number of marks in that row. In the three examples above, the respective permutations λ are:

$$
(2,2,1), \quad(2,1,1), \quad(2)
$$

Their diagrams fit into a 2×3 box. We will write \mathcal{C}_{λ} for the closed Schubert cell $\mathcal{C}(w)$ when λ and w are related this way.

Let F_{i} be the vector subspace of \mathbb{C}^{r+s} consisting of vectors of the form ${ }^{t}\left(x_{1}, \cdots, x_{i}, 0, \cdots, 0\right)$. The group G acts on the Grassmannian $\mathcal{G}_{r, s}$ of r dimensional subspaces of \mathbb{C}^{r+s}. The stabilizer of F_{r} is precisely the parabolic subgroup P, so there is a bijection $X_{r, s} \longrightarrow \mathcal{G}_{r, s}$ in which the coset $g P \longmapsto$ $g F_{r}$. We topologize $\mathcal{G}_{r, s}$ by asking that this map be a homeomorphism.

We can characterize the Schubert cells in terms of this parametrization by means of integer sequences. Given a sequence $(d)=\left(d_{0}, d_{1}, \cdots, d_{r+s}\right)$ with

$$
\begin{equation*}
0 \leqslant d_{0} \leqslant d_{1} \leqslant \cdots \leqslant d_{r+s}=r, \quad 0 \leqslant d_{i} \leqslant 1 \tag{50.4}
\end{equation*}
$$

we can consider the set $\mathfrak{C}_{(d)}^{\circ}$ of V in $\mathcal{G}_{r, s}$ such that

$$
\begin{equation*}
\operatorname{dim}\left(V \cap F_{i}\right)=d_{i} \tag{50.5}
\end{equation*}
$$

Let $\mathfrak{C}_{(d)}$ be the set of V in $\mathcal{G}_{r, s}$ such that

$$
\begin{equation*}
\operatorname{dim}\left(V \cap F_{i}\right) \geqslant d_{i} \tag{50.6}
\end{equation*}
$$

The function $V \longmapsto \operatorname{dim}\left(V \cap F_{i}\right)$ is upper semicontinuous on $\mathcal{G}_{r, s}$, that is, for any integer $n,\left\{V \mid \operatorname{dim}\left(V \cap F_{i}\right) \geqslant n\right\}$ is closed. Therefore $\mathfrak{C}_{(d)}$ is closed, and in fact it is the closure of $\mathfrak{C}_{(d)}^{\circ}$.

Lemma 50.1. In the characterization of $\mathfrak{C}_{(d)}$ it is only necessary to impose the condition (50.6) at integers $0<i<r+s$ such that $d_{i+1}=d_{i}>d_{i-1}$.

Proof. If $d_{i+1}>d_{i}$ and $\operatorname{dim}\left(V \cap F_{i+1}\right) \geqslant d_{i+1}$, then since $V \cap F_{i}$ has codimension at most 1 in $V \cap F_{i+1}$ we do not need to assume $\operatorname{dim}\left(V \cap F_{i}\right) \geqslant d_{i}$. If $d_{i}=d_{i-1}$ and $\operatorname{dim}\left(V \cap F_{i-1}\right) \geqslant d_{i-1}$ then $\operatorname{dim}\left(V \cap F_{i-1}\right) \geqslant d_{i-1}$.

We will show $\mathfrak{C}_{(d)}^{\circ}$ is the image in $\mathcal{G}_{r, s}$ of an open Schubert cell. For example, with $r=3$ and $s=2$, taking w to be the first matrix in (50.3), we consider the Schubert cell $B w P / P$, whose image in $\mathcal{G}_{3,2}$ consists of all $b w F_{3}$, where $b \in B$. A one-dimensional unipotent subspace of B is sufficient to produce all of these elements, and a typical such space consists of all matrices of the form

$$
\left(\begin{array}{llllll}
1 & & & & \\
& 1 & & & \\
& & 1 & \alpha & \\
& & & 1 & \\
& & & & 1
\end{array}\right)\left(\begin{array}{lllll}
1 & & & & \\
& & 1 & & \\
\\
& & & 1 & \\
& & & 1 & \\
& & & & \\
& & & & \\
& &
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\alpha x_{3} \\
x_{3} \\
0
\end{array}\right)
$$

with α fixed. These may be characterized by the conditions (50.5) with

$$
\left(d_{0}, \cdots, d_{5}\right)=(0,1,2,2,3,3)
$$

Proposition 50.1. The image in $\mathcal{G}_{r, s}$ of the Schubert cell $\mathcal{C}(w)$ corresponding to the partition λ (whose diagram, we have noted, must fit in an $r \times s$ box) is $\mathfrak{C}_{(d)}$, where the integer sequence $\left(d_{0}, d_{1}, \cdots, d_{r+s}\right)$ where

$$
\begin{equation*}
d_{k}=i \quad \Longleftrightarrow \quad s+i-\lambda_{i} \leqslant k \leqslant s+i-\lambda_{i+1} \tag{50.7}
\end{equation*}
$$

Similarly, the image of $\mathcal{C}(w)^{\circ}$ is $\mathfrak{C}_{(d)}^{\circ}$.
We note that, by Lemma 50.1, if (d) is the sequence in (50.7), the closed Schubert cell $\mathfrak{C}_{(d)}$ is characterized by the conditions

$$
\begin{equation*}
\operatorname{dim}\left(V \cap F_{s+i-\lambda_{i}}\right) \geqslant i \tag{50.8}
\end{equation*}
$$

Also, by Lemma 50.1 , this only needs to be checked when $\lambda_{i}>\lambda_{i+1}$. (The characterization of the open Schubert cell still requires $\operatorname{dim}\left(V \cap F_{k}\right)$ to be specified for all k, not just those of the form $s+i-\lambda_{i}$.)

Proof. We will prove this for the open cell. The image of $\mathcal{C}(w)^{\circ}$ in $\mathcal{G}_{r, s}$ consists of all spaces $b w F_{r}$ with $b \in B$, so we must show that, with d_{i} as in (50.7), we have

$$
\operatorname{dim}\left(b w F_{r} \cap F_{i}\right)=d_{i}
$$

Since b stabilizes F_{i}, we may apply b^{-1}, and we are reduced to showing that

$$
\operatorname{dim}\left(w F_{r} \cap F_{i}\right)=d_{i}
$$

If σ is the permutation such that $w_{\sigma(j), j} \neq 0$, then the number of entries below the nonzero element in the i-th column, where $1 \leqslant i \leqslant r$, is $r+s-\sigma(i)$. However, $r-i$ of these are not "marked." Therefore $\lambda_{i}=(r+s-\sigma(i))-(r-i)$, that is,

$$
\begin{equation*}
\sigma(i)=s+i-\lambda_{i} . \tag{50.9}
\end{equation*}
$$

Now $w F_{r}$ is the space of vectors that have arbitrary values in the $\sigma(1)$, $\sigma(2), \cdots, \sigma(r)$ positions, and all other entries are zero. So the dimension of $w F_{r} \cap F_{i}$ is the number of k such that $1 \leqslant j \leqslant r$ and $\sigma(k) \leqslant i$. Using (50.2),

$$
\operatorname{dim}\left(w F_{r} \cap F_{i}\right)=k \quad \Longleftrightarrow \quad \sigma(i) \leqslant k<\sigma(i+1)
$$

which by (50.9) is equivalent to (50.7).
When (d) and λ are related as in (50.7), we will also denote the Schubert cell $\mathfrak{C}_{(d)}$ by \mathfrak{C}_{λ}.

As we asserted earlier, the cohomology ring $X_{r, s}$ is isomorphic to the quotient $\mathcal{R}_{r, s}$ of the ring \mathcal{R}, which has played such a role in this last part of the book. To get some intuition for this, let us consider the identity in \mathcal{R}

$$
s_{(1)} \cdot s_{(1)}=s_{(2)}+s_{(11)} .
$$

By the parametrization we have given, $\boldsymbol{s}_{\boldsymbol{\lambda}}$ corresponds to the Schubert cell \mathfrak{C}_{λ}. In the case at hand, the relevant cells are characterized by the following conditions:

$$
\begin{array}{r}
\mathfrak{C}_{(1)}=\left\{V \mid \operatorname{dim}\left(V \cap F_{s}\right) \geqslant 1\right\}, \\
\mathfrak{C}_{(2)}=\left\{V \mid \operatorname{dim}\left(V \cap F_{s-1}\right) \geqslant 1\right\}, \\
\mathfrak{C}_{(11)}=\left\{V \mid \operatorname{dim}\left(V \cap F_{s+1}\right) \geqslant 2\right\} .
\end{array}
$$

So our expectation is that if we deform $\mathfrak{C}_{(1)}$ into two copies $\mathfrak{C}_{(1)}^{\prime}$ and $\mathfrak{C}_{(1)}^{\prime \prime}$ that intersect properly, the intersection will be rationally equivalent to the sum of $\mathfrak{C}_{(2)}$ and $\mathfrak{C}_{(11)}$. We may choose spaces G_{s} and H_{s} of codimension s such that $G_{s} \cap H_{s}=F_{s-1}$ and $G_{s}+H_{s}=F_{s+1}$. Now let us consider the intersection of

$$
\mathfrak{C}_{(1)}^{\prime}=\left\{V \mid \operatorname{dim}\left(V \cap G_{s}\right) \geqslant 1\right\}, \quad \mathfrak{C}_{(1)}^{\prime \prime}=\left\{V \mid \operatorname{dim}\left(V \cap H_{s}\right) \geqslant 1\right\} .
$$

If V lies in both $\mathfrak{C}_{(1)}^{\prime}$ and $\mathfrak{C}_{(1)}^{\prime \prime}$, then let v^{\prime} and $v^{\prime \prime}$ be nonzero vectors in $V \cap G_{s}$ and $V \cap H_{s}$, respectively. There are two possibilities. Either v^{\prime} and $v^{\prime \prime}$ are proportional, in which case they lie in $V \cap F_{s-1}$, so $V \in \mathfrak{C}_{(2)}$, or they are linearly independent. In the second case, both lie in F_{s+1}, so $V \in \mathfrak{C}_{(11)}$.

The intersection theory of flag manifolds is very similar to that of Grassmannians. The difference is that while the cohomology of Grassmannians for $\mathrm{GL}(r)$ is modeled on the ring \mathcal{R}, which can be identified as in Chapter 36 with the ring Λ of symmetric polynomials, the cohomology of flag manifolds is modeled on a polynomial ring. Specifically, if B is the Borel subgroup of
$G=\mathrm{GL}(r, \mathbb{C})$, then the cohomology ring of G / B is a quotient of the polynomial ring $\mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$, where each x_{i} is homogeneous of degree 2 . Lascoux and Schützenberger defined elements of the polynomial ring $\mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$ called Schubert polynomials which play a role analogous to that of the Schur polynomials (See Fulton [44] and Manivel [96]).

A minor problem is that $H^{*}(G / B)$ is not precisely the polynomial ring $\mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$ but a quotient, just as $H^{*}\left(\mathcal{G}_{r, s}\right)$ is not precisely \mathcal{R} or even its quotient $\mathcal{R} / \mathcal{J}_{r}$, which is isomorphic to the ring of symmetric polynomials in $\mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$.

The ring $\mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$ should be more properly regarded as the cohomology ring of an infinite CW-complex, which is the cohomology ring of the space \mathcal{F}_{r} of r-flags in \mathbb{C}^{∞}. That is, let $\mathcal{F}_{r, s}$ be the space of r-flags in \mathbb{C}^{r+s} :

$$
\begin{equation*}
\{0\}=F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{r} \subset \mathbb{C}^{r+s}, \quad \operatorname{dim}\left(F_{i}\right)=i \tag{50.10}
\end{equation*}
$$

We can regard $\mathcal{F}_{r, s}$ as G / P, where P is the parabolic subgroup

$$
\left\{\left.\left(\begin{array}{rr}
b & * \tag{50.11}\\
& g
\end{array}\right) \right\rvert\, b \in B, g \in \mathrm{GL}(r, \mathbb{C})\right\}
$$

We may embed $\mathcal{F}_{r, s} \longleftrightarrow \mathcal{F}_{r, s+1}$, and the union of the $\mathcal{F}_{r, s}$ (topologized as the direct limit) is \mathcal{F}_{r}. The open Schubert cells in $\mathcal{F}_{r, s}$ correspond to double cosets $B \backslash G / P$ parametrized by elements $w \in S_{r+s} / S_{s}$. As we increase s, the CW-complex $\mathcal{F}_{r, s}$ is obtained by adding new cells, but only in higher dimension. The n-skeleton stabilizes when s is sufficiently large, and so $H^{n}\left(\mathcal{F}_{r}\right) \cong H^{n}\left(F_{r, s}\right)$ if s is sufficiently large. The $\operatorname{ring} H^{*}\left(\mathcal{F}_{r}\right) \cong \mathbb{Z}\left[x_{1}, \cdots, x_{r}\right]$ is perhaps the natural domain of the Schubert polynomials.

The cohomology of Grassmannians (and flag manifolds) provided some of the original evidence for the famous conjectures of Weil [125] on the number of points on a variety over a finite field. Let us count the number of points of $X_{r, s}$ over the field \mathbb{F}_{q} with field elements. Representing the space as $\operatorname{GL}\left(n, \mathbb{F}_{q}\right) / P\left(\mathbb{F}_{q}\right)$, where $n=r+s$, its cardinality is

$$
\begin{gathered}
\frac{\left|\operatorname{GL}\left(n, \mathbb{F}_{q}\right)\right|}{\left|P\left(\mathbb{F}_{a}\right)\right|}= \\
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{r}-1\right)\left(q^{r}-q\right) \cdots\left(q^{r}-q^{r-1}\right) \cdot\left(q^{s}-1\right)\left(q^{s}-q\right) \cdots\left(q^{s}-q^{s-1}\right) \cdot q^{r s}} .
\end{gathered}
$$

In the denominator, we have used the Levi decomposition of $P=M U$, where the Levi factor $M=\mathrm{GL}(r) \times \mathrm{GL}(s)$ and the unipotent radical U has dimension $r s$. This is a Gaussian binomial coefficient $\binom{n}{r}_{q}$. It is a generating function for the cohomology ring $H^{*}\left(X_{r, s}\right)$.

