Skip to main content

Advanced Technologies for Personalized Learning, Instruction, and Performance

  • Chapter
  • First Online:
Handbook of Research on Educational Communications and Technology

Abstract

The inclusion of computer technology in education has led to increased attention for ­personalized learning and instruction. By means of personalized learning, or adaptive learning, learners are given instruction and support directly, adjusted to their cognitive and ­noncognitive needs.

This chapter aims at giving an overview of the current research that addresses advanced technologies, models, and approaches to establish personalized learning, instruction, and performance. In order to provide this, relevant learner and learning characteristics need to be measured or inferred and incorporated in learner models. These learner models provide the basis from which personalization can occur and have to be considered as the core of personalized learning environments.

In order to provide dynamic personalized learning, learner models need to be adjusted and updated with new information about the learner’s knowledge, affective states, and behavior. To do so, the fields of artificial intelligence and educational data mining provide advanced technologies that can be applied for fine-grained learner modeling. First, the field of artificial intelligence in education has largely supported the development of intelligent tutoring systems. Second, educational data mining is indispensable for providing information about the learning process and learner behavior.

The integration of artificial intelligence and educational data mining in the learner modeling research provides a firm basis for effectiveness research on personalized systems. This chapter is concluded with the call for educational technologists to use advanced technologies as a method to support personalized learning and not as a goal when developing adaptive learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhras, F. N., & Self, J. A. (2002). Beyond intelligent tutoring systems: Situations, interactions, processes and affordances. Instructional Science, 30, 1–30.

    Article  Google Scholar 

  • *Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring systems: Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.

    Google Scholar 

  • Amershi, S., & Conati, C. (2009). Combining unsupervised and ­supervised classification to build user models for exploratory ­learning environments. Journal of Educational Data Mining, 1(1), 18–71.

    Google Scholar 

  • Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligence, 42, 7–49.

    Article  Google Scholar 

  • *Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167–207.

    Google Scholar 

  • Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10, 159–175.

    Google Scholar 

  • Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 17–24). Amsterdam: Ios Press.

    Google Scholar 

  • Baker, S. J. d. (2010). Data mining for education. In B. McGaw, P. Peterson, & E. Baker (Eds.), International encyclopedia of education (3rd ed., pp. 112–118). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Baker, R. S. J. d., Corbett, A. T., Koedinger, K. R., Evenson, S., Roll, I., Wagner, A., et al. (2006). Adapting to when students game an intelligent tutoring system. In M. Ikeda, K. Ashley, & C. Tak-Wai (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems (pp. 392–401). Berlin: Springer.

    Chapter  Google Scholar 

  • Baker, R. S. J., de Carvalho, A. M. J. B., Raspat, J., Aleven, V., Corbett, T., & Koedinger, K. R. (2008). Educational software features that encourage and discourage “Gaming the System”. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 475–482). Amsterdam: Ios Press.

    Google Scholar 

  • *Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., & Koedinger, K. (2008). Why students engage in “Gaming the System” behavior in interactive learning environments. Journal of Interactive Learning Research, 19(2), 185–224.

    Google Scholar 

  • *Baker, R. S. J. d., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3–17.

    Google Scholar 

  • Beal, C. R., & Lee, H. (2005, July). Creating a pedagogical model that uses student self-reports of motivation and mood to adapt ITS instruction. Paper session presented at the Workshop on Motivation and Affect in Educational Software, 12th International Conference on Artificial Intelligence in Education, Amsterdam, The Netherlands.

    Google Scholar 

  • Beck, J. E., Jia, P., Sison, J., & Mostow, J. (2003). Predicting student help-request behavior in an intelligent tutor for reading. In P. Brusilovsky, A. T. Corbett, & F. De Rosis (Eds.), Proceedings of the 9th International Conference on User Modeling. LNAI 2702 (pp. 303–312). Berlin: Springer.

