Skip to main content

Absence of Microwave Effect in Ceramics: Precise Temperature, Thermal Gradient, and Densification Determination in A Proportional-Power Microwave Furnace

  • Chapter
  • 965 Accesses

Abstract

Many potential advantages have been ascribed to the microwave heating of ceramics.1–3 From a processing point of view, the most important of these are rapid heating, uniform volumetric heating, and lowered firing temperatures. While the phenomenon of rapid heating is universally accepted, the latter two advantages have not been proved to exist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Sutton, Microwave processing of ceramic materials, Amer. Ceram. Soc. Bull. 68:376 (1989).

    CAS  Google Scholar 

  2. W.H. Sutton, Microwave processing of ceramics, p. 3 in: Microwave Processing of Materials III, R.L. Beatty, W.H. Sutton, and M.F. Iskander, eds, Materials Research Society, Pittsburgh, PA (1992).

    Google Scholar 

  3. W.H. Sutton, Key issues in microwave process technology, p. 3 in: Microwaves: Theory and Application in Materials Processing II, D.E. Clark, W.R. Tinga, and J.R. Laia, Jr., eds, American Ceramic Society, Westerville, OH (1993).

    Google Scholar 

  4. J. Mershon, Accurate high temperature measurements in microwave environments, p. 641 in: Microwaves: Theory andApplication in Materialst Processing, D.E. Clark, F.D. Gac, and W.H Sutton, eds, American Ceramic Society, Westerville, OH (1991).

    Google Scholar 

  5. M.A. Janney, H.D. Kimrey, and J.O. Kiggans, Microwave processing of ceramics: guidelines used at the Oak Ridge National Laboratory, p. 173 in: Ref. 2.

    Google Scholar 

  6. D.J. Grellinger and M.A. Janney, Temperature measurement in a 2.45 GHz microwave furnace, p. 529 in: Ref..3.

    Google Scholar 

  7. P.F. Hogan and T. Mori, Development of a method of continuous temperature measurement for microwave denture processing, Dental Mater. J. 9:1 (1990).

    Article  CAS  Google Scholar 

  8. R.H. Plovnick and J.O. Kiggans, Microwave thermal etching of stabilized zirconia, J. Amer. Ceram. Soc. 75:3462 (1992).

    Article  CAS  Google Scholar 

  9. Ph. Boch, N. Lequeux, and P. Piluso, Reaction sintering of ceramic materials by microwave heating, p. 211 in: Ref. 2.

    Google Scholar 

  10. I. Ahmad, G.T. Chandler, and D.E. Clark, Processing of superconducting ceramics using microwave energy, p. 239 in: Microwave Processing of Materials, W.H. Sutton, M.H. Brooks, and I.J. Chabinsky, eds, Materials Research Society, Pittsburgh, PA (1988).

    Google Scholar 

  11. S.L. McGill, J.W. Walkiewicz, and G.A. Smyres, The effects of power level on the microwave heating of selected chemicals and minerals, p. 247 in: Ref. 10.

    Google Scholar 

  12. Y. Ikuma, Temperature profile during microwave sintering of ceramics, p. 341 in: Interfaces of Ceramic Materials: Impact on Properties and Applications, K. Uematsu, Y. Moriyoshi, Y. Saito, and J. Nowotny, eds, Trans Tech Publications, Zurich (1995).

    Google Scholar 

  13. J.J. Thomas, R.J. Christensen, D.L. Johnson, and H.M. Jennings, Nonisothermal microwave processing of reaction-bonded silicon nitride, J. Amer. Ceram. Soc. 76:1384 (1993).

    Article  CAS  Google Scholar 

  14. A. Dé, I. Ahmad, E.D. Whitney, and D.E. Clark, Microwave (hybrid) heating of alumina at 2.45 GHz: I. Microstructural uniformity and homogeneity, p. 319 in: Ref. 4.

    Google Scholar 

  15. X.D. Yu, V.V. Varadan, and V.K. Varadan, Modeling microwave heating of ceramics, p. 167 in: Ref..4.

    Google Scholar 

  16. R.K. Singh, J. Viatella, Z. Fathi, and D.E. Clark, Thermal analysis of microwave processing of ceramics, p. 247 in: Ref. 3.

    Google Scholar 

  17. J.R. Thomas, Jr., J.D. Katz, and R.D. Blake, Temperature distribution in microwave sintering of alumina cylinders, p. 311 in: Microwave Processing of Materials IV, M.F. Iskander, R.J. Lauf, and W.H. Sutton, eds, Materials Research Society, Pittsburgh, PA (1994).

    Google Scholar 

  18. M.A. Janney and H.D. Kimrey, Microstructure evolution in microwave sintered alumina, p. 382 in: Sintering of Advanced Ceramic Materials, C.A. Handwerker, J.E. Blendell, and W. Kaysser, eds, American Ceramic Society, Westerville, OH (1990).

    Google Scholar 

  19. M.A. Janney, C.L. Calhoun, and H.D. Kimrey, Microwave sintering of solid oxide fuel cell materials: I, zirconia-8 mol% yttria, J. Amer. Ceram. Soc. 75:341 (1992).

    Article  CAS  Google Scholar 

  20. S.A. Freeman, J.H. Booske, R.F. Cooper, B. Meng, J. Kieffer, and B.J. Reardon, Studies of microwave field effects on ionic transport in ionic crystalline solids, p. 213 in: Ref. 3.

