
Chapter 6
Boostrap Resampling

Peter Hall

6.1 Introduction to Four Bootstrap Papers

6.1.1 Introduction and Summary

In this short article we discuss four of Peter Bickel’s seminal papers on theory and
methodology for the bootstrap. We address the context of the work as well as its
contributions and influence. The work began at the dawn of research on Efron’s
bootstrap. In fact, Bickel and his co-authors were often the first to lay down the
directions that others would follow when attempting to discover the strengths, and
occasional weaknesses, of bootstrap methods.

Peter Bickel made major contributions to the development of bootstrap methods,
particularly by delineating the range of circumstances where the bootstrap is
effective. That topic is addressed in the first, second and fourth papers treated here.
Looking back over this work, much of it done 25–30 years ago, it quickly becomes
clear just how effectively these papers defined the most appropriate directions for
future research.

We shall discuss the papers in chronological order, and pay particular attention
to the contributions made by Bickel and Freedman (1981), since this was the first
article to demonstrate the effectiveness of bootstrap methods in many cases, as
well as to raise concerns about them in other situations. The results that we shall
introduce in Sect. 6.1.2, when considering the work of Bickel and Freedman (1981),
will be used frequently in later sections, especially Sect. 6.1.5.

The paper by Bickel and Freedman (1984), which we shall discuss in Sect. 6.1.3,
pointed to challenges experienced by the bootstrap in the context of stratified
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sampling. This is ironic, not least because some of the earliest developments of
what, today, are called bootstrap methods, involved sampling problems; see, for
example, Jones (1956), Shiue (1960), Gurney (1963) and McCarthy (1966, 1969).

Section 6.1.4 will treat the work of Bickel and Yahav (1988), which contributed
very significantly to methodology for efficient simulation, at a time when the interest
in this area was particularly high. Bickel et al. (1997), which we shall discuss
in Sect. 6.1.5, developed deep and widely applicable theory for the m-out-of-n
bootstrap. The authors showed that their approach overcame consistency problems
inherent in the conventional n-out-of-n bootstrap, and gave rates of convergence
applicable to a large class of problems.

6.1.2 Laying Foundations for the Bootstrap

Thirty years ago, when Efron’s (1979) bootstrap method was in its infancy, there was
considerable interest in the extent to which it successfully accomplished its goal of
estimating parameters, variances, distributions etc. As Bickel and Freedman (1981)
noted, Efron’s paper “gives a series of examples in which [the bootstrap] principle
works, and establishes the validity of the approach for a general class of statistics
when the sample space is finite.” Bickel and Freedman (1981) set out to assess the
bootstrap’s success in a much broader setting than this.

In the early 1980s, saying that the bootstrap “works” meant that bootstrap
methods gave consistent estimators, and in this sense were competitive with
more conventional methods, for example those based on asymptotic analysis.
Within about 5 years the goals had changed; it had been established that bootstrap
methods “work” in a very wide variety of circumstances, and, although there were
counterexamples to this general rule, by the mid 1980s the task had become largely
one of comparing the effectiveness of the bootstrap relative to more conventional
techniques. But in 1981 the extent to which the bootstrap was consistent was still
largely unknown. Bickel and Freedman (1981) contributed mightily to the process
of discovery there.

In particular, Bickel and Freedman (1981) were the first to establish rigorously
that bootstrap methodology is consistent in a wide range of settings. The impact of
their paper was dramatic. It provided motivation for exploring the bootstrap more
deeply in a great many settings, and furnished some of the mathematical tools for
that development. In the same year, in fact in the preceding paper in the Annals,
Singh (1981) explored second-order properties of the bootstrap. However, Bickel
and Freedman (1980) also took up that challenge at a particularly early stage.

As a prelude to describing the results of Bickel and Freedman (1981) we give
some notation. Let χn = X1, . . . ,Xn denote a sample of n independent observations
from a given univariate distribution with finite variance σ2, write X̄n = n−1 ∑i Xi for
the sample mean, and define

σ̂2
n =

1
n

n

∑
i=1

(Xi − X̄n)
2 ,
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the bootstrap estimator of σ2. Let χ∗
m = {X∗

1 , . . . ,X
∗
m} denote a resample of

size m drawn by sampling randomly, with replacement, from χ , and put X̄∗
m =

m−1 ∑i≤m X∗
i . Bickel and Freedman’s (1981) first result was that, in the case of

m-resamples, the m-resample bootstrap version of σ̂2
n , i.e.

σ̂∗2
m =

1
m

m

∑
i=1

(X∗
i − X̄∗

m)
2 ,

converges to σ2 as both m and n increase, in the sense that, for each ε > 0,

P(|σ̂∗
m −σ |> ε |χn)→ 0 (6.1)

with probability 1. Moreover, Bickel and Freedman (1981) showed that the condi-
tional distribution of m1/2 (X̄∗

m − X̄n), given χn, converges to the normal N(0,σ2)
distribution. Taking m = n, the latter property can be restated as follows:

the probabilities P{n1/2 (θ̂ ∗ − θ̂)≤ σ x |χn} and P{n1/2 (θ̂ −θ )≤ σ x}
both converge to Φ(x), the former converging with probability 1, (6.2)

where Φ denotes the standard normal distribution and, on the present occasion,
θ = E(Xi), θ̂ = X̄n and θ̂ ∗ = X̄∗

n .
The second result established by Bickel and Freedman (1981) was a generali-

sation of this property to multivariate settings. Highlights of subsequent parts of
the paper included its contributions to theory for the bootstrap in the context of
functionals of a distribution function. For example, Bickel and Freedman (1981)
considered von Mises functionals of a distribution function H, defined by

g(H) =

∫ ∫
ω(x,y)dH(x)dH(y) ,

where the function ω of two variables is symmetric, in the sense that ω(x,y) =
ω(y,x), and where

∫ ∫
ω(x,y)2 dH(x)dH(y)+

∫
ω(x,x)2 dH(x)< ∞ . (6.3)

If we take H to be either F̂n, the empirical distribution function of the sample χn, or
F̂∗

n , the version of F̂n computed from χ∗
n , then

g(F̂n) =
1
n2

n

∑
i1=1

n

∑
i2=1

ω(Xi1 ,Xi2) , g(F̂∗
n ) =

1
n2

n

∑
i1=1

n

∑
i2=1

ω(X∗
i1 ,X

∗
i2) .
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Bickel and Freedman (1981) studied properties of this quantity. In particular they
proved that if (6.3) holds with H = F , denoting the common distribution function
of the Xis, then the distribution of n1/2{g(F̂∗

n )− g(F̂n)}, conditional on the data, is
asymptotically normal N(0,τ2) where

τ2 = 4

[∫ {∫
ω(x,y)dF(y)

}2

dF(x)− g(F)2
]
.

This limit distribution is the same as that of n1/2{g(F̂n)− g(F)}, and so the
above result of Bickel and Freedman (1981) confirms, in the context of von Mises
functions of the empirical distribution function, that (6.2) holds once again, provided
that σ there is replaced by τ and we redefine θ = g(F), θ̂ = g(F̂n) and θ̂ ∗

n =
g(F̂∗

n ). That is, the bootstrap correctly captures, once more, first-order asymptotic
properties. Subsequent results of Bickel and Freedman (1981) also showed that the
same property holds for the empirical process, and in particular that the process
n1/2 (F̂∗

n − F̂n) has the same first-order asymptotic properties as n1/2 (F̂n−F). Bickel
and Freedman (1981) also derived the analogue of this result for the quantile
process.

Importantly, Bickel and Freedman (1981) addressed cases where the bootstrap
fails to enjoy properties such as (6.2). In their Sect. 6 they gave two counterex-
amples, one involving U-statistics and the other, spacings between extreme order
statistics, where the bootstrap fails to capture large-sample properties even to first
order. In both settings the problems are attributable, at least in part, to failure of
the bootstrap to correctly capture the relationships among very high-ranked, or very
low-ranked, order statistics, and in that context we shall relate below some of the
issues to which Bickel and Freedman’s (1981) work pointed. This account will be
given in detail because it is relevant to later sections.

Let X(1) < .. . < X(n) denote the ordered values in χn; we assume that the common
distribution of the Xis is continuous, so that the probability of a tie equals zero.
In this case the probability, conditional on χn, of the event εn that the largest Xi,
i.e. X(n), is in χ∗

n , equals 1 minus the conditional probability that X(n) is not contained
in in χ∗

n . That is, it equals 1− (1−n−1)n = 1− e−1+O(n−1). Therefore, as n → ∞,

P(X∗
(n) = X(n) |χn) = P(X(n) ∈ χ∗

n |χn)→ 1− e−1 ,

where the convergence is deterministic. Similarly, for each integer k ≥ 1,

πnk ≡ P(X∗
(n) = X(n−k) |χn)→ πk ≡ e−k (1− e−1) (6.4)

as n → ∞; again the convergence is deterministic. Consequently the distribution
of X∗

(n), conditional on χn, is a mixture, and in particular is equal to X(n−k) with
probability πnk, for k ≥ 1. Therefore:
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given ε>0 and any metric, for example the Lévy metric, between distributions, we
may choose k = k(ε)≥ 1 so large that the distribution of X∗

(n), conditional on χn,

is no more than ε from the discrete mixture ∑0≤ j≤k X(n− j) I j,where (a) exactly one
of the random variables I1, I2, . . . is nonzero, (b) that variable takes the value 1, and
(c) P(Ik = 1) = πk for k ≥ 0. The upper bound of ε applies deterministically, in that
it is valid with probability 1, in an unconditional sense.

(6.5)

To indicate the implications of this property we note that, for many distributions
F , there exist constants an and bn, at least one of them diverging to infinity in
absolute value as n increases; and a nonstationary stochastic process ξ1,ξ2, . . .; such
that, for each k ≥ 0, the joint distribution of (X(n) − an)/bn, . . . ,(X(n−k) − an)/bn

converges to the distribution of (ξ1, . . . ,ξk). See, for example, Hall (1978). In view
of (6.5) the distribution function of (X∗

(n)− an)/bn, conditional on χn, converges to
that of

Z =
∞

∑
j=0

ξ j I j ,

where the sequence I1, I2, . . . is distributed as in (6.5) and is chosen to be independent
of ξ1,ξ2, . . .. In this notation,

P(X∗
(n)− an ≤ bn z |χn)→ P(Z ≤ z) (6.6)

in probability, whenever z is a continuity point of the distribution of Z. On the other
hand,

P(X(n)− an ≤ bn z)→ P(ξ1 ≤ z) . (6.7)

A comparison of (6.6) and (6.7) reveals that there is little opportunity for estimat-
ing consistently the distribution of X(n), using standard bootstrap methods. Bickel
and Freedman (1981) first drew our attention to this failing of the conventional
bootstrap. The issue was to be the object of considerable research for many years
after the appearance of Bickel and Freedman’s paper. Methodology for solving
the problem, and ensuring consistency, was eventually developed and scrutinised;
commonly the m-out-of-n bootstrap is used. See, for example, Swanepoel (1986),
Bickel et al. (1997) and Bickel and Sakov (2008).

6.1.3 The Bootstrap in Stratified Sampling

Bickel and Freedman (1984) explored properties of the bootstrap in the case of
stratified sampling from finite or infinite populations, and concluded that, with
appropriate scaling, the bootstrap can give consistent distribution estimators in cases
where asymptotic methods fail. However, without the proper scaling the bootstrap
can be inconsistent.
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The problem treated is that of estimating a linear combination,

γ =
p

∑
j=1

c j μ j , (6.8)

of the means μ1, . . . ,μp of p populations Π1, . . . ,Πp with corresponding distribu-
tions F1, . . . ,Fp. The c js are assumed known, and the μ js are estimated from data.
To construct estimators, a random sample χ( j) = {Xj1, . . . ,Xjn j} is drawn from the

jth population, and the sample mean X
¯
( j) = n−1

j ∑i Xji is computed in each case.
Bickel and Freedman (1984) considered two different choices of c j, valid in two
respective cases: (a) if it is known that each E(Xji) = μ , not depending on j, and
that the variance σ2

j of Π j is proportional to r j, say, then

c j =
n j/r j

∑k (nk/rk)
;

and (b) if the populations are finite, and in particular Π j is of size Nj for j = 1, . . . , p,
then

c j =
Nj

∑k Nk
.

In either case the estimator γ̂ of γ reflects the definition of γ at (6.8):

γ̂ =
p

∑
j=1

c j X̄( j) ,

where X̄( j) is the mean value of the data in χ( j).
In both cases Bickel and Freedman (1984) showed that, particularly if the

sample sizes n j are small, the bootstrap estimator of the distribution of γ̂ − γ is
not necessarily consistent, in the sense that the distribution estimator minus the true
distribution may not converge to zero in probability. The asymptotic distribution
of γ̂ − γ is normal N(0,τ2

1 ), say; and the bootstrap estimator of that distribution,
conditional on the data, is asymptotically normal N(0,τ2

2 ); but the ratio τ2
1/τ2

2
does not always converge to 1. Bickel and Freedman (1984) demonstrated that this
difficulty can be overcome by estimating scale externally to the bootstrap process, in
effect incorporating a scale correction to set the bootstrap on the right path. Bickel
and Freedman also suggested other, more ad hoc remedies.

