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Abstract  We report the use of a novel hybrid near-infrared spectrometer for the 
measurement of optical scattering, pathlength and chromophore concentration in 
critically ill patients with brain injury. Ten mechanically ventilated patients with 
acute brain injury were studied. In addition to standard neurointensive care moni-
toring, middle cerebral artery flow velocity, brain lactate–pyruvate ratio (LPR) 
and brain tissue oxygen tension were monitored. The patients were subjected to 
graded normobaric hyperoxia (NBH), with the inspired fraction of oxygen 
increased from baseline to 60% then 100%. NBH induced significant changes in 
the concentrations of oxyhaemoglobin, deoxyhaemoglobin and oxidised–reduced 
cytochrome c oxidase; these were accompanied by a corresponding reduction in 
brain LPR and increase in brain tissue oxygen tension. No significant change in 
optical scattering or pathlength was observed. These results suggest that the mea-
surement of chromophore concentration in the injured brain is not confounded by 
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changes in optical scattering or pathlength and that NBH induces an increase in 
cerebral aerobic metabolism.

Keywords  Hyperoxia • Optical scattering

1  Introduction

The identification and avoidance of cerebral hypoxia/ischaemia is a central tenet of 
contemporary neurocritical care, and near-infrared spectroscopy (NIRS) has a 
potential monitoring role in this regard. However, whilst a plethora of studies 
describe the use of “cerebral oximeter” devices—which express absolute scaled 
concentrations of oxyhaemoglobin and deoxyhaemoglobin ([HbO

2
] and [HHb], 

respectively) in the form of a combined regional haemoglobin oxygen saturation—
few studies outside the context of cardiopulmonary bypass link brain desaturation 
with neurological outcome or support the routine clinical use of such devices [1].

Cytochrome c oxidase (CCO) is the terminal electron acceptor in the mitochon-
drial electron transport chain and responsible for 95% of cellular oxygen utilisation. 
Like haemoglobin, the oxidised and reduced forms of CCO have characteristic 
absorption spectra within the NIR band; these can be measured as the difference 
spectrum of oxidised–reduced CCO. However, changes in optical scattering and 
pathlength could potentially confound the accurate measurement of oxidised–
reduced CCO concentration ([oxCCO]) in vivo [2].

The aim of this study is to measure optical scattering, pathlength and changes in 
chromophore concentration in a cohort of brain-injured patients during normobaric 
hyperoxia (NBH).

2  Methods

After approval by the institutional Research Ethics Committee and representative 
consent, recordings were carried out in ten sedated, mechanically ventilated acute 
brain-injured patients on the neurocritical care unit. These patients were subjected to 
NBH protocol, which consisted of a 60-min epoch of baseline recording, followed by 
60-min epochs where the inspired fraction of oxygen (FiO

2
) was increased to 60% and 

then 100%, followed by a final 30-min epoch where FiO
2
 was returned to baseline 

values. In patients with a baseline FiO
2
 of ≥50%, the 60% FiO

2
 epoch was omitted.

Systemic physiological monitoring included arterial blood pressure (ABP), pulse 
oximetry and intermittent measurement of arterial blood gases (ABGs)—including 
partial pressures of oxygen and carbon dioxide (PaO

2
 and PaCO

2
, respectively). 

Cerebral monitoring was positioned ipsilaterally to the more injured hemisphere 
and included transcranial Doppler (TCD) ultrasonography measurement of middle 
cerebral artery flow velocity (Vmca) (DWL Doppler Box, Compumedics Germany), 
measurement of the lactate–pyruvate ratio (LPR) by cerebral microdialysis (Dipylon 
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Medical AB, Solna, Sweden) and continuous measurement of brain tissue oxygen 
tension (pbrO

2
) (Licox, Integra Neurosciences, Plainsboro, USA).

The hybrid optical spectrometer has been described in detail elsewhere [3]. Briefly, 
it comprises two identical broadband spectrometers and a two-channel frequency 
domain (FD) spectrometer capable of absolute measurements of optical absorption 
and scattering coefficients (μ

a
 and μ

s
, respectively) at 690, 750, 790 and 850 nm. 

[HHb], [HbO
2
] and [oxCCO] were calculated using the UCLn algorithm [4], fitting 

to changes in NIR attenuation from 780 to 900 nm. Differential pathlength factor 
(DPF) was derived from μ

a
 and μ

s
 measured at 790 nm during the baseline period of 

recording, with additional correction applied for the wavelength dependence of 
pathlength [5]. Optodes were placed in the mid-pupillary line on the forehead, ipsi-
lateral to the TCD and invasive monitoring. Chromophore concentrations derived 
from the 35 mm source–detector separation are presented.

Cerebral LPR was measured at 15-min intervals and ABGs at 30-min intervals. 
The remaining systemic, cerebral and NIRS variables were synchronised and moni-
tored continuously, with the mean value from a noise-free window comprising 
≥50% of each entire epoch used for subsequent analysis and reporting.

All values are reported as median ± interquartile range (IQR) except where 
otherwise stated. Probability was calculated using a Wilcoxon signed-rank test 
comparing the difference between the initial baseline and subsequent study epochs. 
A Bonferroni correction for repeated measures was applied and p < 0.017 defined as 
the level of statistical significance.

3  Results

Patient demographics are summarised in Table 10.1. The NBH protocol induced 
significant changes in paO

2
and pbrO

2
, but not in paCO

2
 or Vmca (Table 10.2).

The FD spectrometer failed to collect data at 750 nm in two patients and at 790 
and 850  nm in one patient. The remaining data revealed no significant change 
observed in the values of μ

s
 and DPF at any wavelength (Table 10.3).

Changes in chromophore concentration are shown in Fig. 10.1. There was a sta-
tistically significant increases in [HbO

2
] and [oxCCO] and decreases in [HHb] dur-

ing NBH (∆[HbO
2
]: +0.36 and +0.58 μmol l−1; ∆[HHb]: −0.54 and −1.56 μmol l−1; 

∆[oxCCO]: +0.15 and +0.28 μmol  l−1 during 60% FiO
2
 and 100% FiO

2
 phases, 

respectively). The baseline median LPR was 24.4 (IQR 22.2–25.7) and showed a 
statistically significant decrease during NBH (∆LPR: −2.8 and −3.3 during 100% 
FiO

2
 and return-to-baseline epochs, respectively) and a nonsignificant decrease of 

−0.8 during the 60% FiO
2
 phase (p < 0.019).

Table 10.1  Data on patient demographics

Patient demographics

Age (range) 45.5 (23–74)

Sex 7 Females, 3 males

Pathology 4 Traumatic brain injury, 6 subarachnoid haemorrhage

Median Admission Glasgow  
Coma Score (IQR)

7.5 (4–8)



70 A. Ghosh et al.

4  Discussion

We have used a hybrid optical spectrometer to measure optical scattering, path-
length, changes in oxy- and deoxyhaemoglobin concentrations and changes in CCO 
oxidation state during NBH in ten critically ill brain-injured patients.

Changes in chromophore concentration, and in particular [oxCCO], have been 
reported before in a clinical context: the pattern of [oxCCO] change has been related 
to clinical outcome following cardiopulmonary bypass [6] and our group have pre-
viously demonstrated an increase in [oxCCO] with NBH [7] and heterogeneous 
changes with hypercapnoea [8]. However, changes in optical scattering and path-
length have been proposed as key confounding factors in the measurement of 
[oxCCO] [2] and the effects of changes in pathlength and scattering on [oxCCO] 
measurement have been hitherto unknown.

We have adopted a novel approach that combines simultaneous measurement of 
optical scattering and pathlength in addition to measurement of changes in chromo-
phore concentration and LPR. The concordance between the microdialysis and 
[oxCCO], combined with the absence of changes in either μ

s
 or pathlength, suggests 

that scattering and pathlength changes do not confound the measurement of 

Table 10.3  Median (IQR) values for measured optical scattering coefficient (μ
s
) and differential 

pathlength factors at four wavelengths

Baseline FiO
2
 60% FiO

2
 100% Return to baseline

μ
s
 690 nm (cm−1) 10.8(9.05–10.8) 10.6(10.1–12.3) 10.5(9.74–12.4) 10.3(9.39–12.5)

μ
s
 750 nm (cm−1) 9.93(9.02–10.2) 10.0(9.04–10.5) 9.76(9.00–10.6) 9.89(8.99–10.7)

μ
s
 790 nm (cm−1) 9.48(8.8–9.75) 9.49(8.59–11.5) 9.25(8.25–11.8) 9.10(7.44–11.8)

μ
s
 850 nm (cm−1) 9.10(9.0–9.70) 9.40(8.76–9.80) 9.36(8.68–9.54) 9.35(8.9–9.4)

DPF 690 nm 8.40(8.33–8.71) 8.634(8.52–9.44) 8.88(8.49–9.57) 8.54(8.03–9.37)

DPF 750 nm 8.15(7.9–8.24) 8.12(7.76–8.44) 8.32(7.96–9.11) 8.15(7.87–9.05)

DPF 790 nm 8.14(8.12–8.28) 8.24(7.91–8.49) 8.21(7.92–8.81) 7.98(7.89–8.63)

DPF 850 nm 8.07(8.06–8.52) 8.00(7.73–8.40) 7.94(7.66–8.37) 8.00(7.83–8.31)

No variable showed statistically significant variation from baseline

Table 10.2  Median (IQR) values for monitored physiological variables during four phases of 
experiment

Baseline FiO
2
 60% FiO

2
 100% Return to baseline

ABP (mmHg) 89.9
(81.4–95.2)

94.6
(82.9–99.7)

95.2
(90.7–97.1)

90.7
(84.3–93.2)

paO
2
 (kPa) 13.9

(11.7–18.1)
26.6*
(25.8–31.1)

52.9*
(49.2–57.0)

11.8
(10.9–14.4)

paCO
2
 (kPa) 4.8

(4.6–5.0)
5.0
(4.8–5)

4.8
(4.6–4.9)

5.1
(4.7–5.5)

pbrO
2
 (kPa) 2.8

(1.6–3.4)
4.0*(2.5–4.7) 7.4*(5.6–8.6) 3.5(1.7–4.7)

Vmca (cm s−1) 54.3(51.3–79.6) 56.2(48.7–84.7) 54.3(50.3–83.1) 57.1(51.8–86.1)

Values showing a statistically significant difference from initial baseline are italicised
*p < 0.01
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Fig. 10.1  Changes in: (a) oxyhaemoglobin (open circles) and deoxyhaemoglobin (solid circles); 
(b) microdialysate lactate–pyruvate ratio; (c) haemoglobin difference; (d) oxidised–reduced cyto-
chrome c oxidase for each phase of study. B baseline, 60% FiO

2
 60%, 100% FiO

2
 100%, RTB 

return to baseline. *p < 0.017; **p < 0.01 comparing study epoch to initial baseline

chromophore concentration and that the change in [oxCCO] seen during NBH 
therefore represents an actual increase in mitochondrial aerobic metabolism.

The pattern of chromophore concentration change that we have observed during 
NBH is similar to that previously reported by our group using different apparatus in 
a cohort patients who had a similar median age and admission GCS, but had a pri-
mary diagnosis of traumatic brain injury rather than the mixed group of traumatic 
and vascular brain injuries reported in this study. The magnitude of [HbO

2
] increase, 

however, was smaller in our cohort than that previously reported. The reasons for 
this are unclear, but may include pathophysiological and instrumentation factors. 
Interpreting the physiological mechanisms underlying the increase in [oxCCO] in 
response to NBH is challenging, but may be enhanced by the use of a mathematical 
model of the cerebral circulation and metabolism [9]. Further work is required to 
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elucidate the relationship between [oxCCO] and changes in cerebral oxygen avail-
ability and may aid in the translation of NIRS-derived measurement of [oxCCO] 
from a research to a clinical tool.
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