Motivated by these examples and other similar ones, as well as the examples of projective nonsingular curves (for which there is cohomology in dimension 1, so that the Chow ring and the cohomology ring are definitely
distinct), Weil proposed a more precise relationship between the complex cohomology of a nonsingular projective variety and the number of solutions over a finite field. Proving the Weil conjectures required a new cohomology theory that was eventually supplied by Grothendieck. This is the l-adic cohomology. Let \bar{F}_{q} be the algebraic closure of \mathbb{F}_{q}, and let $\phi: X \longrightarrow X$ be the geometric Frobenius map, which raises the coordinates of a point in X to the q-th power. The fixed points of ϕ are then the elements of $X\left(\mathbb{F}_{q}\right)$, and they may be counted by means of a generalization of the Lefschetz fixed-point formula:

$$
\left|X\left(F_{q}\right)\right|=\sum_{k=0}^{2 n}(-1)^{k} \operatorname{tr}\left(\phi \mid H^{k}\right)
$$

The dimensions of the l-adic cohomology groups are the same as the complex cohomology, and in these examples (since all the cohomology comes from algebraic cycles) the odd-dimensional cohomology vanishes while on $H^{2 i}(X)$ the Frobenius endomorphism acts by the scalar q^{i}. Thus

$$
\left|X\left(F_{q}\right)\right|=\sum_{k=0}^{n} \operatorname{dim} H^{2 k}(X) q^{k}
$$

The l-adic cohomology groups have the same dimensions as the complex ones. Hence, the Grothendieck-Lefschetz fixed-point formula explains the extraordinary fact that the number of points over a finite field of the Grassmannian or flag varieties is a generating function for the complex cohomology.

EXERCISES

Exercise 50.1. Consider the space $\mathcal{F}_{r, s}\left(\mathbb{F}_{q}\right)$ of r-flags in \mathbb{F}^{r+s}. Compute the cardinality by representing it as $\operatorname{GL}\left(n, \mathbb{F}_{q}\right) / P\left(\mathbb{F}_{q}\right)$, where P is the parabolic subgroup (50.11). Show that $\left|\mathcal{F}_{r, s}\left(\mathbb{F}_{q}\right)\right|=\sum_{i} d_{i}(r, s) q^{i}$, where for fixed s, we have $d_{i}(r, s)=\binom{r+i-1}{i}$.

Exercise 50.2. Prove that $H^{*}\left(\mathcal{F}_{r}\right)$ is a polynomial ring in r generators, with generators in $H^{2}\left(\mathcal{F}_{r}\right)$ being the cohomology classes of the canonical line bundles ξ_{i}; here x_{i} associates with a flag (50.10) the one-dimensional vector space F_{i} / F_{i-1}.