    Google Scholar 

  21. S.J. Rothman, Critical assessment of microwave-enhanced diffusion, p. 9 in: Ref. 17.

    Google Scholar 

  22. N.G. Evans, M.G. Hamlyn, and A.L. Bowden, Observation of microwave effects in sintering debased alumina, Brit. Ceram. Trans. 95:62 (1996).

    CAS  Google Scholar 

  23. J.D. Katz, R.D. Blake, and V.M. Kenkre, Microwave enhanced diffusion?, p. 95 in: Ref. 4.

    Google Scholar 

  24. W. Hume-Rothery, J.W. Christian, and W.B. Pearson, Metallurgical Equilibrium Diagrams, Institute of Physics, London, 1952.

    Google Scholar 

  25. A.J. Ruys, S.A. Simpson, and C.C. Sorrell, Thixotropic casting of fibre-reinforced ceramic matrix composites, J. Mater. Sci. Lett. 13:1323 (1994).

    Article  CAS  Google Scholar 

  26. A.J. Ruys, J. Kerdic, and C.C. Sorrell, Thixotropic casting of ceramic-metal functionally gradient materials, J. Mater. Sci. 31:4247 (1996).

    Article  Google Scholar 

  27. Anonymous, Australian Standard AS 1774.5-1989. Refractories and Refractory Materials — The Determination of Density, Porosity and Water Absorption, Standards Australia, Homebush, NSW (1989).

    Google Scholar 

  28. Anonymous, American Society for Testing and Materials ASTME 112-88. Standard Test Methods for Determining Average Grain Size, ASTM Committee on Standards, Philadelphia, PA (1988).

    Google Scholar 

  29. M.I. Mendelson, Average grain size in polycrystalline ceramics, J. Amer. Ceram. Soc. 52:443 (1960).

    Article  Google Scholar 

  30. O.C. Standard, Application of Transformation Toughened Zirconia Ceramics as Bioceramics, Ph.D. Thesis, University of New South Wales, August 1994.

    Google Scholar 

  31. M. Arai, J.G.P. Binner, G.E. Carr, and T.E. Cross, High temperature dielectric property measurements of engineering ceramics, p. 483 in: Ref. 3.

    Google Scholar 

  32. N.G. Evans and M.G. Hamlyn, Density dependence of high temperature dielectric properties of debased alumina and the effect of a high loss additive, p. 235 in: Ref. 17.

    Google Scholar 

  33. J.G.P. Binner, T.E. Cross, N.R. Greenacre, and M. Naser-Moghadasi, High temperature dielectric property measurements–an insight in microwave loss mechanisms in engineering ceramics, p. 247 in: Ref. 17.

    Google Scholar 

  34. D.-J. Chen and M.J. Mayo, Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3, J. Amer. Ceram. Soc. 79:906 (1996).

    Article  CAS  Google Scholar 

  35. D.-H. Kim and C.H. Kim, Entrapped gas effect in the fast firing of yttria-doped zirconia, J. Amer. Ceram. Soc. 75:716 (1992).

    Article  CAS  Google Scholar 

  36. D.K. Agrawal, Y. Fang, D.M. Roy, and R. Roy, Fabrication of hydroxyapatite ceramics by microwave processing, p. 231 in: Ref. 2.

    Google Scholar 

  37. M.C.L. Patterson, P.S. Apte, R.M. Kimber, and R. Roy, Mechanical and physical properties of microwave sintered Si3N4, p. 310 in: Ref. 2.

    Google Scholar 

  38. J. Cai, C.Y. Song, B.S. Li, X.X. Huang, J.K. Guo, and Y.L. Tian, Microwave sintering of zirconia toughened mullite (ZTM), p. 545 in: Ref. 17.

    Google Scholar 

  39. C.E. Holcombe and N.L. Dykes, “Ultra” high-temperature microwave sintering, p. 375 in: Ref. 4.

    Google Scholar 

  40. A. Dé, I. Ahmad, E.D. Whitney, and D.E. Clark, Effect of green microstructure and processing variables on the microwave sintering of alumina, p. 283 in: Microwave Processing of Materials II, W.B. Snyder, Jr., W.H. Sutton, M.F. Iskander, and D.L. Johnson, eds, Materials Research Society, Pittsburgh, PA (1991).

    Google Scholar 

  41. A. Dé, I. Ahmad, E.D. Whitney, and D.E. Clark, Microwave (hybrid) heating of alumina at 2.45 GHz: II. Effect of processing variables, heating rates and particle size, p. 329 in: Ref. 4.

    Google Scholar 

  42. M.A. Janney and H.D. Kimrey, Diffusion-controlled processes in microwave-fired oxide ceramics, p. 215 in: Ref. 40.

    Google Scholar 

  43. M.A. Janney, C.L. Calhoun, and H.D. Kimrey, Microwave sintering of zirconia-8 mol% yttria, p. 311 in: Ref. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sorrell, C.C., Ehsani, N., Ruys, A.J., Standard, O.C. (1998). Absence of Microwave Effect in Ceramics: Precise Temperature, Thermal Gradient, and Densification Determination in A Proportional-Power Microwave Furnace. In: Tomsia, A.P., Glaeser, A.M. (eds) Ceramic Microstructures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5393-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5393-9_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7462-6

  • Online ISBN: 978-1-4615-5393-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics