Skip to main content

Ice Core Records as a Key to Understanding the History of Atmospheric Trace Gases

  • Chapter
Book cover Biogeochemistry of Global Change

Abstract

Ice cores have been revealed as a powerful indicator of global environmental conditions of the preindustrial time and the glacial-interglacial cycle (the last 150,000 years). Of special interest is the most direct evidence of past changes in radiatively active trace gases found in the ice record. We present here a review of the results concerning three of the main radiatively active gases: CO2, CH4, and N2O.

The record indicates that the three gases had significantly lower concentrations during the preindustrial time and that we cannot disregard possible global fluctuations of the preindustrial background over the last millennium. The large increase (by up to a factor of 2 in the case of CH4) between preindustrial time and today is largely attributed to anthropogenic activities.

The glacial-interglacial cycle has been documented for CO2 and CH4. Their variations are generally well-correlated with global climatic changes showing strongly depleted concentrations (by up to about a factor of 2 in the case of CH4) during the full glacial conditions relative to interglacial periods. The gas records obtained from ice cores can be interpreted, at least qualitatively, in terms of flux changes between ocean, continental biosphere, and atmosphere, and, in the case of CH4, of changes in tropospheric destruction rate. These changes are assumed to be induced by direct or indirect climatic forcings. In turn, the changes in CO2 and CH4 are participating on the paleoclimatic variability and information can be obtained from the record on the climate sensitivity of greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.M., H. Faure, L. Faure-Denard, J.M. McGlade, and F.I. Woodward. 1990. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348:711–714.

    Article  CAS  Google Scholar 

  2. Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core: A 160,000 year record of atmospheric CO2. Nature 329:408–414.

    Article  CAS  Google Scholar 

  3. Barnola, J.M., P. Pimienta, D. Raynaud, and Y.S. Korotkevich. 1991. CO2- climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43B:83–90.

    CAS  Google Scholar 

  4. Broccoli, A.J., and S. Manabe. 1987. The influence of continental ice, atmospheric CO2, land albedo on the climate of the Last Glacial Maximum. Climate Dynamics 1:87–99.

    Article  Google Scholar 

  5. Broecker, W.S., and T.C. Peng. 1986. Glacial to interglacial changes in the opertion of the global carbon cycle. Radiocarbon 28:309–327.

    CAS  Google Scholar 

  6. Budd, W.F. 1980. The importance of the polar regions for the atmospheric carbon dioxide concentrations. In G.I. Pearman, (ed.) Carbon Dioxide and Climate: Australian Research, Australian Academy of Science, pp. 115–128.

    Google Scholar 

  7. Chappellaz, J., J.M. Barnola, D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:14.

    Article  Google Scholar 

  8. Craig, J., and C.C. Chou. 1982. CH4: the record in polar ice cores. Geophys. Res. Lett. 9:1221–1224.

    CAS  Google Scholar 

  9. Delmas, R.J., J.M. Ascencio, and M. Legrand. 1980. Polar ice evidence that atmospheric CO2 20,000 years B.P. was 50% of present. Nature 284:155–157.

    Article  CAS  Google Scholar 

  10. Etheridge, D.M., G.I. Pearman, and F. de Silva. 1988. Atmospheric trace-gas variations as revealed by air trapped in an ice core from Law Dome, Antarctica, Annals Glaciology 10:28–33.

    CAS  Google Scholar 

  11. Etheridge, D.M., G.I. Pearman, and P.J. Fraser. 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus. 44B:282–294.

    CAS  Google Scholar 

  12. Faure, F. 1987. Mécanisme d’amplification du cycle climatique global: l’effet de couvercle de la glace de mer contrôle le CO2 atmosphérique, C.R. Acad. Sci. Paris, série II 305:523–527.

    CAS  Google Scholar 

  13. Friedli, H., K. Loetscher, H. Oeschger, U. Siegenthaler, and B. Stauffer. 1986. Ice core record of the 13C/12C record of atmospheric CO2 in the past two centuries. Nature 324:237–238.

    Article  CAS  Google Scholar 

  14. Intergovernmental Panel on Climate Change. 1990. In J.T. Houghton, G.J. Jenkins, and J.J. Ephraums (ed.), Climate Change, Cambridge University Press, Cambridge.

    Google Scholar 

  15. Jouzel, J., C. Lorius, J.R. Petit, C. Genthon, N.I. Barkov, V.M. Kotlyakov, and V.N. Petrov. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408.

    Article  CAS  Google Scholar 

  16. Jouzel, J., J.R. Petit, N.I. Barkov, J.M. Barnola, J. Chappellaz, P. Ciais, V.M. Kotlyakov, C. Lorius, V.N. Petrov, D. Raynaud, and C. Ritz. 1992. The last deglaciation in Antarctica: further evidence of a “Younger Dryas” type climatic event. In E. Bard and W.S. Broecker (eds.), The Last Deglaciation, Absolute and Relative Dating, NATO ASI series, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  17. Khalil, M.A.K., and R.A. Rasmussen. 1982. Secular trends of atmospheric methane (CH4). Chemosphere 11:877–883.