References

1. J. Adams. Lectures on Lie Groups. W. A. Benjamin, Inc., New YorkAmsterdam, 1969.
2. A. Albert. Structure of Algebras. American Mathematical Society Colloquium Publications, vol. 24. American Mathematical Society, New York, 1939.
3. J. Arthur and L. Clozel. Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, volume 120 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1989.
4. E. Artin. Geometric Algebra. Interscience Publishers, Inc., New York and London, 1957.
5. A. Ash, D. Mumford, M. Rapoport, and Y. Tai. Smooth Compactification of Locally Symmetric Varieties. Math. Sci. Press, Brookline, Mass., 1975. Lie Groups: History, Frontiers and Applications, Vol. IV.
6. W. Baily. Introductory Lectures on Automorphic Forms. Iwanami Shoten, Publishers, Tokyo, 1973. Kano Memorial Lectures, No. 2, Publications of the Mathematical Society of Japan, No. 12.
7. W. Baily and A. Borel. Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. (2), 84:442-528, 1966.
8. I. Bernstein and A. Zelevinsky. Induced representations of reductive \mathfrak{p}-adic groups. I. Ann. Sci. École Norm. Sup. (4), 10(4):441-472, 1977.
9. J. Bernstein and A. Zelevinsky. Representations of the group $G L(n, F)$ where F is a local nonarchimedean field. Russian Mathematical Surveys, 3:1-68, 1976.
10. P. Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical Statistics. John Wiley \& Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication.
11. A. Borel. Automorphic L-functions. In Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 27-61. Amer. Math. Soc., Providence, R.I., 1979.
12. A. Borel. Linear Algebraic Groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
13. A. Borel and J. Tits. Groupes réductifs. Inst. Hautes Études Sci. Publ. Math., 27:55-150, 1965.
14. A. Böttcher and B. Silbermann. Introduction to Large Truncated Toeplitz Matrices. Universitext. Springer-Verlag, New York, 1999.
15. N. Bourbaki. Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
16. T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups, volume 98 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1985.
17. F. Bruhat. Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France, 84:97-205, 1956.
18. D. Bump. Automorphic Forms and Representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
19. D. Bump and P. Diaconis. Toeplitz minors. J. Combin. Theory Ser. A, 97(2):252-271, 2002.
20. D. Bump, P. Diaconis, and J. Keller. Unitary correlations and the Fejér kernel. Math. Phys. Anal. Geom., 5(2):101-123, 2002.
21. E. Cartan. Sur une classe remarquable d'espaces de Riemann. Bull. Soc. Math. France, 54, 55:214-264, 114-134, 1926, 1927.
22. R. Carter. Finite Groups of Lie Type, Conjugacy classes and complex characters. Pure and Applied Mathematics. John Wiley \& Sons Inc., New York, 1985. A Wiley-Interscience Publication.
23. P. Cartier. Representations of p-adic groups: a survey. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 111-155. Amer. Math. Soc., Providence, R.I., 1979.
24. W. Casselman. Introduction to the Theory of Admissible Representations of Reductive p-adic Groups. Widely circulated preprint. Available at http://www.math.ubc.ca/~cass/research.html, 1974.
25. V. Chari and A. Pressley. A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994.
26. C. Chevalley. Theory of Lie Groups. I. Princeton Mathematical Series, vol. 8. Princeton University Press, Princeton, N. J., 1946.
27. C. Chevalley. The Algebraic Theory of Spinors and Clifford Algebras. SpringerVerlag, Berlin, 1997. Collected works. Vol. 2, edited and with a foreword by Pierre Cartier and Catherine Chevalley, with a postface by J.-P. Bourguignon.
28. W. Chow. On equivalence classes of cycles in an algebraic variety. Ann. of Math. (2), 64:450-479, 1956.
29. B. Conrey. L-functions and random matrices. In Mathematics unlimited-2001 and beyond, pages 331-352. Springer, Berlin, 2001.
30. C. Curtis. Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, volume 15 of History of Mathematics. American Mathematical Society, Providence, RI, 1999.
31. P. Deligne and G. Lusztig. Representations of Reductive Groups over Finite Fields. Ann. of Math. (2), 103(1):103-161, 1976.
32. P. Diaconis and A. Ram. Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques. Michigan Math. J., 48:157-190, 2000. Dedicated to William Fulton on the occasion of his 60 th birthday.
33. P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49-62, 1994. Studies in applied probability.
34. A. Dold. Fixed point index and fixed point theorem for Euclidean neighborhood retracts. Topology, 4:1-8, 1965.
35. A. Dold. Lectures on Algebraic Topology. Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 200.
36. E. Dynkin. Maximal subgroups of semi-simple Lie groups and the classification of primitive groups of transformations. Doklady Akad. Nauk SSSR (N.S.), 75:333-336, 1950.
37. E. Dynkin. Maximal subgroups of the classical groups. Trudy Moskov. Mat. Obšč., 1:39-166, 1952.
38. E. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S., 30(72):349-462, 1952.
39. F. Dyson. Statistical theory of the energy levels of complex systems, I, II, III. J. Mathematical Phys., 3:140-156, 157-165, 166-175, 1962.
40. S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology. Princeton University Press, Princeton, New Jersey, 1952.
41. H. Freudenthal. Lie groups in the foundations of geometry. Advances in Math., 1:145-190 (1964), 1964.
42. G. Frobenius. Über die charakterisischen Einheiten der symmetrischen Gruppe. S'ber. Akad. Wiss. Berlin, 504-537, 1903.
43. G. Frobenius and I. Schur. Über die rellen Darstellungen der endlichen Gruppen. S'ber. Akad. Wiss. Berlin, 186-208, 1906.
44. W. Fulton. Young Tableaux, with applications to representation theory and geometry, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997.
45. W. Fulton. Intersection Theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, second edition, 1998.
46. I. Gelfand, M. Graev, and I. Piatetski-Shapiro. Representation Theory and Automorphic Functions. Academic Press Inc., 1990. Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition.
47. R. Goodman and N. Wallach. Representations and Invariants of the Classical Groups, volume 68 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1998.
48. R. Gow. Properties of the characters of the finite general linear group related to the transpose-inverse involution. Proc. London Math. Soc. (3), 47(3):493-506, 1983.
49. J. Green. The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80:402-447, 1955.
50. B. Gross. Some applications of Gelfand pairs to number theory. Bull. Amer. Math. Soc. (N.S.), 24:277-301, 1991.
51. P. Halmos. Measure Theory. D. Van Nostrand Company, Inc., New York, N. Y., 1950.
52. Harish-Chandra. Eisenstein series over finite fields. In Functional analysis and related fields (Proc. Conf. M. Stone, Univ. Chicago, Chicago, Ill., 1968), pages 76-88. Springer, New York, 1970.
53. M. Harris and R. Taylor. The Geometry and Cohomology of Some Simple Shimura Varieties, volume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich.
54. R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
55. E. Hecke. Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklungen, I and II. Math. Ann., 114:1-28, 316-351, 1937.
56. S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces, volume 80 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.
57. E. Hewitt and K. Ross. Abstract Harmonic Analysis. Vol. I, Structure of topological groups, integration theory, group representations, volume 115 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1979.
58. H. Hiller. Geometry of Coxeter Groups, volume 54 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass., 1982.
59. W. Hodge and D. Pedoe. Methods of Algebraic Geometry. Vol. II. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994. Book III: General theory of algebraic varieties in projective space, Book IV: Quadrics and Grassmann varieties, Reprint of the 1952 original.
60. R. Howe. θ-series and invariant theory. In Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 275-285. Amer. Math. Soc., Providence, R.I., 1979.
61. R. Howe. Harish-Chandra Homomorphisms for \mathfrak{p}-adic Groups, volume 59 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1985. With the collaboration of Allen Moy.
62. R. Howe. Hecke algebras and p-adic GL_{n}. In Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), volume 177 of Contemp. Math., pages 65-100. Amer. Math. Soc., Providence, RI, 1994.
63. R. Howe. Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc., pages 1-182. Bar-Ilan Univ., Ramat Gan, 1995.
64. R. Howe and E.-C. Tan. Nonabelian Harmonic Analysis. Universitext. Springer-Verlag, New York, 1992. Applications of SL(2, R).
65. R. Howlett and G. Lehrer. Induced cuspidal representations and generalised Hecke rings. Invent. Math., 58(1):37-64, 1980.
66. E. Ince. Ordinary Differential Equations. Dover Publications, New York, 1944.
67. N. Inglis, R. Richardson, and J. Saxl. An explicit model for the complex representations of s_{n}. Arch. Math. (Basel), 54:258-259, 1990.
68. I. M. Isaacs. Character Theory of Finite Groups. Dover Publications Inc., New York, 1994. Corrected reprint of the 1976 original [Academic Press, New York; MR 57 \#417].
69. N. Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ. Tokyo Sect. I, 10:215-236, 1964.
70. N. Iwahori. Generalized Tits system (Bruhat decompostition) on p-adic semisimple groups. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 71-83. Amer. Math. Soc., Providence, R.I., 1966.
71. N. Iwahori and H. Matsumoto. On some Bruhat decomposition and the structure of the Hecke rings of \mathfrak{p}-adic Chevalley groups. Inst. Hautes Etudes Sci. Publ. Math., 25:5-48, 1965.
72. N. Jacobson. Exceptional Lie Algebras, volume 1 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1971.
73. M. Jimbo. A q-analogue of $U(\mathfrak{g l}(N+1))$, Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys., 11(3):247-252, 1986.
74. V. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2), 126:335-388, 1987.
75. N. Katz and P. Sarnak. Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.), 36(1):1-26, 1999.
76. N. Kawanaka and H. Matsuyama. A twisted version of the Frobenius-Schur indicator and multiplicity-free permutation representations. Hokkaido Math. J., 19(3):495-508, 1990.
77. J. Keating and N. Snaith. Random matrix theory and $\zeta(1 / 2+i t)$. Comm. Math. Phys., 214(1):57-89, 2000.
78. R. King. Branching rules for classical Lie groups using tensor and spinor methods. J. Phys. A, 8:429-449, 1975.
79. S. Kleiman. Problem 15: rigorous foundation of Schubert's enumerative calculus. In Mathematical Developments Arising from Hilbert Problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pages 445482. Proc. Sympos. Pure Math., Vol. XXVIII. Amer. Math. Soc., Providence, R. I., 1976.
80. A. Klyachko. Models for complex representations of groups $G L(n, q)$. Mat. Sb. (N.S.), 120(162)(3):371-386, 1983.
81. A. Knapp. Representation Theory of Semisimple Groups, an overview based on examples, volume 36 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1986.
82. A. Knapp. Lie groups, Lie algebras, and Chomology, volume 34 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1988.
83. A. Knapp. Lie Groups Beyond an Introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 2002.
84. M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol. The Book of Involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits.
85. D. Knuth. The Art of Computer Programming. Volume 3, Sorting and Searching. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Addison-Wesley Series in Computer Science and Information Processing.
86. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Vol I. Interscience Publishers, a division of John Wiley \& Sons, New York-London, 1963.
87. A. Korányi and J. Wolf. Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math., 87:899-939, 1965.
88. A. Korányi and J. Wolf. Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math. (2), 81:265-288, 1965.
89. J. Landsberg and L. Manivel. The projective geometry of Freudenthal's magic square. J. Algebra, 239(2):477-512, 2001.
90. S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. SpringerVerlag, New York, third edition, 2002.
91. R. Langlands. Euler Products. Yale University Press, New Haven, Conn., 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967, Yale Mathematical Monographs, 1.
92. H. B. Lawson and M.-L. Michelsohn. Spin Geometry, volume 38 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989.
93. D. Littlewood. The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York, 1940.
94. L. Loomis. An Introduction to Abstract Harmonic Analysis. D. Van Nostrand Company, Inc., Toronto-New York-London, 1953.
95. I. Macdonald. Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
96. L. Manivel. Symmetric Functions, Schubert Polynomials and Degeneracy Loci, volume 6 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI, 2001. Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3.
97. M. Mehta. Random Matrices. Academic Press Inc., Boston, MA, second edition, 1991.
98. J. Milnor and J. Stasheff. Characteristic Classes. Princeton University Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76.
99. C. Moeglin. Representations of GL(n) over the real field. In Representation theory and automorphic forms (Edinburgh, 1996), volume 61 of Proc. Sympos. Pure Math., pages 157-166. Amer. Math. Soc., Providence, RI, 1997.
100. C. Mœglin and J.-L. Waldspurger. Spectral Decomposition and Eisenstein Series, Une paraphrase de l'Écriture [A paraphrase of Scripture], volume 113 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995.
101. I. Pyateskii-Shapiro. Automorphic Functions and the Geometry of Classical Domains. Translated from the Russian. Mathematics and Its Applications, Vol. 8. Gordon and Breach Science Publishers, New York, 1969.
102. J. Rogawski. On modules over the Hecke algebra of a p-adic group. Invent. Math., 79:443-465, 1985.
103. H. Rubenthaler. Les paires duales dans les algèbres de Lie réductives. Astérisque, 219, 1994.
104. W. Rudin. Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.
105. B. Sagan. The Symmetric Group, representations, combinatorial algorithms, and symmetric functions, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001.
106. I. Satake. On representations and compactifications of symmetric Riemannian spaces. Ann. of Math. (2), 71:77-110, 1960.
107. I. Satake. Theory of spherical functions on reductive algebraic groups over \mathfrak{p}-adic fields. Inst. Hautes Études Sci. Publ. Math., 18:5-69, 1963.
108. I. Satake. Classification Theory of Semi-simple Algebraic Groups. Marcel Dekker Inc., New York, 1971. With an appendix by M. Sugiura, Notes prepared by Doris Schattschneider, Lecture Notes in Pure and Applied Mathematics, 3.
109. I. Satake. Algebraic Structures of Symmetric Domains, volume 4 of Kano Memorial Lectures. Iwanami Shoten and Princeton University Press, Tokyo, 1980.
110. R. Schafer. An Introduction to Nonassociative Algebras. Pure and Applied Mathematics, Vol. 22. Academic Press, New York, 1966.
111. J.-P. Serre. Galois Cohomology. Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author.
112. E. Spanier. Algebraic Topology. McGraw-Hill Book Co., New York, 1966.
113. T. Springer. Galois cohomology of linear algebraic groups. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 149-158. Amer. Math. Soc., Providence, R.I., 1966.
114. T. Springer. Cusp Forms for Finite Groups. In Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes in Mathematics, Vol. 131, pages 97-120. Springer, Berlin, 1970.
115. R. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
116. G. Szegö. On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.J, 1952(Tome Supplementaire):228-238, 1952.
117. T. Tamagawa. On the ζ-functions of a division algebra. Ann. of Math. (2), 77:387-405, 1963.
118. J. Tate. Number theoretic background. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3-26. Amer. Math. Soc., Providence, R.I., 1979.
119. J. Tits. Classification of algebraic semisimple groups. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 33-62, Providence, R.I., 1966, 1966. Amer. Math. Soc.
120. V. Varadarajan. An Introduction to Harmonic Analysis on Semisimple Lie Groups, volume 16 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1989.
121. È. Vinberg, editor. Lie Groups and Lie Algebras, III, volume 41 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras, A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [MR 91b:22001], Translation by V. Minachin [V. V. Minakhin], Translation edited by A. L. Onishchik and E. B. Vinberg.
122. D. Vogan. Unitary Representations of Reductive Lie Groups, volume 118 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1987.
123. N. Wallach. Real Reductive Groups. I, volume 132 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.
124. A. Weil. L'intégration dans les Groupes Topologiques et ses Applications. Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, 1940. [This book has been republished by the author at Princeton, N. J., 1941.].
125. A. Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497-508, 1949.
126. A. Weil. Algebras with involutions and the classical groups. J. Indian Math. Soc. (N.S.), 24:589-623 (1961), 1960.
127. A. Weil. Sur certains groupes d'opérateurs unitaires. Acta Math., 111:143-211, 1964.
128. A. Weil. Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math., 113:1-87, 1965.
129. H. Weyl. Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen, i, ii and iii. Math. Zeitschrift, 23:271-309,24:328-395, 1925, 1926.
130. J. Wolf. Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech., 14:1033-1047, 1965.
131. J. Wolf. Spaces of Constant Curvature. McGraw-Hill Book Co., New York, 1967.
132. A. Zelevinsky. Induced representations of reductive \mathfrak{p}-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165210, 1980.
133. A. Zelevinsky. Representations of Finite Classical Groups, A Hopf algebra approach, volume 869 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.