These contributions added immeasurably to our knowledge of the bootstrap.
Combined with the counterexamples given earlier by Bickel and Freedman (1981),
those authors showed that the bootstrap was not a device that could be used naively
in all cases, without careful consideration.

Some researchers, a little outside the statistics community, had felt that bootstrap
resampling methods freed statisticians from influence by a mathematical “priest-
hood” which was “frank about viewing resampling as a frontal attack upon their own
situations” (Simon 1992). To the contrary, the work of Bickel and Freedman (1981,
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1984) showed that a mathematical understanding of the problem was fundamental
to determining when, and how, to apply bootstrap methods successfully. They
demonstrated that mathematical theory was able to provide considerable assistance
to the introduction and development of practical bootstrap methods, and they
provided that aid to statisticians and non-statisticians alike.

6.1.4 Efficient Bootstrap Simulation

By the mid to late 1980s the strengths and weaknesses of bootstrap methods were
becoming more clear, especially the strengths. However, computers with power
comparable to that of today’s machines were not readily available at the time, and
so efficient methods were required for computation. The work of Bickel and Yahav
(1988) was an important contribution to that technology. It shared the limelight
with other approaches to achieving computational efficiency, including the balanced
bootstrap, which was a version for the bootstrap of Latin hypercube sampling and
was proposed by Davison et al. (1986) (see also Graham et al. 1990); importance
resampling, suggested by Davison (1988) and Johns (1988); the centring method,
proposed by Efron (1990); and antithetic resampling, introduced by Hall (1990).

The main impediment to quick calculation for the bootstrap was the resampling
step. In the 1980s, when for many of us computing power was in short supply,
bootstrap practitioners nevertheless advocated thousands, rather than hundreds, of
simulations for each sample. For example Efron (1988), writing for an audience
of psychologists, argued that “It is not excessive to use 2,000 replications, as in this
paper, though we might have stopped at 1,000.” In fact, if the number of simulations,
B, is chosen so that the nominal coverage level of a confidence interval can be
expressed as b/(B+1), where b is an integer, then the size of B has very little bearing
on the coverage accuracy of the interval; (see Hall 1986). However, choosing B too
small can result in overly variable Monte Carlo approximations to endpoints for
bootstrap confidence intervals, and to critical points for bootstrap hypothesis tests.

It is instructive here to relate a story that G.S. Watson told me in 1988, the year
in which Bickel and Yahav’s paper was published. Throughout his professional
life Watson was an enthusiast of the latest statistical methods, and the bootstrap
was no exception. Shortly after the appearance of Efron’s (1979) seminal paper he
began to experiment with the percentile bootstrap technique. Not for Watson a tame
problem involving a sample of scalar data; in what must have been one of the first
applications of the bootstrap to spatial or spherical data, he used that technique to
construct confidence regions for the mean direction derived from a sample of points
on a sphere. He wrote a program that constructed bootstrap confidence regions,
put the code onto a floppy disc, and passed the disc to a Princeton geophysicist
to experiment with. This, he told the geophysicist, was the modern alternative to
conventional confidence regions based on the von Mises-Fisher distribution. The
latter regions, of course, took their shape from the mathematical form of the fitted
distribution, with relatively little regard for any advice that the data might have to
offer. What did the geophysicist think of the new approach?
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In due course Watson received a reply, to the effect that the method was very
interesting and remarkably flexible, adapting itself well to quite different datasets.
But it had a basic flaw, the geophysicist said, that made it unattractive—every time
he applied the code on the floppy disc to the same set of spherical data, he got a
different answer! Watson, limited by the computational resources of the day, and
by the relative complexity of computations on a sphere, had produced software
that did only about B = 40 simulations each time the algorithm was implemented.
Particularly with the extra degree of freedom that two dimensions provided for
fluctuations, the results varied rather noticeably from one time-based simulation
seed to another.