    Article  CAS  Google Scholar 

  18. Khalil, M.A.K., and R.A. Ramussen. 1988. Nitrous oxide: trends and global mass balance over the last 3000 years. Annals Glaciology 10:73–79.

    CAS  Google Scholar 

  19. Khalil, M.A.K., and R.A. Rasmussen, 1989. Climate-induced feedbacks for the global cycles of methane and nitrous oxide. Tellus 41B:554–559.

    Article  CAS  Google Scholar 

  20. Lorius, C., J. Jouzel, D. Raynaud, J. Hansen, and H. Le Treut. 1990. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347:139–145.

    Article  CAS  Google Scholar 

  21. Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. 1982. Ice core measurements give atmospheric CO2 content during the past 40,000 years. Nature 295:222–223.

    Article  Google Scholar 

  22. Neftel, A., E. Moor, H. Oeschger, and B. Stauffer. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.

    Article  CAS  Google Scholar 

  23. Neftel, A., H. Oeschger, T. Staffelbach, and B. Stauffer. 1988. CO2 record in the Byrd ice core 50,000–5,000 years BP. Nature 331:609–611.

    Article  Google Scholar 

  24. Pearman, G.I., D. Etheridge, F. de Silva, and P.J. Fraser. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature 330:248–250.

    Article  Google Scholar 

  25. Pearman, G.I., and P.J. Fraser. 1988. Sources of increased methane. Nature 332: 489–490.

    Article  Google Scholar 

  26. Prentice, K.C., and I.Y. Fung. 1990. The sensitivity of terrestrial carbon storage to climate change. Nature 346:48–51.

    Article  Google Scholar 

  27. Rasmussen, R.A., and M.A.K. Khalil. 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. J. Geophys. Res. 89:11599–11605.

    Article  CAS  Google Scholar 

  28. Raynaud, D., and J.M. Barnola. 1985. An Antarctic ice core reveals atmospheric CO2 variations over the past few centuries. Nature 315:309–311.

    Article  CAS  Google Scholar 

  29. Raynaud, D., J. Chappellaz, J.M. Barnola, Y.S. Korotkevich, and C. Lorius. 1988. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature 333:655–657.

    Article  CAS  Google Scholar 

  30. Rind, D., D. Peteet, and G. Kukla. 1989. Can Milankovitch orbital variation initiate the growth of ice sheets in a General Circulation Model? J. Geophys. Res. 41:12851–12871.

    Article  Google Scholar 

  31. Robbins, R.C., L.A. Cavanagh, L.J. Salas, and E. Robinson. 1973. Analysis of ancient atmospheres; J. Geophys. Res. 78:5341–5344.

    Article  CAS  Google Scholar 

  32. Schwander, J. 1989. The transformation of snow to ice and the occlusion of gases, In H. Oeschger and C.C. Langway Jr. (eds.), The Environmental Record in Glaciers and Ice Sheets, Report of the Dahlem Workshop held in Berlin 1988, March 13–18, John Wiley and Sons, Chichester, pp. 51–67.

    Google Scholar 

  33. Schwander, J., and B. Stauffer. 1984. Age difference between polar ice and the air trapped in its bubbles. Nature 311:45–47.

    Article  CAS  Google Scholar 

  34. Siegenthaler, U., H. Friedli, H. Loetscher, E. Moor, A. Neftel, H. Oeschger, and B. Stauffer. 1988. Stable isotope ratios and concentrations of CO2 in air from polar ice cores. Annals Glaciology 10:151–156.

    CAS  Google Scholar 

  35. Stauffer, B., H. Hofer, H. Oeschger, J. Schwander, and U. Siegenthaler. 1984. Atmospheric CO2 concentrations during the last glaciation. Annals Glaciology 5:760–764.

    Google Scholar 

  36. Stauffer, B., G. Fischer, A. Neftel, and H. Oeschger. 1985. Increases in atmospheric methane recorded in Antarctic ice core. Science 229:1386–1388.

    Article  CAS  Google Scholar 

  37. Stauffer, B., E. Lochbronner, H. Oeschger, and J. Schwander. 1988. Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene. Nature 332:812–814.

    Article  CAS  Google Scholar 

  38. Wahlen, M., D. Allen, and B. Deck. 1991. Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from central Greenland. Geophys. Res. Lett. 18:1457–1460.

    Article  CAS  Google Scholar 

  39. Zardini, D., D. Raynaud, D. Scharffe, and W. Seiler. 1989. N2O measurements of air extracted from Antarctic ice cores: implications on atmospheric N2O back to the last glacial—interglacial transition. J. Atmos. Chem. 8:189–201.

    Article  CAS  Google Scholar 

  40. Note added in proof. Very recent data covering the full glacial—interglacial transition (Leuenberger, M., and U. Siegenthaler. 1992. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360:449–451) indicate that the N2O increase associated with the last glacial—interglacial warming was about 70 ppbv.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raynaud, D. (1993). Ice Core Records as a Key to Understanding the History of Atmospheric Trace Gases. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics