Chapter 14
Biological Sequence Analysis

Simon E. Cawley

Shortly after the start of my graduate studies at the U.C. Berkeley Statistics depart-
ment in 1995, I had the good fortune to meet Terry and learn about some of his
work in the area of the application of statistics to genetics and molecular biology.
Not having thought about biology since high school, I was very impressed by the
large impact statistical approaches were making in a field I had naively considered
as one that had little to do with quantitative analysis. I eagerly dove in to a collabo-
ration that Terry had put in place with the Human and Drosophila Genome Projects
at Lawrence Berkeley National Laboratories and spent the next few years having a
great time working on interesting and practical statistical problems that arose in the
context of the ongoing genome sequencing efforts.

In this section we present some of Terry’s contributions in the area of Sequence
Analysis — generally speaking, the area of analysis of biological sequences such as
DNA or protein sequences. The papers presented here relate to the interpretation of
DNA sequences.

DNA sequence analysis has been an area of growing importance since DNA
sequencing techniques started to emerge in the early 1970s. The chain-terminator
method developed by Frederick Sanger at the University of Cambridge [7] was a
pivotal moment, enabling the first rapid scaling up of DNA sequencing capabili-
ties. The rate of sequencing was further accelerated through the 1980s and 1990s as
ever-greater levels of automation were brought to bear on Sangers original concept.

As the level of automation increased, it became possible to sequence entire
genomes of successively more complex organisms with larger genomes, ranging
from bacteriophage phiX174 in the late 1970s, various microbial genomes in the
early 1990s through to the draft of the human genome sequence published in 2001.
The Sanger method showed remarkable longevity and was at the core of the vast
majority of sequencing efforts through to the early 2000s.

The dominance of Sanger sequencing finally ended in the early 2000s with the
advent of a renaissance of sorts as multiple new massively parallel technologies such
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as 454 pyrosequencing, followed soon after by Solexa (Illumina), SOLiD, polony,
DNA nanoball and Ion Torrent sequencing.

As DNA sequencing technologies scaled up, huge opportunities arose along the
way for the application of statistics, both in the area of analysis of the signals gen-
erated from each of the various instruments and technologies to improve DNA se-
quencing accuracy (the subject of Chapter 13), and in the downstream analysis of the
DNA sequence collected. In particular, as the volumes of sequence generated started
to exceed what an expert molecular biologist could manually browse and interpret,
it became crucial to develop statistical models for assembling and interpreting the
sequences.

The papers presented in this chapter cover two important areas in the interpre-
tation of DNA sequences. The first, Cawley et al. [3], addresses the problem of
analyzing stretches of DNA to search for the collections of sub-sequences that cor-
respond to gene transcripts. The model presented was not the first of its kind; simi-
lar Hidden Markov Models (HMMs) had been published before [2, 4, 5]. Its novel
contributions were various observations about computational shortcuts that can be
made, at no cost to accuracy, taking advantage of some of the structure of the prob-
lem of applying HMMs to gene finding. This paper was also the first instance where
the probabilistic formulation of the HMM gene finder was used to derive posterior
probabilities of bases being part of the gene; previous attempts focused exclusively
on the use of the Viterbi algorithm to predict gene structures. The software im-
plementing the gene finder was also the first HMM gene finder made available as
open-source software, something of value given the rate at which new organisms
were then being sequenced.

As an interesting side note, while doing some of the work that was described in
the publication, I had a near-death experience with the very Malaria parasite that
was the subject of the work. A pure coincidence — the work had involved nothing
more than electronic interaction with the parasite!

The second paper, Zhao et al. [8], introduced the novel concept of a Permuted
Variable Length Markov Model (PVLMM), a generalization of the VLMM [1, 6].
VLMMs themselves are a generalization of Markov models. When applied to se-
quence analysis, they have the advantage of allowing for modeling of long context
dependencies without necessarily coming at the cost of an exponential increase in
the number of parameters to estimate. However, the dependencies that VLMMs best
model are still relatively local dependencies and they are ill-suited to describe long-
range dependencies between particular positions in a sequence as sometimes occurs.
PVLMMs offer a way around that limitation by providing a framework in which the
modeled sequence can be permuted to bring dependent positions together, turning
long-range dependencies into local ones.

The paper provides some impressive work, putting the new theory into practice
in two substantial applications: modeling of splice sites, a sub-component of gene
sequences; and modeling of Transcription Factor Binding Sites (TFBS), important
regions of DNA to which regulatory molecules known as transcription factors bind
as part of the regulation mechanism for gene expression. By showing effective per-



14 Biological Sequence Analysis 565

formance in two different sequence analysis problems, a strong case is made for the
PVLMM as a general tool that will be well suited to a broad range of applications.

These papers, along with the diverse range of publications reviewed in the other
chapters, provide a sense of the amazing breadth of Terry’s work. I am a direct
beneficiary of his diverse interests — when he introduced me to the field of statistics
applied to molecular biology, I enjoyed it so much that it ended up being the basis
of my career to-date. I will always be grateful to him for how selflessly he shared
his time and insights, and for the patient guidance he provided during my graduate
years and beyond.
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Abstract

We describe and assess the performance of the gene finding program pretty handy annotation tool (Phat) on sequence from the
malaria parasite Plasmodium falciparum. Phat is based on a generalized hidden Markov model (GHMM) similar to the models
used in GENSCAN, Genie and HMMgene. In a test set of 44 confirmed gene structures Phat achieves nucleotide-level sensitivity
and specificity of greater than 95%, performing as well as the other P. falciparum gene finding programs Hexamer and GlimmerM.
Phat is particularly useful for P. falciparum and other eukaryotes for which there are few gene finding programs available as it
is distributed with code for retraining it on new organisms. Moreover, the full source code is freely available under the GNU
General Public License, allowing for users to further develop and customize it. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Sequencing of the Plasmodium falciparum genome is
proceeding apace. Two completely sequenced chromo-
somes have been published [1,2] as well as the mito-
chondrion, and substantial amounts of the sequence of
other chromosomes are already available [3-6]. The
two published chromosomes have been annotated ex-
tensively, in each case making use of a gene-finding
program. GlimmerM [7.8], a eukaryotic gene-finding
program based on Glimmer [9], was used in the analysis
of chromosome 2, while chromosome 3 was annotated
with the help of Hexamer [10] and Genefinder [11].
Furthermore, chromosome 3 was revisited later with
GlimmerM [12].

Before cither of these chromosome sequences was
published, there was no publicly available gene-finding
program trained on P. falciparum sequence, which is
known to have a base composition different enough
from other organisms to preclude simply using an
existing program. Since some of our colleagues had a
desire to analyze the sequence then available for genes,
one of us wrote a gene-finding program [13]. This paper

* Corresponding author. Tel.: + 1-510-428-8534; fax: + 1-510-428-
8585.
E-mail address: simon_cawley@affymetrix.com (S.E. Cawley).

is about a descendent of that original program which
we call pretty handy annotation tool (Phat).

Broadly speaking, there are now four publicly avail-
able Plasmodium gene-finding programs: Genefinder,
GlimmerM, Hexamer and Phat. They each differ some-
what in the way in which they seek to exploit sequence
features to find genes, in their availability, and in the
extent to which they can be re-trained on new data and
used by people other than their authors. As well as
introducing Phat, we compare and contrast it with the
other programs.

2. Methods
2.1. The model

Phat models genomic DNA with a generalized hid-
den Markov model (GHMM), similar to existing
GHMM gene models such as GENSCAN [14] Genie
[15,16] and HMMgene [17]. There is an underlying state
space consisting of three main types of states: exons,
introns and intergenic regions (Fig. 1). Introns are
classified as phase 0, 1 or 2 according to the number of
bases of the final codon generated in the previous exon
(where previous means the last exon in the 5" direction,
on the coding strand). Exons are classified into four

0166-6851/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
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Fig. 1. Markovian state space of the Phat GHMM. States labeled * +
reverse. There are three intron states on each st

intron, and E;
is modeled ILH 1o rig!

he reverse-strand genes are modeled 3'-5).

types single, initial, internal and terminal, and each
exon state is composed of three parts—a pair of exon
boundary state sites flanking a coding region. The
possible exon boundary states are translation start,
donor, acceptor and translation stop.

The most direct way to understand the model is to
consider how it generates data (though in practice it is
not used for data generation). A start state is chosen
from some initial probability distribution. Say we start
off in the intergene state. A single nucleotide is gener-
ated from an intergenic output distribution and the
next state is selected. The Markov property specifies
that the next state chosen depends only on the current
state. Since intergenic regions tend to be reasonably
long, the most likely choice for the next state will again
be the intergenic state, but with some positive probabil-
ity it could be an initial exon on the forward strand, a
terminal exon on the reverse strand or a single exon on
either strand (as indicated by the arrows leading from
the intergenic state in Fig. 2).

The procedure is slightly different in exon states.
First, the length of the exon is generated from an exon
length distribution. This distribution is specific to both
the type of the exon (single/initial/internal /terminal)
and to the previous state. The corresponding number of

" model genes on the forward strand, those labeled *
nd, one for each possible intron phase. Ey denotes a single exon gene and exons labeled E,
internal exons located just wpstream of a phase § intron. E;, denotes an initial exon on the forw:

* model genes on the
are
e i

d strand located just upstream of a

, denotes a terminal exon on the reverse strand Ioc.ucd Jjust downstream of a phase § intron (note that since the DNA sequence

nucleotides for the two exon boundaries and for the
internal coding region are then generated and the next
state is chosen,

Note that introns, internal exons, initial exons (on
the forward strand) and terminal exons (on the reverse
strand) are each represented by three states. The tripli-
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Fig. 2. Gene finding performance on a 15-kDa vesicular-like antigen
gene (GenBank accession M94732). The solid blocks represent coding
exons (untranslated regions are not presented since none of the gene
prediction methods tries 10 identify non-co exons). The tiers
represent the actual structure (green), Phat (red), GlimmerM (bluc)
and Hexamer (yellow). The coding part of the first exon is so small (3

by that it does not show up in the plot. Most of the exons containing
the translation start codon is untranslated and its last three bases
form the start codon.
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cate representation is to keep track of the frame. When
arriving in a given exon state from a particular intron
state, the next state is fully determined and the length of
the exon must have the appropriate remainder after
division by three.

The possibility of the length of exon output sequences
following an arbitrary distribution makes the model
slightly more flexible than a regular HMM (in which the
output will always have length 1 for each state in the
hidden state space). Hence the name ‘generalized’ HMM.
For intron and intergene sequences we only allow the
generation of one base of output at a time (so the output
length is always fixed at 1) but unlike the exon states we
allow self-transitions. Accordingly, intron and intergene
lengths will follow a geometric distribution. This restric-
tion of the model allows for large decreases in both
running time and memory requirements, and turns out
to be a reasonable approximation for many organisms.

2.2. Gene predictions

In practice the aim is to use the model to predict the
location of genes in sequence data, which involves the
estimation of the hidden states and their duration given
an observed genomic sequence. A reasonable approach
is to determine the sequence of states and duration that
maximizes the joint probability of the hidden and ob-
served data. This approach is the one usually adopted in
HMM gene finders [14-16] (though see [17] for a nice
alternative) and is the one we use in Phat. The approach
is popular not only because it is effective, but also
because it can be implemented in an efficient manner
using the Viterbi algorithm [18].

The key idea in the Viterbi algorithm is to record, for
each hidden state and sequence position, the maximum
joint probability of hidden and observed data up to that
position. The actual algorithm is a dynamic program-
ming procedure that computes recursively the single most
likely sequence.

The standard Viterbi algorithm applies to any
GHMM, but there are certain features of the state space
of the Phat model that can be exploited to yield savings
in time and memory. Firstly, the state space can be
decomposed into the set of exon states and the set of
intron and intergene states. This decomposition has the
special property that no exon state can jump directly to
another exon state, which implies that an intron or
intergene state must be preceded by another state of the
same kind either one or two states back.

By modifying the Viterbi algorithm to maximize over
the previous two states rather than just the previous one
we can achieve a 70% reduction in the storage space
required. Other features that help in reducing computa-
tion include the fact that exon states have only one
possibility for the next state, that intron or intergenic
states always have a duration of 1, and that the only way

for a state of the latter kind to be followed directly by
another such state is via a self-transition.

There is a trick that can be used to further reduce the
number of computations by a significant factor, at the
expense of a modest extra storage requirement. The
distributions we use for exons all consist of three parts,
i.e. a pair of exon boundary distributions and a distribu-
tion for the coding portion. For the last we use a
three-periodic Markov model of order five. There are
thus three sets of probabilities used for coding sequence,
one corresponding to each codon position. Certain
quantities related to these probabilities can be computed
in advance and can be stored in a look-up table, after
which exon probabilities can be computed when needed
with only a single division. Such a look-up table ap-
proach reduces the runtime of the program by orders of
magnitude.

One of the attractive features of using a GHMM for
gene prediction is that it provides a natural way of
computing the probability of a predicted exon, given the
observed data. In addition we are often interested in the
probability of a particular base or region being part of
an exon. The probability that a particular sequence
position is non-coding can be calculated, and subtracting
it from 1, we get the probability that the position is part
of some coding state. While useful in predicting potential
exons that the Viterbi reconstruction may have missed,
this probability says nothing about the possible strand
of the coding region.

2.3. Training the model

There is a number of standard techniques for training
hidden Markov models. Perhaps the best-known is the
Baum-Welch method (also known as the expectation
maximization, or EM algorithm) presented by Rabiner
[18]. Given a collection of training sequences and initial
values for the model parameters a single iteration of the
Baum-Welch method provides new model parameters
under which the training sequences have greater or equal
likelihood. Repeated iterations yield maximum likeli-
hood parameter estimates.

Though reasonably straightforward to write down,
actual implementation of a maximum likelihood training
method is a tricky and time-consuming task. The com-
mon approach, and the one we adopt, is to obtain
parameter estimates independently from categorized
training data. See [17] for an alternative approach, where
parameters are estimated by a conditional maximum
likelihood approach. We now describe our training in a
little more detail.

First consider the transition probabilities between the
underlying states. Any pair of states not connected in Fig.
1 has a transition probability of zero. As we have
constructed the state space so that every exon state is
followed by a unique state, we can now restrict our
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Fig. 3. Gene finding performance on a chloroguine resistance trans-
porter (GenBank accession AF0306%4). The scheme is as in Fig. 2.
The actual structure (green), Phat {red), GlimmerM (bluc) and Hex-
amer (yellow), The complete coding region is shown 5-3,

attention to transitions from non-coding states. In fact,
the previous discussion implies that we can consider
effectively such transitions as being from non-coding to
non-coding states. Since we assume that all non-coding
states emit one nucleotide at a time, the self-transition
probabilities parameterize the length of the non-coding
sections, Using our training data, we can obtain fre-
quency counts for each of these transitions, which can
be used to compute maximum likelihood estimates of
the transition probabilities. One slight complication is
that transitions from the Intergene state could go to
either the forward or reverse strand states. For conve-
nience, we assume that the next gene is equally likely to
be on either strand.

We assume that the initial state is not an exon state
and set the initial probability of the intergene state to
be the fraction of all non-coding sequence that is
intergenic in the training set. The initial probability of
each type of intron is set to its relative frequency and

569
e etuR]
-
= GlimmerM
—_—— S
_——

5. GlimmerM's alternative predictions for the chloroguine resis-
tance transporter from Fig. 3. Note that some of the predictions
include the fourth and ninth exons, which are among the exons

missing from the original prediction.

we assume that each intron type is equally likely on
both strands. We use different initial probabilities for
the three intron phases to allow for the observed fact
that phase 2 introns in P. falciparion are relatively rare.

Non-coding states have geometric length distribu-
tions, a result of the model’s restriction that their state
durations are always 1. The mean lengths are fully
determined by the transition probabilities, which are
estimated from a training data set of intron/intergene
lengths. For coding state lengths we use a shifted
y-distribution, whose three parameters allow for a rea-
sonable fit to observed data. Given the characteristi-
cally different types of distributions for single, initial,
internal and terminal exons in P. falciparim, a different
distribution is estimated for each. The reliance on both
the previous and current states in the term length
distribution is a feature of the frame constraints. A
single exon must have a length that is a multiple of
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Fig. 4. Phat’s coding probability plot for the vesicular-like antigen of Fig. 2. The green bars near the top represent the actual structure (the first
3 bp coding exon is invisible) and the red bar represents the single exon predicted by Phat, Note that even though the terminal exon was not

predicied, its presence is suggested by the coding probability plot.
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three, while there are similar constraints on the lengths
of other exons.

