Chapter 6
Boostrap Resampling

Peter Hall

6.1 Introduction to Four Bootstrap Papers

6.1.1 Introduction and Summary

In this short article we discuss four of Peter Bickel’s seminal papers on theory and
methodology for the bootstrap. We address the context of the work as well as its
contributions and influence. The work began at the dawn of research on Efron’s
bootstrap. In fact, Bickel and his co-authors were often the first to lay down the
directions that others would follow when attempting to discover the strengths, and
occasional weaknesses, of bootstrap methods.

Peter Bickel made major contributions to the development of bootstrap methods,
particularly by delineating the range of circumstances where the bootstrap is
effective. That topic is addressed in the first, second and fourth papers treated here.
Looking back over this work, much of it done 25-30years ago, it quickly becomes
clear just how effectively these papers defined the most appropriate directions for
future research.

We shall discuss the papers in chronological order, and pay particular attention
to the contributions made by Bickel and Freedman (1981), since this was the first
article to demonstrate the effectiveness of bootstrap methods in many cases, as
well as to raise concerns about them in other situations. The results that we shall
introduce in Sect. 6.1.2, when considering the work of Bickel and Freedman (1981),
will be used frequently in later sections, especially Sect. 6.1.5.

The paper by Bickel and Freedman (1984), which we shall discuss in Sect. 6.1.3,
pointed to challenges experienced by the bootstrap in the context of stratified
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sampling. This is ironic, not least because some of the earliest developments of
what, today, are called bootstrap methods, involved sampling problems; see, for
example, Jones (1956), Shiue (1960), Gurney (1963) and McCarthy (1966, 1969).

Section 6.1.4 will treat the work of Bickel and Yahav (1988), which contributed
very significantly to methodology for efficient simulation, at a time when the interest
in this area was particularly high. Bickel et al. (1997), which we shall discuss
in Sect.6.1.5, developed deep and widely applicable theory for the m-out-of-n
bootstrap. The authors showed that their approach overcame consistency problems
inherent in the conventional n-out-of-n bootstrap, and gave rates of convergence
applicable to a large class of problems.

6.1.2 Laying Foundations for the Bootstrap

Thirty years ago, when Efron’s (1979) bootstrap method was in its infancy, there was
considerable interest in the extent to which it successfully accomplished its goal of
estimating parameters, variances, distributions etc. As Bickel and Freedman (1981)
noted, Efron’s paper “gives a series of examples in which [the bootstrap] principle
works, and establishes the validity of the approach for a general class of statistics
when the sample space is finite.” Bickel and Freedman (1981) set out to assess the
bootstrap’s success in a much broader setting than this.

In the early 1980s, saying that the bootstrap “works” meant that bootstrap
methods gave consistent estimators, and in this sense were competitive with
more conventional methods, for example those based on asymptotic analysis.
Within about 5 years the goals had changed; it had been established that bootstrap
methods “work” in a very wide variety of circumstances, and, although there were
counterexamples to this general rule, by the mid 1980s the task had become largely
one of comparing the effectiveness of the bootstrap relative to more conventional
techniques. But in 1981 the extent to which the bootstrap was consistent was still
largely unknown. Bickel and Freedman (1981) contributed mightily to the process
of discovery there.

In particular, Bickel and Freedman (1981) were the first to establish rigorously
that bootstrap methodology is consistent in a wide range of settings. The impact of
their paper was dramatic. It provided motivation for exploring the bootstrap more
deeply in a great many settings, and furnished some of the mathematical tools for
that development. In the same year, in fact in the preceding paper in the Annals,
Singh (1981) explored second-order properties of the bootstrap. However, Bickel
and Freedman (1980) also took up that challenge at a particularly early stage.

As a prelude to describing the results of Bickel and Freedman (1981) we give
some notation. Let }, = X{,...,X, denote a sample of n independent observations
from a given univariate distribution with finite variance o2, write X, =n"! >, X; for
the sample mean, and define
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the bootstrap estimator of o2. Let x; = {X{,...,X;;} denote a resample of
size m drawn by sampling randomly, with replacement, from y, and put X;; =
m~! Yi<m X;". Bickel and Freedman’s (1981) first result was that, in the case of
m-resamples, the m-resample bootstrap version of 6,%, ie.
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converges to o2 as both m and n increase, in the sense that, for each € > 0,
P(|6,,—o|>¢€[x.) =0 6.1)

with probability 1. Moreover, Bickel and Freedman (1981) showed that the condi-
tional distribution of m'/? (X’ — X,), given j,, converges to the normal N(0,5?)
distribution. Taking m = n, the latter property can be restated as follows:

the probabilities P{n'/2 (§* — ) < ox| x»} and P{n'/2 (6 — 0) < o'x}

both converge to @(x), the former converging with probability 1, (6.2)

where @ denotes the standard normal distribution and, on the present occasion,
0 =E(X;),6 =X, and 6* =X

The second result established by Bickel and Freedman (1981) was a generali-
sation of this property to multivariate settings. Highlights of subsequent parts of
the paper included its contributions to theory for the bootstrap in the context of
functionals of a distribution function. For example, Bickel and Freedman (1981)
considered von Mises functionals of a distribution function H, defined by

://w(x,y)dH(x)dH(y)a

where the function @ of two variables is symmetric, in the sense that @(x,y) =
o(y,x), and where

//a)(x,y)de(x)dH(y)—i—/w(x,x)de(x) < oo, (6.3)

If we take H to be elther I?n, the empirical distribution function of the sample },,, or
* the version of F, computed from ), then
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Bickel and Freedman (1981) studied properties of this quantity. In particular they
proved that if (6.3) holds with H = F, denoting the common distribution function
of the X;s, then the distribution of n'/2 {g(F*) — g(F,)}, conditional on the data, is
asymptotically normal N(0,7%) where

=4 {/ {/w(x,y)dF(y)}zdF(x) —g(F)z} .

This limit distribution is the same as that of n'/2{g(F,) — g(F)}, and so the
above result of Bickel and Freedman (1981) confirms, in the context of von Mises
functions of the empirical distribution function, that (6.2) holds once again, provided
that o there is replaced by 7 and we redefine 8 = g(F), 6 = g(F,) and 6 =
g(ﬁn*) That is, the bootstrap correctly captures, once more, first-order asymptotic
properties. Subsequent results of Bickel and Freedman (1981) also showed that the
same property holds for the empirical process, and in particular that the process
n'/2(F* —F,) has the same first-order asymptotic properties as n'/2 (F, — F ). Bickel
and Freedman (1981) also derived the analogue of this result for the quantile
process.

Importantly, Bickel and Freedman (1981) addressed cases where the bootstrap
fails to enjoy properties such as (6.2). In their Sect. 6 they gave two counterex-
amples, one involving U-statistics and the other, spacings between extreme order
statistics, where the bootstrap fails to capture large-sample properties even to first
order. In both settings the problems are attributable, at least in part, to failure of
the bootstrap to correctly capture the relationships among very high-ranked, or very
low-ranked, order statistics, and in that context we shall relate below some of the
issues to which Bickel and Freedman’s (1981) work pointed. This account will be
given in detail because it is relevant to later sections.

Let X(1) <... <X(y) denote the ordered values in ,,; we assume that the common
distribution of the X;s is continuous, so that the probability of a tie equals zero.
In this case the probability, conditional on y,, of the event g, that the largest X;,
i.e. X(,), 8 in ¥, equals 1 minus the conditional probability that X, is not contained

inin y; . Thatis, itequals 1 — (1 —n"1)"=1—¢ !4+ 0(n""). Therefore, as n — oo,
P(X(y =Xy | 2n) = P(X(uy € 25 | 200) > 1=,

where the convergence is deterministic. Similarly, for each integer k > 1,
Mook = P(X(y = Xy | ) > me=e F(1—e7) (6.4)

as n — oo; again the convergence is deterministic. Consequently the distribution
of X(*” , conditional on Y, is a mixture, and in particular is equal to X, ) with
probability 7, for kK > 1. Therefore:
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given £>0 and any metric, for example the Lévy metric, between distributions, we
*

may choose k = k(g) > 1 so large that the distribution of X(n), conditional on Y,

is no more than & from the discrete mixture o< ;<x X(, ;) Ij,where (a) exactly one

of the random variables I}, 15, ... is nonzero, (b) that variable takes the value 1, and

(¢) P(Iy = 1) = m, for k > 0. The upper bound of € applies deterministically, in that

it is valid with probability 1, in an unconditional sense.
(6.5)

To indicate the implications of this property we note that, for many distributions
F, there exist constants a, and b, at least one of them diverging to infinity in
absolute value as n increases; and a nonstationary stochastic process &;,&,, .. .; such
that, for each k > 0, the joint distribution of (X(,,) —ay)/bu,. .., (X(,,,k) —ay)/bn
converges to the distribution of (;,...,&;). See, for example, Hall (1978). In view
of (6.5) the distribution function of (X(*n) —ay) /by, conditional on y,, converges to
that of

zZ=Y &I,
=0

where the sequence 11,1, ... is distributed as in (6.5) and is chosen to be independent
of &1,&,,. ... In this notation,

P(X(*m —ap < brﬂl%rz) - P(Z < Z) (6.6)

in probability, whenever z is a continuity point of the distribution of Z. On the other
hand,

P(X(n)—an < byz) — P(&1 < 2). 6.7)

A comparison of (6.6) and (6.7) reveals that there is little opportunity for estimat-
ing consistently the distribution of X,,), using standard bootstrap methods. Bickel
and Freedman (1981) first drew our attention to this failing of the conventional
bootstrap. The issue was to be the object of considerable research for many years
after the appearance of Bickel and Freedman’s paper. Methodology for solving
the problem, and ensuring consistency, was eventually developed and scrutinised;
commonly the m-out-of-n bootstrap is used. See, for example, Swanepoel (1986),
Bickel et al. (1997) and Bickel and Sakov (2008).

6.1.3 The Bootstrap in Stratified Sampling

Bickel and Freedman (1984) explored properties of the bootstrap in the case of
stratified sampling from finite or infinite populations, and concluded that, with
appropriate scaling, the bootstrap can give consistent distribution estimators in cases
where asymptotic methods fail. However, without the proper scaling the bootstrap
can be inconsistent.
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The problem treated is that of estimating a linear combination,

14
Y= cjlj, (6.8)
j=1

of the means py,...,u, of p populations I, ..., I, with corresponding distribu-
tions F1,...,Fy,. The c;s are assumed known, and the (i s are estimated from data.
To construct estimators, a random sample x (j) = {Xj1,...,Xjn; } is drawn from the
Jjth population, and the sample mean X(j) = n;l Y. Xji is computed in each case.
Bickel and Freedman (1984) considered two different choices of ¢, valid in two
respective cases: (a) if it is known that each E(Xj;) = u, not depending on j, and

that the variance sz of I1; is proportional to r;, say, then

e Ml
T /i)’
and (b) if the populations are finite, and in particular I1; is of size N; for j =1,..., p,
then
Nj
cj= .
T SV
In either case the estimator § of y reflects the definition of y at (6.8):

p —_
7= ¢iX(j),
=1

where X () is the mean value of the data in y ().

In both cases Bickel and Freedman (1984) showed that, particularly if the
sample sizes n; are small, the bootstrap estimator of the distribution of ¥ — v is
not necessarily consistent, in the sense that the distribution estimator minus the true
distribution may not converge to zero in probability. The asymptotic distribution
of 7 — y is normal N(O, 112), say; and the bootstrap estimator of that distribution,
conditional on the data, is asymptotically normal N(0,3); but the ratio 77/73
does not always converge to 1. Bickel and Freedman (1984) demonstrated that this
difficulty can be overcome by estimating scale externally to the bootstrap process, in
effect incorporating a scale correction to set the bootstrap on the right path. Bickel
and Freedman also suggested other, more ad hoc remedies.

These contributions added immeasurably to our knowledge of the bootstrap.
Combined with the counterexamples given earlier by Bickel and Freedman (1981),
those authors showed that the bootstrap was not a device that could be used naively
in all cases, without careful consideration.

Some researchers, a little outside the statistics community, had felt that bootstrap
resampling methods freed statisticians from influence by a mathematical “priest-
hood” which was “frank about viewing resampling as a frontal attack upon their own
situations” (Simon 1992). To the contrary, the work of Bickel and Freedman (1981,
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1984) showed that a mathematical understanding of the problem was fundamental
to determining when, and how, to apply bootstrap methods successfully. They
demonstrated that mathematical theory was able to provide considerable assistance
to the introduction and development of practical bootstrap methods, and they
provided that aid to statisticians and non-statisticians alike.

6.1.4 Efficient Bootstrap Simulation

By the mid to late 1980s the strengths and weaknesses of bootstrap methods were
becoming more clear, especially the strengths. However, computers with power
comparable to that of today’s machines were not readily available at the time, and
so efficient methods were required for computation. The work of Bickel and Yahav
(1988) was an important contribution to that technology. It shared the limelight
with other approaches to achieving computational efficiency, including the balanced
bootstrap, which was a version for the bootstrap of Latin hypercube sampling and
was proposed by Davison et al. (1986) (see also Graham et al. 1990); importance
resampling, suggested by Davison (1988) and Johns (1988); the centring method,
proposed by Efron (1990); and antithetic resampling, introduced by Hall (1990).

The main impediment to quick calculation for the bootstrap was the resampling
step. In the 1980s, when for many of us computing power was in short supply,
bootstrap practitioners nevertheless advocated thousands, rather than hundreds, of
simulations for each sample. For example Efron (1988), writing for an audience
of psychologists, argued that “It is not excessive to use 2,000 replications, as in this
paper, though we might have stopped at 1,000.” In fact, if the number of simulations,
B, is chosen so that the nominal coverage level of a confidence interval can be
expressed as b/(B+ 1), where b is an integer, then the size of B has very little bearing
on the coverage accuracy of the interval; (see Hall 1986). However, choosing B too
small can result in overly variable Monte Carlo approximations to endpoints for
bootstrap confidence intervals, and to critical points for bootstrap hypothesis tests.

It is instructive here to relate a story that G.S. Watson told me in 1988, the year
in which Bickel and Yahav’s paper was published. Throughout his professional
life Watson was an enthusiast of the latest statistical methods, and the bootstrap
was no exception. Shortly after the appearance of Efron’s (1979) seminal paper he
began to experiment with the percentile bootstrap technique. Not for Watson a tame
problem involving a sample of scalar data; in what must have been one of the first
applications of the bootstrap to spatial or spherical data, he used that technique to
construct confidence regions for the mean direction derived from a sample of points
on a sphere. He wrote a program that constructed bootstrap confidence regions,
put the code onto a floppy disc, and passed the disc to a Princeton geophysicist
to experiment with. This, he told the geophysicist, was the modern alternative to
conventional confidence regions based on the von Mises-Fisher distribution. The
latter regions, of course, took their shape from the mathematical form of the fitted
distribution, with relatively little regard for any advice that the data might have to
offer. What did the geophysicist think of the new approach?
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In due course Watson received a reply, to the effect that the method was very
interesting and remarkably flexible, adapting itself well to quite different datasets.
But it had a basic flaw, the geophysicist said, that made it unattractive—every time
he applied the code on the floppy disc to the same set of spherical data, he got a
different answer! Watson, limited by the computational resources of the day, and
by the relative complexity of computations on a sphere, had produced software
that did only about B = 40 simulations each time the algorithm was implemented.
Particularly with the extra degree of freedom that two dimensions provided for
fluctuations, the results varied rather noticeably from one time-based simulation
seed to another.

This tale defines the context of Bickel and Yahav’s (1988) paper. Their goal was
to develop algorithms for reducing the variability, and enhancing the accuracy in that
sense, of Monte Carlo procedures for implementing the bootstrap. Their approach,
a modification for the bootstrap of the technique of Richardson extrapolation (a
classical tool in numerical analysis; see Jeffreys and Jeffreys 1988, p. 288), ran as
follows. Let I?,, (not to be confused with the same notation, but having a different
meaning, in Sect. 6.1.2) denote the data-based distribution function of interest, and
let F;, be the quantity of which F, is an approximation. For example, f,,(x) might
equal P(é* 0, <x | %n), where 6, denotes an estimator of a parameter 6, computed
from a random sample ), of size n, in which case 6* would be the bootstrap version
of ,. (In this example, F,(x) = P(6, — 6 < x). ) Instead of estimating F,, directly,
compute estimators of the distribution functions Fm ,--.,Fy,, where the sample sizes
ni,...,n, are all smaller than n, and in fact so small that n1 +...+n,1s markedly less
than n. In some instances we may also know the limit F.. of F,, or at least its form,
F.. say, constructed by replacing any unknown quantities (for example, a variance)
by estimators computed from ),. The quantities 1'?,,1 yee ,1?,,,. and F., are much less
expensive, i.e. much faster, to compute than I?n, and so, by suitable “interpolation”
from these functions, we can hope to get a very good approximation to F, without
going to the expense of actually calculating the latter.

In general the cost of simulating, or equivalently the time taken to simulate, is
approximately proportional to C, B, where C,, depends only on n and increases with
that quantity. Techniques for enhancing the performance of Monte Carlo methods
can either directly produce greater accuracy for a given value of B (the balanced
bootstrap has this property), or reduce the value of C, and thereby allow a larger
value of B (hence, greater accuracy from the viewpoint of reduced variability)
for a given cost. Bickel and Yahav’s (1988) method is of the latter type. By
enabling a larger value of B it alleviates the problem encountered by Watson and
his geophysicist friend.

Bickel and Yahav’s (1988) technique is particularly widely applicable, and
has the potential to improve efficiency more substantially than, say, the balanced
bootstrap. Today, however, statisticians’ demands for efficient bootstrap methods
have been largely assuaged by the development of more powerful computers. In
the last 15 years there have been very few new simulation algorithms tailored to the
bootstrap. Philippe Toint’s aphorism that “I would rather have today’s algorithms on
yesterday’s computers, than vice versa,” loses impact when an algorithm is to some
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extent problem-specific, and its implementation requires skills that go beyond those
needed to purchase a new, faster computer.

6.1.5 The m-Out-of-n Bootstrap

The m-out-of-n bootstrap is another example revealing that, in science, less is often
more. Bickel and Freedman (1981, 1984) had shown that the standard bootstrap can
fail, even at the level of statistical consistency, in a variety of settings; and, as we
noted in Sect. 6.1.2, the m-out-of-n bootstrap, where m is an order of magnitude
smaller than n, is often a remedy. Swanepoel (1986) was the first to suggest this
method, which we shall define in the next paragraph. Bickel et al. (1997) made major
contributions to the study of its theoretical properties. We shall give an example that
provides further detail than we gave in Sect. 6.1.2 about the failure of the bootstrap
in certain cases. Then we shall summarise briefly the contributions made by Bickel
et al. (1997).

Consider drawing a resample x,, = {X;,..., X}, of size m, from the original
dataset y, = {Xi,...,X,} of size n, and let 0= é,, denote the bootstrap estimator of
0 computed from y,,. In particular, if we can express 0 as a functional, say 6 (F), of
the distribution function F of the data X;, then

A

6, =0(F,), (6.9)

where F, is the empirical distribution function computed from Y,. Likewise we can
define 6 = O(F), where f,’,; is the empirical distribution function for y,;,. As we
noted in Sect. 2, Bickel and Freedman (1981) showed that first-order properties of
é,’,‘, are often robust against the value of m. In particular it is often the case that, for
eache >0,

P(16; — 0, > €| x.) =0, P(16,—6|>¢)—=0 (6.10)

as m and n diverge, where the first convergence is with probability 1. Compare (6.1).
For example, (6.10) holds if 6 is a moment, such as a mean or a variance, and if the
sampling distribution has sufficiently many finite moments.

The definition (6.9) is conventionally used for a bootstrap estimator, and it does
not necessarily involve simulation. For example, if 6 = [xdF(x) is a population
mean then

é,,:/xdl?,,(x):}z, é,’;:/xdl?,fl(x):)_(*

are the sample mean and resample mean, respectively. However, in a variety of
other cases the most appropriate way of defining and computing 6, is in terms of
the resample y,;; that is, y,, with m = n. Consider, for instance, the case where

6="pP (X(n) _X(”*U > X(nfl) _X(n72)) R (6.11)
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in which, as in Sect. 6.1.2, we take X(;) < ... <X, to be an ordering of the data
in x,, assumed to have a common continuous distribution. For many sampling
distributions, in particular distributions that lie in the domain of attraction of an
extreme-value law, O depends on n but converges to a strictly positive number as n
increases.

In this example the bootstrap estimator, é,,, of 0, based on a sample of size n, is
defined by

60 = (X = XG> X)) =X | 10) (6.12)
<X

where X(1> <

version, é,f, of é,, is defined using the double bootstrap:

X(n) are the ordered data in J,;. Analogously, the bootstrap

9; = P(X(*n*) _X(*r::I) > X(*n*fl) _X(t::Z) ’ X;) ;

where X/} < ... < X7 are the ordered data in y,;* = {X{*,...,X;*}, drawn by
sampling randomly, with replacement, from y,;. However, for the reasons given
in the paragraph containing (6.5), property (6.10) fails in this example, no matter
how we choose m. (The m in (6.2) is different from the m for the m-out-of-n
bootstrap.) The bootstrap fails to model accurately the relationships among large
order statistics, to such an extent that, in the example characterised by (6.11), é,,
does not converge to 0.

This problem evaporates if, in defining 6, at (6.12), we take the resample y, to
have size m = m(n), where

m—oo and m/n—0 (6.13)

as n — oo, That is, instead of (6.12) we define

where X{',..., X, are drawn by sampling randomly, with replacement, from ). In
this case, provided (6.5) holds, (6.2) is correct in a wide range of settings.

Deriving this result mathematically takes a little effort, but intuitively it is rather
clear: By taking m to be of strictly smaller order than n we ensure that the probability
that X(*m) equals any given data value in y,, for example X,), converges to zero,
and so the difficulties raised in the paragraph containing (6.5) no longer apply. In
particular, instead of (6.4) we have:

P(X(t) = Xm0y | Xn) = 0

in probability, for each fixed, nonnegative integer k and ¢, as n — co. Further thought
along the same lines indicates that the conditional distribution of X(*m) —X(*mil)
should now, under mild assumptions, be a consistent estimator of the distribution
OfX(n) — X(nfl)-
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Bickel et al. (1997) gave a sequence of four counter-examples illustrating cases
where the bootstrap fails, and provided two examples of the success of the bootstrap.
The first two counter-examples relate to extrema, and so are closely allied to the
example considered above. The next two treat, respectively, hypothesis testing and
improperly centred U and V statistics, and estimating nonsmooth functionals of the
population distribution function. Bickel et al. (1997) then developed a deep, general
theory which allowed them to construct accurate and insightful approximations to
bootstrap statistics é,,, such as that at (6.9), not just in that case but also when é,,
is defined using the m-out-of-n bootstrap, as at (6.14). This enabled them to show
that, in a large class of problems for which (6.13) holds, the m-out-of-n bootstrap
overcomes consistency problems inherent in the conventional n-out-of-n approach,
and also to derive rates of convergence.

A reliable way of choosing m empirically is of course necessary if the m-out-
of-n bootstrap is to be widely adopted. In many cases this is still an open problem,
although important contributions were made recently by Bickel and Sakov (2008).
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SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP

By PETER J. BicKEL' AND DAVID A. FREEDMAN®
University of California, Berkeley

Efron’s “bootstrap” method of distribution approximation is shown to be
asymptotically valid in a large number of situations, including ¢-statistics, the
empirical and quantile processes, and von Mises functionals. Some counter-
examples are also given, to show that the approximation does not always
succeed.

1. Introduction. Efron (1979) discusses a “bootstrap” method for setting confidence
intervals and estimating significance levels. This method consists of approximating the
distribution of a function of the observations and the underlying distribution, such as a
pivot, by what Efron calls the bootstrap distribution of this quantity. This distribution is
obtained by replacing the unknown distribution by the empirical distribution of the data
in the definition of the statistical function, and then resampling the data to obtain a Monte
Carlo distribution for the resulting random variable. This method would probably be used
in practice only when the distributions could not be estimated analytically. However, it is
of some interest to check that the bootstrap approximation is valid in situations which are
simple enough to handle analytically. Efron gives a series of examples in which this
principle works, and establishes the validity of the approach for a general class of statistics
when the sample space is finite.

