Skip to main content

Radiopharmaceuticals in Molecular Imaging

  • Reference work entry
  • First Online:

Synonyms

Nuclear medicine, molecular imaging; Radioactive isotope; Radioindicator; Radioisotope; Radiolabeled molecular imaging probe; Radiopharmaceutical; Radiotracer

Definition

Molecular imaging (MI) is a biomedical research discipline enabling the visualization, characterization, and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects including patients. MI typically includes two- or three-dimensional imaging as well as quantification over time. The MI techniques may include radiotracer imaging/nuclear medicine (such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), optical imaging, ultrasound, and others.

Radiopharmaceuticals are drug molecules (containing radioactive atoms or radioisotopes) useful for noninvasive imaging studies or radionuclide therapy.

Nuclear medicine (PET and SPECT) uses...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antoni G, Långström B (2005) Progress in 11C radiochemistry. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London, pp 223–236

    Google Scholar 

  • Brooks DJ (2010) Imaging approaches to Parkinson disease. J Nucl Med 51:596–609

    CAS  PubMed  Google Scholar 

  • Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452

    CAS  PubMed  Google Scholar 

  • Ching ASC, Kuhnast B, Damont A (2012) Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insight Imaging 3:111–119

    Google Scholar 

  • Dollé F (2013) Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography. J Label Compd Radiopharm 56:65–67

    Google Scholar 

  • Eersels JLH, Travis MJ, Herscheid JDM (2005) Manufacturing I-123-labelled radiopharmaceuticals: pitfalls and solutions. J Label Compd Radiopharm 48:241–257

    CAS  Google Scholar 

  • Fowler JS, Ding Y-S, Volkow ND (2003) Radiotracers for positron emission tomography imaging. Semin Nucl Med 33:14–27

    PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9:195–207

    CAS  PubMed  Google Scholar 

  • Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18S1:S210–S212

    Google Scholar 

  • Kabalka GW, Mereddy AR (2004) A facile no-carrier-added radioiodination procedure suitable for radiolabeling kits. Nucl Med Biol 31:935–938

    CAS  PubMed  Google Scholar 

  • Långström B, Karimi F, Watanabe Y (2013) Endogenous compounds labeled with radionuclides of short half-life – some perspectives. J Label Compd Radiopharm 2013(56):251–262

    Google Scholar 

  • Li Z, Conti PS (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 62:1031–1051

    CAS  PubMed  Google Scholar 

  • Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48:18N and 21N

    Google Scholar 

  • Någren K, Halldin C, Rinne JO (2010) Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 37:1575–1593

    PubMed  Google Scholar 

  • Park BK, Kitteringham NR, O’Neill PM (2001) Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 41:443–470

    CAS  PubMed  Google Scholar 

  • Ruth TJ (2003) Accelerators available for isotope production. In: Welch MJ, Redvanley CS (eds) Handbook of radiopharmaceuticals, radiochemistry and applications. Weily, New York, pp 71–86

    Google Scholar 

  • Schlyer DJ (2003) Production of radionuclides in accelerators. In: Welch MJ, REdvanley CS (eds) Handbook of radiopharmaceuticals, radiochemistry and applications. Weily, New York, pp 1–70

    Google Scholar 

  • Vallabhajosula S (2009) Radiopharmaceuticals for PET and SPECT. Springer, Berlin

    Google Scholar 

  • Vallabhajosula S (2011) Positron emission tomography radiopharmaceuticals for imaging brain beta-amyloid. Semin Nucl Med 41:283–299

    PubMed  Google Scholar 

  • Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev 100(5):2858–2902

    Google Scholar 

  • Wagner HN Jr, Burns HD, Dannals RF et al (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221(4617):1264–1266

    CAS  PubMed  Google Scholar 

  • Welch MJ, McCarthy TJ (2000) The potential role of generator-produced radiopharmaceuticals in clinical PET. J Nucl Med 41:315–317

    CAS  PubMed  Google Scholar 

  • Zimmer L, Luxen A (2012) PET radiotracers for molecular imaging in the brain: past, present and future. Neuroimage 61:363–370