As stated above, we model each exon by three se-
quential components: an exon boundary, followed by
an internal coding model, terminated by another exon
boundary. The internal coding model is a three-periodic
Markov model. Introns and intergenic regions are mod-
eled by a regular Markov model. In the case of P.
falciparum we have enough previously annotated data
to use a fifth order model for coding regions and a
second order model for introns and intergenic regions.
Maximum likelihood estimates for the Markovian
probabilities can be obtained from coding Hexamer
frequencies and trimer frequencies for introns and inter-
genic regions. One slight problem with frequency-based
estimation is that some observed frequencies may be
zero, which we get around by adding a prior frequency
count of one to all values. The probabilities for the
reverse strand are also calculated from the observed
frequency counts, with a few modifications. Appropri-
ate adjustment also has to be made for the codon
phase. If we define the first nucleotide of a codon to be
in codon phase 0 and the last to be in codon phase 2,
then for a fifth order model phase 0 forwards is equiva-
lent to phase 1 backwards and vice versa, while codon
phase 2 forwards is equivalent to phase 2 backwards.

We use very simple models for translation start and
translation stop sites. On the forward strand the trans-
lation start site produces ATG with probability one and
the translation stop site produces one of the three stop
codons TAA, TAG or TGA according to probabilities
estimated from stop codon frequencies in the training
set. The reverse strand uses the same probabilities for
the reverse complements.

Table 1

Splice sites are modeled with variable length Markov
chains (VLMCs) [19], a generalization of Markov
chains. For donor sites we use three bases upstream
and ten bases downstream of the actual site, for accep-
tor sites we use 20 bases upstream and three bases
downstream. The model is that the base at each posi-
tion of the site follows a distribution that is conditional
on some of the previous bases. In a Markov model the
number of previous bases upon which the next is de-
pendent is a fixed value, but for a VLMC the number
of previous bases influencing the next depends on the
sequence context. The advantage is the ability to model
longer-range interactions without having to deal with
an exponential increase in the number of parameters to
estimate.

2.4. Measures of prediction accuracy

We compare the accuracy of predictions at two lev-
els, i.e. nucleotide and exon. At the nucleotide level, we
measure the accuracy of a prediction by comparing the
predicted coding value (coding or non-coding) with the
true coding value along the test sequence. This is the
approach adopted by most of the authors (see [20] for
a comprehensive discussion of the issues involved and
references to earlier research). Sensitivity (Sn) and spe-
cificity (Sp) are widely used measures of prediction
quality, each being defined in terms of the quantities
TP, TN, FP and FN. Here TP denotes the number of
coding nucleotides that are predicted to be coding,
called true positives, while TN are the non-coding
nucleotides predicted to be non-coding, called true neg-
atives and similarly for false positives and false nega-
tives. We write Sn = TP/(TP + FN) for the proportion

A gene finding comparison between Phat and GlimmerM on the 25-gene test set

Test set Nucleotide-level Exon-level

Program Sn Spl Sp2 Correct Partial Wrong Missing
GlimmerM 89.3 93.1 97.6 57.8 422 0.0 22,6
Phat 99.0 98.9 99.6 772 2238 0.0 6.0

The set contains 84 exons and three of the genes are single-exon genes. For the exon-level results, each predicted exon is classified as ‘correct’ if
both boundaries are precisely correct, as ‘wrong’ if the prediction has no overlap with a true exon, and as ‘partial’ otherwise. The column labeled
‘missing’” shows the percentage of true exons for which there is no overlapping prediction. All reported values are percentages.

Table 2
A gene finding comparison between Phat and GlimmerM on the 19-gene training set

Train Set Nucleotide-level Exon-level

Program Sn Spl Sp2 Correct Partial Wrong Missing
GlimmerM 90.2 96.2 97.1 79.7 16.9 34 30.6
Phat 95.8 95.1 96.5 80.3 19.7 0.0 16.5

The set contains 85 exons and all but one of the genes are multi-exon. Notation is the same as in Table 1.
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Nucleotide-level results (Test set)
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Fig. 6. Box plots of bootstrapped sensitivities and specificities (as defined in Table 1) for GlimmerM (Glm) and Phat (Pht) on the test set (a) and
the training set (b). For each box plot, the solid box covers the inter-quartile range of the data, with the line within the box representing the
median. The ‘whiskers’ extend to the nearest values not beyond 1.5 times the inter-quartile range from the quartiles. Remaining points are

represented by isolated dashes.

of positives that are correctly annotated, Spl =TN/
(TN + FP) for the proportion of negatives correctly
annotated, and Sp2 = TP/(TP + FP) for the proportion
of coding predictions which are correct (also called the
positive predictive value).

In many contexts Spl is the more natural measure of
specificity, but in discussion of the accuracy of genefin-
ders, it has generally been replaced by Sp2. This is
because the typically high proportion of non-coding
sequence predicted readily as such can dominate Spl,
and thus make the measure less sensitive. We present
both quantities below.

Exon level results are also reported. Predicted exons
are classified as either correct (both boundaries correct),
partial (overlapping a true exon), or wrong. A mis-
sing exon is one which the genefinder did not detect at
all.