In Section 2 of the present paper, it will be shown that the bootstrap works for means,
and hence for pivotal quantities of the familiar “#-statistic” sort; an extension to multi-
dimensional data will be made. Section 3 deals with U-statistics and other von Mises
functionals, and suggests the wide scope of the theory. Section 4 deals with the empirical
process: one application is setting confidence bounds for the theoretical distribution
function, even if the latter has a discrete component. In Section 5, the quantile process will
be bootstrapped, leading to confidence intervals for quantiles. Trimmed means and
Winsorized variances are also studied. In Section 6 some examples will be given where the
bootstrap fails, for instance, when estimating 6 from variables uniformly distributed over
[0, 6].

Some of the problems discussed in this paper have been studied independently by Singh
(1981).

2. Bootstrapping the mean. Let X;, X;, .-+, X, be independent random variables
with common distribution function F. Assume that F has finite mean p and variance o2,
both unknown. The conventional estimate for u is the sample average, denoted here by
tn. To analyze the sampling error in p,, it is customary to compute the sample standard
deviation s,, defined as

, 1
Sf. = ; Zz"=1 (X, — I-Ln)2»
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By the Classical Central Limit Theorem, the distribution of the pivotal quantity
Qn = \/';(Mn - I-L)/Sn

tends weakly to N (0, 1). So, in this situation, the asymptotics are known. However, there
is some theoretical interest in seeing how the bootstrap would perform.

Let F, be the empirical distribution of X;, - --, X,, putting mass 1/n on each X;. The
next step in the bootstrap method is to resample the data. Given (Xi, ---, X,), let
X*, .-+, X} be conditionally independent, with common distribution F,. We have allowed
the resample size m to differ from the number n of data points, to estimate the distribution
of the bootstrap pivotal quantity @ = \/;1(#,’; — wn)/s%, wherepr = (1/m) Y21 X¥ and
sm=(1/m) TZ1 (XF — pk)’

In the resampling, the n data points Xi, ---, X, are treated as a population, with
distribution function F, and mean p.; and p} is considered as an estimator of u,. First,
take m = n. The idea is that the behavior of the bootstrap pivotal quantity @ mimics that
of @,. Thus, the distribution of @ could be computed from the data and used to
approximate the unknown sampling distribution of @,. Or even more directly, the bootstrap
distribution of J;(u;“ — pn) could be used to approximate the sampling distribution of
Vn( n — ). Either approach would lead to confidence intervals for u, and would be useful
if the Central Limit Theorem were not available, and if the bootstrap approximation were
valid.

Now take m 5 n. The resample size m does have some statistical import. For instance,
a sample of size n can be bootstrapped to see what would happen with a sample of size
n? or Vn, or 10. Furthermore, with m and n free to vary separately, the second-moment
condition in Theorem 2.1 becomes quite natural. If m goes to infinity first, then the
conditional law of Vm(u% — u.) tends to normal, with mean 0 and variance s2. As n tends
to infinity, this converges if and only if s2 does.

Mathematically, there is something rather delicate even about the present simple case,
with m = n. Comparing the classical &([l.,, — ) with the bootstrap Jr—z(u,‘.‘ — Wa), the
parameter p is replaced by p,. But this change is of the critical order of magnitude, namely
1/vn, and cannot be ignored. However, there is a second error: the X’s have been replaced
by X*’s. In fact, these two errors cancel each other to a large extent. Our proof will make
this idea precise, by showing that the distribution of the pivot does not change much if the
empirical F, is replaced by the theoretical F. The theorem is an asymptotic one, so the
data Xj, - -+, X, should be visualized as the beginning segment of an infinite series.

THEOREM 2.1. Suppose X1, Xz, - - - are independent, identically distributed, and have
finite positive variance o®. Along almost all sample sequences X, Xz, ---, given (X,,
«++, X,), as n and m tend to «:

(a) The conditional distribution of Vm( Wh — ) converges weakly to N(0, o*).

(b) sm — o in conditional probability: that is, for € positive,

P{|skh—o|>€|Xi, -+, X,} > Oas.

Relations (a) and (b) imply that the asymptotic distribution of the bootstrap pivot @
coincides with the classical one: convergence to the standard normal holds. There are
several equivalent ways to prove these results. We choose an argument which is qualitative,
but requires some machinery. Let I'; be the set of distribution functions G satisfying
[ x* dG(x) < o, and introduce the following notion of convergence in I':

G.,= G iff G,— G weakly and J’ x% dG,(x) > j x* dG(x).

The strong law implies

(2.1) F,= F along almost all sample sequences.

The conclusions of the theorem hold along any such sample sequence.
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Our notion of convergence in I'; is metrizable, for instance, by a “Mallows metric” d».
The d,-distance between G and H in I'; is defined as follows: d2(G, H)? is the infimum of
E{(X — Y)?} over all joint distributions for the pair of random variables X and Y whose
fixed marginal distributions are G and H respectively. This metric was introduced in
Mallows (1972) and Tanaka (1973); it is related to the Vassershtein metrics of Dobrushin
(1970), Major (1978), or Vallender (1973). For a detailed discussion of d., see Section 8 of
the present paper.

Now let Z,(G), - - -, Zx(G) be independent random variables, with common distribution
function G. Let G™ be the distribution of

Sn(G) = m™ ' Tu1 [Z(G) = E{Z,(G)}).
If GE Ty, s0is G™. By Lemma 3 of Mallows (1972),
(2.2) do[G™, H™ ] = d:[G, H].

Also see Lemma 8.7 below, and (8.2).

PrOOF OF THEOREM 2.1, Part a. The bootstrap construction can be put into present
notation as follows: conditionally, the law of \/E( ik — wn) is just ™. But F), is close to F'
in the do-metric on T, by (2.1). So F{ is close to F'™ by (2.2). Now use the ordinary
Central Limit Theorem on F™.

Part b. This can be proved the same way. Let I'; be the set of G’s with [ | x| G(dx)
< o, and define the metric d; on I'; as the infimum of E {| X — Y |} over all pairs of random
variables X and Y with marginal distributions F and G respectively. Let G be the
distribution of (1/m) Y- Z,(G). The requisite analog of (2.2) is

(2.3) (G, H™] = d\[G, H].

For details on d,, See Section 8, especially Lemma 8.6. 0

The following generalization to higher dimensions may be of some interest. Let || - |
denote length in R*.

THEOREM 2.2. Let Xi, Xo, --- be independent, with common distribution in R".
Suppose E {|| X, ||*} < . Let F, be the empirical distribution of Xi, ---, X,. Given X,
<o, X, let X%, <., X3 be conditionally independent, with common distribution F,.
Along almost all sample sequences, as m and n tend to infinity:
(a) The conditional distribution of

e (R
Jm(; ,=1X, —';Zz=1X:)

converges weakly to the k-dimensional normal distribution with mean 0, and
variance-covariance matrix equal to the theoretical variance-covariance matrix
of Xi.

(b) The empirical variance-covariance matrix of X%, - - -, X} converges in conditional
probability to the theoretical variance-covariance matrix of X .

The requisite metrics are developed in Section 8. If, e.g., E{|| X ||*} < « then the
estimated variance-covariance matrix can be bootstrapped in turn, and so on. We do not
pursue this further.

Efron considers the possibility of resampling not from F,, but from some other
estimator, call it F,, of F. The argument for Theorem 2.1 shows that this works too,
provided F, = Fin T, ie., F, gets F almost right in the weak topology, and also gets the
second moment almost right.
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As a lead-in to the treatment of U-statistics in Section 3, fix a function A on (—o, )
and let T, be the set of distribution functions G satisfying

th(x) dG(x) < oo,

Then the estimator (1/n) Y=, A(X,) can be bootstrapped, provided the distribution of the
X’s is in I's. The relevant notion of convergence seems to be this:

G.,= GinT, iff jhz dG,,—»fh2 dG, and fﬂ(h) dG,,—)J’H(h) dG

for all bounded continuous functions § on the line. This just repeats the theorem, in a form
more convenient for use in Section 3.

Let I, be an estimator of F. We continue to assume that F € T',. Consider bootstrapping
(1/n) Y A(X,), but resampling from F, rather than F,. When will this be asymptotically
right? What is needed is the analog of the strong law of large numbers,

(2.4) j v(x) dF.(x) > j v(x) dF(x) as.

whenever [ |v(x) | dF(x) < «. The exceptional null set may depend on v. In particular,
suppose F, = F; where F, is some parametric model under consideration and 6,(X;, - -,
X,) is an estimate of 4. Efron calls this the parametric bootstrap. Then (2.4) holds when F
= Fy, if 8, is strongly consistent and the map 6 — [ v(x) dFy(x) is continuous at 6, whenever
[ v(x) | dFy(x) < co.

To close this section, we set our results in the general context introduced by Efron. He
considers real valued functions Z,(-, -) on Z" X &% where & is a set of probability
distributions on R containing the “true” F and all distributions with finite support. The
bootstrap works if the conditional distribution of Z, {(X%, ---, X*), F,} is close to the
distribution of Z,{(X:, ---, X.), F}. We interpret this as follows: If the law of
Z.{(X,, ---,X,), F} tends weakly to a limit as n — o, then the conditional distribution of
Zm » {(X%, ---, X}), Fn} given (Xy, ---, X,) tends weakly to the same limit law with
probability one as m, n — . Theorem 2.1 shows this for

Zp{(Xy, --+, Xp), F} = n”z{n" Y1 Xi — j x dF(x)} .

The present notion of convergence is stronger than Efron’s, who requires only that the
conditional distributions converge weakly to the same limit law in probability. Efron has
established convergence in his sense for the mean, when F has finite support.

3. Bootstrapping von Mises functionals. Suppose Xi, - - -, X, are independent iden-
tically distributed p vectors. Many pivots of interest which have limiting normal distribu-
tions can be written in the form

n'*{g(S./n) — g(w}

v(T./n)
where g: R* > R,v: R’ R,
3.1 S, = Y1 h(X0),
(3.2) T, =Y r(X),
h:R?”—> R* r:R?”—> R’ and
(3.3) w = Eh(X,), v = Er(Xy).
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The asymptotic theory for such things is, of course, based on linearization for the
numerator

T
(3.4) n'? {g<§l> - g(n)} = é(#)n‘”GE - ﬂ) +0,(1)

n

provided that E || A(X;) ||* < «, g has a total differential g,xx at u, and for the denominator
that v is continuous at » in the sense

3.5) v(l) = 0() + 0,(1).
n

The bootstrap commutes with smooth functions in exactly the same way. Let
S, =3Linyr, To=3mr?).
If E || A(X1) ||* < « and g exists in a neighborhood of ¢ and is continuous at p then,

5 S, s, 5.\
1/2 ) n =g l2fon _Zn
(3.6) n {g< n) g( ~ )} g(wn (n 7 ) +A4n

where A, — 0 in conditional probability and, of course, if v is continuous

(3.7) U(Z':) — v()
n

in conditional probability. The proof of (3.6) in a more general setting is given in Lemma
8.10 below.

Suppose now that g is a functional g : # — R where # is a convex set of probability
measures on R™ including all point masses and F. Suppose also that g is Gateaux
differentiable at F with derivative g(F) representable as an integral

(3.8) (F)G = F) =2 gF + (G~ F))|co = f ¥(x, F) dG(x)

where necessarily

(3.9 J Y(x, F) dF(x) = 0.

Such g are often called von Mises functionals. Asymptotic normality results in nonpara-
metric statistics relate to quantities of the form n'/*{g(F,) — g(F)} or asymptotically
equivalent quantities. The result we usually want and get is that n 2(g(F,) — g(F)} and
n'2 [ Y(x, F) d(F, — F) have the same N(0, [ *(x, F) dF) limit law. As Reeds (1976)
indicates, this reflects a general Taylor approximation

(3.10) g(F,) — g(F) = gr(F, — F) + Ap(Fo, F)
where
An(Fn, F) = 0p(8r(Fn — F)).
It is natural to hope that if we let G, be the empirical d.f.of X{, --., X, then
8(Gn) — g(F,) = gr,(Gn — Fu) + An(Gy, Fr),
where for almost all X;, X, ---
(3.11) 7280 (Gn, Fn) = 0

in conditional probability, and thence that the conditional law of

(8.12) n'gr (G, — F.) =n "2 YL (X}, Fy) tends to N(O, j Vi(x, F) dF(x)).
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Simple conditions for the validity of (3.11) can be formulated using the theory of
compact differentiation as in Reeds (1976). However, verification of these conditions in
particular situations poses the same requirements for special arguments as in Reeds’
verification of various examples of (3.10). Moreover, whereas convergence in law under F'
of [ Y(x, F) dF, is immediate if [ Y*(x, F) dF < o, further continuity conditions on y as
a function of F seem necessary to ensure that the conditional distributions of [ ¢(x, F)
dG, tend weakly to N (0, [ Y3(x, F) dF (x)).

The simplest conditions sufficient to guarantee this behavior seem to be

i) f V¥(x, F) dF (x) < .
ii) f (W(x, Fn) — ¥ (x, F))* dF, > 0 as.
Condition (ii) implies that for almost all X;, X, -,
n2Yn, [tlz(X,-*, F,) - {xP(Xi*, F) - J Y(x, F) dF,,}j| -0
in conditional probability, while condition (i) ensures the satisfactory behavior of
n”V*SY(X¥, F) — [ Y(x, F) dF,. These conditions are exploited in Theorem 3.1 below.

We pursue these general considerations slightly in Section 8. Here we content ourselves
with checking the bootstrap for the simplest nonlinear von Mises functionals

(3.13) g(H) = jf w(x, y) dH(x) dH(y)

where w(x, y) = w(y, x) and H is such that g(H) is well defined. In particular,
g(Fn) =n"? :l=l 2/';1 W(Xn X})
A closely related statistic of interest is the U-statistic of order 2 defined by

-1
n n 1 n

(3.14) &n(Fp) = <2) Ezq w(X;, X)) = n—_—Tg(Fn) —mEml w(X, X.).
It is well known (von Mises, 1947) that if

(3.15) fwz(x,y) dF (x) dF (y) <

and

(3.16) f w2(x, x) dF (x) < oo,

then

(3.17) n'?{g(F,) — g(F)} tends weakly to N(0, 0%)

where

2
(3.18) o= 4[j {j w(x,y) dF(y)} dF (x) —gz(F)jl.
This is in accord with (3.8) and (3.10), since in this case

(3.19) ¥(x, F) = 2{f w(x,y) dF (y) — g(F)}.

THEOREM 3.1 If (3.15) and (3.16) hold, and g is given by (3.13) and o® by (3.18), then
for almost all X,, Xo, - - -, given (X1, - -+, X»),

n'*{g(G,) — g(F,)} converges weakly to N(0, ¢%).
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PRrOOF. Define ¢ and A, as in (3.19) and (3.10). Then we will establish that (3.11) and
(3.12) hold.

PROOF OF cLAIM (3.11). A, (Gr, F) = [ [ w(x,y) d(Gn — Fa)(x) d(Gn — F,)(y). By
an inequality of von Mises (1947) (see also Hoeffding, 1948),

E{ANGn, F)| X, -, Xa) = n'2{01 f f w?(x,y) dF, dF, +%j w?(x, x) dE}.
where C; and C; are universal constants. Now

f w?(x, x) dF, - Ew?*(X1, X))

2 -1
I f wX(x, ) dF, dF"=<n_'-l"T) ('2‘) Yo ©*(X;, X))

+n7? Z, wz(Xi, Xi) > sz(Xl; Xz)

almost surely by the strong law of large numbers, as generalized to U-statistics (see Berk,
1966, page 56) and (3.11) follows.

ProoF oF cLAIM (3.12). As we noted earlier, it is enough to show that
f {¥(x, F,) — y(x, F)}* dF, —> 0
with probability 1. But,

f {(¥(x, F) = ¥(x, F)}? dFo(x) = n7' 3 ($(X,, F) — ¥ (X, )Y

2
=n7'% {n_' % (X, X)) —jw(X.-,y) dF(y)}

=n7 Yk (X, X))o (X,, Xi)
-2n72Y,, 0(X;, X)) fw(Xi,y) dF

2
+n' Y {f w(Xi, y) dF} .

By an argument using a strong law of large numbers for U-statistics, these last three terms
tend with probability 1 to

Ew(X), Xo)w(X1, Xs), —2E[w (X1, X2)E{(Xi, X2)|Xz}], and E[E* {0 (X1, X2)| X2 )],
respectively. The sum of these numbers is 0 and claim (3.12) and the theorem follow. O

If Ew?(X1, Xz) <  and Ew?(X1, X1) < =, the conclusion of Theorem 3.1 clearly holds for
the bootstrap distribution of the U-statistic g.(F,) and, more generally, any convex
combination of g, (F,) and n™' ¥ w(X,, X.) where the weight on g, (F,) tends to 1. Failure
of the conditions, however, can cause failure of the bootstrap (see Section 6).

As an example of the applicability of this result, it is valid to bootstrap the distribution
of Wilcoxon’s one sample statistic

{n”z(n +1)

-1
5 } Siy {I(X, + X, > 0) — P(X, + X, > 0)}

in order, for instance, to obtain approximations to its power.
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Extensions of the theorem to the von Mises statistics corresponding to U-statistics of
arbitrary order, vector U-statistics, U-statistics based on several samples, etc., is straight-
forward, provided, however, that the hypotheses appropriate to the von Mises statistics, as
in Fillipova (1962), are kept.

Extending a remark made in Section 2, we can bootstrap U-statistics by resampling
from a general { F.}, provided that { F',} possesses a property analogous to the strong law
of large numbers for U-statistics, viz.,

f jv(xl, ceey X)) dFp(x1). . . dFy (x2)

—»J j v(xy, «++, x) dF(x;). . .dF (xx) a.s.
if flv(xl, wev, x0) | dF (x1). . .dF (1) < o0,

4. Bootstrapping the empirical process. The object of this section is to bootstrap
the empirical process, (Theorem 4.1), and to obtain a fixed-width confidence band for the
population distribution function which is valid even when the latter has a discrete
component (Corollary 4.2). We first give two preliminary lemmas and then recall notions
of weak convergence. Throughout this section, B is a Brownian bridge on [0, 1]. Theorem
3 of Komlos, Major and Tusnady (1975) implies the following result.

LEMMA 4.1 There exist, on a sufficiently rich probability space, independent random
variables Uy, Us, . . . with common distribution uniform on [0, 1], and a Brownian bridge
B on [0, 1] with the following property. Let H,, be the empirical distribution function of
Uy, +++, Uy and let

Bn(u) =m'"?{H,(u) —u} for0=u=<1l.
Then for some constant K,, and €, = (log m)/m'’?
P("Bm - B" = KIEM} = K1€m.

To state the next result, which is an integrated form of Levy’s modulus of continuity,
let

(4.1) w(8, f) =sup(|f(s) = f(®)|:|t —s| =8}
172
h(6)=<810g%) for0=86=%
4.2)
= h(1/2) foré6= %

LEMMA 4.2 There is a constant K, such that E{w (8, B)} = K:h(8) for0 < 8 = .

ProOF. Represent B as
B(u)=W(u) —uW(@1) for 0=Sus=s1l,
where W is a Wiener process on [0, ©). Now
w(8, B) = w(8, W)+ 8| W(1)|.
So it is enough to prove the lemma with W in place of B. Abbreviate
Ms = sup, {| W(s) — W(kS) |:k8 = s = (k + 1)8}).
Let K be the integer part of 1/5. By the triangle inequality,
w(8, W) =3 max {Mps:0=k =K).

Of course, the M,;s are independent and identically distributed, so

o

E{w(s, W)} = J'

0

P{w(8, W) >x} dx = 3f [1- {1 = P(My>x)}*"] dx.
0
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If x < 2'2h(8), the integrand may be replaced by the trivial upper bound of 1. The integral
over bigger x’s is negligible for small §; this may be seen by estimating the integrand as
follows:

1-(1-p)*'=(K+1)p for0=p=1
P{M,; > x} = 4(8/2m)V*x e /%

and then making the change of variables y = § "/2x. 0

Let D be the space of all real-valued functions f on [—o, ®], such that f vanishes
continuously at +o, and is right continuous with left limits on (—, «). Give D the
Skorokhod topology. Let I' be the set of all distribution functions, in the sup norm. For G
€T, let Z,(G), ---, Z,(G) be independent with common distribution G. Let G, be the
empirical distribution of Z,(G), - - -, Z,(G), and set

(4.3) Won(t) = Vm[Gn(t) — G(£)]  for —w <t < o,

extended to vanish at +o. Let ¥, (G) be the distribution of the process Wgn. Thus, Ym (G)
is a probability measure on D. In this notation, the usual invariance principle states that
Ym (G) tends weakly to the law of B(G) as m — «, where B is the Brownian bridge, and
B(G)(t, w) = B{G(t), w}.

The weak topology on the space of probability measures on D is metrized by a dual
Lipschitz metric as follows. Let y metrize the Skorokhod topology on D, and in addition
satisfy

(4.4) yhe) =|f-glal

Here f and g are elements of D, i.e., function on [—, «], and || - || is the sup norm. Now

J’ rdm — J Ordn’
D D

where 7 and 7’ are probability measures on D, and # runs through the functions on D
which are uniformly bounded by 1 and satisfy the Lipschitz condition

[0(f) —0(g) | =v(f &)

(4.5) p(m, 7’) = supy

PROPOSITION 4.1. There exists a universal constant C such that
plYm(F), Ym(G)] = Clem + R(| F - G|)],

“2log m and h was defined in (4.2).

where €, = m

Proor. Recall B,, from Lemma 4.1 Clearly, y,,(F) and y,,(G) are the probability
distributions induced on D by B,,(F) and B,.(G) respectively. By the definition (4.5) of
the dual Lipschitz metric p,

pl¥m(F), ¥m(G)] = supg E{|0[Bn(F)] — 0[Bn(G)]|} = E{y[Bn(F), Bx(G)]}.
Now (4.4) implies
(4.6) E{y[Bn(F), Bn(G)]} = E{|| Bu(F) — Bx(G)|| A 1}
Since | f — g]| A 1 is a metric, the triangle inequality implies
(4.7) E{y[Bn(F), Bn(G])} = 2E{||B» — B| A 1} + E{w(|F — G|, B)}.
Now use Lemma 4.1 to estimate the first term on the right in (4.7):

E{||Bn — B|| A1} = Ki€n + P{|| B» — B|| > Ki€n} = 2K €.

The second term on the right in (4.7) can be estimated by Lemma 4.2. 0
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Return now to the setting of Section 2, but with no moment condition. There is a
sample of size n from an unknown distribution function F, which is to be estimated by the
empirical distribution function F,. Given X, .-, X,, let X{, ..., X% be conditionally
independent, with common distribution F,. Let F,. be the empirical distribution function
of X¥, .-+, X%. And let

(4.8) Wi (£) = VI {Fam (t) — Fa(£)}  for —o0 <t <o,

extended to vanish at +w. The next result is the bootstrap analog of the invariance
principle, which states that Vn (F,—F) converges weakly to B (F') as n — . No conditions
are imposed on F; as usual, B is the Brownian bridge on [0, 1].

THEOREM 4.1. Along almost all sample sequences, given (X, ---, X,), asn and m
tend to infinity, W, converges weakly to B(F).

ProoF. This is almost immediate from Proposition 4.1. Conditionally, Wnn = Wgn
has the law Y, (F,), and || F, — F|| — 0 a.s. by the Glivenko-Cantelli lemma, s0 Y (Fp), is
nearly ¥ (F). The latter is almost the law of B(F) by the ordinary invariance principle.
Indeed, the argument shows that the p-distance between ¥, (F,,) and the law of B(F) is at
most a universal constant times €, + A (| F, — F||). 0

COROLLARY 4.1. For almost all X;, X;, - --, given (Xy, ---, X,.), as n and m tend to
infinity, || Fun — F|| tends to 0 in probability. Here, Fy is the empirical distribution of the
resampled data, as defined above.

We now consider confidence bands for F which will be valid even when F has a discrete
component.

COROLLARY 4.2. Suppose F is nondegenerate. Fix a with 0 < a < 1. Choose c(F,)
from the bootstrap distribution so that
P{n'? sup; | Fun(x) — Fo(x) | S ca(Fo) | X1, -o, Xn} > 1 —a
Then
P{n'?sup:|Fa(x) = F(x)| S c(Fo)} > 1—a.
Proor. Indeed, c,(F,) must converge to the (1 — a)-point of the law of sup. | B(F (x)) |,

which is continuous: see Lemma 8.11 below. So, F, + ¢,(F}) is the desired band.