Index

Abelian subspace, 238
absolute root system, 236, 237
Adams operations, 288
adjoint representation, 48, 49
admissible path, 95
affine Hecke algebra, 384
affine ring, 350
algebraic complexification, 185
algebraic cycle, 429
algebraic representation, 186
alternating map, 52, 290
analytic complexification, 182
anisotropic kernel, 220, 239
anisotropic torus, 423
antipodal map, 40
arclength, 95
Ascoli-Arzela Lemma, 19, 20, 22
atlas, 36
augmentation map, 392
automorphic cuspidal representation, 401
automorphic form, 399, 400
automorphic representation, 401
balanced map, 281
base point, 69
Bergman-Shilov boundary, 229
Bezout's Theorem, 430
bimodule, 281
Borel subgroup, 202
standard, 202
boundary
Bergman-Shilov, 229
boundary component, 227, 229
boundary of a symmetric space, 224
bounded operator, 17
bracket
Lie, 30
braid group, 189
braid relation, 189
branching rule, 339
Brauer's method of decomposing tensor products, 171
Bruhat decomposition, 256
Cartan decomposition, 76
Cartan involution, 212
Casimir element, 56, 400
Cauchy Identity, 347
Cauchy identity
dual, 355
Cayley numbers, 267
Cayley transform, 223, 224
center of a Lie algebra, 150
central character, 401
central orthogonal idempotents, 216
character, 6, 284
algebraic, 284
linear, 88
rational, 88
unipotent, 389
character, generalized, 15
character, virtual, 15
characteristic function of a measure, 325
Chow's Lemma, 429
Christoffel symbol, 97
circle

Noneuclidean, 106
Circular Orthogonal Ensemble (COE), 329
Circular Symplectic Ensemble (CSE), 329
Circular Unitary Ensemble (CUE), 329
class function, 16
classical root systems, 130
Clifford algebra, 175
closed Lie subgroup, 29, 41
coalgebra, 306
commutator subgroup, 155
compact Lie algebra, 217
compact operator, 17
complementary minors, 297
complete reducibility, 65
complete symmetric polynomial, 284
complex analytic group, 86
complex and real representations, 58
complex Lie group, 86
complex manifold, 86
complexification, 60, 88
algebraic, 185
analytic, 182
torus, 88
concatenation of paths, 69
cone
homogeneous, 230
self-dual, 230
conformal map, 105
conjugacy class indicator, 316
conjugate partition, 293
constant term, 401
contractible space, 69
contragredient representation, 9, 361
convolution, 16, 21
coordinate functions, 36
coordinate neighborhood, 36
coordinate ring, 350
coroot, 119
correlation, 329
covering map, 71
local triviality of, 71
pointed, 71
trivial, 71
universal, 72
covering space
morphism of, 71
Coxeter group, 189
cusp form, 399, 401
cuspidal representation, 397, 403, 404
CW-complex, 428
cycle type, 315
defined over a field, 364
derivation, 31
derived group, 155
diffeomorphism, 29, 36
differential of a Lie algebra homomorphism, 45
discrete series, 397,423
dominant weight, 144
dual Cauchy identity, 355
dual group, 6
dual reductive pair, 269
dual symmetric spaces, 213
Dynkin diagram, 193
eigenspace, 17
eigenvalue, 17
eigenvector, 17
Einstein summation convention, 95
Eisenstein series, 397, 401
elementary symmetric polynomial, 284
ensemble, 327
equicontinuity, 19,20
equivariant map, 10
Euclidean space, 117
evaluation map, 37
even partition, 365
exceptional group, 133
exceptional Jordan algebra, 231
exponential map, 31
extended Dynkin diagram, 258, 261, 262
extension of scalars, 58
exterior algebra, 352
faithful representation, 24
Ferrers' diagram, 293
fixed point, 107
isolated, 107
flag manifold, 92
folding, 265
Fourier inversion formula, 7
Frobenius-Schur duality, 289, 385
Frobenius-Schur number, 362, 367
twisted, 367
fundamental dominant weight, 127, 144
fundamental group, 72
G-module, 275
Galois cohomology, 187
Gaussian binomial coefficient, 420, 436
Gaussian Orthogonal Ensemble (GOE), 328
Gaussian Symplectic Ensemble (GSE), 328
Gaussian Unitary Ensemble (GUE), 328
Gelfand pair, 376, 379
Gelfand subgroup, 376,379
Gelfand-Graev representation, 382
Gelfand-Tsetlin pattern, 359
general linear group, 30
generalized character, 15
generator
topological, 89
generic representation, 382
geodesic, 96, 98
geodesic coordinates, 99
geodesically complete, 102
germ, 36
graded algebra, 306
graded module, 306
Grassmannian, 432
Haar measure, 3
left, 3
right, 3
half-integral weight, 179
Hamiltonian, 328
Hecke algebra, 376
affine, 384
Iwahori, 384
spherical, 384
Heine-Szegö identity, 333
Hermitian form, 7
Hermitian manifold, 221
Hermitian matrix, 76
positive definite, 76
Hermitian symmetric space, 221
highest-weight vector, 158,169
highest-weight vectors, 157
Hilbert-Schmidt operator, 20
homogeneous space, 78
homomorphism
Lie algebra, 44
homomorphism of G-modules, 10
homomorphism of Lie algebras, 54
homotopic, 69
homotopy, 69
path, 69
hook, 342
hook length formula, 342
Hopf algebra, 306, 307
horizontal strip, 344
hyperbolic space, 248
idempotents
orthogonal central, 216
induced representation, 276
initial object, 50
inner form, 218
inner product, 7,94
equivariant, 8
invariant, 8
integral curve, 46
integral manifold, 79
integral weight, 179
interlace, 357
intersection multiplicity, 429
intertwining integral, 403
intertwining operator, 10
support of, 279
invariant bilinear form, 55
invariants of a representation, 13
Inverse Function Theorem, 29
involution, 364, 376
Cartan, 212
involution model, 365
involutory family, 79
irreducible character, 6
irreducible representation, 6,56
isolated fixed point, 107
isometric map, 105
Iwahori Hecke algebra, 384
Iwahori subgroup, 384
Iwasawa decomposition, 198
Jacobi identity, 30
Jacquet functor, 403
Jordan algebra, 230
Kawanaka and Matsuyama theorem, 367
Killing form, 55
Kronecker's Theorem, 89