3. Results

We have conducted a study to compare the perfor-
mance of Phat [21,13] with other gene finding programs
on P. falciparum sequence. Currently the other main
programs are Hexamer [10], Genefinder [11] and Glim-
merM [7,8]. Hexamer operates quite differently to the
others using only Hexamer frequencies to predict indi-
vidual coding regions. It does not attempt to detect
exon boundaries, nor does it assemble its predicted
coding regions together into whole genes.

The remaining three programs all attempt to predict
whole gene structures where possible, and can be ap-
plied to large sequences containing multiple genes.
GlimmerM has models for coding regions and splice
sites. Genefinder models coding regions, splice sites,
introns, intergenic regions and has a model for the



572

14 Biological Sequence Analysis

S.E. Cawley et al. / Molecular & Biochemical Parasitology 118 (2001) 167174

transcription start site. Phat models all the aforemen-
tioned features, save for the transcription start site, also
using explicit state length distributions to model feature
lengths.

For the purpose of comparing gene finding programs
it is important to train the programs on a common data
set. Phat and Hexamer are distributed along with code
for retraining on new data sets. The GlimmerM version
used here (obtained from the authors in August 2000)
comes pre-trained on a set of around 300 genes and
there are no means available to re-train GlimmerM on
new data sets. Genefinder also comes with code for
retraining on new data, however, we experienced tech-
nical difficulties getting the retraining code to work.
The end result is that the only way to do a fair
comparison is to drop Genefinder out of the analysis
and train the others on GlimmerM’s training set.

P. falciparum researchers from the Sanger Centre and
from the Walter and Eliza Hall Institute (WEHI) were
asked to provide a list of genes, which have been
confirmed biologically by reverse transcription-poly-
merase chain reaction (RT-PCR) experiments, leading
to an evaluation data set of 44 genes. Of these 44 genes
it turned out that 19 were already in the GlimmerM
training set. In what follows we refer to these 19 genes
as the training set, and to the remaining 25 in the
evaluation set as the test set.

Comparing the gene finders on the evaluation set, it
is clear that Phat and GlimmerM often provide accu-
rate predictions. Hexamer is a very simple model and
while it does a reasonable job of generally indicating
regions of coding potential it has no model for splice
sites nor for how to join the regions together as genes,
so performs much worse than Phat and GlimmerM.

Looking at Figs. 2 and 3 there are cases when Phat
outperforms GlimmerM, and vice versa. Each program
also provides some useful features for detecting possibly
missed exons. Fig. 4 is a plot of the coding probability
computed by Phat (as earlier) for the gene in 2. Phat
missed two exons in the optimal prediction, but the
coding probability plot is suggestive of the larger of the
two exons missed. For each gene predicted by Glim-
merM, a list of alternative gene predictions is also
provided—these are genes achieving high scores in
GlimmerM’s model. Fig. 5 shows GlimmerM’s alterna-
tive predictions for the same gene in Fig. 3, the alterna-
tive predictions suggest an extra two exons missing
from the original prediction.

Tables 1 and 2 present the nucleotide-level and exon-
level results for the test and training sets. An under-
standing of the variability of these estimates can be
helpful, and we address this using a bootstrap study.
For one bootstrap iteration, we draw with replacement
a new test data set from the original, then evaluate the
Genefinder on this bootstrapped data set and compute
the performance measures. This is repeated many times

and the results are collected. Fig. 6 presents results for
the test and training data sets. Across both sets Glim-
merM’s performance is clearly more variable. It is
important to note that the extent to which the results
on this evaluation set can be extrapolated to the set of
all P. falciparum genes will depend on the extent to
which the evaluation set is a representative sample.

The time and memory requirements of the programs
are important, particularly if they are to be used in a
high throughput environment. We compared the time
and memory requirements of the two programs on a
700 MHz Pentium III processor running under Linux.
For a sequence of 100 kbp Phat requires 39 Mb of
memory and takes 20 s of CPU time. For the same
sequence GlimmerM requires 12 Mb of memory and
takes 34 s. Phat runs faster than GlimmerM, its chief
gain probably coming from the use of look-up tables
for fast computation of exon probabilities, but at the
expense of increased memory requirements. Both pro-
grams scale roughly linearly in the length of the se-
quence being analyzed and have been used to analyze
sequences of up to 1 Mbp.

4. Discussion

Both genefinders displayed relatively high sensitivity
and specificity on both the training and test sets of
genes. It is a little surprising that both gene finders
performed better on the examples on which they had
not been trained, perhaps the genes in the training set
are in some sense more difficult to predict accurately. A
reviewer with extensive experience in the field has found
that GlimmerM tends consistently to under-annotate
while Phat tends consistently to over-annotate. He also
found Phat sometimes returned abnormally short in-
trons and abnormally long exons. These aspects of Phat
are perhaps general features of the GHMM approach,
and all we can say is that they have their advantages as
well, the example of Fig. 3 being a clear example.

As mentioned earlier, the use of our specificity mea-
sure Spl has all but ceased in the assessment of
genefinding algorithms, due to its being dominated by
large values of TN. Nonetheless, we have included it
along with Sp2, because in our case the two measures
are comparable, indeed Sp2 is slightly larger than Spl.
The reason for this is that P. falciparum has a relatively
high coding content, (chromosomes 2 and 3 are about
50% coding), so the values of TP and TN are much
more similar than in other organisms (c.g. human,
Drosophila) for which these measures have been calcu-
lated previously.