Preliminary calculations suggest that the mapping F — y/ (F) is uniformly equicontin-
uous, in the sense that there is a function g(¢) — 0 as t — 0, and for all m, F and G:

plém (F), ¥m(G)] = q(| F - G|).

The argument rests on the following inequality, which may be of independent interest.
Suppose F and G concentrate on [0, 1] and || F — G|| < 8. Then

Lebesgue measure of {£:0=<¢=1 and |F~'(¢t) — G™\(¢)|>V8)} < V5.

This is immediate from Chebychev’s inequality; see (8.1).

Suppose the resampling is from another estimator F, for F. Bootstrapping may still be
valid. Given (Xi, ---, X,), it can be shown that Wi . tends weakly to B(F) as m and n
tend to o, provided F, > F as. in the sup norm. Here anL" was defined in (4.3). This
result can even be proven under the weaker hypothesis, that F,, — F a.s. in the Skorokhod
topology.

5. The quantile process. Another interesting process in terms of which various

statistics and pivots can be defined naturally is the quantile process @, which we define on
(0, 1) by
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Qn(t) =n'2{F;'(t) — F7' ()}
where the inverse of a distribution function H is given, in general, by
H7'(t) = inf{x:H(x) = t).

Our aim in this section is to justify the bootstrapping of this process. Applications which
will be sketched briefly after the theorem include confidence intervals for the median and
pivots based on trimmed means and Winsorized variances.

For convenience, throughout this section we use ° to denote composition. For example,
fo F ' means f(F").

It is well known (see Bickel, 1966, for example) that given 0 < t, = t; < 1, if

(5.1) F has continuous positive density f on R,
then
(5.2) Q. tends weakly to B/f o F™' in the space of probability measures on D[, t ].
Write G, for F,, as defined for (4.8) and let
Q. =n"*G:' = F").
THEOREM 5.1. If (5.1) holds, then along almost all sample sequences X, Xs, -+ -,

given (X, « -+ , X,.), Qn converges weakly to B/(f°F™") in the sense of weak convergence
for probability measures on D[t,, t].

PROOF. An equicontinuity argument does not work here since the behavior of the
quantile process depends on the density of the limit distribution. This is also the reason we
take m = n. We present a relatively ad hoc modification of an argument due to Pyke and
Shorack (1968).

It is convenient to denote the sup norm in D[¢,, ¢,] by || - ||. Write
(FoG.' — FoF.")
— pl/2
@n=n —=r
where
FoG;' — FoF;'
e

Continue by writing
n}(FoGy' — FoF;") = n'//[{(F.°Gy' — FoG;") — (FuoFy' — FoF;")}
(5.3) + {GroGr' — FuoG:'}]
— n'A(FuoF;' = GnoGY).

Let the probability space be rich enough to support the processes B, and B of Lemma 4.1
as well as another pair (B,, B) with the same distribution as (B,, B) and independent of
them.

We now_represent nV%G, — F,) as B,°F, and nV*(F, — F) as B,°F and call these
processes W, and W, respectively. Then we can write the right-hand side of (5.3) as

~((Woo G5! = WooF3') + WioGn' )= n'2((FuoFu' = I) = (GuoGa' = 1)}

where I is the identify. Therefore, to prove the theorem it is enough to show that the
following five assertions, (5.4)-(5.8), hold for almost all X, Xa, - - -

54) I FueFat =1 = o(n™),
(5.5) V2| GroGr' = I|| > 0
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in (conditional) probability,

(5.6) |Rn = foF | —0

in (conditional) probability,

5.7) —W,oG;! converges weakly to B, on [¢,, # ]
(5.8) | WaeGr' — wnoF3|| — 0

in (conditional) probability.
Proor oF (5.4). F), has jumps of size 1/n only.

PRroOF oF (5.5). Bound (5.5) by
nY? sup, {Gn(x + 0) — Gr(x)} = sup,| Wa(x + 0) — W, (x)| + n712
Since F'is continuous and strictly increasing, so is F~' and
(5.9) sup.| W, (x + 0) — W, (x) | = sup| Wy F ' (x + 0) — WoeF(x) |.

By Theorem 4.1, given (Xi, ---, X,,), W,oF ! converge weakly to B which is continuous.
Therefore, the expression in (5.9) tends to 0 in conditional probability and (5.5) follows.

ProoF oF (5.6). By Corollary 4.1 since, by hypothesis, F~! is continuous on (0, 1),
(5.10) 1G:' = F|—0

in conditional probability, for almost all X;, X,, ... . Similarly, by the Glivenko-Cantelli
Theorem, with probability 1,

|F: = F' = o.

Claim (5.6) follows since the assumed continuity of F' on R implies that F is uniformly
differentiable on all compact subsets of R.

Proor oF (5.7). By (5.10) and Theorem 4.1, given (Xi,---,X,), the processes
(=W,oF~!, FeG;') viewed as probability measures on D[t,, t;] X D[t,, ] converge
weakly to (B, I). By the continuity of the composition map M:(f, g) — fog at all points of
C[0, 1] X D[t,, t], we have —W, oG, ! converging weakly to B and (5.7) is proven.

ProoF oF (5.8). We have to be careful here to control W, with probability 1. Since
|| FeF;' — FoG,"| — 0 in conditional probability and W, = B,°F, it is enough to check
that if §, — 0,

w(8,, B,) = 0 as.

But this follows for instance from Komlos, Major and Tusnady (1975, Theorem 3). The
theorem is proved.

REMARKs. (1) If F7'(0+) > — and F~!(1) < ® and f is continuous on [F~'(0+),
F~'(1)], the conclusion of the theorem holds in D[F~!(0+), F~'(1)]. For instance, if F is
uniform on (0, 1), convergence holds in D[0, 1]. More generally, we may have one end of
the support finite and the other infinite and have the appropriate theorem hold.

(2) Suppose {F',} is a general sequence of probability measures depending on Xj, - - -,
X, and G, is the empirical d.f. of Yy, ..., Y, which, given (X;, --. , X,,), are ii.d. with
common distribution F,. We can give simple conditions for V(G = F) to converge
weakly, given (Xi, - -, X,) (as probability measures on D([¢,, ¢,]) to B/(foF '), provided
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that we requ1re the convergence to hold in probability as in Efron. All we need in addition
to (5.1) is that (i) nV2(F, — F) converge weakly (as probablhty measures on D) to a limit
with continuous sample functions, and (ii) sup.| F,. (x + 0) — F, (x) | = 0,(n~/*). Hence the
parametric bookstrap works if, for example, F = F; satisfies (5.1) and (3/06) Fy|s,
continuous in x and n'2(8, — 6,) = 0,(1).

Here are some applications which follow fairly easily from the theorem.

The median. Let m* be the median of the X} and m the median of the X,.

ProposITION 5.1. If F has a unique median p and f has a positive derivative f
continous in a neighborhood of p, then along almost all sample sequences Xi, Xz, «-- ,
given (Xi, -+ , X»), n'/*(m* — m) converges weakly toN| 0, , the limit law of

n%(m — p).

1
4f*(w)

By this result the quantiles of the bootstrap distribution of n'/*(m* — m) can be used to
set an approximate confidence interval for u. An asymptotic pivot in which we estimate
the density f and then scale can also be bootstrapped.

A more careful argument shows that Proposition 5.1 holds under the weakest natural
conditions: p is unique and F has positive derivative f at p.

Quantile intervals. The usual interval for the population median is [Xu), Xpn-£+1]
where Xy < .-+ < X, are the order statistics of the sample, and % is determined by the
desired confidence coefficient through the relation

P{Xj)<p=Xg+n}= (;L) 2™

valid for all continuous F.
Since X,y = F,'(j/F) is the j/k quantile of the law of X¥, given (Xi, --- , X,), the
bootstrap principle leads us to believe

(5.11) P(Xu < M= X |Fo) = P{F(g) <m§F~l(§)}

where P(- | F,) is the conditional probability, given (Xi, ---, X,). Efron, by exact calcu-
lation, gets the unexpected approximation

(5.12) PXuy<M=X,|F.} = P Xw<p=Xin}

If we interpret = as meaning that the difference of the two sides goes to 0 along almost
all sample sequences, then both (5.11) and (5.12) can be established under the assumptions
of Theorem 5.1.

Linear combinations of order statistics. Theorem 5.1 establishes the validity of the
bootstrap for linear combinations of order statistics with nice weight functions concentrated
onfa,1— a),0<a< % Thatis,

1—-a 1-a
nl/Q{f F\(¢) dAn(t) — f F“<t)dAn<t)}

can be bootstrapped under condition (5.1) provided that A, — A weakly. As a special case,
if we take A, to be the uniform distribution on [a, 1 — a], we see that the bootstrap
provides confidence intervals for the center of symmetry of a symmetric distribution based
on the a-trimmed mean. The bootstrap is also valid for estimates of the asymptotic
variance of such linear combinations of order statistics and for pivots based on ¢-like
statistics.
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6. Counter-examples. In Sections 2 and 3 we checked the validity of the bootstrap

for various functionals R, {(X, --- , X,,); F.}. Roughly, the bootstrap will work provided
that
(6.1a) R, {(Yy, ---, Y,); G} tends weakly to a limit law .¥; whenever Y;, ---, Y, are

ii.d. with distribution G, for all G in a “neighborhood” of F into which F, falls
eventually with probability 1,

(6.1b) the convergence in (6.1a) is uniform on the neighborhood,
and
(6.1¢) the function G — % is continuous.

In the examples of this section, the bootstrap fails because uniformity does not hold on
any usable neighborhoods.

Counter-example 1: a U-statistic. Let
-1
(6.2) Ru(Yi, -+, Y, G) = ﬂl/z{(;) Yi<i [0(Y,, V) — j w(x, y) dG(x) dG(y)]}

a normalized centered U-statistic. As we have noted in the previous section, by a theorem
of Hoeffding, if

(6.3) f w(x,y) dF (x) dF (y) < e,
then
(6.4) R, (X, - -+, X»; F) converges weakly to a N(0, ¢®) random variable,

where o? is given by (3.18).
To bootstrap the U-statistic, however, we have to assume not only (6.3) but also the
von Mises condition

(6.5) f w(x, x)? dF(x) <

Absent this condition, the bootstrap can fail: indeed, |R (X}, - -, X¥; F.) | can tend to .

Suppose F is the uniform distribution on (0, 1) and write w = w; + w, where w;(x, y) =
w(x, y)I(x # y). Let Ry, R2 be the U-statistics corresponding to w;, w; respectively. Then
R, = Ru + Rye. If (6.3) holds, by Theorem 3.1, given (X;, ... , X,), the conditional
distribution of R, (X}, --- , X¥; F,) tends weakly to N(0, 6?). An example will be given
where | R (X{, -+ , X¥; F,)| tends to » in probability. Of course, R (X1, +++ , Xn; F)
=0.

To develop this example, write

(6.6) Run(Xt, .-, X2 Fo) = (n'"*(n— 1)) Tk w(Xi,X,){wn(vm -n-2= 1} )

n
where
(6.7) Vin is the number of j’s with1 = j = n and X} = X,.
Let Z; = w(X,, X.,),i=1, ---,nand Z,) = --- = Z, be the corresponding order statistics.
Take
w(x, x) = e/~
We claim
(6.8) the conditional distribution of {n'*(n — 1/Z4 }Raw(X¥, -+ -, X¥; F,) converges

in probability to a limit law, namely the distribution of »(v — 1) — 1 where vis a
Poisson variable with mean 1.
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Moreover

(6.9) n*/Z, tends to 0 in probability as n — , for every positive A.
So R, does indeed dominate R,;.

Our assertions about the behavior of R, are proved as follows. Let X1) < - -- < X(» be
the order statistics of Xj, --- , X,. Then the distribution of

n(Xe — X))

1o, Zw —log Zn-1) =——5———
n~(log Zw) — log Zn-1) (n* X X))

converges to a limit concentrating on (0, ®), since nX,) and n(Xe — X)) converge jointly
in law to two independent exponentials. Therefore,

(6.10) n*Zn-1/Zw tends to 0 in probability, for any positive A.
Let I be the “antirank” of Z,), defined by Z; = Z,,. Then,

n'(n — DRu(Xt, -+, X¥; F) [ Zoy = vin 0mn — 1) + Op (n°Zia1y [ Ziny },

since Y vin (vin — 1) S n(n — 1).

Now (6.8) follows: given Xi, - -+, X, conditionally »;, has a binomial distribution with
n trials and success probability 1/n, whose limit is Poisson with mean 1. The remainder is
negligible, by (6.10).

The claim (6.9) follows by a previous argument, since n™" log Z») = (nU;)) " converges
in law.

Counter-example 2: the maximum and spacings. If F is uniform on (0, 8), the usual
pivot for § is n(6 — X(»))/6 which has a limiting standard exponential distribution. If we
think of 6 as the upper end point of the support of F then it is natural to bootstrap
(n(@ — Xn))/0 by n(X,) — Xt,)), where X, < ... < X%, are the ordered X¥. This does
not work. In fact,

P{n(Xm — X&) =0|F.} > 1—e' =0.63.
More generally, it is easy to see that for almost all X;, Xz, - - -,
P{Xt) < Xn—t+n) | Fn} > 7%, k=1,....

Thus, with probability 1, the conditional distribution of n(X, — X%,)/X does not
have a weak limit: since lim sup n(X) — X(n-2+1) = %, and lim inf n(X) — Xpn-r+1) =0
a.s. for each k.

This unpleasant behavior cannot be mended by simple smoothing, e.g., replacing F, by
F,, which puts mass 1/(n — 1) uniformly into each interval [X,—s+1), X(n_n ], for £ = 0,

, n — 2. Nor does this behavior have much to do with the maximum. The conditional
distributions of the spacings n(X%, — Xt.—1)) do not have weak limits, even though n (X«
— X@-1) has an exponential limit.

The problem is the lack of uniformity in the convergence of F, to F. Uniformity does
hold for the parametric bootstrap, where F is estimated by F., which is uniform on the
interval (0, X(n). If X¥, -+ , X ¥ are a sample from P,,, then

LXKy, =+, X3 [ Xw) = LX,/6, -+, X, /0)

7. Other work. Freedman (1981) has pursued the use of the bootstrap for least
squares estimates in regression models when the number of parameters is fixed, and arrived
at results very similar to those obtained for means in the one-sample problem. Work is in
progress at Berkeley on the behavior of other types of estimates in these models, as well
as on the general theory of bootstrapping von Mises functionals in one-sample models.

The authors are studying the behavior of the bootstrap in regression models when the
number of parameters is large as well as the sample size; also considered is the sampling
of finite populations. An interesting new phenomenon surfaces: the bootstrap can work for
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linear statistics based on large numbers of summands even though the normal approxi-
mation does not hold. On the other hand, the bootstrap fails quite generally when the
number of parameters is too large.

8. Mathematical appendix. In Section 2, we used the Mallows metric d; and its
cousin d;. It may be helpful to give a fuller account of such metrics here. Let B be a
separable Banach space with norm |.|. The only present case of interest is finite-
dimensional Euclidean space, in the Euclidean norm. Let 1 = p < ; only p = 1 or 2 are of
present interest.’

Let T', = I',(B) be the set of probabilities y on the Borel o-field of B, such that
[ 1" y(dx) < . For « and B in T},, let dj, (a, B) be the infimum of E {|| X — Y||?}"/* over
pairs of B-valued random variables X and Y, where X has law a and Y has law 8.

LEMMA 8.1. (a) The infimum is attained.
(b) d, is a metric onT,.

ProoF: Claim (a). Let X and Y be the coordinate functions on B X B. Using weak
compactness, it is easy to find a probability 7 on B X B, such that 7X™' = @, and 7Y ™' =
B, and [ || X — Y||” d7 is minimal.

Claim (b). Only the triangle inequality presents any problem. Fix a, 8 and y in T',.
Using the first claim, choose 7 on B X B so [[ | X — Y||” dn]'”? = d,(a, B). Changing
notation slightly, let Y and Z be the coordinates on another “plane” B X B; find 7’ on this
BXBso[f||Y—-Z|?dn']"? = d,(B, y). Now stitch the two planes together along the Y-
axis into a 3-space B X B X B. More formally, let X, Y, Z be the coordinate functions on
B X B X B. Define 7* on B X B X B by the requirements:

* the 7*-law of Y is 8;

« given Y, the variables X and Z are conditionally 7 *-independent;

* the conditional 7*-law of X given Y = y coincides with the conditional 7-law of X given
Y=y;

* the conditional 7*-law of Z given Y = y coincides with the conditional 7’-law of Z given
Y=y

In particular, the 7*-law of (X, Y) is 7; the 7*-law of (Y, Z) is 7’
Minkowski’s inequality can now be used, as follows:

1/p
dyle, y) = {J X -2z|r dﬂ*}

1/p
= {f X = Y|+ Y- Z|p dvr*}

1/p p
c{Jox-rra] o {fir-avac]
1/p 1/p
= {f |1X =Y dﬂ} + {f |Y—=2Z|P dvr'}

=dy(a, B) + dp (B, y) o
On the real line, Lemma 8.2 below gives a very convenient representation for d, (see

Major, 1978). In this case, the probabilities a and B are defined by their distribution
functions F and G.

? The essential supremum corresponds to p = o and can be handled analogously. The extension to
Orlicz spaces might be useful: see Zaanen (1953) or Zygmund (1935).
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LEMMA 8.2. If B is the real line, with | x| = | x|, then
1 1/p
d,(F, G) = {f |F¢) — G'@) | dt}
0
The case p = 1 is especially simple because

1 o0
(8.1) J |F7'(t) — G™*(t) | dt = f |F(t) — G(t)| de.
0 —o

Indeed, both sides of (8.1) represent the area between the graphs of F and G.
Return now to the general setting.

LEMMA 83. Let an, a ET,. Then dy(an, a) = 0 as n — » is equivalent to each of the
following.

a) a, — a weakly and [ || x||Pan(dx) — [ || x||Pa(dx).
b) an — a weakly and || x||? is uniformly a,-integrable.
¢) [ ¢ dan— [ ¢ da for every continuous ¢ such that ¢(x) = 0(|| x||?) at infinity.

PRrOOF. a) “Only if”. Suppose d,(ar, @) — 0. Let £, have law a,, and { have law «, and
E[ll4 — ¢1°177 = dy(an, a). Then

1/p 1/p
[fll x Pan (dx)] - Ull x [P (dx)] =E{|& P} - E{I£IP}”

SE{|& -y -0
Likewise, if f is Lipschitz, that is | f(x)— f(y)|| = K| x — ||, then

Uf(x)an (dx) — jf(x)a (dy)l =|E{f(&) - f(O} = E{|f&) — O}

=KE{|¢& - ¢} = KE[||& — ¢IP177 — 0.

Then a, — a weakly by a routine argument.

“If”. Suppose a, — « weakly and | x[|?a. (dx) — [| x|?a (dx). A routine argument
reduces the problem to the case where a, and a concentrate on a fixed bounded set, using
the condition on the norms; then the reduction to the case where «, and a concentrate on
a fixed compact set C is easy, using Prokhorov’s theorem (Billingsley, 1968, page 37). Cover
C by a finite disjoint union of sets C; of diameter €, with a(dC;) = 0, where d represents the
boundary. Choose x; € C.. Replace a, by &., where &.{x;} = a.{C:}. Likewise for a.
Clearly d,(@y, an) = € and d, (&, a) = €. But d, (a», @) — 0 by an easy direct argument. The
rest is immediate. O

The argument for the “if” part of () is a variation on an argument for Vitali’s theorem.

LEMMA 84. Let X; be independent B-valued random variables, with common distri-
bution p € T,. Let p, be the empirical distribution of X1, - - -, X,. Then dp (i, p) — 0 a.e.

Proor. Use Lemma 8.3 and the strong law. 0O
For B-valued random variables U and V, write d,(U, V) for the d,-distance between

the laws of U and V, assuming the latter are in I',. The scaling properties of d, are as
follows:

8.2) dp(alU, aV) =|al|-d,(U, V) for any scalar a
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(8.3) dp(LU,LV) = ||L||-dp(U, V) for any linear operator L on B.
The next lemma involves two separable Banach spaces B and B’, e.g., two finite-

dimensional Euclidean spaces. Let 1 = p, p’ < 0.

LEMMA 85. Suppose X, is a B-valued random variable and || X, || € L,; likewise for
X; and dyp(X,, X) — 0. Let ¢ be a continuous function from B to B’, and ||¢(x)[|”" =
K(1 + || x||"}, where K is some constant. Then d,[¢(X,), $(X)]— 0.

Proor. Use Lemma 8.3.

Can d, [¢(X,), $(X)] be bounded above by some reasonable function of d,(X,, X)?
Apparently not. Suppose B = B’ is the real line, p = 2 and p’ = 1 and ¢(x) = x°. Find real
numbers x, and y, with (x, — y,)* = 0 but |x} — y%| — . Let X, = x, and Y, = y. as.
Then dy(X,, Y.) = 0 but di(X%, Y7) — oo

LEMMA 8.6. Let U, be independent; likewise for V,; assume the laws are in T',. Then

dp (T721 Up, 1 V) = X0 dp (U, V).

Proor. In view of Lemma 8.1, assume without loss of generality that the pairs
(U, V;) are independent and

E(IU - ViIIPY'? = dp(Uj, V).
Now by Minkowski’s inequality,
&R Uy, D2 V) = E(I TR (U = V)IPY'?
=YLENU - ViIPY P =3 dp (U, V). O

In the presence of orthogonality, this result can be improved.

LEMMA 8.7. Suppose B is a Hilbert space with inner product (-,-), and p = 2.
Suppose the U, are independent, likewise for V,; assume the laws are in I';, and E (Uj)
= E(V;). Then

dz(E/'";l UJ; 21’11 ‘/J)l = Z;"sx dz( [Jj, V,)2

PROOF. Make the same construction as in the previous lemma. Now E ((U, — V;, U
— Vi)} is 0 or d2( U, V;)? according as k& # j or k = j. So

AT Up 7 V)P S E(E T (Ui = V), T3 (U = V)
=Y do(Uj, V)2 0
LEMMA 8.8. Suppose B is a Hilbert space with inner product (-, -), andp = 2. Let U
and V be B-valued random variables, with || U| and || V| in L,. Then
do[U, VI? = do[U — E(U), V- E(V)}F + ||[E(U) — E(V)|*.

ProoF. Write a = E(U) and b = E(V). Choose U and V so that E(| U — V|*) =
d2(U, V)% Now

E((U-a)= (V=0 }=E(|U- V") —la—b|}
S0

do(U—a, V-0)*=ds(U, V)’ - |la - b|2
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For the other inequality, choose U and V so that
E{(U-a) = (V-0)|?} =do(U —a, V- b). ]

For simplicity, the next result will be given only for the line.

LeEMMA 8.9. Suppose B is the real line, |x| = |x|, and p = 2. Let d; be the
corresponding Mallows metric. Let Uy, - - -, U, be independent and identically distributed
Lsy-variables, and let U be the column vector (Uy, -+, U,). Let V, .+, V, and V be
likewise. Suppose E(U;) = E(V;). Let A be an m X n matrix of scalars. Now AU, AV are
random vectors in R™, equipped with the m-dimensional Euclidean norm. Write d3' for
the corresponding d-metric. Then

dPAU, AV)? =< trace(AA")- di(U., Vi)2

PROOF. As usual, suppose (U;, V;) are independent and E {(U, — V;)*}? = dy(U,, V,).
Now

dx(AU, AV): = E{|AU — AV|%}
= E {trace[A(U — V)(U - V)'A‘]}
= trace(AA’).di(U;, V,)?

because E {((U— V(U = V)'} = Lixa-d5(U;, V.)? where I,x, is the n X n identity matrix,
and trace CD = trace DC, provided both matrix products make sense. [

The next result expresses the idea that the bootstrap operation commutes with smooth
functions. Let ¢ be a function from one separable Banach space B to another B’. Let xo
€ B; most of the action will occur near x,. Suppose that ¢ is continuously differentiable at
Xo in the following sense. For some 8, > 0, if | x — xo|| = 8o, then as real 2 — 0,

¢(x + hy) — ¢ (x)
h

for all y € B, where ¢’(x) is a bounded linear mapping from B to B’. Assume too that if
|| %2 — x0| = O then || ¢'(x») y — ¢'(x0) y | = 0, uniformly on strongly compact y-sets. By the
uniform boundedness principle, there is a positive §; = 8 such that ||x — xo|| = 8, entails
lo'(x)]| = K.

LEMMA 8.10. Let X, be a B-valued random variable and a, a scalar tending to
infinity, and x, € B with x, — xo. Suppose the law of a.(X, — x.) converges weakly to the
law of W. Let ¢ be a smooth function from B to B’, as above. Then the law of ax[$(X,)
— ¢(xa)] converges weakly to the law of ¢'(x0) W.

— ¢’(x)y weakly

Proor. The argument is only sketched. Fix a bounded linear functional A on B, an x
€ B with ||x — x¢|| < % 81, ay € B with ||y|| < % 8., and let ¢ be real with | ¢| = 1. Then

(8.4) SN + )] = A6/ + 1))

The right hand side of (8.4) is a bounded function of ¢, so ¢ — A[¢(x + ty)] is absolutely
continuous, and
t

(8.5) Alo(x + ty)] = Alo(x)] + J’ Al¢'(x + uy)y] du.

0

Since (8.5) holds for all A,

t

(8.6) d(x + ty) = ¢ (x) + J ¢'(x + uy)y du

0

where u — ¢’(x + uy)y is strongly integrable by a direct argument. If n is large, || x, — xo||
< %&,; and || X, — x|l < %8 with overwhelming probability. Then, except for a set of
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uniformly small probability, by substitution into (8.6),
1

8.7 an[0(Xn) — ¢ (x)] = J &' [%n + u(Xn — 22)] An( X — %) dus.
0

By Prokhorov’s theorem, except on a set of uniformly small probability, a.(X, — x.) € C,

a fixed large compact set. So, except for a set of uniformly small probability, the integrand

on the right is uniformly close to ¢’(xo) @.(X. — x»); this final approximation is even

uniform inu. 0

REMARK. The interaction of two standard terminologies is perhaps unfortunate: if b,
and b € B, then b, — b weakly means A (b,) — A(b) for all bounded linear functionals A
on B. On the other hand, if W, and W are B-valued random variables, the law of W,
converges weakly to the law of W iff E {§(W,)} — E{§(W)} for all bounded functions 8
on B which are continuous in the strong topology.

LemMa 8.11. If B is the Brownian bridge and T is a closed subset of [0, 1] which
contains points other than 0 and 1, then supr| B(t)| has a continuous distribution.

Much more is probably true. The distribution of supr|B(¢)| may well have a C*
density, and likewise for other diffusions. However, Lemma 8.11 is all we need for Corollary
4.2. To prove the lemma we need a couple of sub-lemmas. Recall that B(-) is a continuous
Markov process.

LEMMA 8.11.1. Let B(t+) be the o field in C[0, 1] of events which depend only on
path behavior right after t (Freedman, 1971, page 102). Let P be the probability measure
on C[0, 1] which makes the coordinate process a Brownian bridge. B (t+) is trivial, i.e.,
if A € B(t+), then the conditional probability

P(BEA|B(t)=0 or 1
with probability 1.

Proor. Given B(¢) = ¢, the process B(t + u) for 0 = u = 1 — t is Gaussian with the

same joint distribution as

«/—l—tB< )+“_‘L>

T
1-¢ 1-t¢

By a remark of Doob (1949) this in turn has the same joint distributions as

m(1_$)w( u )H““‘“)

1-t—-u 1-t¢

where W is a Wiener process on (0, ©) and W(0) = 0. Lemma 8.11.1 follows from the
Blumenthal 0 — 1 law (see Freedman, 1971, page 106, for example).

LEMMA 8.11.2. We can represent T as the union of two sets, Ti» and T — Ts, such
that every point in T\» may be approached by other points in T from both sides and T —
T2 is countable.

Proor. We can write T'= T, U T, where T is a closed perfect set and T is countable
(Hausdorff, 1957, page 159). Call a point of 7' an endpoint if it can only be approached on
one side by points in T'. The set of endpoints, call it T';, is clearly countable. Write T'»
= T1 - Tu.

Proor oF LEMMA 8.11. Note that supr|B(¢)| is actually a maximum since B is
continuous and, moreover, that maxr| B(¢)| > 0 with probability 1 since T includes points
other than {0, 1}. So what we need to prove is, for each ¢ > 0,

P[maxr|B(t)| =c]=0.
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A simulation, in which the bootstrap distribution is compared to the theoretical distribution.

We claim it is enough to show

(8.8) P[maxr,|B(t)| =c, |B(t)|<c:it€ T —Ti] =0

since for ¢ > 0,
89 S{P[|B(t)|=cl:t€ T — Ty} =0.

Associate with each ¢ € T'. in a measurable way a decreasing sequence s (t) | ¢, sa(t)
€ TV n, t. For example, take s,(¢) to be the largest point in T which lies between ¢ and
t + 1/n. Now let o be the first ¢ € T such that | B(¢)| = ¢ and ¢ = 1 otherwise. Then,

(8.10) Plmaxr, |B(t)| =c, |B(t)| <c,tE€ T — Ti]
= P[0 € Ti, | B(s:(0))| <|B(0)|for large n].

But by Lemma 8.11.1, for any t € T\,
(8.11) P[|B(s.(t))| < |B(t)|for large n| B(¢)] =0or 1.

Since ¢t € T\, lim inf, P[|B(s:(¢))| =Z | c| | B(t) = ¢] > 0 for any finite ¢ and hence the
probability in (8.11) is 0. By the strong Markov property the right-hand side of (8.10) is 0.
Then (8.8) and the lemma follow. 0O

9. A simulation. To illustrate Theorem 1.1, a simulation was performed. The popu-
lation consisted of the 6,672 Americans aged 18-79 in Cycle I of the Health Examination
Survey.* The variable of interest was systolic blood pressure, with an average of 130.3 and
a SD of 23.2 millimeters of mercury. The distribution had a longish right tail: the minimum
was 73, the maximum 260, with skewness of 1.3 and kurtosis of 2.4.

A sample of 100 was drawn at random, with replacement. The sample average systolic
blood pressure was 129.6 with a SD of 21.4. Consider these sample results from the point
of view of a statistician who does not know the population figures, and has forgotten the
“SD/+vn” formula. Such a statistician could estimate the sampling error in the sample

* These 6,672 subjects were themselves a probability sample drawn from the American population.
The data were provided by the National Center for Health Statistics.
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average by the bootstrap principle (Theorem 1.1). The sampling error follows the theoret-
ical sampling distribution of
Xi+ oo + X0
100 Tk

where X, is the blood pressure of the ith sample subject, and p is the population average.
This is approximated by the bootstrap distribution of

Xi++Xto Xt + X
100 00

where the X} are drawn at random with replacement from { X, - -+, X100}, conditioning on
these original X’s.

Figure 1 compares the bootstrap distribution (dashed) with the theoretical distribution
(solid). Both are rescaled convolutions, one of the population distribution, the other of the
sample empirical distribution. These convolutions were computed exactly, using an algo-
rithm based on the Fast Fourier Transform. As the figure shows, the bootstrap distribution
follows the theoretical distribution rather closely.

Acknowledgment. We thank Persi Diaconis and Brad Efron for a number of helpful
conversations.
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ASYMPTOTIC NORMALITY AND THE BOOTSTRAP
IN STRATIFIED SAMPLING

By P. J. BICKEL' AND D. A. FREEDMAN?

University of California, Berkeley

This paper is about the asymptotic distribution of linear combinations of
stratum means in stratified sampling, with and without replacement. Both
the number of strata and their size is arbitrary. Lindeberg conditions are
shown to guarantee asymptotic normality and consistency of variance esti-
mators. The same conditions also guarantee the validity of the bootstrap
approximation for the distribution of the ¢-statistic. Via a bound on the
Mallows distance, situations will be identified in which the bootstrap approx-
imation works even though the normal approximation fails. Without proper
scaling, the naive bootstrap fails. *

1. Introduction. Consider the problem of estimating a linear combination

v = Y%, cip; of the means p,, - - -, u, of p numerical populations Xj, - - -, X, with
corresponding distributions Fy, - .-, F,. For each i = 1, -, p there is a sample
X,; from population 2;; the sample elements are indexed by j =1, - - -, n;. Thus,

n; is the size of the sample from the ith population. Two situations will be
discussed:

(a) The populations Z; are assumed arbitrary and the sampling is with replace-
ment: X;; for j = 1, - - -, n; are identically distributed with common distribution
F;; all the Xj; are independent.

(b) The populations are assumed finite; 2; has known size N;; sampling is
without replacement and independent in i; in this case, F; is uniform. Enumerate
Xias {xn, -+, xiN,v}~

For simplicity, the populations are supposed univariate.
The natural unbiased estimate of v is

(1) vy =38, X

Here, the dot is the averaging operator.

Let 72 or 77 denote the variance of ¥ under sampling schemes (a) and (b)
respectively. Let 72 or 77 be the customary unbiased variance estimates. Inference
about vy can be based either on the normal approximation to the distribution of
(¥ — v)/7 or on bootstrap approximations. This paper will discuss the validity
of these approximations when the total sample size tends to ® in any way
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whatsoever, e.g., many small samples or a few large samples or some combination
thereof. More precisely: suppose p, the ¢;, the populations, the N;, and n; all
depend on an index » such that n(v) = ny(v) + --- + n,(r) — © as y — «. This
index will be suppressed in the sequel.

Here are two examples.

(a) The X;; are unbiased measurements of the same quantity u, taken with p
different instruments. So the precision of X;;, viz.,

o} = f (x = u)? dFi(x)
depends on i. If ¢? is known to be proportional to r;, then
n; n;
sy My gy
y=X X/

is the natural estimate of u.

(b) In the classical stratified sampling model a population 2  of size N is

broken up into disjoint strata 27, --., 2, of sizes N, ---, N, respectively;
$2  N; = N. From stratum i the sample X;; for j = 1, -- -, n; is taken without
replacement. Enumerate the ith stratum as {x;;, - - -, xiv,}. The population mean

is
= 1 p N; = \'pP

v = L% L4 % = L7, Nxee /N
and y = 7  N;X../N is the usual estimate of v.

We first take up the normal approximation in case (a). Suppose

(2) fodFi<°o and n;,=z2 for i=1, - ---,p.
Then
5= 2P clol/n; where o} = var X
and
Te =% cisi/n
where

2

st=(m-1D7T 3% (Xy— X )2
Let

x for |x|=e

¢(x, &)
0 otherwise

é(x, &) = x — ¢(x, ).
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Suppose that for all ¢ > 0,
(3) 72 28, nit e E{¢X( Xy — mi, enita| ;| TH} — 0.

By the Lindeberg-Feller theorem, (¥ — v)/7, converges in law to _# (0, 1), the
standard normal distribution.

According to the first main theorem of this paper, conditions (2) and (3) are
also sufficient to guarantee that 72 has the right limiting behavior. However,
before giving a precise statement, it may be helpful to reformulate condition (3).
Let Y = (Xi; — p:)/0:. Define the “variance weight” of the ith stratum by

wi = clo}/mirl = var {¢:Xi./7a}.

Clearly,
P Lwi=1
Condition (3) can then be written
(4) ?  E{¢Xw;Yy, evn)} — 0 forall &> 0.

THEOREM 1. If (2) and (4) hold in case (a), then 7/7; — 1 in probability.
The proof is deferred.
COROLLARY. (¥ — v)/7, tends to _# (0, 1) in law.

We consider next the bootstrap approximation in case (a); also see Babu and
Singh (1983). Fori=1, ..., p, let F; be the empirical distribution of X; for j =
1, - - -, n;. Take samples of size n; with replacement from F,. That is, let { X%} be
conditionally independent given .7, the o-field spanned by {X;;}; let X% have
common distribution F;forj=1, .., n;. Let

F* =30 Xk, = (-1 XN (X5 - X\
i=1 =t ’

72t = X0, cis¥/ni, 75 =350, cl(ni — D)st/ni.
THEOREM 2. If (2) and (4) hold in case (a), then the conditional distribution
of (Y* — ¥)/7. converges weakly to _#(0, 1) in probability, and 7% /7, converges to
1 in probability.

The proof is deferred. The theorem points to a problem in using the bootstrap
to make iriferences: the scaling may go wrong. This is because X has variance
(n; — 1)s?/n?, not s?/n;. To fix ideas, suppose there are many small strata: more
particularly, that n; < k for all i. Now

72<(k—1)/k-72= (k- 1)/k-72.

The bootstrap distribution of ¥* — ¥ has asymptotic scale 7,, while 4 — v has
the scale 7,.
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We take up next the normal approximation in case (b). Suppose

(5) ZSn,-SN,-—l.
Then
2
2 = p 2 ﬂ (Nl — ni)

e Zi:l ¢ n; N,‘ -1
and

. S? (N; — ni)

AerL TN

To state the regularity condition, let v? be the “variance weight” in case (b):
v? = c?e?(N; — ny)/nir3(N; — 1) = var{c;X;./7s}. Let p; be “the effective sample
size:” p; = n;(N; — 1)/(Ni —n;). Let %; = {yn, Tty yiN,-} where Yij = (xij - #i-)/tfi
and ¢? = Nj! Z]N:*'I (x; — wi-)% So Y;; = (X, — w;)/o; are sampled from %;.

The condition is

®) P N B 620, o) = 0.

This may be compared with condition (4).

If sup,<i<p,E | Y;|® is uniformly bounded independent of the hidden index v,
the Lindeberg conditions (4) and (6) are implied respectively by the natural
conditions max;w;/ Vn; — 0 or max;v;/ \/;L — 0. Thus if the standardized popu-
lations have reasonably light tails, asymptotic normality holds if for each stratum
the variance weight contribution is small or the stratum is heavily sampled.

THEOREM 3. If (5) and (6) hold in case (b), then

D (3 =)o — A#(0,1) in law
and

ii) 7s/75 — 1 in probability.
The proof is deferred.

COROLLARY. (y —v)/7v— #(0, 1) in law.

Finally, we consider the bootstrap in case (b). If N;/n; = k; an integer for each
i, the natural bootstrap procedure was suggested by Gross (1980): given {X;}, to
create populations Z; consisting of k; copies of each Xj; forj =1, .-, n;, then
X¥forj=1, ..., n; are generated as a sample without replacement from %,
the samples being independent for different i = 1, - - ., p. In general, if N; = kin;
+ r; with 0 < r; < n;, form populations 2;, and &;;, where 2 ;, consists of k;
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copies of each Xj;, forj =1, - - -, n;; while 2, consists of k; + 1 copies. Let

ri T
we(1-2) (1-52)

With probability «;, let (X%, - -, X¥,) be a sample without replacement of size
n; from Z;; with probability 1 — «;, let (X}, ---, X%,) be a sample without
replacement of size n; from 2. ‘The virtue of this scheme is that both Z;, and
Z ;1 have the same distribution F; and

X)) =Bt o (Niz
Var(X,, ”Xz,r}) nl2 Si <Nl —_ 1)

\
The proof of the following theorem is similar to that of Theorem 2 and is omitted.
Define 7* as before, and 742 by substituting X}, for X,; in 72.

THEOREM 4. Let 71 be the variance of 4* given the data. Then, if (5) and (6)
hold in case (b), the conditional distribution of (y* — v)/7, converges weakly to
A#(0, 1) and 7% /7, — 1 in probability.

The same inference problem arises as in the case of Theorem 2. The variance
of ¥* given the data is an inconsistent estimate of the variance of ¥. We have
side-stepped the issue by computing the scale externally to the bootstrap process.
Other patches could be made: one is to rescale the elements of 2;; another is to
adjust the constants c;. These fixes are all a bit ad hoc.

If v stays bounded as » — o, our results extend easily to pivots

8(v) —8(v)

&' (¥)7s
where g is nonlinear continuously differentiable. The same issue as before arises
a fortiori for nonlinear functions. Neither the variance of g(v*) given the data
nor its natural approximation [g’(¥)]?7# are consistent estimates of the asymp-
totic variance of g(). A fix which works if $2_, | c;u: | stays bounded is as before
to rescale the elements of 2 or the c; before applying the bootstrap. Alternatives
(the jackknife, linearization, BRR) are discussed in Krewski and Rao (1981). For
the case of one stratum, Theorem 4 was derived independently by Chao and Lo
(1983).

The bootstrap can work even when Theorem 4 fails but the circumstances are
artificial. Suppose we have only one stratum and N, — n, = k for all v i.e., all but
k members are sampled. Since ¥ jl-v=‘1 (x1; — 1) = 0, the pivot (y — v)/7s is
distributed as the standardized mean of a sample of size k taken without
replacement from the population %;. No matter how large N, is, if k is small and

%, nonnormal, we would not expect the normal approximation to apply to v. To
be specific let F, be the uniform distribution on %; and suppose

(7 F, converges to F in the Mallows d,-metric,
ie., F, > F weakly and [ x* dF, — [ x® dF. Then (y — v)/7, is distributed in the
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limit as the standardized mean of k independent variables identically distributed
according to F. On the other hand, since we have sampled nearly the whole
population we expect the bootstrap to work.

THEOREM 5. If (7) holds, the conditional distribution of (y* — v)/7, converges
weakly in probability to the same limit as that of the unconditional distribution of
(¥ = ¥)/7s. Moreover, 7, /7, and 7¥/7, both tend to 1 in probability.

We can extend this result somewhat by replacing (7) with a compactness-in-
d; condition on {F,}
lim sup,..lim sup,N7* Zf’;l »*(v1y1, m) = 0.

This condition is evidently weaker than (6) for p = 1. The conclusion now is that
the d,-distance between the conditional distribution of (y* — v)/7# and the
unconditional distribution of (¥ — v)/7, tends in probability to 0. A further
extension to an arbitrary number of strata which includes both Theorems 4 and
5 is also possible but not worthwhile. v

2. Some lemmas. Recall the truncation operator ¢ from Section 1.

1
¢<‘ Sk v 8)
LEMMA 1. a) ’ k=T

| 6(ZFyi, )| < kXL | 6 (i, e/kD)|
b) Let Y, Ys, - - - be independent and identically distributed. Then

< 3k, | ¢(yi, ¢/R)|; equivalently,

E{dﬂ(—:} Sk Y, s)} < R’E{¢*(Y,, ¢/R)}.
Proor. Claim a). As is easily verified,

1 1
¢<; Sk, e) ‘ = ¢(E SEilyl, e>.

Without loss of generality, suppose all y; = 0. Let y, be the largest y;. If yu) <
¢/k, both sides of the inequality vanish. If y) = ¢/k, the left side is the average
of the y;, or zero; the right side is at least the maximum y.

Claim b) follows by the Cauchy-Schwarz inequality. 0

LEMMA 2. Let (X%, -+, X%) and (X, - - -, X,) be distributed respectively as
samples with and without replacement from a finite population. Then

E{¢*(ZE1 Xi, o)} < E{¢* (D1 X/, Yer)).

Proor. By a theorem of Hoeffding (1963), if g is convex, then
E{g(¥ X))} = E{g(X X!)}.
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Let
g(x, ¢) = x* for |x|=e¢

2

2e|x| —e* for Ye=<|x|=<e

=0 otherwise.

Then g is convex and
B%(x, &) < g(x, &) = ¢*(x, Ye).

So
E{¢*(T X, o)} < E{g(T X, e)} = E{g(¥ X!, )} = E{¢X (T X!, e)}. O

The next result involves the Mallows metric d; see Mallows (1972) or Bickel
and Freedman (1981).

LEMMA 3. Let 2 and % be two finite populations of real numbers, of the
same size N. Let F and G be the uniform distributions on 2 and % . Suppose F
and G have the same means. Let X;, -, X, be a sample of size n, drawn at
random without replacement from Z; let F, be the law of X; + -+ + X,.
Likewise for Yy, - -+, Y, and G,). Then

n(N —n)

2
N1 GalF G

o[ Finy, Gn)* =

PROOF. Enumerate 2 asx; <%, < ... <ayand 2 asy; <y, < --- S yn.
Then

(1/N) TE, (2 — y:)* = do(F, G)*
This follows from Bickel and Freedman (1981, Lemmas 8.2 and 8.3). Let Z =

{1, ..., N}. Let Z,, ---, Z, be a sample of size n, drawn at random without
replacement from Z. Set X; = x, and Y; = yz,. Now
n(M—-n
dlF i, Gl < BIISE (X = YoP) = 0= B((X, — ¥
_n(N-n) .
="N_-1 do(F, G)%. O
Here is an easy generalization of Lemma 3.

LEMMA 4. Fori=0,1let Z;= {xy, - -, Zin,} be finite populations and F;
the associated uniform distributions on ;. Let F,; be the distribution of ¥ /-1 X;
when Xi, - - -, X, is a sample without replacement from 2;. Let n < Ny < N,. If
dJ is a subset of {1, ---, Ny}, let F\, be the uniform distribution on {x,;: j € J}.

401



ASYMPTOTIC NORMALITY

Then,
,_nNo—n) 1 —
dy(Froy Fry)* = No—1 [N, Y a{da(Fo, F15)% |J| = No}.
No

LEMMA 5. For v = 1 let 2, be a finite population of size N,, F, the uniform
distribution on Z,, X1, - - -, X,,, a sample without replacement from Z,, F, the
em;{irical df of the sample. If for some F, do(F,, F') — 0 as v — o and n, — © then
d3(F,, F) — 0 in probability.

PROOF. If g is continuous and bounded

E f g(x) db,(x) = f g(x) dF.(x) — f 8(x) dF (x),

Var < f g(x) dﬁ,,(x)) 0.

So, ‘
®) f g(x) db,(x) — f g(x) dF (x)

in probability. Moreover,

lim sup,E f o(x, M)? dF,(x) = f é(x, M)? dF (x)
by Lemma 8.3c) of Bickel and Freedman (1981). Since we can make

[ ¢(x, M)? dF (x) small for M large we conclude that (8) holds for g(x) = x? also
and the lemma follows. [0

3. Proving the theorems in case (a).

PRrROOF OF THEOREM 1. Recall the variance weights w; from Section 1. As is
easily verified, 72/72=1+ £ — {, where

(9a) £=320 win — D YE (Yi-1)
(9b) =30, win — )7 (mYE - ).

To prove the theorem, it is enough to show that ¢ and { are both small. But
£= ¢ + &, where

(102) & = %2, (ni— D7 B, [$%wiYy, ev) = E{@*(w; Yy, evni)l]
(10b) & =32 (-1 DY [6%(w: Yy, evni) — E{o*(w; Yy, evn)}l.
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Now
E() = var & = 22,(n — D)2 3%, var{@*(w: Yy, evVn,)}
= 32, (ni — V2 nE{¢*(w: Yy, evny))
s 32, (i — D)7PE{@(wi Yy, e Vi)
=& 32 (i — 1) nPwiE{Y?)
<42 ¥P wh= 4

On the other hand, E{| £, |} — 0 for each ¢ > 0, by (4). This disposes of &.
The term { in (9b) can be decomposed according to whether n; > M or
n; < M. Since X

Ei {(nl - 1)‘1w?: n; = M + 1} = 1‘471
and E{n; Y%} = 1, the strata i with n; = M + 1 are negligible. For the i with
n<M, = + ¢ where

(11a) fi = B [ Yee, eV) = B @Y, evno)]

n,

~7 [0°wi Y, o Vi) — E{*wiYe., e Vo))l

(11b) $2= 2%

n;
The sums need be extended only over i with 2 < n; = M. Now whatever n; may
be, as for £,
(12) E{{% < 4¢°

is small. Next,

El| &1} =2 5~ Blo*wYe., evin))
(13) ‘
< 4AM? 3 E{¢*(wiYy, evni/M))

because 2 < n; < M; see Lemma 1. So {; is small too, by condition (4).0

PROOF OF THEOREM 2. The Lindeberg condition is applied, given # It
is enough to check that for every ¢ > 0,

(14) 7ot 20, ni¢FE{¢ XY — Xi, enital | )| F} > 0

=1

in probability, where 72 = $2_ c#(n; — 1)s?/n? is the conditional variance of
4* given Z. For then, Theorem 1 can be applied to X}.
Since n; = 2,

(15) Yoty < 7o < 7
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Thus 7, and hence 7, may be substituted in (14) for 7,. So (14) reduces to
T2t BP, cin? X7y A Xy — Xi., emita| ;| ™) — 0

in probability. This in turn reduces to

(16) bt By wid( Xy — Xi)/oi, evni] > 0

in probability.