Langlands correspondence, 422, 424
Laplace-Beltrami operator, 400
Lefschetz fixed-point formula, 107, 437
Lefschetz number, 107
left invariant vector field, 41
length of a partition, 293
Levi subgroup, 386
Lie algebra, 30
center, 150
compact, 217
Lie algebra homomorphism, 44, 54 differential of, 45
Lie algebra representation, 48
Lie bracket, 30
Lie group, 41
reductive, 257
Lie subgroup, 29, 41
closed, 29, 41
Lie's theorem on solvable Lie algebras, 200
linear character, 88
linear equivalence of cycles, 429
Littlewood-Richardson rule, 342, 343
local coordinates, 36
local derivation, 38
local field, 397
local homomorphism, 74
local Langlands correspondence, 422
local subgroup, 82
local triviality, 71
locally closed subspace, 29
loop, 69
lowering operator, 365
magic square of Freudenthal, 232
manifold
Hermitian, 221
Riemannian, 94
smooth, 36
matrix coefficient, 348
matrix coefficient of a representation, 8 , 9
Metropolis algorithm, 385
model, 365
model of a representation, 378, 381
module, 10
module of invariants, 67
monatomic representation, 410
monomial matrix, 382
morphism of covering maps, 71
multinomial coefficient, 345
multiplicity
weight, 163
multiplicity-free representation, 340 , 375
negative root, 136
nilpotent Lie algebra, 198
no small subgroups, 24
normalized induction, 402
observable, 328
octonions, 231, 267
one-parameter subgroup, 31
open Weyl chamber, 142
operator norm, 17
ordered partition, 404
orientation, 92
orthogonal group, 30
orthogonal representation, 361, 362
outer form, 218
parabolic induction, 397, 398
parabolic subgroup, 207, 209, 225, 258, 386
standard, 385, 386
partial order on root space, 129
partition, 293
conjugate, 293
even, 365
length, 293
path, 69
arclength, 95
concatenation of, 69
reparametrization, 69
reversal of, 70
trivial, 69
well-paced, 95
path of shortest length, 96
path of stationary length, 96
path-connected space, 69
path-homotopy, 69
path-lifting property, 71
permutation matrix, 301
Peter-Weyl Theorem, 7, 23-25, 169
Pieri's Formula, 343
Pieri's formula, 342, 344
Plancherel formula, 6, 7
pointed covering map, 71
pointed topological space, 69
polarization, 310
polynomial character, 373
Pontriagin duality, 6
positive root, 127, 136
positive Weyl chamber, 129, 142
power-sum symmetric polynomial, 287
preatlas, 36
probability measure, 322
quadratic space, 30,34
quantum group, 385
quasicharacter, 4
modular, 4
unitary, 4
quasisplit group, 250
quaternionic representation, 361, 362
raising operator, 365
random matrix theory, 327
rank
real, 220
rank of a Lie group, 117
rational character, 88, 240
rational equivalence of cycles, 429
real form, 186
real representation, 361, 362
reduced norm, 236
reducible root system, 133, 193
reductive group, 236, 257
reflection, 117
regular element, 146, 254, 396
regular embedding, 258
regular function, 313
regular semisimple element, 413
relative root system, 145, 236, 237
relative Weyl group, 236, 245
reparametrization of a path, 69
representation, 6
algebraic, 186
contragredient, 9, 361
cuspidal, 397
discrete series, 397
Lie algebra, 48
orthogonal, 361, 362
quaternionic, 361,362
real, 361, 362
symplectic, 361,362
trivial, 13
unitary, 24
restricted root system, 236, 237
Riemann zeta function, 329
Riemannian manifold, 94
Riemannian structure, 94
root, 118, 207
positive, 127, 136
simple, 127, 145
simple positive, 136
root folding, 265
root lattice, 127
root system
absolute, 236, 237
reducible, 133, 193
relative, 236, 237
Schubert cell, 432
Schubert polynomial, 436
Schur orthogonality, 11, 12, 15
Schur polynomial, 297, 308
Schur's Lemma, 10
self-adjoint, 17
semisimple element, 396, 413
semisimple Lie algebra, 150
semisimple Lie group, 150
Siegel domain
Type I, 233
Type II, 233
Siegel parabolic subgroup, 225
Siegel space, 221
Siegel upper half-space, 221
simple positive root, 145
simple reflection, 136, 206
simple root, 127,136
simply-connected, 45
topological space, 70
simply-laced Dynkin diagram, 194
singular element, 146, 254
skew partition, 344
smooth manifold, 36
smooth map, 29, 36
smooth premanifold, 36
solvable Lie algebra, 198
Lie's theorem, 200
special linear group, 30
special orthogonal group, 30
special unitary group, 30
spin group, 78
spin representation, 175, 179
split group, 249
standard Borel subgroup, 202
standard parabolic subgroup, 258, 385, 386, 404
standard representation, 158
standard tableau, 341
stationary length, 96
Steinberg character, 389
strip
horizontal, 344
vertical, 344
subgroup
commutator, 155
submanifold, 29
subpermutation matrix, 378
summation convention, 95
support, 165
support of a permutation, 315
support of an intertwining operator, 279
symmetric algebra, 53, 352, 353
symmetric power, 52
symmetric space, 212
boundary, 224
dual, 213
Hermitian, 221
irreducible, 215
reducible, 215
type I, 217
type II, 216
type III, 217
type IV, 216
symplectic group, 30
symplectic representation, 361,362
tableau, 341
standard, 341
tangent bundle, 79
tangent space, 38
tangent vector, 38
tensor product, 50
terminal object, 50
Tits' system, 205, 206
Toeplitz matrix, 331
topological generator, 89
torus, 87, 413
anisotropic, 423
compact, 87
complex, 88
totally disconnected group, 24
triality, 265
triangulable, 107
trivial path, 69
trivial representation, 13
tube domain, 222
twisted Frobenius-Schur number, 367
type I symmetric spaces, 217
type II symmetric spaces, 216
type III symmetric spaces, 217
type IV symmetric spaces, 216
type of conjugacy class, 415
unimodular group, 3
unipotent character, 389
unipotent matrix, 197
unipotent radical, 269
unipotent subgroup, 269
unitary group, 30
unitary representation, 7,24
universal cover, 72
universal property, 50, 51
vector field, 39
left invariant, 41
subordinate to a family, 79
vertical strip, 344
virtual character, 15
weak convergence of measures, 322
weight, $125,143,162$
dominant, 144
fundamental dominant, 127
half-integral, 179
integral, 179
weight diagram, 158
weight lattice, 127
weight multiplity, 163
well-paced, 95
Weyl chamber, 142
positive, 129
Weyl character formula, 165
Weyl dimension formula, 169
Weyl group, 91
relative, 236, 245
Weyl integration formula, 112
Young diagram, 293
Young tableau, 341
Zariski topology, 350

Graduate Texts in Mathematics

(continued from page ii)

64 Edwards. Fourier Series. Vol. I. 2nd ed.
65 Wells. Differential Analysis on Complex Manifolds. 2nd ed.
66 Waterhouse. Introduction to Affine Group Schemes.
67 Serre. Local Fields.
68 Weidmann. Linear Operators in Hilbert Spaces.
69 Lang. Cyclotomic Fields II.
70 Massey. Singular Homology Theory.
71 Farkas/Kra. Riemann Surfaces. 2nd ed.
72 Stillwell. Classical Topology and Combinatorial Group Theory. 2nd ed.
73 Hungerford. Algebra.
74 Davenport. Multiplicative Number Theory. 3rd ed.
75 Hochschild. Basic Theory of Algebraic Groups and Lie Algebras.
76 IItaka. Algebraic Geometry.
77 Hecke. Lectures on the Theory of Algebraic Numbers.
78 Burris/Sankappanavar. A Course in Universal Algebra.
79 Walters. An Introduction to Ergodic Theory.
80 Robinson. A Course in the Theory of Groups. 2nd ed.
81 FORSTER. Lectures on Riemann Surfaces.
82 Bott/Tu. Differential Forms in Algebraic Topology.
83 WASHINGTON. Introduction to Cyclotomic Fields. 2nd ed.
84 Ireland/Rosen. A Classical Introduction to Modern Number Theory. 2nd ed.
85 Edwards. Fourier Series. Vol. II. 2nd ed.
86 VAN Lint. Introduction to Coding Theory. 2nd ed.
87 Brown. Cohomology of Groups.
88 Pierce. Associative Algebras.
89 LANG. Introduction to Algebraic and Abelian Functions. 2nd ed.
90 Brøndsted. An Introduction to Convex Polytopes.
91 Beardon. On the Geometry of Discrete Groups.
92 Diestel. Sequences and Series in Banach Spaces.
93 Dubrovin/Fomenko/Novikov. Modern Geometry-Methods and Applications. Part I. 2nd ed.
94 WARNER. Foundations of Differentiable Manifolds and Lie Groups.
95 Shiryaev. Probability. 2nd ed.

96 Conway. A Course in Functional Analysis. 2nd ed.
97 Koblitz. Introduction to Elliptic Curves and Modular Forms. 2nd ed.
98 BrOCKER/Tom Dieck. Representations of Compact Lie Groups.
99 Grove/Benson. Finite Reflection Groups. 2nd ed.
100 Berg/Christensen/Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions.
101 Edwards. Galois Theory.
102 Varadarajan. Lie Groups, Lie Algebras and Their Representations.
103 Lang. Complex Analysis. 3rd ed.
104 Dubrovin/Fomenko/Novikov. Modern Geometry-Methods and Applications. Part II.
105 Lang. $S L_{2}(\mathbf{R})$.
106 Silverman. The Arithmetic of Elliptic Curves.
107 Olver. Applications of Lie Groups to Differential Equations. 2nd ed.
108 Range. Holomorphic Functions and Integral Representations in Several Complex Variables.
109 Lehto. Univalent Functions and Teichmüller Spaces.
110 LaNG. Algebraic Number Theory.
111 Husemóller. Elliptic Curves. 2nd ed.
112 Lang. Elliptic Functions.
113 Karatzas/Shreve. Brownian Motion and Stochastic Calculus. 2nd ed.
114 Koblitz. A Course in Number Theory and Cryptography. 2nd ed.
115 Berger/Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces.
116 Kelley/Srinivasan. Measure and Integral. Vol. I.
117 J.-P. Serre. Algebraic Groups and Class Fields.
118 Pedersen. Analysis Now.
119 Rotman. An Introduction to Algebraic Topology.
120 Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation.
121 LaNg. Cyclotomic Fields I and II. Combined 2nd ed.
122 Remmert. Theory of Complex Functions. Readings in Mathematics
123 Ebbinghaus/Hermes et al. Numbers. Readings in Mathematics