In conclusion, we have demonstrated that Phat per-
forms well upon P. falciparum sequence, and compares
favorably with GlimmerM. There is thus a good case
for making use of both GlimmerM and Phat for new P.
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falciparum data as there are examples where one pre-
dicts correctly what the other misses. Each program
also has useful functionality to try to detect exons that
may have been missed in the single best prediction
(Figs. 4 and 5). These gene finders should prove useful
as the P. falciparum genome approaches completion.
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Abstract

This talk will review a little over a decade’s research on applying certain
stochastic models to biological sequence analysis. The models themselves have
a longer history, going back over 30 years, although many novel variants have
arisen since that time. The function of the models in biological sequence
analysis is to summarize the information concerning what is known as a motif
or a domain in bioinformatics, and to provide a tool for discovering instances
of that motif or domain in a separate sequence segment. We will introduce the
motif models in stages, beginning from very simple, non-stochastic versions,
progressively becoming more complex, until we reach modern profile HMMs
for motifs. A second example will come from gene finding using sequence data
from one or two species, where generalized HMMs or generalized pair HMMs
have proved to be very effective.

2000 Mathematics Subject Classification: 60J20, 92C40.
Keywords and Phrases: Motif, Regular expression, Profile, Hidden Markov
model.

1. Introduction

DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and proteins are macro-
molecules which are unbranched polymers built up from smaller units. In the case
of DNA these units are the 4 nucleotide residues A (adenine), C (cytosine), G (gua-
nine) and T (thymine) while for RNA the units are the 4 nucleotide residues A, C,
G and U (uracil). For proteins the units are the 20 amino acid residues A (alanine),
C (cysteine) D (aspartic acid), E (glutamic acid), F (phenylalanine), G (glycine), H
(histidine), I (isoleucine), K (lysine), L (leucine), M (methionine), N (asparagine),
P (proline), Q (glutamine), R (arginine), S (serine), T (threonine), V (valine), W
(tryptophan) and Y (tyrosine). To a considerable extent, the chemical properties
of DNA, RNA and protein molecules are encoded in the linear sequence of these
basic units: their primary structure.

*Department of Statistics, University of California, Berkeley, CA 94720, USA; Division of
Genetics and Bioinformatics, Walter and Eliza Hall Institute of Medical Research, VIC 3050,
Australia. E-mail: terry@stat.berkeley.edu
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The use of statistics to study linear sequences of biomolecular units can be
descriptive or it can be predictive. A very wide range of statistical techniques has
been used in this context, and while statistical models can be extremely useful.
the underlying stochastic mechanisms should never be taken literally. A model or
method can break down at any time without notice. Further, biological confirmation
of predictions is almost always necessary.

The statistics of biological sequences can be global or it can be local. For
example, we might consider the global base composition of genomes: FE. coli has
25% A, 25% C, 25% G, 25% T, while P. falciparum has 82%A+T. At the very
local, the triple ATG is the near universal motif indicating the start of translation
in DNA coding sequence. A major role of statistics in this context is to characterize
individual sequences or classes of biological sequences using probability models,
and to make use of these models to identify them against a background of other
sequences. Needless to say, the models and the tools vary greatly in complexity.

Extensive use is made in biological sequence analysis of the notions of motif or
domain in proteins, and site in DNA. We shall use these terms interchangeably to
describe the recurring elements of interest to us. It is important to note that while
we focus on the sequence characteristics of motifs, domains or sites, in practice they
also embody (biochemical) structural significance.

2. Deterministic models

The C2H2 (cysteine-cysteine histidine-histidine) zine-finger DNA binding do-
main is composed of 25-30 amino acid residues including two conserved cysteines
and two conserved histidines spaced in a particular way, with some restrictions on
the residues in between and nearby. Of course the arrangement reflects the three-
dimensional molecular structure into which the amino-acid sequence folds, for it is
the structure which has the real biochemical significance, see Figure 1, which was
obtained from http://www.rcsb.org/pdb/. An example of this motif is the 27-

Figure 1: A C2H2 zinc finger DNA binding domain
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letter sequence known as 1ZNF, this being a Protein Data Bank identifier for the
structure XFIN-31 of X. laevis. Its amino acid sequence is

1ZNF: XYKCGLCERSFVEKSALSRHQRVHKNX

Note the presence of the two C's separated by 2 other residues, and the two Hs
separated by 3 other residues. Here and elsewhere, X denotes an arbitrary amino
acid residue. A popular and useful summary description of C2H2 zinc fingers which
clearly includes our example, is the regular expression

C—X(2,4)—C—X3)— [LIVMFYWC] - X(8)— H— X(3,5) — H

where X (m) denotes a sequence of n unspecified amino acids, while X (m, n) denotes
from m to n such, and the brackets enclose mutually exclusive alternatives. There is
a richer set of notation for regular expressions of this kind, but for our purposes it is
enough to note that this representation is essentially deterministic, with uncertainty
included only through mutually exclusive possibilities (e.g. length or residue) which
are not otherwise distinguished.

Simple and efficient algorithms exist for searching query sequences of residues
to find every instance of the regular expression above. In so doing with sequence
in which all instances of the motif are known, we may identify some sub-sequences
of the query sequence which are not C2H2 zinc finger DNA binding domains, i.e.
which are false positives, and we may miss some sub-sequences which are C2H2
zine fingers, i.e. which are false negatives. Thus we have essentially deterministic
descriptions and search algorithms for the C2H2 motifs using regular expressions.
Their performance can be described by the frequency of false positives and false
negatives, equivalently, their complements, the specificity and sensitivity of the
regular expression. We do not have space for an extensive bibliography, so for more
on regular expressions and on most of the other concepts we introduce below, see

(2].