Now (Xj; — Xi.)/o; = Y;; — Y;.. Use Lemma la) with k = 2 to see that (16)
follows from (17) and (18):

an Yo, nit B ¢*w:Yy, Yevn;) — 0 in probability
and .
(18) b ¢*w;Y;., Yievn;) — 0 in probability.

Clearly, (17) follows from (4). We bound the expected value of the left side of
(18). Take first those i with n; < M. In view of Lemma 1b), the sum over such i
is bounded above by

MY, E{‘ﬁz(inij,'l/w‘/;i/M)}
which tends to zero by condition (4). Take next those { with n; > M. The sum
over such i is bounded above by
YiEf(wY. ) =S wini' <M Y wisM?

which is small for M large.
That 7% /7, — 1 follows from Theorem 1.0

REMARKS. (i) The Lindeberg-Feller theorem can be supplemented by direct
bounds generalizing those of Berry-Esseen; see Petrov (1975, Theorem 3, page
111 or Theorem 8, page 118). These bounds may give estimates on the discrepancy
between the bootstrap distribution and the true distribution.

(ii) The difference between the distribution of (y — v)/7, and the bootstrap
distribution of (y* — ¥)/7, can be estimated using the Mallows metric as in
equation (2.2) of Bickel and Freedman (1981). The condition needed to push this
through is stronger than (4).

(iii) The results can be extended in an obvious way to vector X;;, and under
further conditions to nonlinear statistics such as Y2, [g:(X;.) —g:(w)]; this
covers ratio estimates.

4. Proving the theorems in case (b)

PrOOF OF THEOREM 3. The Lindeberg-Feller theorem does not apply to give
us i) directly here, since the X;; are dependent for fixed i; however, essentially
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the same ideas can be used. The proof we give is a bit complicated; an alternative
but we believe no simpler approach is given by Dvoretzky (1971). Our argument
is by cases, and the focus is on asymptotic normality. Without loss of generahty,
assume y; = 0, ¢; = 1. In outline, the argument is as follows.

CASE 1. There is only one stratum, and n < %2 N; we drop the unnecessary
stratum subscript i. Then p? is of order n, and asymptotic normality follows from
Erdos-Renyi (1959). Also see Rosén (1967), Dvoretzky (1971).

CASE 2. There is only one stratum, and n > %N. Apply Case 1 to the “co-
sample” consisting of the objects not in the sample.

CASE 3. The number of strata is bounded; no variance weight tends to zero.
Case 1 or Case 2 applies to each stratum individually.

CASE 4. There are many strata, each of small variance weight; in each
stratum, n; < %N;. Then v/7, is the sum of p independent u.a.n. summands:
var {X;./7,} = v? being uniformly small by assumption. We must verify the
Lindeberg condition on X;./7,, and do so by an indirect argument. Let X/; be
sampled with replacement from 2. And let

v =3 —2,": Xij.

Since n; < 4N, the variance weights v? and w? are of the same order, as are the
total variances 72 and 7. In particular, condition (6) implies (4). Thus, the
Lindeberg condition holds for the individual summands in ¥'/7,, viz., X/; /ni7,,
and asymptotic normality of ¥’ follows. By the converse to Lindeberg’s theorem,
his condition holds for the stratum averages (1/n;) ¥/, X; /.. Hence, by Lemma
2, the condition holds for the stratum averages taken without replacement, viz.,
(1/n:) ¥, Xij/mo. Now a second application of the direct Lindeberg theorem
gives asymptotic normality of v.

CASE 5. There are many strata, each of small variance weight; on each
stratum, n; > %N;. Apply Case 4 to the co-samples.

CASE 6. There are many strata, each of small variance weight. Consider two
groups of strata: in the first, n; < %.N;; in the second, n; > %N,. Case 4 applies
to the first group, Case 5 to the second. (One of the two groups may be negligible.)

The general case. 'We combine cases 3 and 6. Let

Jr(v) = {i:vi = 1| Vi(v) = T (v} i € Ji(v)}

k|’
where dependence on the hidden index is made explicit. Given any subsequence
of {v} we can extract a subsequence {,} such that for all k, as r — », V,(»,) tends
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to a finite limit V}. If V}, = 0 for all &, there must be k, — % such that Vi (v,) —
0. Hence, as r — o,

(19) 24X /761 i € Jp (v,)} — 0 in probability.

But, max{v;: i & Jy (v,)} < 1/k, — 0. So we can apply case 6 to get that
(20) S Xi /1o i & J (v,)} is asymptotically N(O, 1).
Combining (19) and (20), we get

(21) Y Xi./7» is asymptotically N(0, 1), as r — .

On the other hand, suppose V) > 0 for some k. Since J(»,) has at most k?
members, we can apply case 3 to see that for all k, as r — oo,

S{Xi./7: I € Ji(v,)} is asymptotically N(0, Vi).
By a standard argument, there are k, — o« such that
(22) Y{Xi./1p: i € I ()} is asymptotically N(O, sup,Vy).
Applying case 6 as above,
(23) X /1o 1 & Ji (v,)} is asymptotically N(0, 1 — sup,Vj).

Combining (22) and (23) we obtain (21) in this case also. Part (i) of the theorem
follows by a standard compactness argument. The proof of (ii) follows the pattern
of that of Theorem 1 and is omitted. O

PROOF OF THEOREM 5. We simplify the argument by supposing n, divides
N, so we can use the naive bootstrap. (The general argument uses Lemma 4.)
Moreover, without loss of generality let u; = 0, o, = 1. Since p = 1 we want to
compare the distribution of the standardized mean of a sample of size n; from
the population %4 and the distribution of the standardized mean of a sample of
size n, from the population composed of N;/n, copies of the standardized sample:
(X;j — #1)/d1, 1 < j < ny, where £, is the sample mean and ¢, is sample standard
deviation. So by Lemma 3,

- cx o

d%{s/<7 7), :/(7 - 7) ’XU, L5j =) < diE, B, Bl + il
Th Tb ’

By Lemma 5, d3(F,, ), 4, and &, — 1 all tend in probability to 0 as v — . A

truncation argument of the type we have already used shows that 7,/7, and

7% /75 both tend in probability to 1. The theorem follows. 0
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Richardson Extrapolation and the Bootstrap
PETER J. BICKEL and JOSEPH A. YAHAV*

Simulation methods [particularly Efron’s (1979) bootstrap] are being applied more and more frequently in statistical inference.
Given data (X, . . ., X,) distributed according to P, which belongs to a hypothesized model P, the basic goal is to estimate
the distribution L, of a function T,(X,, . . ., X,, P). The t p p pp the exi of an estimate ﬁ(X,, LX)
and involves estimating L, by the distribution L} of T,(X?}, . . ., X}, P), where (X7}, . . ., X ) is distributed according to
P. The method is of particular interest when L, though known in principle, can realistically only be computed by simulation.
Such computation can be expensive if n is large and T, is complex (e.g., see the multivariate goodness-of-fit tests of Beran and
Millar 1986). Even when bootstrap application to a single data set is not excessively expensive, Monte Carlo studies of the
bootstrap are another matter. We propose a method based on the classical ideas of Richardson extrapolation for reducing the
computational cost inherent in bootstrap simulations and Monte Carlo studies of the bootstrap, by performing simulations for
statistics based on two smaller sample sizes. We study theoretically which ratio of the two small sample sizes is apt to give best
results. We show how our method works for approximating the 2, ¢, and smoothed binomial distributions, and for setting

bootstrap percentile confidence intervals for the variance of a normal distribution with a mean of 0.

KEY WORDS: Cost of computation; Edgeworth expansion; Approximation.

1. INTRODUCTION

Let L} be the bootstrap distribution of T,(X;, ...,
X,, P). With knowledge of particular features of L},
various devices such as importance sampling can reduce
the number r of Monte Carlo replications needed to com-
pute (or rather estimate) Ly closely. The total computa-
tion cost for a simulation is proportional to ¢(n)r, where
c(n), the cost of computing T,,, usually rises at least lin-
early with n (and often faster). In this article we explore
a way of reducing c(n) rather than r. Suppose that T, is
univariate, and let F} be the distribution function of L.
For most T, of interest, it is either known or plausibly
conjectured that F tends to a limit A, in probability

Fr(x) = Ao(x) + 0,(1), (1.1)

for all x and often uniformly in x as well. Examples include
the usual pivots for parameters 6(F) when X, . .. , X,
are iid F and P « F is the empirical distribution. Thus
if T, = Vn(0(F) — 0(F)), then Ao = N(0, 6*(F)), un-
der mild conditions; if T, = Vr [(8(F) — 0(F))/a (F)], then
Ay = N(0, 1). The value A, can also be known to exist
but not be readily computable. For example, let T, =
Vi sup,|F(x) — F(x)|, with F possibly discrete (see
Bickel and Freedman 1981). Furthermore, an asymptotic
expansion in powers of n~'2 is known to be true in some
cases and reasonably conjectured in many others. That is,

k
Fi(x) = Ao(x) + X, n772A4;(x) + Op(nl-®* + VI2),
j=1

(1.2)

The most important special cases arise when A, is normal
and the expansion (1.2) is of Edgeworth type. Such ex-

* Peter J. Bickel is Professor, Department of Statistics, University of
California, Berkeley, CA 94720. Joseph A. Yahav is Professor, De-
partment of Statistics, Hebrew University, Jerusalem, Israel. This work
was partially supported by Office of Naval Research Contract N00014-
80-C0163. The authors thank Persi Diaconis for a reference to Kuipers
and Niederreiter (1974), which they used to obtain a considerable sim-
plification of the original proof of the theorem in the Appendix, and
Adele Cutler, for the programming of the simulations and other calcu-
lations in Section 3.

pansions appear in the bootstrap context in works by Singh
(1981), Bickel and Freedman (1981), and Abramovitch
and Singh (1985), among others. Expansions for the dis-
tributions F, of T,(X,, . . ., X,) under fixed F have been
studied extensively (e.g., see Bhattacharya and Ranga Rao
1976).

In this context, we propose to calculate F,, ... ,

F, ., where

Piyy

np o+ g =b<<n. (1.3)

We use the F, to approximate F,. This procedure is clas-
sically used in numerical analysis (where it is called Rich-
ardson extrapolation) to approximate F,.. Our application
of these ideas differs, in that

1. We are interested in F,, not F..

2. F, is sometimes known, as in the Edgeworth case,
and can be used to improve the approximation.

3. We are interested in the design problem of selecting
the n,, subject to the budget constraint (1.3).

Using our method in the bootstrap context involves sim-
ply putting * on the F, and F,. In Section 2 we develop
the method in detail and give explicit solutions to three
formulations of the design problem for k = 1. Finally, in
Section 3 we test the method on approximations of known
F,, as well as some bootstrap examples. The results are
very encouraging.

2. EXTRAPOLATION

Throughout this section IK refers to Isaacson and Keller
(1966). Write t = n~1? (0A< t = 1). Given a sequence of
distribution functions F, = G,, write

k
P, = Ay + X UA;.

j=1

G, =P + A, 2.1

The argument in the functions G, and A, plays no role
in our discussion and is omitted. We calculate G, . . .,

© 1988 Ameri Statistical A iatl
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G, (t<ty<- <).IfA, = Ofort,ty,. .., weobtain
G, perfectly from the G, by using the Lagrange interpo-
lating polynomial (IK, p. 188):

G = 2% G d(1), bii(t) = I} [t = )/ = B)).

2
In particular for the only case we study in detail, k = 1,
G =t - 1) - )G, + (¢ — 0)G,]. (23)

‘We consider three classes for A, depending on a parameter
M:

1. D; = {A: d**'A,/df**! exists and sup,|(d**1A,)/dt**1|
=< M}. Since A is only defined at the points n71? (n = 1,

. .) we interpret A € D, as applying to some smooth

function agreeing with A at all points n~'2. The other two
classes make no smoothness assumptions on A.

2. D, = {A: sup, t~¢*D|A| = M}.

3.D;={A: 0=t ®DA, <Mforallt>0,0or —-M =<
t=*+DA, < 0 for all £ > 0}.

For fixed t, t,, . . . , t, we define the error of approximation
by
E(t,to,...,t) =sup{lG, - GJ:A€ D}, 1 si=<3.

‘We want to minimize E;, subject to a fixed budget b, where

2.4)
j=0
If ¢; satisfy (2.4) and b — o, then £, — 0.
We claim that
M k
E, ~ m,]':lo (t,- - t) (2.5)
k
~u{Slsu0lsr o o)
j=0

and

- {[S 160017 ]

v [2 uoLt | + e} @

where a, = a\/0anda_ = —(a /\ 0). To check (2.5),
apply theorem 1 of IK (p. 90), which has
. k dkHG,

G~ G = [(k+ D! I%(t -8 (O, 28)
where t < { < t,. Note that (¢**!/dt**") P, = 0. To check
(2.6) and (2.7), note that interpolation is linear, so G =

. + A, Since P, = P,,wehave G, — G, = A, — A,; (2.6)

and (2.7) follow from (2.2). From (2.5), E, is minimized
subject to (2.3) as b — 0 by

ty= - =t = V(& + 1)/b. 29

Joumal of the American Statistical Association, June 1988

must be distinct. Nevertheless, if the error term A is suf-
ficiently smooth, the n; should be chosen as nearly equal
to each other as possible.

This procedure is analogous to that of the “leave-one-
out” jackknife process. This conclusion is clearly valid not
just under (2.4), but under any reasonable symmetric-side
condition on fy, . . ., 4. If we suppose that ¢ = o(ty), that
is, the budget is much smaller than n, we can simplify (2.6)
to

E,~ (/_0 )é [l‘[(t -r)H(t -t)]

j=0 i<j

(2.10)
and (2.7) to
~M (fl ti) é tf
j=0 / j=0

X min {[];[ - t[)] [1} (R t,-)]_}. (2.11)

Evidently, (2.10) is minimized asymptotically by #72 =
A2b, where 4; > 0,

M=

=1, (2.12)
j=0
and Ay, . . . , A, minimize
% -1k
(Iloﬂi) %[A G- TG —1)] . @n)
J= Jj= i<j

subject to (2.12). In principle, this minimization can be
carried out for any k. The explicit solutions for the cases
we are primarily concerned with, E, and E; for k = 1,
are as follows (if we ignore the restriction that the A?b are
integers): For E,,

AF=1- 2= .89, (2.14)
or more specifically 4, = cos[i(sm“(l/w,,))] where @, =
(1 + V/3)/2 = 1.6180 is the unique positive root of & —
20w — 1 = 0. To see this note that for k = 1, (2.13) is
simply (Ao41) (40 — 41)"'(4o + 4;). Substitute 4y = cos
6 to get the objective,

2(1 + sin 26)(cos 26 sin 26)71,

and then substitute sin 26 = (1 — v?)'2 = 1/w. Similarly,
for k = 1, E; ~ M[tt}/(t, — t)]; a similar minimization
gives

=11+ 1/V2) =

In all of these cases, E; = O(b~*+D2),
We check our approach in the following examples of
{F,}, belonging to D, and D5, respectively.

E. le 1: The G Family. Let F, be the dis-
tribution of (S, — n)(2n)~2, where S, has the 2 distri-

(2.15)
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bution. Evidently, we can define G, for ¢t > 0 with

Gx) = T (v-1)2 jX'e’;‘sV" ds  (2.16)
0

where x, = xv'2 + (v/A), v = 2t7%, and A = }. Using

standard Stirling expansions for I" and its derivatives, it is

easy to show that

ey 12 [y

r'(v)
X [(exp(—uv=V"))(1 + wv=")](1 + uv~"?)"' du,

that A, = @, the standard normal distribution, and that
G, has bounded derivatives of all orders in ¢. Thus A €
D, for all k. Evidently, taking 4 = } plays no role, and
this observation applies to the standardized gamma family
in general.

Gi(x) =

-V

Example2: The Binomial Distrib With Continuity
Correction. Let F, be the distribution of (S, — np)/
(npq)** convoluted with the uniform distribution on

[-1/(2Vnpq), 1/(2Vnpq)],

where S, has a binomial (n, p) distribution g = 1 — p
(0 < p < 1). It is well known that F, is of the form F,(x)
= ®(x) + n"24,(x) + O(n?') (e.g., see Feller 1971,
p- 540). But if we analyze the remainder term further, by
theorem 23.1 of Bhattacharya and Ranga Rao (1971, p.
238) it is of the form

F,(x) — ®(x) — n"2A,(x)
=n"! [fm uSy(np + xaVn — u) du]
=12

X P(x,0) + o(n7?), (2.17)
where ¢ = (pg)'3, Si(f) = ¢t — 3 (0 <t < 1), and
Si(t + 1) = §,(#). Check that

2
f”z uS\(v - u)du = — <x + 1). (2.18)
~12 2 2

Unless x = 0 and p is rational, the sequence S;(np +

nox + 3) is uniformly distributed modulo 1; that is,
#{h: Si(np + Vnox + }) =t,n=NYN—>1t +}
as N - » if (-3 < t < }). A proof is given in the
Appendix.

Thus as n — « the coefficient of n~! in (2.17) ranges
over an interval [0, ] or [—4, 0], and comes arbitrarily
close to all values in the interval. Hence, {F,} belongs to
D, fork = 1.

Notes. In many examples (including the two we have
discussed) A, is known. Then, if (2.1) holds for k = » +
1, we can improve our estimate using only k sample sizes
and still have an error O(b~C+"?). We define Q, =
(G, — Ao)/t and use the estimate G¥ = A, + tQ,
where Q, is defined by (2.2), with k = r. In particular,
for r = 1 the allocations (2.9), (2.14), and (2.15) give

errors O(b~%2). In the next section we study this approx-
imation by simulation as well.

In some cases such as F,, the ¢ distribution with n degrees
of freedom, the series is in powers of n~1. In this case it
is easy to obtain the optimal choice of #,/t, for D, and D5,
that is, for (2.4) replaced by #;! + t;' = b. We find for
D,

n;=pib, pp=1-po, po= .51+ V3) = .79,
(2.19)
and for D,

po = .75, (2.20)
If (as is usually the case in applications) the A; and ¢ are
unknown, it would seem safer to use the approximation
fort = n~12

An undesirable feature of our approach is that no a
posteriori estimate of the error actually incurred is avail-
able. If ¢, is small and A € D,, we can get an estimate by
increasing our budget. We add 772 # 72 (j = 0, 1) units
and calculate G;. Now, by (2.8),

G, — G, = ¥(d*A/de?)(&)(t, — 1) "(u — to)(u — 1),
(2.21)

where t < ¢ <t for any t = u < t,. If ¢, is small we expect
the coefficient d?A/df? in (2.21) to be stable, so we obtain

|G, — G|« |(t = to)(t = t)(s = £o)™'(s — 1)7|
x |G; — Gi|. (2.22)
If A € D, or D;, no realistic estimate of the error pre-
sents itself. Suppose, however (as may be seen in Ex. 2),

that if 0 < 4, < - < 44 <1, a, ..., a are real,
n— o, and s; = [A4;n]"'2, then

k
#(A, =sta;: 1=j=k)/n—[]Ga). (223)
i=1

That is, s72A,,, . . . , s¢%A,, are asymptotically indepen-
dently distributed with common distribution G. This is, of
course, a poor approximation if 4; and 4,,, are too close
and we cannot use (2.23) for design. But if we increase
our budget we can calculate G at [ = 3 points t, f,
..., 4, with 1 = 2. If we assume (2.1), it is natural to
consider the estimate

Gl = Ay + tAl, (2.24)

where A} and Al are the weighted fixed least squares es-
timates of A, and A4,,

! 1
A=3t-DGo2/3 -2 (225
i=0 i=0
and

I 2 A
A =3¢, GW — A, (2.26)
i=0
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Table 1. Richardson Extrapolation for x2

Percentiles
Ng, Ny 10 90 95 99
n =50

True values -1.2311 1.3167 1.7505 2.6154
Fisher approximation  —1.1995 1.3637 1.7802 2.5969
(0317)  (.0470) (.0297) (-.0185)

n, +n, =15
1,14 —1.2557 1.3572 1.7995 2.6686
(—.0246) (.0404)  (.0490) (.0532)
3,12 —1.2528 1.3417  1.7796 2.6446
(-.0217)  (0250) (.0291)  (.0292)
4,1 -1.2511 1.3391 1.7764 2.6410
(—.0199)  (0224) (.0259)  (.0256)
6,9 —1.2493 1.3367 1.7735 2.6377
(-.0182) (:0200)  (.0230) (.0223)

n, + n, = 20
2,18 —1.2481 1.3374 1.7747 2.6400
(—.0169)  (.0207) (0242)  (.0246)
4,16 —1.2448 1.3319 1.7680 2.6324
(-.0137)  (0152) (.0175)  (.0170)
5,15 —1.2439 1.3307 1.7665 2.6307
(-.0127)  (0139) (.0160)  (.0153)
8,12 —1.2424 1.3289 1.7644 26258
(-.0113)  (0122) (0139)  (.0131)

n =100

True values —1.2475 1.3080 1.7212 25319
Fisher approximation  —1.2235 1.3397  1.7406 25176
(0239)  (.0317) (.0193) (-.0143)

no +n, =20
2,18 —1.2740 1.3399 1.7585 2.5694
(-.0265)  (.0319) (0373) (0374
4,16 —1.2687 1.3314 1.7481 25576
(-.0212)  (.0234) (.0268)  (.0257)
5,15 —1.2671 1.3204 1.7457 2.5550
(-.0197)  (0214) (.0245)  (.0231)
8,12 —1.2649 1.3267 1.7424 25515
(-.0174)  (0187) (.0212)  (.0196)

no + ny = 30
3,27 —1.2628 1.3252 1.7410 2.5508
(-.0154)  (0172) (.0197)  (.0189)
6, 24 —1.2592 13205 1.7354 2.5448
(-.0117) (.0125)  (.0142) (.0129)
7,23 —1.2585 1.3198 1.7345 2.5439
(-.0110) (.0117)  (.0133) (.0120)
12,18 —1.2569 13180 1.7324 25418
(—.0095) (.0100) (.0112) (.0099)

where o; = 7, W = S a7, andf = 2 o7 */W. The
error, G, — G, can be estimated by

{W" + P[E(t - i)

X

-

172
(G, - 4 - A’,t,»)la,-‘z} . (221

The range of validity of the approximations (2.22) and
(2.27) needs to be investigated by simulation.

3. COMPUTATION AND SIMULATION

In this section we study the actual performance of the
approximations in the Section 2 examples. We also study
the performance of the approximation for the Student-¢
distribution, where the expansion is in powers of 1/n.
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Finally, we provide the results of a bootstrap simulation,
where we compare the operating characteristics of confi-
dence bounds based on a Richardson extrapolation ap-
proximation with those based on a full bootstrap.

x% Approximation. We computed the Richardson ex-
trapolation for [y2(a) — n])/(2n)"? (a = 10%, 90%, 95%,
99%), where x%(a) is the ath percentile of the y2 distri-
bution, and compared it with the Fisher square-root ap-
proximation applied to the quantiles:

[x3(a) — n}/V2n = Z(a) + [ZX(@)}/2V2n,

where Z(«) is the standard normal « percentile. We used
n=50,100,b = 15,20,30,and 1 — A = ny/b = .1, .2,
.25, .40, where ny < n, and n, + n, = b. Note the fol-
lowing:

1. The approximation improves as b and n increase.

2. The allocation A = .6 is best, as expected.

3. For ny + n, = 15, 20, and all 4, the Richardson
extrapolation is essentially as good as Fisher’s approxi-
mation for the .9 and .1 percentiles, and still gives the
same two significant figures as Fisher’s for the .95 and .99
percentiles.

4. For ny + n; = 30 it is better in all cases save one,
where the results are virtually equivalent. The A = .6
allocation seems to give nearly three significant figures
(see Table 1).

Table 2. Richardson Extrapolation for x3, Knowing the Limit

Percentiles
No, Ny 10 90 95 99
n =50
True values -1.2311 1.3167 1.7505 2.6154
Fisher approximation  —1.1995 1.3637 1.7802 2.5969
(0317)  (.0470) (.0297) (-.0185)
no+n, =15
1,14 —1.2289 13165 1.7510 2.6178
(.0022) (-.0002) (.0005) (.0024)
3,12 —1.2306 13168 1.7510 26172
(.0006) (.0001)  (.0005) (.0018)
4,11 -1.2307 1.3168 1.7509 26171
(.0004) (.0001)  (.0005) (.0017)
6,9 —1.2308 1.3168  1.7509 2.6169
(.0003)  (.0001) (.0004)  (.0016)
n, + n, =20
2,18 -1.2305 1.3167  1.7509 2,6168
(.0006) (.0000)  (.0004) (.0015)
4,16 —1.2309 1.3168  1.7508 2.6166
(0002)  (.0001) (.0003) (.0012)
5,15 -1.2309 1.3168  1.7508 2.6165
(.0002) (.0001)  (.0003) (.0011)
8,12 -1.2310 1.3168  1.7508 26164
(.0001) (.0001)  (.0003) (.0010)
n, +n, =30
3,27 -1.2310 1.3167 1.7507 26161
(.0002) (.0000)  (.0002) (.0007)
6,24 -1.2311 1.3167 1.7506 26159
(.0001) (.0000)  (.0002) (.0005)
7,28 -1.2311 1.3167 1.7506 2.6159
(.0001) (.0000)  (.0001) (.0005)
12,18 -1.2311 1.3167 1.7506 2.6159
(.0000) (.0000)  (.0001) (.0005)
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Table 3. Ri Extrapolation for the t Distributi
Percentiles
Ny, Ny 10 90 95 99
n =50
True values —1.2987 1.2987 1.6759 24033
Normal approximation —1.2816 1.2816 1.6449 23263
(.0171) (-.0171) (-.0310) (-.0770)
no+n, =15
3,12 —1.2849 12849 16376  2.2099
(.0138) (-.0138) (—.0383) (-.1934)
4,11 —1.2878 1.2878 1.6462  2.2595
(.0110) (-.0110) (-.0298) (-.1438)
6,9 ~1.29 12900 1.6526  2.2947
(.0087) (-.0087) (-.0233) (-.1086)
n,+n; =20
4,16 —-1.2922 1.2922 1.6584 2.3198
(.0065) (—.0065) (—.0175) (—.0835)
5,15 -1.2933 12933  1.6614 23357
(.0055) (—.0055) (—.0146) (—.0676)
8,12 —1.2945 1.2945 1.6649 2.3535
(.0042) (-.0042) (—.0111) (-—.0498)
n =100
True values —1.2901 1.2901 1.6602 23642
Normal approximation —1.2816 1.2816 1.6449  2.3263
(.0085) (-.0085) (—.0153) (-.0379)
n, +n, =20
4,16 —1.2818 1.2818 1.6378 22577
(.0083) (-.0083) (—.0224) (—.1065)
5,15 —1.2831 1.2831 1.6417  2.2785
(.0070) (-.0070) (-.0185) (—.0857)
8,12 —1.2848 1.2848 1.6463 2.3018
(.0053) (-.0053) (—.0139) (-.0624)
ne + ny, = 30
6,24 -1.2869 1.2869  1.6520 23274
(.0031) (-.0031) (-.0082) (-—.0368)
7,23 -1.2873 1.2873 16530 23321
(.0028) (—-.0028) (-.0072) (-.0321)
12,18 —1.2880 1.2880 16550 23414
(.0020) (-.0020) (-.0053) (-.0228)

In Table 2 we exhibit the Richardson extrapolation results
for the y2 distribution, using the knowledge of the limit
as n — » (see Sec. 2).That is, we use the expansion

(xi(e) = n)/V2n

n

= Z(a) + A,(1/Vn) + Az'll + 0p <1>

or
Va{lxi(e) - n)/Van - Z(a)}
= Ay + A,(1/Vn) + 0p(1/Vn),

where Z(a) is the a percentile of the standard normal. A,
and A, are estimated using xZ and y2 . The results are
extremely good for both n = 50 and n = 100 (omitted
here). The extrapolation, even for ny + n, = 15and 4 =
.9, gives three significant figures for all percentiles. For
n, + n; = 30, it often gives five significant figures.

The Student-¢ distribution has an expansion in powers
of 1/n. The Richardson extrapolation (2.3) with 1/Vn
gave no improvement over the ordinary normal approxi-
mation, as expected. In Table 3 we present the Richardson

extrapolation to the ¢ distribution and compare these re-
sults with the normal approximation. We looked at the
same values of n, b, 4, and « for approximation to #,(a),
the ath percentile of the ¢ distribution with n degrees of
freedom. For 2 = .6 and b = 30, the approximation is
valid to 3 significant figures for n = 100 in all but one
case, and improves on the normal approximation.

Tables 4 and S give the Richardson extrapolation for
the continuity-corrected binomial distribution. That is, we
define

Bm>=§(@pm—prk

k=0

6= (g o) P - e

Table 4. Richardson Extrapolation for the Binomial Distribution

Withp = .2
Percentiles
No, Ny 10 90 95 99
n =50

True values —1.2591 1.3125 17177 2.4900
Normal approximation —1.2816 1.2816 1.6449  2.3263
(—.0225) (—.0309) (—.0728) (-.1637)

ne +n, =15
1,14 —1.2689 1.2591 1.6071 2.4969
(—.0097) (-.0533) (-—.1106) (.0068)
3,12 —1.2392 1.3702 1.6743 26561
(.0199)  (.0577) (-.0434) (.1661)
4,11 -1.1692 1.2861 1.5821 2.3349
(.0900) (—.0264) (-—.1356) (—.1551)
6,9 -1.1679 1.4169 1.6882 25377
(0913)  (.1044) (—.0295) (.0477)

ne +n, =20
2,18 -1.2182 1.3060 1.6984 24728
(.0409) (—.0065) (—.0193) (-.0172)
4,16 —1.2751 1.2595 1.7357 2.4304
(-.0160) (—.0530) (.0180) (-—.0597)
5,15 -1.2724 1.3224 1.7362 25814
(—.0133)  (0099) (0185)  (.0914)
8,12 -1.1082 1.2538 1.8704 2.8400
(.1509) (-.0587)  (.1527)  (.3500)

n =100

True values -1.2733 1.3036 1.6922 24351
Normal approximation —1.2816 1.2816 1.6449 2.3263
(—.0083) (—.0220) (—.0473) (-.1088)

ny + ny = 20
2,18 -1.2111 1.2835 1.6845 24144
(.0622) (—.0202) (-—.0078) (-.0207)
4,16 —1.2699 1.2280 1.7121 2.3686
(.0033) (—.0757)  (.0199) (-—.0665)
5,15 —1.2638 1.3054 1.7208 .5622
(.0094) (.0018)  (.0286)  (.1271)
8, 12 —1.0651 1.2220 .8840  2.8864
(.2082) (-.0816) (.1918)  (.4513)

ne + ny = 30
3,27 —1.2644 1.3313 1.6692 2.4688
(.0089) (.0277) (-.0231) (.0337)
6,24 -1.2233 1.3226 1.6628 24172
(.0500)  (.0190) (—.0294) (—.0179)
7,23 —1.2386 1.2849 1.7134 2.3774
(.0347) (-.0187)  (.0211) (-.0577)
12,18 -1.1641 .3332 1.4957  2.4281
(.1092) (.0296) (—.1966) (—.0070)
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Table 5. Richardson Extrapolation for the Distributic
Withp = 4
Percentiles
No, Ny 10 90 95 99
n =50
True values -1.2776 1.2882 1.6694  2.3720
Normal approximation —1.2816 1.2816 1.6449  2.3263
(—.0040) (—.0086) (—.0245) (—.0457)
n,+n, =15
1,14 -1.2692 1.2656 1.6423 2.4690
(.0084) (—.0226) (—.0271)  (.0971)
3,12 —1.1991 1.3197 1.6443 2.3799
(.0785)  (.0315) (-.0252)  (.0079)
4,11 -1.2562 1.1647 1.6847 2.2989
(.0214) (-.1235) (.0153) (-.0731)
6,9 -1.2007 1.0239 1.8705  2.4680
(.0770) (—.2643) (.2010)  (.0961)
n, + n, =20
2,18 —1.2344 1.2776 1.6229 2.4184
(.0432) (-.0105) (—.0466)  (.0464)
4,16 —1.2823 1.2781 1.6626 2.3583
(-.0047) (-.0101) (-.0168) (-.0137)
5,15 —1.2702 1.2816 1.6411 23911
(.0074) (—.0066) (—.0283) (.0191)
8,12 —1.3054 1.2832 1.7722 2.5967
(—.0278) (-.0049) (.1027) (.2247)
n =100
True values -1.2811 1.2892 1.6619 23475
Normal approximation —1.2816 1.2816 1.6449 23263
—.0005) (—.0076) (—.0170) (-.0212)
ny + ny, =20
2,18 -1.2167 1.2576 1.5951 24224
(.0644) (-.0316) (-.0668) (.0749)
4,16 —1.2738 1.2589 1.6383 2.3349
(.0073) (—.0303) (-.0236) (—.0126)
5,15 -1.2674 1.2767 1.6183 2.4029
(.0138) (—.0125) (-.0436) (.0554)
8,12 -1.3107 .2668 1.7943 2.6437
(—.0295) (—.0224) (.1324)  (.2962)
ne + n, = 30
3,27 -1.2317 1.2922 1.6644 2.3581
(.0494) (.0030) (.0025)  (.0106)
6,24 —1.2379 1.2613 1.6580 23519
(.0432) (-.0279) (—.0039)  (.0043)
7,28 —1.2601 1.3154 1.6403 23348
(.0210) (.0262) (—.0216) (—.0128)
12,18 —1.2439 1.2762 1.6676 23576
(.0373) (—.0130) (.0057) (.0101)

and
Qn(u) = B,(np + uVnp(1 - p)).

We approximated the percentiles QO !(a) for n, b, and 4
as before, with p = .2 and .4. Note that the 1 = .75
allocation seems to work best, but differs little from 4 =
.8 and .9. On the other hand, 4 = .6 is poorer. (This is
in agreement with our theory for class D;.) For p = .2,
n =50, 100, and b = 15, 20, the A = .75 allocation does
as well as the normal. For b = 20, 30 it is better, typically
giving an additional significant figure. For p = 4, it is
generally poorer, though far from terrible. This is under-
standable, since for p = .5, A, = 0, and the extrapolation
is adding noise to the normal approximation.
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In Table 6 we show the results for the bootstrap exper-
iment. The population is 62¢3, and we are interested in a
confidence bound for . We study the unadjusted boot-
strap, that is, the percentiles of the bootstrap distribution
of (X,)"2, where X is the sample mean. For n = 50, 100,
and 500 we took 500 samples of size n from y}. For each
sample we took 1,000 bootstrap samples and computed
the .05, .1, and .95 percentiles of the bootstrap distribution
of (X,)"2 for sample size ng, n;, and n. We study the
behavior of the 90% lower confidence bound and the 90%
confidence interval, that is, the .1 percentile and the in-
terval between the .95 and .05 percentiles. This is Efron’s
(1979) percentile method, which we do not endorse in
practice but use as a simple example of the bootstrap.

For each n we count the number of times the population
parameter falls inside the confidence set, out of the 500
samples. We compute the average and standard deviation
of the rescaled lower bound, that is, Va(1 — GZ-!(.1)),
and the rescaled interval, that is, I} (.9) = Va(G#~(.95)
— G7'(.05)), where G ~'(«) is the a percentile of the
bootstrap distribution of X'2. Table 6 shows clearly that
Richardson extrapolation is a good approximation to the
full bootstrap and is not very sensitive to the allocation of
noand n;. The last entry gives estimated computation times
on Sun workstations at the University of California. The
expected linear saving in the sample size is confirmed.

APPENDIX: THEORY FOR EXAMPLE 2

We establish the claim asserted in Example 2 in the form of
a theorem.

Theorem. [an + b\/n] is uniformly distributed (ud) mod 1
unless b = 0 and a is rational.
Proof. We refer repeatedly to the text of Kuipers and Nie-
derreiter (KN 1974). Suppose that g is irrational. Note that
a(n + 1) + bVn + 1 — an — bVn = a + b0(n"1?) - a,
as n — . By theorem 3.3 of KN, an + bVnis ud mod 1.

If a is rational we apply the following lemma.

Lemma. Let b, be a sequence such that {b. s}, is ud mod
1fors # 0 (0 < k <s5). Then if a is rational, ¢ = r/s and an +
b, is ud mod 1.

Proof. Check Weyl’s criterion (KN). Let n = ms. Then

‘i >, exp[2nih(a, + b,)]’
1=1

mi El exp{2nih[r(k/s) + by}

s

Ims o R
11*1

==
fZ

=0

>

1

Mi

exp(2nihbg.)| — 0, (A1)

1
m

as m — « by Weyl’s criterion applied to {b;.i}j=1. If n = ms +
b (0 < b <), the difference from (A.1) is at most b/ms — 0.
The lemma follows by Weyl’s criterion.

Let b, = bVn. Ifb > 0, byany+x — byx is decreasing to 0 in
J, since V7 is concave. Moreover, j(byy. sk — byix) = Q(j*?)
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Table 6. A Bootstrap Experiment

Rescaled
Lower- Confidence-
bound Interval bound Confidence- Average SD
n n n; count  count average bound SD  length length  Time*
50 full bootstrap 462 443 .83732 007231 223093 .018770 1,603
50 2 18 455 439 .84251 007652 2.26337 .019407 680
50 4 16 468 449 .83286 .007090 223915 .018084 680
100 full bootstrap 457 445 .85825 005957 225543 .015018 3,171
100 2 18 459 438 85736 006190 227469 014191 688
100 4 16 472 446 85685 006639 2.26594 .014139 686
500 full bootstrap 453 453 89302 .003029 231675 .070418 15,754
500 5 454 448 88568 .004092 231589 .009186 1,665
500 10 40 454 455 89668 .004200 2.33916 .086705 1,666

NOTE: SD represents standard deviation.
* In central-processing-unit seconds.

— . By Fejer’s theorem (KN, theorem 2.5), {b,..} is ud mod
1, and the theorem follows.

[Received August 1986. Revised September 1987.]
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RESAMPLING FEWER THAN n OBSERVATIONS:
GAINS, LOSSES, AND REMEDIES FOR LOSSES

P. J. Bickel, F. Gotze and W. R. van Zwet

University of California, Berkeley,
University of Bielefeld and University of Leiden

Abstract: We discuss a number of resampling schemes in which m = o(n) observa-
tions are resampled. We review nonparametric bootstrap failure and give results
old and new on how the m out of n with replacement and without replacement
bootstraps work. We extend work of Bickel and Yahav (1988) to show that m
out of n bootstraps can be made second order correct, if the usual nonparametric
bootstrap is correct and study how these extrapolation techniques work when the
nonparametric bootstrap does not.

Key words and phrases: Asymptotic, bootstrap, nonparametric, parametric, test-
ing.

1. Introduction

Over the last 10-15 years Efron’s nonparametric bootstrap has become a
general tool for setting confidence regions, prediction, estimating misclassification
probabilities, and other standard exercises of inference when the methodology is
complex. Its theoretical justification is based largely on asymptotic arguments
for its consistency or optimality. A number of examples have been addressed
over the years in which the bootstrap fails asymptotically. Practical anecdotal
experience seems to support theory in the sense that the bootstrap generally
gives reasonable answers but can bomb.

In a recent paper Politis and Romano (1994), following Wu (1990), and
independently Gotze (1993) showed that what we call the m out of n without
replacement bootstrap with m = o(n) typically works to first order both in the
situations where the bootstrap works and where it does not.

The m out of n with replacement bootstrap with m = o(n) has been known
to work in all known realistic examples of bootstrap failure. In this paper,

e We show the large extent to which the Politis, Romano, Gotze property is
shared by the m out of n with replacement bootstrap and show that the latter
has advantages.

o If the usual bootstrap works the m out of n bootstraps pay a price in efficiency.
We show how, by the use of extrapolation the price can be avoided.
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e We support some of our theory with simulations.

The structure of our paper is as follows. In Section 2 we review a series
of examples of success and failure to first order (consistency) of (Efron’s) non-
parametric bootstrap (nonparametric). We try to isolate at least heuristically
some causes of nonparametric bootstrap failure. Our framework here is some-
what novel. In Section 3 we formally introduce the m out of n with and without
replacement bootstrap as well as what we call “sample splitting”, and establish
their first order properties restating the Politis-Romano-Gé&tze result. We relate
these approaches to smoothing methods. Section 4 establishes the deficiency of
the m out of n bootstrap to higher order if the nonparametric bootstrap works
to first order and Section 5 shows how to remedy this deficiency to second order
by extrapolation. In Section 6 we study how the improvements of Section 5 be-
have when the nonparametric bootstrap doesn’t work to first order. We present
simulations in Section 7 and proofs of our new results in Section 8. The critical
issue of choice of m and applications to testing will be addressed elsewhere.

2. Successes and Failure of the Bootstrap

We will limit our work to the i.i.d. case because the issues we discuss are
clearest in this context. Extension to the stationary mixing case, as done for the
m out of n without replacement bootstrap in Politis and Romano (1994), are
possible but the study of higher order properties as in Sections 4 and 5 of our
paper is more complicated.

We suppose throughout that we observe Xy, ..., X, taking values in X = RP
(or more generally a separable metric space). i.i.d. according to F € Fy. We
stress that Fyp need not be and usually isn’t the set of all possible distributions.
In hypothesis testing applications, Fq is the hypothesized set, in looking at the
distributions of extremes, Fy is the set of populations for which extremes have
limiting distributions. We are interested in the distribution of a symmetric func-
tion of Xq,...,Xp; To(X1,...,. Xpn, F) = Tn(ﬁ’n,F) where F, is defined to be
the empirical distribution of the data. More specifically we wish to estimate a
parameter which we denote 6,(F'), of the distribution of Tn(ﬁ‘n, F), which we
denote by L,(F). We will usually think of 6, as real valued, for instance, the
variance of \/n median (Xi,...,X,,) or the 95% quantile of the distribution of
V(X — Ep(X4)).

Suppose T, (-, F) and hence 6, is defined naturally not just on Fy but on F
which is large enough to contain all discrete distributions. It is then natural to
estimate F' by the nonparametric maximum likelihood estimate, (NPMLE), F,,
and hence 0,(F) by the plug in 6,(F},). This is Efron’s (ideal) nonparametric
bootstrap. Since 0,(F) = v(L,(F)) and, in the cases we consider, computation
of v is straightforward the real issue is estimation of £, (F). Efron’s (ideal)
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bootstrap is to estimate £, (F) by the distribution of T, (X},..., X}, E},) where,
given Xi,..., X, the X7 are ii.d. Fn, i.e. the bootstrap distribution of T},. In
practice, the bootstrap distribution is itself estimated by Monte Carlo or more
sophisticated resampling schemes, (see DeCiccio and Romano (1989) and Hikley
(1988)). We will not enter into this question further.

Theoretical analyses of the bootstrap and its properties necessarily rely on
asymptotic theory, as n — oo coupled with simulations. We restrict analysis to
Tn(Fn,F ) which are asymptotically stable and nondegenerate on Fy. That is,
for all F' € Fy, at least weakly

L, (F) — L(F) non degenerate
0,(F) — 0(F) (2.1)
as n — 00.

Using m out of n bootstraps or sample splitting implicitly changes our goal
from estimating features of £,(F) to features of £,,(F). This is obviously non-
sensical without assuming that the laws converge.

Requiring non degeneracy of the limit law means that we have stabilized the
scale of T}, (E},, F). Any functional of £, (F) is also a functional of the distribution
of O‘nTn(Fn,F) where 0, — 0 which also converges in law to point mass at 0.
Yet this degenerate limit has no functional (F) of interest.

Finally, requiring that stability need occur only on Fy is also critical since
failure to converge off Fy in a reasonable way is the first indicator of potential
bootstrap failure.

2.1. When does the nonparametric bootstrap fail?

If 6,, does not depend on n, the bootstrap works, (is consistent on Fy), if 6 is
continuous at all points of Fy with respect to weak convergence on F. Conversely,
the nonparametric bootstrap can fail if,

1. € is not continuous on Fy.

An example we explore later is 6, (F) = 1(F discrete) for which Gn(ﬁn) obvi-
ously fails if F' is continuous.

Dependence on n introduces new phenomena. In particular, here are two
other reasons for failure we explore below.

2. 6, is well defined on all of F but 0 is defined on Fy only or exhibits wild
discontinuities when viewed as a function on F. This is the main point of
examples 3-6.

3. Tn(F,, F) is not expressible as or approximable on Fy by a continuous function
of \/ﬁ(ﬁn — F) viewed as an object weakly converging to a Gaussian limit in
a suitable function space. (See Giné and Zinn (1989).) Example 7 illustrate
this failure. Again this condition is a diagnostic and not necessary for failure
as Example 6 shows.
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We illustrate our framework and discuss prototypical examples of bootstrap
success and failure.

2.2. Examples of bootstrap success

Example 1. Confidence intervals: Suppose ¢%(F) = Var p(X1) < oo for all
F e F.

(a) Let Tp(F,, F) = /n(X — ErX)). For the percentile bootstrap we are inter-
ested in O, (F) = Pp[T,(F},, F) < t]. Evidently (F) = @(ﬁ) In fact, we want
to estimate the quantiles of the distribution of T;,(E,, F). If 6, (F) is the 1 — a
quantile then 0(F) = o(F)z1—o where z is the Gaussian quantile.

(b) Let Tn(Fn, F) = V(X — EpXy)/s where s> = 2o 57 (X; — X)2 If
6, (F) = Pp(T,(F,, F) < t] then, 8(F) = ®(t), independent of F. It seems silly
to be estimating a parameter whose value is known but, of course, interest now
centers on ¢'(F) the next higher order term in 6,,(F) = ®(¢) + ﬂ\/%) +0(n™1).

Example 2. Estimation of variance: Suppose F has unique median m(F),
continuous density f(m(F)) > 0, Er|X|® < co, some § > 0 for all F € Fy and
0, (F) = Var (v/n median (Xi,...,X,)). Then §(F) = [4f2(m(F))]~! on Fp.
Note that, whereas 6, is defined for all empirical distributions F' in both
examples the limit 6(F) is 0 or oo for such distributions in the second. Never-
theless, it is well known (see Efron (1979)) that the nonparametric bootstrap is

consistent in both examples in the sense that Hn(Fn)—Pm(F ) for F € Fy.

2.3. Examples of bootstrap failure

Example 3. Confidence bounds for an extremum: This is a variation on
Bickel Freedman (1981). Suppose that all F' € Fy have a density f continuous
and positive at F~1(0) > —oo. It is natural to base confidence bounds for £~1(0)
on the bootstrap distribution of

Tp(Fp, F) = n(min X; — F~Y0)).

Let ;
On(F) = Pp[Tn(Fn, F) > t] = (1 - B+ F7H0)".

Evidently 6,(F) — 6(F) = exp(—f(F~1(0))t) on Fo.
The nonparametric bootstrap fails. Let
n
t
i=1
where X(qy =min; X; and 1(A) is the indicator of A. Given X(y), nFn(%-i-X(l))

(%+X<1))—F(X(1)))
)

is distributed as 14+ binomial (n — 1, I-IF(X, which converges weakly
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to a Poisson (f(F~1(0))t) variable. More generally, nﬁ'n(ﬁ + X(1)) converges
weakly conditionally to 1 + N(-), where N is a homogeneous Poisson process
with parameter f(F~1(0)). It follows that N(-) converges weakly (marginally)
to a process M (1 + N(-)) where M is a standard Poisson process independent of
N(-). Thus if, in Efron’s notation, we use P* to denote conditional probability
given F}, and let F*, be the empirical d.f. of X},..., X} then P*[T,(F%) > ] =
P*[N;:(t) = 0] converges weakly to the random variable P[M(1+N(t)) = O|N] =
e~ N+ rather than to the desired §(F).