124 DUBROVIN/FOMENKO/NOVIKOV. Modern Geometry-Methods and Applications. Part III
125 Berenstein/Gay. Complex Variables: An Introduction.
126 Borel. Linear Algebraic Groups. 2nd ed.
127 Massey. A Basic Course in Algebraic Topology.
128 RAUCH. Partial Differential Equations.
129 Fulton/Harris. Representation Theory: A First Course.
Readings in Mathematics
130 Dodson/Poston. Tensor Geometry.
131 Lam. A First Course in Noncommutative Rings. 2nd ed.
132 BEARDON. Iteration of Rational Functions.
133 HARRIS. Algebraic Geometry: A First Course.
134 Roman. Coding and Information Theory.
135 Roman. Advanced Linear Algebra.
136 Adkins/Weintraub. Algebra: An Approach via Module Theory.
137 AXLER/Bourdon/Ramey. Harmonic Function Theory. 2nd ed.
138 Cohen. A Course in Computational Algebraic Number Theory.
139 Bredon. Topology and Geometry.
140 AUBIN. Optima and Equilibria. An Introduction to Nonlinear Analysis.
141 Becker/Weispfenning/Kredel. Gröbner Bases. A Computational Approach to Commutative Algebra.
142 LaNg. Real and Functional Analysis. 3rd ed.
143 DOOB. Measure Theory.
144 DENNIS/FARB. Noncommutative Algebra.
145 VICK. Homology Theory. An Introduction to Algebraic Topology. 2nd ed.
146 BRIDGES. Computability: A Mathematical Sketchbook.
147 ROSENBERG. Algebraic K-Theory and Its Applications.
148 Rotman. An Introduction to the Theory of Groups. 4th ed.
149 RATCLIFFE. Foundations of Hyperbolic Manifolds.
150 EISENBUD. Commutative Algebra with a View Toward Algebraic Geometry.
151 Silverman. Advanced Topics in the Arithmetic of Elliptic Curves.

152 ZIEGLER. Lectures on Polytopes.
153 Fulton. Algebraic Topology: A First Course.
154 BROWN/PEARCY. An Introduction to Analysis.
155 KASSEL. Quantum Groups.
156 Kechris. Classical Descriptive Set Theory.
157 Malliavin. Integration and Probability.
158 ROMAN. Field Theory.
159 CONWAY. Functions of One Complex Variable II.
160 LANG. Differential and Riemannian Manifolds.
161 BORWEIN/ERDÉLYI. Polynomials and Polynomial Inequalities.
162 ALPERIN/BELL. Groups and Representations.
163 DIXON/MORTIMER. Permutation Groups.
164 NATHANSON. Additive Number Theory: The Classical Bases.
165 Nathanson. Additive Number Theory: Inverse Problems and the Geometry of Sumsets.
166 SHARPE. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program.
167 MORANDI. Field and Galois Theory.
168 EWALD. Combinatorial Convexity and Algebraic Geometry.
169 Bhatia. Matrix Analysis.
170 Bredon. Sheaf Theory. 2nd ed.
171 Petersen. Riemannian Geometry.
172 Remmert. Classical Topics in Complex Function Theory.
173 Diestel. Graph Theory. 2nd ed.
174 BRIDGES. Foundations of Real and Abstract Analysis.
175 LICKORISH. An Introduction to Knot Theory.
176 LEE. Riemannian Manifolds.
177 Newman. Analytic Number Theory.
178 CLARKE/LEDYAEV/STERN/WOLENSKI. Nonsmooth Analysis and Control Theory.
179 DOUGLAS. Banach Algebra Techniques in Operator Theory. 2nd ed.
180 SRIVASTAVA. A Course on Borel Sets.
181 Kress. Numerical Analysis.
182 WALTER. Ordinary Differential Equations.

183 MEGGINSON. An Introduction to Banach Space Theory.
184 Bollobas. Modern Graph Theory.
185 COX/LITTLE/O'ShEA. Using Algebraic Geometry.
186 RAMAKRISHNAN/VALENZA. Fourier Analysis on Number Fields.
187 HARRIS/MORRISON. Moduli of Curves.
188 Goldblatt. Lectures on the Hyperreals: An Introduction to Nonstandard Analysis.
189 LAM. Lectures on Modules and Rings.
190 ESMONDE/MURTY. Problems in Algebraic Number Theory.
191 LANG. Fundamentals of Differential Geometry.
192 HIRSCH/LACOMBE. Elements of Functional Analysis.
193 COHEN. Advanced Topics in Computational Number Theory.
194 ENGEL/NAGEL. One-Parameter Semigroups for Linear Evolution Equations.
195 NATHANSON. Elementary Methods in Number Theory.
196 Osborne. Basic Homological Algebra.
197 EISENBUD/HARRIS. The Geometry of Schemes.
198 ROBERT. A Course in p-adic Analysis.
199 Hedenmalm/Korenblum/Zhu. Theory of Bergman Spaces.
200 BAO/CHERN/SHEN. An Introduction to Riemann-Finsler Geometry.
201 HINDRY/SILVERMAN. Diophantine Geometry: An Introduction.
202 LeE. Introduction to Topological Manifolds.
203 SAGAN. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions.
204 EsCOFIER. Galois Theory.
205 FÉLIX/HALPERIN/THOMAS. Rational Homotopy Theory. 2nd ed.
206 MURTY. Problems in Analytic Number Theory.
Readings in Mathematics
207 GODSIL/ROYLE. Algebraic Graph Theory.
208 ChENEY. Analysis for Applied Mathematics.

209 ARVESON. A Short Course on Spectral Theory.
210 ROSEN. Number Theory in Function Fields.
211 LANG. Algebra. Revised 3rd ed.
212 MATOUŠEK. Lectures on Discrete Geometry.
213 Fritzsche/Grauert. From Holomorphic Functions to Complex Manifolds.
214 JOST. Partial Differential Equations.
215 GoldSCHMIDT. Algebraic Functions and Projective Curves.
216 D. SERRE. Matrices: Theory and Applications.
217 MARKER. Model Theory: An Introduction.
218 LEE. Introduction to Smooth Manifolds.
219 Maclachlan/Reid. The Arithmetic of Hyperbolic 3-Manifolds.
220 NESTRUEV. Smooth Manifolds and Observables.
221 Grünbaum. Convex Polytopes. 2nd ed.
222 Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
223 Vretblad. Fourier Analysis and Its Applications.
224 WALSCHAP. Metric Structures in Differential Geometry.
225 BUMP: Lie Groups