This tale defines the context of Bickel and Yahav’s (1988) paper. Their goal was
to develop algorithms for reducing the variability, and enhancing the accuracy in that
sense, of Monte Carlo procedures for implementing the bootstrap. Their approach,
a modification for the bootstrap of the technique of Richardson extrapolation (a
classical tool in numerical analysis; see Jeffreys and Jeffreys 1988, p. 288), ran as
follows. Let F̂n (not to be confused with the same notation, but having a different
meaning, in Sect. 6.1.2) denote the data-based distribution function of interest, and
let Fn be the quantity of which F̂n is an approximation. For example, F̂n(x) might
equal P(θ̂ ∗

n − θ̂n ≤ x |χn), where θ̂n denotes an estimator of a parameter θ , computed
from a random sample χn of size n, in which case θ̂ ∗

n would be the bootstrap version
of θ̂n. (In this example, Fn(x) = P(θ̂n − θ ≤ x).) Instead of estimating F̂n directly,
compute estimators of the distribution functions F̂n1 , . . . , F̂nr , where the sample sizes
n1, . . . ,nr are all smaller than n, and in fact so small that n1+ . . .+nr is markedly less
than n. In some instances we may also know the limit F∞ of Fn, or at least its form,
F̃∞ say, constructed by replacing any unknown quantities (for example, a variance)
by estimators computed from χn. The quantities F̂n1 , . . . , F̂nr and F̃∞ are much less
expensive, i.e. much faster, to compute than F̂n, and so, by suitable “interpolation”
from these functions, we can hope to get a very good approximation to F̂n without
going to the expense of actually calculating the latter.

In general the cost of simulating, or equivalently the time taken to simulate, is
approximately proportional to Cn B, where Cn depends only on n and increases with
that quantity. Techniques for enhancing the performance of Monte Carlo methods
can either directly produce greater accuracy for a given value of B (the balanced
bootstrap has this property), or reduce the value of Cn and thereby allow a larger
value of B (hence, greater accuracy from the viewpoint of reduced variability)
for a given cost. Bickel and Yahav’s (1988) method is of the latter type. By
enabling a larger value of B it alleviates the problem encountered by Watson and
his geophysicist friend.

Bickel and Yahav’s (1988) technique is particularly widely applicable, and
has the potential to improve efficiency more substantially than, say, the balanced
bootstrap. Today, however, statisticians’ demands for efficient bootstrap methods
have been largely assuaged by the development of more powerful computers. In
the last 15 years there have been very few new simulation algorithms tailored to the
bootstrap. Philippe Toint’s aphorism that “I would rather have today’s algorithms on
yesterday’s computers, than vice versa,” loses impact when an algorithm is to some
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extent problem-specific, and its implementation requires skills that go beyond those
needed to purchase a new, faster computer.

6.1.5 The m-Out-of-n Bootstrap

The m-out-of-n bootstrap is another example revealing that, in science, less is often
more. Bickel and Freedman (1981, 1984) had shown that the standard bootstrap can
fail, even at the level of statistical consistency, in a variety of settings; and, as we
noted in Sect. 6.1.2, the m-out-of-n bootstrap, where m is an order of magnitude
smaller than n, is often a remedy. Swanepoel (1986) was the first to suggest this
method, which we shall define in the next paragraph. Bickel et al. (1997) made major
contributions to the study of its theoretical properties. We shall give an example that
provides further detail than we gave in Sect. 6.1.2 about the failure of the bootstrap
in certain cases. Then we shall summarise briefly the contributions made by Bickel
et al. (1997).

Consider drawing a resample χ∗
m = {X∗

1 , . . . ,X
∗
m}, of size m, from the original

dataset χn = {X1, . . . ,Xn} of size n, and let θ̂ = θ̂n denote the bootstrap estimator of
θ computed from χn. In particular, if we can express θ as a functional, say θ (F), of
the distribution function F of the data Xi, then

θ̂n = θ (F̂n) , (6.9)

where F̂n is the empirical distribution function computed from χn. Likewise we can
define θ̂ ∗

m = θ (F̂∗
m), where F̂∗

m is the empirical distribution function for χ∗
m. As we

noted in Sect. 2, Bickel and Freedman (1981) showed that first-order properties of
θ̂ ∗

m are often robust against the value of m. In particular it is often the case that, for
each ε > 0,

P(|θ̂ ∗
m − θ̂n|> ε |χn)→ 0 , P(|θ̂n −θ |> ε)→ 0 (6.10)

as m and n diverge, where the first convergence is with probability 1. Compare (6.1).
For example, (6.10) holds if θ is a moment, such as a mean or a variance, and if the
sampling distribution has sufficiently many finite moments.