Example 4. Extrema for unbounded distributions: (Athreya and Fukuchi
(1994), Deheuvels, Mason, Shorack (1993))

Suppose F' € Fy are in the domain of attraction of an extreme value distri-
bution. That is: for some constants A,,(F), B,(F),

n(l — F)(An(F) + By(F)z) — H(z, F),

where H is necessarily one of the classical three types (David (1981), p.259):
e P*1(Bx > 0), az=P1(x > 0), a(—z)P1(z < 0), for a, B # 0. Let,

0n(F) = Pl(max(X, ..., X,) — Ap(F))/Bn(F) < 1] = e 1GF) = g(F). (2.2)

Particular choices of A, (F), for example, F~1(1 — %) and B, (F) are of interest
in inference. However, the bootstrap does not work. It is easy to see that

n(]- - l:—:n(An(F) + thL(F)))LU)N(t)a (23)

where N is an inhomogeneous Poisson process with parameter H (¢, F') and 2 de-
notes weak convergence. Hence if Ty, (Fy,, F) = (max (X1, . . ., Xp)=An(F))/Bu(F)
then

P*[T(FF, F) < ]2 NO, (2.4)

It follows that the nonparametric bootstrap is inconsistent for this choice of
Ay, By,. If it were consistent, then

PHTL(Fy, Fy) < )5 00 (2.5)

for all ¢ and (2.5) would imply that it is possible to find random A real and B # 0
such that N (Bt + A) = H(t, F) with probability 1. But H(t, F) is continuous
except at 1 point. So (2.4) and (2.5) contradict each other. Again, 6(F') is well
defined for F' € Fyp but not otherwise. Furthermore, small perturbations in F
can lead to drastic changes in the nature of H, so that 6 is not continuous if Fy
is as large as possible.

Essentially the same bootstrap failure arises when we consider estimating
the mean of distributions in the domain of attraction of stable laws of index
1 < a < 2. (See Athreya (1987))

419



P. J. BICKEL, F. GOTZE AND W. R. VAN ZWET

Example 5. Testing and improperly centered U and V statistics: (Bre-
tagnolle (1983))

Let Fo={F : Fl—¢,d =1,EpX; =0} and let T,(F,,) =nX?=n [zydF,(z)
an(y). This is a natural test statistic for H : F' € Fy. Can one use the non-
parametric bootstrap to find the critical value for this test statistic? Intuitively,
7, ¢ Fop and this procedure is rightly suspect. Nevertheless, in more compli-
cated contexts, it is a mistake made in practice. David Freedman pointed us to
Freedman et al. (1994) where the Bureau of the Census appears to have fallen
into such a trap. (see Hall and Wilson (1991) for other examples.) The nonpara-
metric bootstrap may, in general, not be used for testing as will be shown in a
forthcoming paper.

In this example, due to Bretagnolle (1983), we focus on Fy for which a general
U or V statistic T is degenerate and show that the nonparametric bootstrap
doesn’t work. More generally, suppose @ : R> — R is bounded and symmetric
and let o = {F : [¢(x,y)dF(z) =0 for all y}.

Then, it is easy to see that

(F) = [ 0@ p)dWl@)awi). (26)
where W0(z) = v/n(F,(x) — F(x)) and well known that
Ou(F) = PrlTu(Fy) < 1] = P[ [ 0(op)dWO(F@)aW(F(y) < 1] = 0(F),

where W9 is a Brownian Bridge. On the other hand it is clear that,

Tu(F) = n [ 6la,y)dF; @)dF(y)
[ vt aw;i @awe ) +2 [l y)dwdwe: )

+ [l pdw@)awie), 27)

where W2 (2) = /n(EF*(z) — Fp(z)). Tt readily follows that,
PITL(ED) <05 P [ (o, g)aWO (P (@) aw (P (y))
+2 [ V(@)W (F @)W (F ()
+ [0 dW (EE)ai (P ) <], (28)

where WO W0 are independent Brownian Bridges.
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This is again an instance where (F) is well defined for F € F but 60, (F)
does not converge for F' ¢ Fy

Example 6. Nondifferentiable functions of the empirical: (Beran and
Srivastava (1985) and Diimbgen (1993))
Let Fo = {F : EpX? < oo} and

To(Fa, F) = V(W(X) — M(u(F)))

when u(F) = EpXy. If h is differentiable the bootstrap distribution of T, is, of
course, consistent. But take h(z) = |z|, differentiable everywhere except at 0. It
is easy to see then that if u(F) # 0, L,(F) — N (0, Var p(X1)) but if u(F) =0,
Ln(F) — |N(0, Var g(X1))|.

The bootstrap is consistent if  # 0 but not if x = 0. We can argue as follows.
Under p = 0, /n(X* — X), y/nX are asymptotically independent N'(0,02(F)).
Call these variables Z and Z’. Then, /n(|X*| — |X|)2|Z + Z'| — |Z'|, a variable
whose distribution is not the same as that of |Z|. The bootstrap distribution,
as usual, converges (weakly) to the (random) conditional distribution of |Z +
Z'| —|Z'| given Z'. This phenomenon was first observed in a more realistic
context by Beran and Srivastava (1985). Diimbgen (1993) constructs similar
reasonable though more complicated examples where the bootstrap distribution
never converges. If we represent T,,(F,, F) = /n(T(F},) — T(F)) in these cases
then there is no linear T'(F) such that v/n(T(F},) — T(F)) ~ aT(F)(F, — F)
which permits the argument of Bickel-Freedman (1981).

2.4. Possible remedies

Putter and van Zwet (1993) show that if 6,,(F’) is continuous for every n on
F and there is a consistent estimate Fn of F' then bootstrapping from ﬁ'n will
work, i.e. 6‘"(}3’") will be consistent except possibly for F' in a “thin” set.

If we review our examples of bootstrap failure, we can see that constructing
suitable F, € F, and consistent is often a remedy that works for all F' € Fy
not simply the complement of a set of the second category. Thus in Example 3
taking F, to be I:“n kernel smoothed with bandwidth h, — 0 if nh% — 0 works.
In the first and simplest case of Example 4 it is easy to see, Freedman (1981),
that taking Fn as the empirical distribution of X; — X, 1 < ¢ < n which has mean
0 and thus belongs to Fy will work. The appropriate choice of F), in the other
examples of bootstrap failure is less clear. For instance, Example 4 calls for I:“n
with estimated tails of the right order but how to achieve this is not immediate.

A general approach which we believe is worth investigating is to approximate
Fo by a nested sequence of parametric models, (a sieve), {Fo .}, and use the
M.L.E. ]:'m(n) for Fom(n), for a suitable sequence m(n) — oo. See Shen and
Wong (1994) for example.
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The alternative approach we study is to change 6, itself as well as possibly
its argument. The changes we consider are the m out of n with replacement
bootstrap, the (n —m) out of n jackknife or (') bootstrap discussed by Wu
(1990) and Politis and Romano (1994), and what we call sample splitting.

3. The m Out of n Bootstraps

Let h be a bounded real valued function defined on the range of T, for
instance, t — 1(t < to).

We view as our goal estimation of 6,(F) = Ep(h(T,(Fy, F))). More com-
plicated functionals such as quantiles are governed by the same heuristics and
results as those we detail below. Here are the procedures we discuss.

(i) The n/n bootstrap ( The nonparametric bootstrap)

Let,

Bu(F) = E*WTo(F5, F)) =n"" > W(TW(Xi,,..., X, F)).

n’

Then, B, = By(F},) = 6,(F) is the n/n bootstrap.
(ii) The m/n bootstrap
Let
Bun(F)=n"" 3" h(Tn(Xi,- .., X, F)).
(31, ytm)
Then, By, = mn(Fn) = Om(ﬁ‘n) is the m/n bootstrap.
(iil) The (;) bootstrap
Let
-1
T (F) = (:;) S MTn(Xas o Xis F)).
< <im
Then, Jyn = . mn(Fn) is the (;,) bootstrap.
(iv) Sample splitting
Suppose n = mk. Define,

k—1
Nopn(F) = k7 T (Xt -+ X(jatyms: F))
=0

and Ny, p, = mn(ﬁ'n) as the sample splitting estimates. For safety in practice
one should start with a random permutation of the X.

The motivation behind B, for m(n) — oo is clear. Since, by (2.1),
Oy () — O(F), Om(n)(ﬁn) has as good a rationale as 6, (F},). To justify Jo..
note that we can write 0,,(F) = 0,,,(F X --- x F) since it is a parameter of the

—— ———

m
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law of T, (X1,...,Xm, F). Wg now approximate F x --- x F not by the m
dimensional product measure F;, x --- x F,, but by sampling without replace-
— ———

m
ment. Thus sample splitting is just k fold cross validation and represents a crude
approximation to F' X --- x F.
————

The sample splittiITé; method requires the least computation of any of the
lot. Its obvious disadvantages are that it relies on an arbitrary partition of the
sample and that since both m and k should be reasonably large, n has to be really
substantial. This method and compromises between it and the () bootstrap are
studied in Blom (1976) for instance. The (;) bootstrap differs from the m/n by
op(1) if m = o(n'/?). Its advantage is that it never presents us with the ties
which make resampling not look like sampling. As a consequence, as we note in
Theorem 1, it is consistent under really minimal conditions. On the other hand
it is somewhat harder to implement by simulation. We shall study both of these
methods further, below, in terms of their accuracy.

A simple and remarkable result on J, (), has been obtained by Politis and
Romano (1994), generalizing Wu (1990). This result was also independently
noted and generalized by Gotze (1993). Here is a version of the Gotze result and
its easy proof. Write Jp, for Jp, 5, Br, for By, n, Ny, for Ny, p.

Theorem 1. Suppose 7> — 0, m — co.
Then,
Tn(F) = 6n(F) + Op((2)?). (3.1)
If h is continuous and
(X1, oy Xony F) = Ton(X1, -+, Xon, ) + 0p(1) (3.2)
then
Im = 0m(F) + 0p(1). (3.3)

Proof. Suppose T}, does not depend on F'. Then, J,, is a U statistic with kernel
MTm(z1,...,2m)) and EpJy, = 0,(F) and (3.1) follows immediately. For (3.2)
note that

-1
Elem—<::l> S WTn(Xiy, - X, )

11<-<im

< Eplh(Tn(X1, ..., Xm, B)) = M(Tn(X1, ..., Xon, F))) (3.4)

and (3.2) follows by bounded convergence. These results follows in the same
way and even more easily for N,,. Note that if 7, does not depend on F,
EpNy, = 0,,(F) and,

Var p(Np) = %Varp(h(Tm(Xl, X)) > Var p(J). (3.5)
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Note. It may be shown, more generally under (3.2), that, for example, dis-
tances between the () bootstrap distributions of Tp,(Fp, F) and L, (F) are
also Op(m/n)'/2.
Let XJ(Z) = (X] 7Xj)1><i
1

Birie X1y X)) = 30 W(T (XS, X0, F)), (3.6)

1S Ader

for vectors i = (i1,...,%,) in the index set

Ar,m:{(ilw--vir)51§ilS"'SirSmJl‘F”""ir:m}'

Then
U 1
Bm,n(F) = Z Z wmA,n(’i)(T) Z hi(Xjn s 7Xj1‘7 F)7 (37)
T=1i€Amm r) 1< <<ge<m
where
N n m m
()"
Let
m
gm,n(F) = EFBm,n(F) = Z Z wm,n(i)EFhi(le cee :Xr)- (38)
r=1i€Arm
Finally, let
T
6m(ﬁ) = max{|Ephi(X1,...,X;) = Opn(F)| 15 € Appn} (3.9)

and define d,,(z) by extrapolation on [0, 1]. Note that d,,(1) = 0.

Theorem 2. Under the conditions of Theorem 1

Bun(F) = On(F) + Op(—)3. (3.10)

m
n

If further,
om(1—2zm™Y?) =0 (3.11)

uniformly for 0 < x < M, all M < oo, and m = o(n), then
Omn(F) = 0p(F) + o(1). (3.12)
Finally if,

T(X( o XD F) = T (X, X0 ) 4 0p(1) (3.13)
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whenever i € Ay, m — 0o and max{iy, ... i} = O(m1/?) then, if m — co,m =
o(n),
By = 0 (F) + 0p(1). (3.14)

The proof of Theorem 2 will be given in the Appendix. There too we will
show briefly that, in the examples we have discussed and some others, Ji,(n),
Bio(n)s Nm(n) are consistent for m(n) — oo, = — 0.

According to Theorem 2, if T,, does not depend om F the m/n bootstrap
works as well as the () bootstrap if the value of T;, is not greatly affected by
a number on the order of \/m ties in its argument. Some condition is needed.
Consider T, (X1,...,X,) = 1(X; = X for some i # j) and suppose F is contin-
uous. The (') bootstrap gives Ty, = 0 as it should. If m # o(y/n) so that the
(:l) and m/n bootstraps do not coincide asymptotically the m/n bootstrap gives
T, = 1 with positive probability. Finally, (3.13) is the natural extension of (3.2)
and is as easy to verify in all our examples.

A number of other results are available for m out of n bootstraps.

Giné and Zinn (1989) have shown quite generally that when \/n(F, — F) is
viewed as a member of a suitable Banach space F and,

() Tn(X1, ..., Xn, F) = t(v/n(F, — F)) for t continuous
(b) F is not too big
then B, and By, are consistent.

Praestgaard and Wellner (1993) extended these results to Jy,,) with m =

o(n). Finally, under the Giné-Zinn conditions,

Vm(E, = F)ll = (), = B)]| = Op(2)/2 (3.15)
if m = o(n). Therefore,
tVm(Er = ) = t/m(Fr — ) + 0,(1) (3.16)

and consistency of N, if m = o(n) follows from the original Giné-Zinn result.

We close with a theorem on the parametric version of the m/n bootstrap
which gives a stronger property than that of Theorem 1.

Let Fo = {Fyp : 6 € © C RP} where O is open and the model is regular.
That is, 0 is identifiable, the Fj have densities fy with respect to a o finite p
and the map 6 — +/fy is continuously Hellinger differentiable with nonsingular
derivative. By a result of LeCam (see Bickel, Klaassen, Ritov, Wellner (1993) for
instance), there exists an estimate 6,, such that, for all 6,

1
n

[ ~ 3@ Pdn(z) = On, ). (317)
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Theorem 3. Suppose Fy is as above. Let F§* = Fy x --- x Fy and || - || denote
[ —
m
the variational norm. Then
" m
IF5 — F"ll = Op((g)m)- (3.18)

Proof. This is consequence of the relations (LeCam (1986)).

|Fgy — Bl < H(Fg), FgHI(2 — H (Fgy, g, (3.19)
where ]
H%*(F,G) = 3 / (VAF —VdG)? (3.20)
and
HAERL ) = 1= ([ T fodp)™ =1- (L= BB, )™ (3:21)

Substituting (3.21) into (3.20) and using (3.17) we obtain

m m
|Eg = Bl = Op, (1 = exp Op, (7)) (1 + exp Op, (7)2) = Op, (). (3.22)

m
n
This result is weaker than Theorem 1 since it refers only to the parametric
bootstrap. It is stronger since even for m = 1, when sampling with and without
replacement coincide, || F,, — Fy|| = 1 for all n if Fj is continous.

4. Performance of B,,, J,,, and N,, as Estimates of 6, (F)

As we have noted, if we take m(n) = o(n) then in all examples considered
in which By is inconsistent, Jy,(n); Bm(n)s Nm(n) are consistent. Two obvious
questions are,

(1) How do we choose m(n)?
(2) Is there a price to be paid for using Jiy(n), Bm(n)s OF Np(ny when By is
consistent?

We shall turn to the first very difficult question in a forthcoming paper on
diagnostics. The answer to the second is, in general, yes. To make this precise
we take the point of view of Beran (1982) and assume that at least on Fy,

6n(F) = 6(F) + 6'(F)n 2+ 0(n 1), (4.1)

where 6(F) and ¢'(F) are regularly estimable on Fy in the sense of Bickel,
Klaassen, Ritov and Wellner (1993) and O(n~!) is uniform on Hellinger com-
pacts. There are a number of general theorems which lead to such expansions.
See, for example, Bentkus, Gotze and van Zwet (1994).
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Somewhat more generally than Beran, we exhibit conditions under which
B, = 0,(F,) is fully efficient as an estimate of 6,,(F) and show that the m out
n bootstrap with 7 — 0 has typically relative efficiency 0.

We formally state a theorem which applies to fairly general parameters 6,,.
Suppose p is a metric on Fy such that

p(Fy, Fy) = Opy, (n='?) for all Fy € Fp. (4.2)

Further suppose
A. O(F),0'(F) are p Fréchet differentiable in F at Fy € Fy. That is,

0(F) = 0(Fy) + / W, Fo)dF(z) + o(p(F, Fy)) (4.3)

for v € LY(Fp) = {h : [Rh*}(x)dFp(z) < oo, [h(z)dFp(z) = 0} and 6 obeys
a similar identity with ¢ replaced by another function v/ € L3(Fp). Suppose
further
B. The tangent space of Fy at Fy as defined in Bickel et al. (1993) is LY(Fp) so
that v and 1)’ are the efficient influence functions of 6,6’. Essentially, we require
that in estimating F' there is no advantage in knowing F' € Fy.

Finally, we assume,
C. For all M < oo,

sup{|6m (F) — 0(F) — 6/ (FYm~'?| : p(F, ) < M;'2,F € F} = O(m™") (4.4)

a strengthened form of (4.1). Then,
Theorem 4. Under regularity of 6, 0’ and A and C at Fp,

N 12
Om(Ep) = 0(Fy) + 0'(Fy)m™2 + - S (W(Xs, Fo) + 4 (Xi, Fo)ym™/?)
=1

+0(m™Y) + 0, (n™1/2). (4.5)

If B also holds, Hn(Fn) is efficient. If in addition, 0'(Fy) # 0, and = — 0 the
efficiency of Om(Ey,) is 0.

Proof. The expansions of §(F},)0'(F},) are immediate by Fréchet differentiability
and (4.5) follows by plugging these into (4.1). Since 6, 6" are assumed regular,
v and ¢ are their efficient influence functions. Full efficiency of 0n(ﬁ‘n) follows
by general theory as given in Beran (1983) for special cases or by extending

Theorem 2, p.63 of Bickel et al. (1993) in an obvious way. On the other hand, if
0'(Fo) # 0, /il0hm (Fn) = 6,(Fp)) has asymptotic bias (y/% 10/ (Fy) +O(2") =
\/%(1 +0(1))0'(Fy) — £oo and inefficiency follows.
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Inefficiency results of the same type or worse may be proved about J,,
and N, but require going back to T,,(X1,...,Xm, F) since Jp, and B, are
not related in a simple way. We pursue this only by way of Example 1. If
0p(F) = Var p(v/n(X — pu(F)) = 6(F), By, = B, but,

). (4.6)

Thus, since #'(F) = 0 here, B,, is efficient but J,,, has efficiency 0 if % — 00.
Ny, evidently behaves in the same way.

It is true that the bootstrap is often used not for estimation but for setting
confidence bounds. This is clearly the case for Example (1b), the bootstrap of
t where O(F) is known in advance. For example, Efron’s percentile bootstrap
uses the (1 — a)th quantile of the bootstrap distribution of X as a level (1 —
«) approximate upper confidence bound for p. As is well known by now (see
Hall (1992)), for example, this estimate although, when suitably normalized,
efficiently estimating the (1 —a)th quantile of the distribution of \/n(X —u) does
not improve to order n~1/2 over the coverage probability of the usual Gaussian
based X + zl_aﬁ‘ However, the confidence bounds based on the bootstrap
distribution of the ¢ statistic \/n(X —u(F))/s get the coverage probability correct
to order n=1/2. Unfortunately, this advantage is lost if one were to use the 1 — «
quantile of the bootstrap distribution of Ty, (F}n, F) = v/m( X —u(F))/sm where
X, and s2, are the mean and usual estimate of variance bsed on a sample of size
m. The reason is that, in this case, the bootstrap distribution function is

m—1

_ 2R _
T = oA () (1 - T

O(t) — m~"2e(Ey,)p(t) Ha(t) + Op(m™") (4.7)
rather than the needed,
®(t) — n~Y2e(F)e(t) Ho(t) + Op(n—1).

The error committed is of order m~1/2. More general formal results can be stated
but we do not pursue this.

The situation for Jy,(,) and N,y which function under minimal conditions,
is even worse as we discuss in the next section.

5. Remedying the Deficiencies of B,,,) when B, is Correct: Extrapo-
lation

In Bickel and Yahav (1988), motivated by considerations of computational
economy, situations were considered in which 6, has an expansion of the form
(4.1) and it was proposed using B,, at m = ng and m = ny, ng < n; << n to
produce estimates of #,, which behave like B,,. We sketch the argument for a
special case.
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Suppose that, as can be shown for a wide range of situations, if m — oo,

m = Om(Fn) = 0(Fn) + 6/ (Fn)m™ /2 + Op(m ™). (5.1)
Then, if n; > ng — oo
0'(Fn) = (Buy — Bu)(ng* = 0y /)71 + Op(ng'/?) (5.2)
—1/2 —-1/2
. n, Bp, —n B, _
0(F) = ~——5—L35 > + Op(ng ) (5.3)
Ny~ —M
and hence a reasonable estimate of B,, is,
B — ”51/2Bm - "1_1/2Bno (Bno — Bny) -1/2
no,n1 — —1/2 —1/2 + —-1/2 —1/2” :
g = My g~ —M

More formally,

Proposition. Suppose {6,,} obey C of Section 4 and non~"/?

— 00. Then,
Bhgn, = B+ 0p(n1/?). (5.4)
Hence, under the conditions of Theorem 3 By, 5, is efficient for estimating 0, (F').

Proof. Under C, (5.4) holds. By construction,

Broms = 0(E,) + 6/ (F)n™ Y2 + Op(ng) + Op(ng /*n~1/2)
= 0n(F,) + Op(ng") + Op(ng *n=2) + Op(n~1)
= 0,(Fy) + Op(ngh) (5.5)

and (5.4) follows.

Assorted variations can be played on this theme depending on what we know
or assume about 0,. If, as in the case where 7T), is a t statistic, the leading term
6(F) in (4.1) is = 6y independent of F, estimation of (F') is unnecessary and we
need only one value of m = ny. We are led to a simple form of estimate, since 1
of Theorem 4 is 0,

g = (1= (22)12)00 + (22)/2 By, (5.6)
n n

This kind of interpolation is used to improve theoretically the behaviour of
B, as an estimate of a parameter of a stable distribution by Hall and Jing
(1993) though we argue below that the improvement is somewhat illusory.

If we apply (5.4) to construct a bootstrap confidence bound we expect the
coverage probability to be correct to order n /2 but the error is Op((ngn)~1/?)
rather than Op(n~!) as with B,,. We do not pursue a formal statement.
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5.1. Extrapolation of J,, and N,,

We discuss extrapolation for J,,, and N, only in the context of the simplest
Example 1, where the essential difficulties become apparent and we omit general
theorems.

In work in progress, Gotze and coworkers are developing expansions for gen-
cral symmetric statistics under sampling from a finite population. These results
will permit general statements of the same qualitative nature as in our discussion
of Example 1. Consider 6,,(F) = Pp[yv/m(X, — u(F)) < t]. If EX} < oo and
the X; obey Cramér’s condition, then

t

t t
@)~

14
v o) 2 G

em(F) = (I)( K3(F) ) + O(m_l)» (57)

where 0%(F) and K3(F) are the second and third cumulants of F' and Hy(t) =
(;(12; d*;:,ﬁt). By Singh (1981), B, = 0,,(£},) has the same expansion with F
replaced by F,. However, by an easy extension of results of Robinson (1978) and
Babu and Singh (1985),

B ¢ t . Ksm ¢ .
where
S ~ -1
Kam = 0*(En)(1 = =—) (5.9)
N » m—1 2(m—1
Kam = Ks(Fn) (1~ ——)(1~ (n_2 )). (5.10)

The essential character of expansion (5.8), if m/n = o(1), is

1
Jm = 0(F,) + m~V20 (F,) + %'Yn +Op(m™! + (%)2 + mTQ), (5.11)

where 7, is Op(1) and independent of m. The m/n terms essentially come from
the finite population correction to the variance and highter order cumulants of
means of samples from a finite population. They reflect the obvious fact that
if m/n = X\ > 0, Jy, is, in general, incorrect even to first order. For instance,
the variance of the (') bootstrap distribution corresponding to v/m(X — p(F))
is 1/n3(X; — X)%(1 — %)) which converges to o?(F)(1 — \) if m/n — X > 0.
What this means is that if expansions (4.1), (5.1) and (5.11) are valid, then
using Jy,(n) again gives efficiency 0 compared to B,. Worse is that (5.2) with

Ings Jn, replacing By, By, will not work since the nj/n terms remain and make
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1/2 1/2

a contribution larger than n='/% if ny/n'/#? — co. Essentially it is necessary to
estimate the coefficient of m/n and remove the contribution of this term at the
same time while keeping the three required values of m: ng < n; < ng such that
the error O(niU +(22)2) is o(n~1/2). This essentially means that ng,ny,no have
order larger than n'/2 and smaller that n®/*.