    CAS  PubMed  Google Scholar 

Further Readings

  • Contino M, Cantore M, Leopoldo M, Colabufo NA (2013) Biomarkers for the early diagnosis of Alzheimer’s disease: the challenge of XXI century. Adv Alzheimers Dis 2:13–30

    Google Scholar 

  • Harada R, Okamura N, Furumoto S (2013) Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 40:125–132

    CAS  PubMed  Google Scholar 

  • Journal of Labelled Compounds and Radiopharmaceuticals, Special Issue: C-11 and F-18 chemistry devoted to molecular probes for imaging the brain with PET. http://onlinelibrary.wiley.com/doi/10.1002/jlcr.v56.3-4/issuetoc

  • Kadir A, Nordberg A (2010) Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 51:1418–1430

    CAS  PubMed  Google Scholar 

  • Kepe V, Bordelon Y, Boxer A (2013) PET Imaging of neuropathology in tauopathies: progressive supranuclear palsy. Alzheimers Dis 36:145–153

    CAS  Google Scholar 

  • Kikuchi T, Okamura T, Zhang M-R, Irie T (2013) PET probes for imaging brain acetylcholinesterase. J Label Compd Radiopharm 56:172–179

    CAS  Google Scholar 

  • Kilbourn MR (2013) PET radioligands for the vesicular transporters for monoamines and acetylcholine. J Label Compd Radiopharm 56:167–171

    CAS  Google Scholar 

  • Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD (2013) PET and SPECT glutamate receptors. Drug Discov Today 18(3/4):173–184

    CAS  PubMed  Google Scholar 

  • Mathis CA, Mason NS, Lopresti BJ, Klunk WE (2012) Development of positron emission tomography β-Amyloid plaque imaging agents. Semin Nucl Med 42:423–432

    PubMed Central  PubMed  Google Scholar 

  • Moghbel MC, Saboury B, Basu S (2012) Amyloid-beta imaging with PET in Alzheimer’s disease: is it feasible with current radiotracers and technologies? Eur J Nucl Med Mol Imaging 39:202–208

    PubMed  Google Scholar 

  • Molecular Imaging and Contrast Agent Database (MICAD). http://www.ncbi.nlm.nih.gov/

  • Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riss PJ, Stockhofe K, Roesch F (2013) Tropane-derived 11C-labelled and 18F-labelled DAT ligands. J Label Compd Radiopharm 56:149–158

    CAS  Google Scholar 

  • Rowe CC, Villemagne VL (2013) Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin N Am 97:377–398

    PubMed  Google Scholar 

  • Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48:104–111

    CAS  PubMed  Google Scholar 

  • Sobrio F (2013) Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors. J Label Compd Radiopharm 56:180–186

    CAS  Google Scholar 

  • Stehouwer JS, Goodman MM (2013) 11C and 18F PET radioligands for the serotonin transporter (SERT). J Label Compd Radiopharm 56:114–119

    CAS  Google Scholar 

  • Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41:246–264

    PubMed  Google Scholar 

  • Venneti S, Lopresti BJ, Wiley CA (2013) Molecular imaging of microglia/macrophages in the brain. GLIA 61:10–23

    PubMed Central  PubMed  Google Scholar 

  • Villemagne VL, Furumoto S, Fodero-Tavoletti M (2012) The challenges of tau imaging. Future Neurol 7:409–421

    CAS  Google Scholar 

  • Wadsak W, Mitterhauser M (2010) Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol 73:461–469

    CAS  PubMed  Google Scholar 

  • Winkeler A, Boisgard R, Martin A, Tavitian B (2010) Radioisotopic imaging of neuroinflammation. J Nucl Med 51:1–4

    CAS  PubMed  Google Scholar 

  • Xia C-F, Arteaga J, Chen G (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer Dement 9(6):666–76

    Google Scholar 

  • Zimmer L, Bars DL (2013) Current status of positron emission tomography radiotracers for serotonin receptors in humans. J Label Compd Radiopharm 56:105–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Vallabhajosula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Vallabhajosula, S. (2015). Radiopharmaceuticals in Molecular Imaging. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_537

Download citation

Publish with us

Policies and ethics