    Google Scholar 

  • Beck, J. E., & Mostow, J. (2008). How who should practice: Using learning decomposition to evaluate the efficacy of different types of practice for different types of students. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 353–362). Berlin: Springer.

    Chapter  Google Scholar 

  • *Beck, J. E., & Woolf, B. (2000). High-level student modeling with machine learning. In G. Gilles, C. Frasson, & vanLehn, K. (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring systems (pp. 584–593). London: Springer-Verlag.

    Google Scholar 

  • Blanchard, E. G., Chalfoun, P., & Frasson, C. (2007). Towards advanced learner modeling: Discussions on quasi real-time adaptation with physiological data. In J. M. Spector, D. G. Sampson, T. Okamuto, S. A. Kinshuk, M. U. Cerri, & A. Kashihara (Eds.), Proceedings of the 7th IEEE International Conference on Advanced Learning Technologies (pp. 809–813). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International Journal of Artificial Intelligence in Education, 19(2), 189–210.

    Google Scholar 

  • Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6, 87–129.

    Article  Google Scholar 

  • Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11, 87–110.

    Article  Google Scholar 

  • Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web (pp. 3–53). Berlin: Springer.

    Chapter  Google Scholar 

  • *Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. International Journal of Artificial Intelligence in Education, 13(2–4), 159–172.

    Google Scholar 

  • Bull, S., Abu-Isa, A. S., Ghag, H., & Lloyd, T. (2005). Some unusual open learner models. In C.-K. Looi, G. I. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 2005 Conference on Artificial Intelligence in Education (pp. 104–111). Amsterdam: Ios Press.

    Google Scholar 

  • Bull, S., Ahmad, N., Johnson, M., Johan, R., Mabbott, A., & Kerly, A. (2008). Adaptive navigation support, learner control and open learner models. In W. Neijdl, J. Kay, P. Pu, & E. Herder (Eds.), Adaptive hypermedia and adaptive web-based systems (pp. 275–278). Berlin: Springer.

    Chapter  Google Scholar 

  • *Bull, S., & Kay, J. (2007). Student models that invite the learner in: The SMILI open learner modelling framework. International Journal of Artificial Intelligence in Education, 17(2), 89–120.

    Google Scholar 

  • Bull, S., Mabbott, A., & Abu-Issa, A. (2007). UMPTEEN: Named and anonymous learner model access for instructors and peers. International Journal of Artificial Intelligence in Education, 17(3), 227–253.

    Google Scholar 

  • Chou, C.-Y., Chan, T.-W., & Lin, C.-J. (2003). Redefining the learning companion: The past, present and future of educational agents. Computers & Education, 40, 255–269.

    Article  Google Scholar 

  • Cocea, M., & Weibelzahl, S. (2009). Log file analysis for disengagement detection in e-learning environments. User Modeling and User-Adapted Interaction, 19, 341–385.

    Article  Google Scholar 

  • Conati, C., Gertner, A., & vanLehn, K. (2002). Using Bayesian networks to manage uncertainty in student modeling. User Modeling and User-Adapted Interaction, 12, 371–417.

    Article  Google Scholar 

  • Conati, C., & Maclaren, H. (2005). Data-driven refinement of a probabilistic model of user affect. In L. Ardissono, P. Brna, & A. Mitrovic (Eds.), Proceedings of the 10th International Conference on User Modeling (pp. 40–49). Berlin: Springer.

    Google Scholar 

  • Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2008). Selecting learning tasks: Effects of adaptation and shared control on efficiency and task involvement. Contemporary Educational Psychology, 33, 733–756.

    Article  Google Scholar 

  • Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2009). Combining shared control with variability over surface features: Effects on transfer test performance and task involvement. Computers in Human Behavior, 25, 290–298.

    Article  Google Scholar 

  • *Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems (chapter 37). In M. G. Helander, T. K. Landauer, & P. Prabhu, (Eds.) Handbook of human-computer interaction (2nd ed.). Amsterdam, The Netherlands: Elsevier Science.

    Google Scholar 

  • Craig, S. D., D’Mello, S., Witherspoon, A., & Graesser, A. (2008). Emote aloud during learning with AutoTutor: Applying the facial action coding system to cognitive-affective states during learning. Cognition and Emotion, 22(5), 777–788.

    Article  Google Scholar 

  • D’Mello, S. K., Dowell, N., & Graesser, A. (2009). Cohesion relationships in tutorial dialogue as predictors of affective states. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of 14th International Conference on Artificial Intelligence in Education (pp. 9–16). Amsterdam: Ios Press.

    Google Scholar 

  • D’Mello, S. K., & Graesser, A. (2011). Dynamics of affective states during complex learning. Learning and Instruction, 22, 145–157.

    Article  Google Scholar 

  • D’Mello, S. K., Lehman, B., & Graesser, A. (2011). A motivationally supportive affect-sensitive Autotutor. In R. A. Calvo & S. K. D’Mello (Eds.), New perspectives on affect and learning technologies (Vol. 3, part 2, pp. 113–126). New York: Springer.

    Chapter  Google Scholar 

  • de Vicente, A., & Pain, H. (2002). Informing the detection of the students’ motivational state: An empirical study. In S. A. Cerri, G. Gouardères, & F. Paraguacu (Eds.), Proceedings of the 6th International Conference on Intelligent Tutoring Systems (pp. 933–943). London: Springer.

    Chapter  Google Scholar 

  • Dillenbourg, P. (1994, November). The role of artificial intelligence techniques in training software. Paper presented at Learntex 1994, Karlsruhe, Germany.

    Google Scholar 

  • D’Mello, S. K., Craig, S. D., Witherspoon, A. W., McDaniel, B. T., & Graesser, A. (2008). Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction, 18(1–2), 45–80.

    Article  Google Scholar 

  • Dringus, L., & Ellis, T. (2005). Using data mining as a strategy for assessing asynchronous discussion forums. Computers & Education, 45, 141–160.

    Article  Google Scholar 

  • El Saadawi, G. M., Tseytlin, E., Legowski, E., Jukic, D., Castine, M., Fine, J., et al. (2008). A natural language intelligent tutoring system for training pathologists: Implementation and evaluation. Advances in Health Sciences Education: Theory and Practice, 13(5), 709–722.

    Article  Google Scholar 

  • Elen, J. (2000). Technologie voor en van het onderwijs [Technology for and of education]. Leuven: Acco.

    Google Scholar 

  • Fazlollahtabar, H., & Mahdavi, I. (2009). User/tutor optimal learning path in e-learning using comprehensive neuro-fuzzy approach. Educational Research Review, 4(2), 142–155.

    Article  Google Scholar 

  • Fogel, D. B. (2006). Evolutionary computation—toward a new philosophy of machine intelligence (3rd ed.). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • *Frias-Martinez, E., Magoulas, G., Chen, S., & Macredie, R. (2005). Recent soft computing approaches to user modeling in adaptive hypermedia. In De Bra, P., & Nejdl, W. (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems, Third International Conference, AH 2004 (pp. 23–26). Berlin: Springer-Verlag.

    Google Scholar 

  • García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49, 794–808.

    Article  Google Scholar 

  • Graesser, A., D’Mello, S., Craig, S., Witherspoon, A., Sullins, J., McDaniel, B., et al. (2008). The relationship between affective states and dialog patterns during interactions with AutoTutor. Journal of Interactive Learning Research, 19(2), 293–312.

    Google Scholar 

  • Hammouda, K., & Kamel, M. (2007). Data mining in e-learning. In S. Pierre (Ed.), E-learning networked environments and architectures: A knowledge processing perspective. Berlin: Springer.

    Google Scholar 

  • Jeong, H., & Biswas, G. (2008). Mining student behavior models in learning-by-teaching environments. In R. S. J. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (pp. 127–136). Montreal: International Educational Data Mining Society.

    Google Scholar 

  • Jeremic, Z., Jovanovic, J., & Gasevic, D. (2009). Evaluating an intelligent tutoring system for design patterns: The DEPTHS experience. Educational Technology & Society, 12(2), 111–130.

    Google Scholar 

  • Keller, F. S. (1974). Ten years of personalized instruction. Teaching of Psychology, 1(1), 4–9.

    Google Scholar 

  • Kodaganallur, V., Weitz, R. R., & Rosenthal, D. (2006). An assessment of constraint-based tutors: A response to Mitrovic and Ohlsson’s critique of “A comparison of model-tracing and constraint-based intelligent tutoring paradigms”. International Journal of Artificial Intelligence in Education, 16(3), 291–321.

    Google Scholar 

  • Koedinger, K. R., & Anderson, J. R. (1993). Effective use of intelligent software in high school math classrooms. In P. Brna, S. Ohisson, & H. Pain (Eds.), Artificial intelligence in education: Proceedings of the World Conference on AI in Education (pp. 241–248). Charlottesville, VA: AACE.

    Google Scholar 

  • Koedinger, K. R., & Corbett, A. T. (2006). Cognitive tutors: Technology bringing learning science to the classroom. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 61–78). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lazarinis, F., & Retalis, S. (2007). Analyse me: Open learner model in an adaptive web testing system. International Journal of Artificial Intelligence in Education, 17(3), 255–271.

    Google Scholar 

  • *Lee, J., & Park, O. (2008). Adaptive instructional systems. In J. M. Spector, M. D. Merril, J. J. G. van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 469–484). New York, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lehman, B., D’Mello, S. K., & Graesser, A. (2012). Confusion and complex learning during interaction with computer learning environments. The Internet and Higher Education. doi:10.1016/j.iheduc.2012.01.002.

    Google Scholar 

  • Liu, C., Rani, P., & Sarkar, N. (2005, August). An empirical study of machine learning techniques for affect recognition in human-robot interaction. Paper presented at the IEEE International Conference on Intelligent Robots and Systems, Alberta, Canada.

    Google Scholar 

  • Lockee, B., Larson, M., Burton, J. K., & Moore, D. M. (2008). Programmed technologies. In J. M. Spector, M. D. Merrill, J. J. G. Van Merrienboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 187–197). New York, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McLaren, B. M., Lim, S., & Koedinger, K. R. (2008a). When and how often should worked examples be given to students? New results and a summary of the current state of research. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 2176–2181). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • McLaren, B. M., Lim, S., & Koedinger, K. R. (2008b). When is assistance helpful to learning? Results in combining worked examples and intelligent tutoring. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 677–680). Berlin: Springer.

    Chapter  Google Scholar 

  • McQuiggan, S., Lee, S., & Lester, J. (2007). Early prediction of student frustration. In A. C. Paiva, R. Prada, & R. W. Picard (Eds.), Proceedings of the 2nd International Conference on Affective Computing and Intelligent Interaction (pp. 698–709). Berlin: Springer.

    Chapter  Google Scholar 

  • McQuiggan, S., Rowe, J., Lee, S., & Lester, J. (2008). Story-based learning: The impact of narrative on learning experiences and outcomes. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 530–539). Berlin: Springer.

    Chapter  Google Scholar 

  • Mitrovic, A., & Koedinger, K. R. (2009). Preface. International Journal of Artificial Intelligence in Education, 19, 103–104.

    Google Scholar 

  • *Mitrovic, A., Koedinger, K. R., & Martin, B. (2003). A comparative analysis of cognitive tutoring and constraint-based modeling. In P. Brusilovsky, A. T. Corbett, & F. De Rosis (Eds.), Proceedings of the 9th International Conference on User Modeling. LNAI 2702 (pp. 313–322). Berlin: Springer-Verlag.

    Google Scholar 

  • Mitrovic, A., & Martin, B. (2007). Evaluating the effect of open student models on self-assessment. International Journal of Artificial Intelligence in Education, 17(2), 121–144.

    Google Scholar 

  • Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., et al. (2009). ASPIRE: An authoring system and deployment environment for constraint-based tutors. International Journal of Artificial Intelligence in Education, 19(2), 155–188.

    Google Scholar 

  • Mitrovic, A., Mayo, M., Suraweera, P., & Martin, B. (2001). Constraint-based tutors: A success story. In L. Monostori, J. Váncza, & M. Ali (Eds.), Proceedings of the 14th International Conference on Industrial and Engineering Application of Artificial Intelligence and Expert Systems (pp. 931–940). Berlin: Springer.

    Google Scholar 

  • Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language. International Journal of Artificial Intelligence in Education, 10(3–4), 238–256.

    Google Scholar 

  • Moore, A. (2006). Statistical data mining tutorials. Retrieved from http://www.autonlab.org/tutorials

  • Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the art. In T. Murray, S. Blessing, & S. Ainsworth (Eds.), Authoring tools for advanced technology learning environments (pp. 491–545). Norwell, MA: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Nasraoui, O., & Petenes C. (2003, August). Combining web usage ­mining and fuzzy inference for website personalization. Proceedings of WebKDD 2003—KDD Workshop on Web Mining as a Premise to Effective and Intelligent Web Applications, Washington, DC (pp. 37–48).

    Google Scholar 

  • Nokelainen, P., Tirri, H., Miettinen, M., Silander, T., & Kurhila, J. (2002). Optimizing and profiling users online with Bayesian probabilistic modeling. Proceedings of the International Networked Learning Conference of Natural and Artificial Intelligence Systems Organization. Canada: ICSC-NAISO Academic Press.

    Google Scholar 

  • Ohlsson, S. (1994). Constraint-based student modeling. In J. E. Greer & G. McCalla (Eds.), Student modeling: The key to individualized knowledge-based instruction (pp. 167–189). New York: Springer.

    Chapter  Google Scholar 

  • Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241–262.

    Article  Google Scholar 

  • Ohlsson, S., & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring systems. Technology, Instruction, Cognition and Learning, 5(2), 101–132.

    Google Scholar 

  • Park, O., & Lee, H. (2003). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 651–684). Bloomington, IN: The Association for Educational Communications and Technology (AECT).

    Google Scholar 

  • Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9(3), 105–119.

    Google Scholar 

  • Poole, D., & Mackworth, A. K. (2010). Artificial intelligence—foundations of computations agents. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Rich, E. (1979). User modeling via stereotypes. Cognitive Science, 3, 329–354.

    Article  Google Scholar 

  • Richey, R. C., Silber, K. H., & Ely, D. P. (2008). Reflections on the 2008 AECT definitions of the field. TechTrends, 52(1), 24–25.

    Article  Google Scholar 

  • Robison, J. L., McQuiggan, S. W., & Lester, J. C. (2009). Modeling task-based vs. affect-based feedback behavior in pedagogical agents: An inductive approach. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 17–24). Amsterdam: Ios Press.

    Google Scholar 

  • Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33, 135–146.

    Article  Google Scholar 

  • Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state-of-the-art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601–618.

    Article  Google Scholar 

  • Romero, C., Ventura, S., & Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51, 368–384.

    Article  Google Scholar 

  • Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. (2011). Handbook of educational data mining. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sebe, N., Cohen, I., & Huang, T. S. (2006, August). Emotion recognition based on joint visual and audio cues. Paper presented at the 18th International Conference on Pattern Recognition, Hong Kong.

    Google Scholar 

  • *Self, J. (1990). Bypassing the intractable problem of student modelling. In C. Frasson, & G. Gauthier (Eds.), Intelligent tutoring ­systems: At the crossroads of artificial intelligence and education (pp. 107–123). Norwood, NJ: Ablex.

    Google Scholar 

  • Shen, D., Nuankhieo, P., Huang, X., Amelung, C., & Laffey, J. (2008). Using social network analysis to understand sense of community in an online learning environment. Journal of Educational Computing Research, 39(1), 17–36.

    Article  Google Scholar 

  • Shute, V. J. (1992). Aptitude-treatment interactions and cognitive skill diagnosis. In J. W. Region & V. J. Shute (Eds.), Cognitive approaches to automated instruction (pp. 15–47). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Shute, V. J., Graf, E. A., & Hansen, E. (2005). Designing adaptive, diagnostic math assessments for sighted and visually-disabled students. In L. Pytlikzillig, R. Bruning, & M. Bodvarsson (Eds.), Technology-based education: Bringing researchers and practitioners together (pp. 169–202). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present and future. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 570–600). New York, NY: MacMillan Publishers.

    Google Scholar 

  • Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, M. D. Merril, J. J. G. van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 277–294). New York, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Singley, M. K., Anderson, J. R., Gevins, J. S., & Hoffman, D. (1989). The algebra word problem tutor. In D. Bierman, J. Breuker, & J. Sandberg (Eds.), Artificial intelligence and education (pp. 267–2785). Amsterdam: Ios Press.

    Google Scholar 

  • Triantafillou, E., Pomportsis, A., Demetriadis, S., & Georgiadou, E. (2004). The value of adaptivity based on cognitive style: An ­empirical study. British Journal of Educational Technology, 35, 95–106.

    Article  Google Scholar 

  • Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51, 776–786.

    Article  Google Scholar 

  • Tsiriga, V., & Virvou, M. (2003). Modelling the student to individualise tutoring in a web-based ICALL. International Journal of Continuing Engineering Education and Life-long Learning, 13(3–4), 350–365.

    Article  Google Scholar 

  • Ueno, M. (2004). Data mining and text mining technologies for collaborative learning in an ILMS “Samurai”. In C.-K. Kinshuk, E. Looi, D. G. Sutinen, I. Sampson, L. U. Aedo, & E. Kähkönen (Eds.), Proceedings of the IEEE International Conference on Advanced Learning Technologies (pp. 1052–1053). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Van de gaer, E., De Fraine, B., Pustjens, H., Van Damme, J., De Munter, A., & Onghena, P. (2009). School effects on the development of motivation toward learning tasks and the development of academic self-concept in secondary education: A multivariate latent growth curve approach. School Effectiveness and School Improvement, 20(2), 235–253.

    Article  Google Scholar 

  • Vandewaetere, M., Desmet, P., & Clarebout, G. (2011). The contribution of learner characteristics in the development of computer-based adaptive learning environments. Computers in Human Behavior, 27, 118–130.

    Article  Google Scholar 

  • vanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et al. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147–204.

    Google Scholar 

  • Wauters, K., Desmet, P., & Van den Noortgate, W. (2010). Adaptive item-based learning environments based on the item response theory: Possibilities and challenges. Journal of Computer Assisted Learning, 26(6), 549–562.

    Article  Google Scholar 

  • Williams, M. D. (1996). Learner-control and instructional technologies. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 957–982). New York, NY: MacMillan Publishers.

    Google Scholar 

  • Xu, D., & Wang, H. (2006). Intelligent agent supported personalization for virtual learning environments. Decision Support Systems, 42(2), 825–843.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Vandewaetere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vandewaetere, M., Clarebout, G. (2014). Advanced Technologies for Personalized Learning, Instruction, and Performance. In: Spector, J., Merrill, M., Elen, J., Bishop, M. (eds) Handbook of Research on Educational Communications and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3185-5_34

Download citation

Publish with us

Policies and ethics