This effect persists if we seek to use an extrapolation of .J, for the t statistic.
The coefficient of m/n as well as m~1/2
and perhaps more generally is to modlfy the ¢ statistic being bootstrapped and
extrapolated. Thus Tp,,(X1, ..., Xm, F) —(%—% leads to an expansion

for J,,, of the form,

needs to be estimated. An alternative here

Jm = 0(t) + 0" (F)m™? + Op(m™" + m/n), (5.12)

and we again get correct coverage to order n~'/2 by fitting the m~1/2 term’s
coefficient, weighting it by n~/2 ~1/2 and adding it to J,.

If we know, as we sometimes at least suspect in symmetric cases, that (F) =
0, we should appropriately extrapolate linearly in m~=! rather than m=1/2.

The sample splitting situation is less satisfactory in the same example. Under
(5.1), the coefficient of 1//m is asymptotically constant. Put another way,
the asymptotic correlation of B,,, By, as m,n — oo for fixed A > 0 is 1
This is also true for J,, under (5.11). However, consider Ny, and Na, (say) if
T = vVm(Xpm—p(F)). Let h be continuously boundedly differentiable, n = 2km.
Then

—m

1 B m B 2m _
Cov (N, Nom) = 1 Cov (hm= 23 (X, A((2m) 230X - X)),
Jj=1 j=1
(5.13)
Thus, by the central limit theorem,
1 Cov (Z1 + Z3)
Corr(Nm, Nam) = 557 (m(21),n 7 ), (5.14)

where Z1, Z, are independent Gaussian N(0,0%(F)) and ¢%(F) = Var p(X1).
More generally, viewed as a process in m for fixed n, NV, centered and normalized
is converging weakly to a non degenerate process. Thus, extrapolation does not
make sense for N,,.

Two questions naturally present themselves.
(a) How do these games play out in practice rather than theory?
(b) If the expansions (5.1) and (5.11) are invalid beyond the Oth order, the usual
situation when the nonparametric bootstrap is inconsistent, what price do we
pay theoretically for extrapolation?
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Simulations giving limited encouragement in response to question (a) are
given in Bickel and Yahav (1988). We give some further evidence in Section 7.
We now turn to question (b) in the next section.

6. Behaviour of the Smaller Resample Schemes When B,, is Inconsis-
tent, and Presentation of Alternatives

The class of situations in which B,, does not work is too poorly defined for
us to come to definitive conclusions. But consideration of the examples suggests
the following,

A. When, as in Example 6, 0(F), ¢'(F) are well defined and regularly estimable
on Fy we should still be able to use extrapolation (suitably applied) to By,
and possibly to Jy, to produce better estimates of 8, (F).

B. When, as in all our other examples of inconsistency, 8(F) is not regularly
estimable on Fy extrapolation should not improve over the behaviour of By,
B,,.

C. If ng,ny are comparable extrapolation should not do particularly worse either.

D. A closer analysis of T,, and the goals of the bootstrap may, in these “irregular”
cases, be used to obtain procedures which should do better than the m/n or
(i) or extrapolation bootstraps.

The only one of these claims which can be made general is C'.

Proposition 1. Suppose
B, — 0n(F) < By, — 0n(F), (6.1)
where < indicates that the ratio tends to 1. Then, if ng/ny /4 1
By — 0a(F) = Boy — 6,(F). (6.2)

Proof. Evidently, Bﬂ?@ = 0,(F) + Q(e,) where Q(e,) means that the exact

order of the remainder is €,. On the other hand,

%(% - 5=+ =) = e (/22 + o)
and the proposition follows.
We illustrate the other three claims in going through the examples.
Example 3. Here, F~1(0) =0,
0, (F) = el Ot (1 +nt f’(O)g) +0(n™?) (6.3)
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which is of the form (5.1). But the functional 6(F) is not regular and only
estimable at rate n~!/3 if one puts a first order Lipschitz condition on F € F.
On the other hand,

log By = mog(1 — Fn(--)) = m1og(1 = (Fu(-) = Fa(0))
L) F(L)+Op(mEn( D) -F (L))

- —m(F<%>—F<o>>—% VilE(=

= 17(0) + (1) + 0p(/™) + Op (), (6.4

where as before 2, Q,, indicate exact order. As Politis and Romano (1994) point
out, m = Q(n'/3) yields the optimal rate n~'/3 (under f Lipschitz). Extrapo-
lation does not help because the /7 term is not of the form v,/ where v,

is independent of m. On the contrary, as a process in m, \/m’n,(ﬁn(%) —F(L)
behaves like the sample path of a stationary Gaussian process. So conclusion B

holds in this case.

Example 4. A major difficulty here is defining Fy narrowly enough so that it is
meaningful to talk about expansions of 0,,(F), B, (F) etc. If Fy in these examples
is in the domain of attraction of stable laws or extreme value distributions it is
easy to see that 6,(F) can converge to O(F) arbitrarily slowly. This is even
true in Example 1 if we remove the Lipschitz condition on f. By putting on
conditions as in Example 1, it is possible to obtain rates. Hall and Jing (1993)
specify a possible family for the stable law attraction domain estimation of the
mean mentioned in Example 4 in which B,, = Q(n*f) where « is the index of the
stable law and « and the scales of the (assumed symmetric) stable distribution
are not regularly estimable but for which rates such as n=2/5 or a little better are
possible. The expansions for 8, (F) are not in powers of n~1/2 and the expansion
for By, is even more complex. It seems evident that extrapolation does not help.
Hall and Jing’s (1993) theoretical results and simulations show that By, though
consistent, if m(n)/n — 0, is a very poor estimate of 6, (F'). They obtain at least
theoretically superior results by using interpolation between B,,, and the, “known
up to the value of the stable law index «”, value of §(F). However, the conditions
defining Fy which permit them to deduce the order of B,, are uncheckable so that
this improvement appears illusory.

Example 6. The discontinuity of (F) at p(F') = 0 under any reasonable specifi-
cation of Fy makes it clear that extrapolation cannot succeed. The discontinuity
in O(F) persists even if we assume Fo = {N(p,1) : p € R} and use the para-
metric bootstrap. In the parametric case it is possible to obtain constant level
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confidence bounds by inverting the tests for H : |u| = |uo| vs K : |u| > |uol
using the noncentral X% distribution of (\/ﬁX )2. Asymptotically conservative
confidence bounds can be constructed in the nonparametric case by forming a
bootstrap confidence interval for p(F') using X and then taking the image of this
interval into g — |p|. So this example illustrates points B and D.

We shall discuss claims A and D in the context of Example 5 or rather its
simplest case with Tn(l%m F) =nX?. We begin with,

Proposition 2. Suppose EpX;} < co, ErX; = 0, and F satisfies Cramer’s
condition. Then,

; -, t mX? t
By = P [IﬁX |2 < tQ} = 2(1)(5) -1- 53 t‘fa(f

Jro,a(%)a/2 +0p(m™Y). (6.5)
Ifm = Q(n'/?) then
PllvmX*|? <t?] = Pe[nX® <]+ Op(n~'/*) (6.6)

and no better choice of {m(n)} is possible. If ng < ny, non~ /2

o(n®/*),

— 00, N1 =

B™™ = By, —no{(Bn, — Bny)/(n1 —no)} = PpnX?<t]+ Op(n71/2). (6.7)

Proof. We make a standard application of Singh (1981). If 6% = L Y (X; — X)?,
K 3 = %Z(XZ — X)? we get, after some algebra and Edgeworth expansion,

PV i) o () () <oy

I
After Taylor expansion in \/mg we conclude,

!

_ ¢ t. o K to
P'mX;2 <£)=20(2) 1+ 2 (2)mX? = 25 [pH)(5) X +0p ()Y 2+ 0p(m™)

2 n
(6.8)
and (6.5) follows. Since mX? = Qp(m/n), (6.6) follows. Finally, from (6.5), if
-1/2 ~1/2 _y oo

non , nin

By = 10{(Bay = Buy) /(1 = o)} = 28(2) — 1 = *20Ha(2)X +Op(n™/%)

+0p(n~Y2) + Op(n~1/?). (6.9)

Since X = Op(n=1/2), (6.7) follows.
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Example 5. As we noted, the case T,(E},, F) = nX? is the prototype of the
use of the m/n bootstrap for testing discussed in Bickel and Ren (1995). From
(6.7) of proposition 2 it is clear that extrapolation helps. However, it is not
true that B™™ igs efficient since it has an unnecessary component of variance
(K3/6)[¢H2](%)X which is negligible only if K3(F) = 0. On the other hand
it is easy to see that efficient estimation can be achieved by resampling not
the X; but the residuals X; — X, that is, a consistent estimate of F' belong-
ing to Fp. So this example illustrates both A and D. Or in the general U or
V statistic case, bootstrapping not Ty, (Ey,, F) = n [(x, y)dE, (x)dE,(y) but
rather n [ ¢(z,y)d(E, — F)(z)d(F, — F)(y) is the right thing to do.

7. Simulations and Conclusions

The simulation algorithms were written and carried out by Adele Cutler and
Jiming Jiang. Two situations were simulated, one already studied in Bickel and
Yahav (1988) where the bootstrap is consistent (essentially Example 1) the other
(essentially Example 3) where the bootstrap is inconsistent.

Sample size: n = 50,100,400

Bootstrap sample size: B = 500

Stmulation size: N = 2000

Distributions: Example 1: F' = X%% Example 3: F = Xg

Statistics:

Example 1(a) modified: T z = vm(VXm — Vu(F))

Example 1(b): ") = \/r_n@ where s2, = L= (X; — X;n)2
Example 3. T = m(min(Xy, ..., Xn,) — F71(0))

Parameters of resampling distributions: G,;1(.1), G;1(.9) where G,y is the dis-
tribution of T,,, under the appropriate resampling scheme. We use B,J, N to
distinguish the schemes m/n, (") and sample splitting respectively.

In Example 1 the G} parameters were used to form upper and lower “90%”
confidence bounds for § = \/u(F). Thus, from T,Sff),

by = /X = Z=Grly(1) G

for the “90%” upper confidence bound based on the m/n bootstrap and, from
7Y,

Sn_~— 2
TGl (D))" (72)
where G, g now corresponds to the ¢ statistic. 0,5, is defined similarly. The 8,

bounds are defined with G,,; replacing G,,5. The Qm ~ bounds are considered
only for the unambiguous case m divides n and « an integer multiple of m/n.

émB = ((Xn -
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Thus if m = n/10, G;ﬁv(l) is simply the smallest of the 10 possible values

{Ton(Xjmi1s - X(j1yms Fn), 0 < j < 9%
We also specify 2 subsample sizes ng < n; for the extrapolation bounds,

Qno,méno,m- These are defined for T3\ ), for example, by.
no,n1 n \/ﬁ 2

= L (g s ) (Glp (1)~ Galp (1) (g Y207 /) (1)

We consider roughly, ng = 2v/n,n1 = 4y/n and specifically, the triples (n, ng, n1):
(50, 15, 30), (100, 20, 40) and (400, 40, 80).
In Example 3, we similarly study the lower confidence bound on 6 = F~1(0)

given by,
1

n

0,, = max(X1,...,X,) — =G, 5(.9). (7.4)

and the extrapolation lower confidence bound

Glp(9) + G159
:min(Xl,...,Xn)_%( "(?B( )2 nlB( ))

0

—no,n1

(ng' +n1")

™ = ) (G p(9) — G lp(9) (g — ). (7.5)

Note that we are using 1/m rather than 1//m for extrapolation.

Measures of performance:

CP = Coverage probability, the actual probability under the situation sim-
ulated that the region prescribed by the confidence bound covers the true value
of the parameter being estimated.

RMSE = \/E(Bound—Actual quantile bound)? .

Here the actual quantile bound refers to what we would use if we knew the dis-
tribution of T,,(X1, ..., Xn, F). For example for quf ) we would replace G;}B(.l)

in (7.1) for F = x? by the .1 quantile of the distribution of \/ﬁ(,/sﬁ — 1) where
S has a x2, distribution, call it G~ (.1). Thus, here,

MSE = %E(G;B(J) — G

We give in Table 1 results for the By, , B, and By, », bounds, based on T,Ef).
The T, bootstrap, as in Bickel and Yahav (1988), has CP and RMSE for
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By, Bpym, and By, agreeing to the accuracy of the Monte Carlo and we omit
these tables.

We give the corresponding results for lower confidence bounds based on T,Sf)
in Table 2. Table 3 presents results for sample splitting for 7; ,(,f ). Table 4 presents
T#f ) results for the (;) bootstrap.

Table 1. The t bootstrap: Example 1(b) at 90% nominal level

Coverage probabilities (C'P) RMSE
n B Bl BR B Bl BR
50

UB .88 .90 .88 19 .21 .19

LB .90 .90 .90 15 .15 15
100

UB .90 .93 .89 13 14 12

LB 91 .90 91 11 .10 11
400

UB 91 94 .90 .06 .07 .06

LB 91 .90 91 .05 .05 .05

Notes: (a) Bl corresponds to (6.2) or its LCB analogue for m=n;(n)=30,
40, 80. Similarly B corresponds to m = n.
(b) BR corresponds to (6.3) or its LCB analogue with (ng,ni) =
(15,30), (20, 40), (40, 80).

Table 2. The min statistic bootstrap: Example 3 at the nominal 90% level

n CP | RMSE n CP | RMSE

50 100

B .75 .01 B .75 .04

Bl .78 .07 B1 .82 .03

BR .70 .07 BR .76 .04

B1S .82 .07 B1S .87 .03

BRS .80 .07 BRS .86 .03
400

B .75 .09

B1 .86 .01

BR .83 .01

Notes: (a) B corresponds to (6.4) with m = n, B1 with m=n; =30, 40, 80,
B1S with m=n;=16.
(b) BR corresponds to (6.5) with (ng, n1)= (15, 30), (20, 40), (40, 80),
BRS with (ng,n1)=(4,16).
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Table 3. Sample splitting in Example 1(a)

CP RMSE
n N Bm(n) N Bm(n)

50

UB | .82 .86 .32 18

LB | .86 91 .28 .16
100

UB | .86 -89 .30 .14

LB | .84 .90 .26 12
400

UB | .85 .89 .28 .08

LB | .86 91 27 .09

Note: N here refers to m = .1n and a = .1.

Table 4. The (TZ) bootstrap and the m/n bootstrap in Example 1(a)

CP E(Length)
n m J B J B
50 16 | .82 | .88 | .07 .09
100 | 16 | .86 | .88 | .04 .05
400 | 40 | .88 | .90 | .01 .01

Note: These figures are for simulation sizes of N = 500 and for 90% con-
fidence intervals. Thus, the end points of the intervals are given by (7.1)
and its UCB counterpart for B and J but with .1 replaced by .05. Similarly,
[E(Bound—Actual quantile bound)?]'/? is replaced by the expected length of
the confidence interval.

Conclusions. The conclusions we draw are limited by the range of our simula-
tions. We opted for realistic sample sizes, of 50,100 and a less realistic 400. For
n = 50,100 the subsample sizes n; = 30 (for n = 50) and 40 (for n = 100) are
of the order n/2 rather than o(n). For all sample sizes ng = 2y/n is not really
“of larger order than y/n”. The simulations in fact show the asymptotics as very
good when the bootstrap works even for relatively small sample sizes. The story
when the bootstrap doesn’t work is less clear.

When the bootstrap works (Example 1)

e BR and B are very close both in terms of CP, and RMSE even for n = 50
from Table 1.

e B1’s C'P though sometimes better than B’s consistently differs more from B’s
and its RMSFE follows suit In particular, for UB in Table 1, the RMSE of
B1 is generally larger. LB exhibits less differences but this reflects that UB is
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governed by the behaviour of x? at 0. In simulations we do not present we get
similar sharper differences for LB when F' is a heavy tailed distribution such
as Pareto with EX® = oo

The effects, however, are much smaller than we expected. This reflects that
these are corrections to the coefficient of the n=1/2 term in the expansion.
Perhaps the most surprising aspect of these tables is how well B1 performs.

From Table 3 we see that because the m we are forced to by the level con-
sidered is small, C'P for the sample splitting bounds differs from the nominal
level. If n — oo, m/n — .1 the coverage probability doesn’t tend to .1 since
the estimated quantile doesn’t tend to the actual quantile and both C'P and
RMSE behave badly compared to By,. This naive method can be fixed up
(see Blom (1976) for instance). However, its simplicity is lost and the (;) or
m/n bootstrap seem preferable.

The () bounds are inferior as Table 4 shows. This reflects the presence of the
finite population correction m/n, even though these bounds were considered
for the more favorable sample size m = 16 for n = 50,100 rather than m =
30,40. Corrections such as those of Bertail (1994) or simply applying the
finite population correction to s would probably bring performance up to that
of By,. But the added complication doesn’t seem worthwhile.

When the bootstrap doesn’t work (Example 3)

e From Table 2, as expected, the CP of the n/n bootstrap for the lower con-
fidence bound was poor for all n. For ng = 2v/n,n1 = 4y/n, CP for Bl was
constantly better than B for all n. BR is worse than B1 but improves with n
and was nearly as good as Bl for n = 400. For small ng,n; both Bl and BR
do much better. However, it is clear that the smaller m of B1S is better than
all other choices.

We did not give results for the upper confidence bound because the granularity of
the bootstrap distribution of min; X; for these values of m and n made CP =1
in all cases.

Evidently, ng,n; play a critical role here. What apparently is happening is
that for ng,n; not sufficiently small compared with n extrapolation picks up the
wrong slope and moves the not so good B1 bound even further towards the poor
B bound.

A message of these simulations to us is that extrapolation of the B, plot
may carry risks not fully revealed by the asymptotics. On the other hand, if
ng and n; are chosen in a reasonable fashion extrapolation on the /n scale
works well when the bootstrap does. Two notes, based on simulations we do
not present, should be added to the optimism of Bickel, Yahav (1988) however.
There may be risk if ng is really small compared to y/n. We obtained poor
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results for BR for the ¢ statistics for ng = 4 and 2. Thus ng = 4, n; = 16 gave
the wrong slope to the extrapolation which tended to overshoot badly. Also,
taking n; and ng close to each other, as the theory of the 1988 paper suggests is
appropriate for statistics possessing high order expansions when the expansion
coeflicients are deterministic, gives poor results. It can also be seen theoretically
that the sampling variability of the bootstrap for m of the order \/n makes this
prescription unreasonable.

The principal message we draw is that it is necessary to develop data driven
methods of selection of m which lead to reasonable results over situations where
both the bootstrap works and where it doesn’t. Such methods are being pursued.
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Appendix

Proof of Theorem 2. For i =(i1,...,i) € Apy, let U() = (Tl)Z{hi(le,..

X, F):1< 41 <--- <jr <n}. Then, since h; as defined is symmetric in its
arguments it is a U statistic and ||h]| is an upper bound to its kernel. Hence

3]

(a) Var pU(3) < |h]|%=. On the other hand,
n

(b) EU(i) = Ephi(X1,..., X, F) and

() By n(F) = Z Z{wmn(i)U(i) 14 € Apm} by (3.7). Thus, by (c),
r=1

() Var 12 B (F) < 303 {wmn()Var U () i € Ay}
r=1

< max Var }J/QU(i) < ”hHoo(%)l/Q

by (a). This completes the proof of (3.10).
The proof of (3.11) is more involved. By (3.8)

(©) [Omn(F) = 0(F) <SS {Erhu(Xt, -, Xp) = O (B) g (3) 5 € Mg}
r=1
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Let,

(f) Pm,n[Rm = T] = Z{wm,n(i) s Ar,m}-

Expression (f) is easily recognized as the probability of getting n — r empty
cells when throwing n balls independently into m boxes without restrictions (see
Feller (1968), p.19). Then it is well known or easily seen that

(s) Epun(B) = (1 = (1= ™)
() Varma(Bm) = nf(1 = )™ = (1 = 2"} + 02 {(1 = 27 = (1= 2)Pm,

It is easy to check that, if m = o(n)

(i Ernn(Brn) = m(1+O(2))
0 Vot () = O(m)
so that,
(k) % =1+ 0p(m™'3).
From (c),
0 )~ 0(F)| < 3 805 Proal B = 7]

By (k), (1) and the dominated convergence theorem (3.12) follows from (3.11)
and (k).
Finally, as in Theorem 1, we bound, as in (3.4),

(M) [Bmn(F) = Bu(F)| <3N {Eplhi(X1, ..., Xp) — hi(X1, ..., Xy, Fp)| ¢
r=1

1 € Ny} (3),
where

N 1 . . .
(n) hi(Xla"'»X’!‘,FTL) = F Z h(Tm(X_g(;Ll)’»XJ(:T)7Fn))'
1< <r
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Let Ry, be distributed according to (f) and given R,, = r, let (I1,...,I,) be
uniformly distributed on the set of partitions of m into r ordered integers, I; <
Iy <--- <TI,. Then, from (m) we can write

(0) [Bmn(F) = Bm(F)| < EA(IL, ..., IR,,),

where ||Alloc < ||hloo- Further, by the continuity of kA and (3.13), since I; <
< Ip,,,

v) AL, Ip, ) (IR, < emm) 50

whenever ¢, = O(m~Y2). Now, Ig, > emm,

(a) m=>y_1I;
j=1
and I; > 1 imply that,
Rpm—1
(r) m(l—€p) > Z Ii > (Ry —1).
Jj=1
Thus,

. Rm 1
(s) Prn(IR, > emm) < P m 1< —en+0(m™ 7)) =0
if €,ym!/? = co. Combining (s), (k) and (p) we conclude that
(t) EA(L,...,IR,) —0

and hence (o) implies (3.14).
The corollary follows from (e) and (f).

Note that this implies that the m/n bootstrap works if about /m ties do
not affect the value of T}, much.

Checking that J,,, By, N;, m = o(n) works

The arguments we give for B, also work for .J, only more easily since
Theorem 1 can be verified. It is easier to directly verify that, in all our examples,
the m/n bootstrap distribution of T,L(F,,“F ) converges weakly (in probability)
to its limit £(F') and conclude that Theorem 2 holds for all h continuous and
bounded than to check the conditions of Theorem 2. Such verifications can be
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found in the papers we cite. We sketch in what follows how the conditions of
Theorem 1 and 2 can be applied.

Example 1. (a) We sketch heuristically how one would argue for function-
als considered in Section 2 rather than quantiles. For .J,, we need only check
that (2.6) holds since v/m(X — u(F)) = 0,(1). For B,, note that the distribu-
tion of m~1/2(i1 X1 + --- + i, X,.) differs from that of m~Y/2(X; 4+ --- 4+ X,,,) by
o

O(Xi=1 (_sz_1)) If wc;na.ximizo 37-1(i3 — 1) subject to 37_yij = m, i; > 1 we
obtain g";;rl + gm—;lTL Thus for suitable h, §,,(z) = 2(1 —z) + ﬁ(l — )% and
the hypotheses of Theorem 2 hold.

(b) Note that,

P[\/ﬁw <] = PIVA(X — u(F)) - st 0]

and apply the previous arguments to Tn(}:"n7 F) = n(X — u(F)) — st.

Example 2. In Example 2 the variance corresponds to h(x) = &2 if T, (Fy, F) =
m2(med(Xy,..., X)) — F~1($)). An argument parallel to that in Efron (1979)
works. Here is a direct argument for A bounded.

(a)  Plmed(X{"™,...,X{")) # med(X{"),... X", X, )] < ri-y
Thus,
. . m
(b) P[mcd(Xf“), XY £ med(X, .., Xm)] < > % < log(%).
j=r+1

Hence for A bounded,

1
() < o og()
and we can apply Theorem 2.

Example 3. Follows by checking (3.2) in Theorem 1 and that Theorem 2 applies
for J, by arguing as above for B,,. Alternatively, argue as in Athreya and
Fukushi (1994).

Arguments similar to those given so far can be applied to the other examples.
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