3. Regular expressions can be limiting

Most protein binding sites are characterized by some degree of sequence speci-
ficity, but seeking a consensus DNA sequence is often an inadequate way to rec-
ognize their motifs. Simply listing the alternatives seen at a position may not be
very informative, but keeping track of the frequencies with which the different al-
ternatives appear can be very valuable. Thus position-specific nucleotide or amino
acid distributions came to represent the variability in DNA or protein motif com-
position. This is just the set of marginal distribution of letters at each position.
Rather than present an extensive tabulation of frequencies for our C2H2 zinc fin-
ger example, we present a pictorial representation: a sequence logo coming from
http://blocks.fhcrc.org.

Sequence logos are scaled representation of position-specific nucleotide or amino
acid distributions. The overall height at a given position is proportional to infor-
mation content, which is a constant minus the entropy of the distribution at that
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Figure 2: Sequence logo for C2H2 zinc finger

position. The proportions of each nucleotide or amino acid at a position are in re-
lation to their observed frequency at that position, with the most frequent on top.
the next most frequent below, ete.

4. Profiles

It is convenient for our present purposes to define a profile as a set of position-
specific distributions deseribing a motif. (Traditionally the term has been used for
the derived scores.) How would we use a set of such distributions to search a query
sequence for instances of the motif? The answer from bioinformatics is that we
score the query sequence, and for suitably large scores, declare that a candidate
subsequence is an instance of our motif.

There are a number of approaches for deriving profile scores, but the easiest to
explain here is this: scores are log-likelihood ratio test statistics, for discriminating
between a probability model M for the motif and a model B for the background.
The model M will be the direct product of the position-specific distributions, (i.e.
the independent but not identical distribution model), while the background model
B will be the direct product of a set of relevant background frequencies (i.e. the
independent and identical distribution model). Thus, if f.; is the frequency of
residue a at position [ of the motif, and f, background frequency of the same
residue, then the profile score assigned to residue a at position [ in a possible
instance of the motif will be s,; = log fa1/ fa. These scores are then summed across
the positions in the motif, and compared to a suitably defined threshold. Note
that proper setting of the threshold requires a set of data in which all instances
of the motif are known. The false positive and false negative rate could then be
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determined for various thresholds, and a suitable choice made.

We briefly discuss variants of the log-likelihood ratio scores. In many contexts,
it will matter little whether a position is occupied by a leucine (L) rather than an
isoleucine (I), as each can evolve in time to or from the other rather more readily
than from other residues. Thus it might make sense to modify the scores to take
this and similar evolutionary patterns into account. Indeed the first use of profiles
involved scores of this kind, using the position specific amino acid distribution
of an alignment of instances of the motif and entries from what are known as
PAM matrices, which embody patterns of molecular evolution. In addition, the
background distribution of residues may be modelled more detailed manner, e.g.
using the so-called Dirichlet mixture models.

It is also possible to include position-specific scores for insertion and deletion
of residues, relative to a consensus pattern. When these are used, the scoring
becomes a little more subtle, as the problem is then quite analogous to pairwise
sequence alignment, but with position dependent scoring parameters for matches,
mismatches, insertions and deletions.

We summarise this section by noting that probability has entered into our
description through the use of frequencies, and scores based on them, but so far we
do not have global statistical models, at least not ones embodying insertions and
deletions, on which we base our estimation and testing. These are all part of the
use of profile HMMs, but first we introduce HMMs.

5. Hidden Markov models

Hidden Markov models (HMMs) are processes (S¢, Ot),t = 1,...,T, where S;
is the hidden state and O; the observation at time ¢. Their probabilistic evolution
is constrained by the equations

PT(StISt—l, O¢—1,8t-2,0¢_2, .. ) = pT(StISt—1)7
PT(Ot\St—l,Ot—l, St—2,0¢-2, .. ) PT(Ot|St, St—1)~

The definitions and basic facts concerning HMMs were laid out in a series of beauti-
ful papers by L. E. Baum and colleagues around 1970, see [2] for references. Much
of their formulation has been used almost unchanged to this day. Many variants
are now used. For example, the distribution of O may not depend on previous S,
or it may also depend on previous O values,

p?"(Ot|St,St_1,Ot_1,...) = pT‘(Ot|St), or
pT(Ot|Styst—1:Ot—11-~) = PT(Ot|St,St—1,Ot—1)-

Most importantly for us below, the times of S and O may be decoupled, permit-
ting the observation corresponding to state time ¢ to be a string whose length and
composition depends on S; (and possibly S;—; and part or all of the previous ob-
servations). This is called a hidden semi-Markov or generalized hidden Markov
model.
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Early applications of HMMs were to finance, but these were never published,
to speech recognition, and to modelling ion channels. In the mid-late 1980s HMMs
entered genetics and molecular biology, where they are now firmly entrenched. One
of the major reasons for the success of HMMSs as stochastic models is the fact that
although they are substantial generalizations of Markov chains, there are elegant
dynamic programming algorithms which permit full likelihood calculations in many
cases of interest. Specifically, there are algorithms which permit the efficient calcu-
lation of a) pr(sequence| M), where sequence is a sequence of observations and M
is an HMM; b) the maximum over stafes of pr(states|sequence, M), where states is
the unobserved state sequence underlying the observation sequence; and ¢) the max-
imum likelihood estimates of parameters in M based on the observation sequence.
Step ¢) is carried out by an iterative procedure which in the case of independent
states was later termed the EM algorithm.