The definition (6.9) is conventionally used for a bootstrap estimator, and it does
not necessarily involve simulation. For example, if θ =

∫
xdF(x) is a population

mean then
θ̂n =

∫
xdF̂n(x) = X̄ , θ̂ ∗

m =
∫

xdF̂∗
m(x) = X̄∗

are the sample mean and resample mean, respectively. However, in a variety of
other cases the most appropriate way of defining and computing θ̂n is in terms of
the resample χ∗

n ; that is, χ∗
m with m = n. Consider, for instance, the case where

θ = P
(
X(n)−X(n−1) > X(n−1)−X(n−2)

)
, (6.11)
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in which, as in Sect. 6.1.2, we take X(1) < .. . < X(n) to be an ordering of the data
in χn, assumed to have a common continuous distribution. For many sampling
distributions, in particular distributions that lie in the domain of attraction of an
extreme-value law, θ depends on n but converges to a strictly positive number as n
increases.

In this example the bootstrap estimator, θ̂n, of θ , based on a sample of size n, is
defined by

θ̂n = P
(

X∗
(n)−X∗

(n−1) > X∗
(n−1)−X∗

(n−2)

∣∣∣ χn

)
, (6.12)

where X∗
(1) ≤ . . . ≤ X∗

(n) are the ordered data in χ∗
n . Analogously, the bootstrap

version, θ̂ ∗
n , of θ̂n is defined using the double bootstrap:

θ̂ ∗
n = P

(
X∗∗
(n)−X∗∗

(n−1) > X∗∗
(n−1)−X∗∗

(n−2)

∣∣∣ χ∗
n

)
,

where X∗∗
(1) ≤ . . . ≤ X∗∗

(n) are the ordered data in χ∗∗
n = {X∗∗

1 , . . . ,X∗∗
n }, drawn by

sampling randomly, with replacement, from χ∗
n . However, for the reasons given

in the paragraph containing (6.5), property (6.10) fails in this example, no matter
how we choose m. (The m in (6.2) is different from the m for the m-out-of-n
bootstrap.) The bootstrap fails to model accurately the relationships among large
order statistics, to such an extent that, in the example characterised by (6.11), θ̂n

does not converge to θ .
This problem evaporates if, in defining θ̂n at (6.12), we take the resample χ∗

m to
have size m = m(n), where

m → ∞ and m/n → 0 (6.13)

as n → ∞. That is, instead of (6.12) we define

θ̂n = P
(

X∗
(m)−X∗

(m−1) > X∗
(m−1)−X∗

(m−2)

∣∣∣ χn

)
, (6.14)

where X∗
1 , . . . ,X

∗
m are drawn by sampling randomly, with replacement, from χn. In

this case, provided (6.5) holds, (6.2) is correct in a wide range of settings.
Deriving this result mathematically takes a little effort, but intuitively it is rather

clear: By taking m to be of strictly smaller order than n we ensure that the probability
that X∗

(m) equals any given data value in χn, for example X(n), converges to zero,
and so the difficulties raised in the paragraph containing (6.5) no longer apply. In
particular, instead of (6.4) we have:

P(X∗
(m−k) = X(m−�) |χn)→ 0

in probability, for each fixed, nonnegative integer k and �, as n → ∞. Further thought
along the same lines indicates that the conditional distribution of X∗

(m) − X∗
(m−1)

should now, under mild assumptions, be a consistent estimator of the distribution
of X(n)−X(n−1).
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Bickel et al. (1997) gave a sequence of four counter-examples illustrating cases
where the bootstrap fails, and provided two examples of the success of the bootstrap.
The first two counter-examples relate to extrema, and so are closely allied to the
example considered above. The next two treat, respectively, hypothesis testing and
improperly centred U and V statistics, and estimating nonsmooth functionals of the
population distribution function. Bickel et al. (1997) then developed a deep, general
theory which allowed them to construct accurate and insightful approximations to
bootstrap statistics θ̂n, such as that at (6.9), not just in that case but also when θ̂n

is defined using the m-out-of-n bootstrap, as at (6.14). This enabled them to show
that, in a large class of problems for which (6.13) holds, the m-out-of-n bootstrap
overcomes consistency problems inherent in the conventional n-out-of-n approach,
and also to derive rates of convergence.

A reliable way of choosing m empirically is of course necessary if the m-out-
of-n bootstrap is to be widely adopted. In many cases this is still an open problem,
although important contributions were made recently by Bickel and Sakov (2008).
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