6. Profile HMMs

In a landmark paper A. Krogh, D. Haussler and co-workers introduced profile
HMDMs into bioinformatics. An illustrative form of their profile HMM architecture
is given in Figure 3. There we depict the underlying state space of the hidden

Figure 3: State space of a simple profile HMM

Markov chain of a profile HMM of length 4, with M denoting match states, I insert
states and D delete states, while B and E are begin and end states, respectively.
Encircled states (D, B and F) do not emit observations, while each of the match
and insert states will have position-specific observation or emission distributions.
Finally, each arrow will have associated transition probabilities, with the expecta-
tion being that the horizontal transition probabilities are typically near unity. This
the chain proceeds from left to right, and if it remains within match states, its
output will be an amino acid sequence of length 4. Deviation to the insert or delete
states will modify the output accordingly. The similarity with a direct product of
a sequence of position-specific distributions should be unmistakeable. The profile
HMMs in use now have considerably more features, while sharing the basic M, [
and D architecture.
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Why was the introduction of the HMM formalism such an advance? The
answer is simple: it permitted the construction and application of profiles to be
conducted entirely within a formal statistical framework, and that really helped.
Instances of the motif embodied in an HMM could be identified by calculating
pr(sequence| M) /pr(sequence|B) as was done with profiles, using the algorithm for
problem a) in X above. Instances of the motif could be aligned to the HMM by
calculating the most probable state sequence giving rise to the motif sequence, in
essence finding the most probable sequence of matches, insertions, deletions which
align the given sequence to the others which gave rise to the HMM, cf. problem b)
above. And finally, the parameters in the HMMs could be estimated from data com-
prising known instances of the motif by using maximum likelihood, an important
step for many reasons, one being that it put insert and delete scores on precisely the
same footing as match and mismatch scores. Although the estimation of HMM pa-
rameters is easiest if the example sequences are properly aligned, the EM algorithm
(problem c) above) does not require aligned sequences.

In the years since the introduction of profile HMMs, they have been become
the standard approach to representing motifs and protein domains. The database
Pfam (http://pfam.wustl.edu) now has 3,849 hidden Markov models (May 2002)
representing recognized protein or DNA domains or motifs. Profile HMMs have es-
sentially replaced the use of regular expressions and the original profiles for searching
other databases to find novel instances of a motif, for finding a motif or domain
match to an input sequence, and for aligning a motif or domain to a an existing
family. There is considerable evidence that the HMM-based searches are more pow-
erful than the older profile based ones, though they are slower computationally, and
at times that is an important consideration.

7. Finding genes in DNA sequence

Identifying genes in DNA sequence is one of the most challenging, interesting
and important problems in bioinformatics today. With so many genomes being
sequenced so rapidly, and the experimental verification of genes lagging far behind,
it is necessary to rely on computationally derived genes in order to make immediate
use of the sequence.

What is a gene? Most readers will have heard of the famous central dogma
of molecular biology, in which the hereditary material of an organism resides in its
genome, usually DNA, and where genes are expressed in a two-stage process: first
DNA is transcribed into a messenger RNA (mRNA) sequence, and later a processed
form of this sequence is translated into an amino acid sequence, i.e. a protein. In
general the transcribed sequence is longer than the translated portion: parts called
introns (intervening sequence) are removed, leaving exons (expressed sequence), of
which only some are expressed, while the rest remain untranslated. The translated
sequence comes in triples called codons, beginning and ending with a unique start
(ATG) and one of three stop (TAA, TAG, TGA) codons. There are also character-
istic intron-exon boundaries called splice donor and acceptor sites, and a variety of
other motifs: promoters, transcription start sites, polyA sites, branching sites, and
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SO on.

All of the foregoing have statistical characterizations, and in principle they
can all help identify genes in long otherwise unannotated DNA sequence segments.
To get an idea of the magnitude of the task with the human genome, consider the
following facts about human gene sequences [5]: the coding regions comprise about
1.5% of the entire genome; the average gene length is about 27,000 bp (base pair);
the average total coding region is 1,340 bp; and the average intron length is about
3,300 bp. Further, only about 8% of genes have a single exon. We see that the
information in human genes is very dispersed along the genome, and that in general
the parts of primary interest, the coding exons, are a relatively small fraction of the
gene, on average about %

8. Generalized HMMs for finding genes

The HMMs which are effective in finding genes are the generalized HMMs
(GHMMs) described in section 5. above. Space does not permit our giving an ad-
equate description here, so we simply outline the architecture of Genscan [1] one
of the most widely used human genefinders. States represent the gene features
we mentioned above: exon, intron, and of course intergenic region, and a variety of
other features (promotor, untranslated region, polyA site, and so on. Output obser-
vations embody state-dependent nucleotide composition, dependence, and specific
signal features (such as stop codons). In a GHMM the state duration needs to be
modelled, as well as two other important features of genes in DNA: the reading
frame, which corresponds to the triples along the mRNA sequence which are se-
quentially translated, and the strand, as DNA is double stranded, and genes can be
on either strand, i.e. they can point in either direction. These features can be seen
in Figure 4, which was kindly supplied by Lior Pachter.

The output of a GHMM genefinder after processing a genomic segment is
broadly similar to that from a profile HMM after processing an amino acid sequence:
the most probable state sequence given an observation sequence is a best gene
annotation of that sequence, and a variety of probabilities can be calculated to
indicate the support in the observation sequence for various specific gene features.

9. Comparative sequence analysis using HMMs

The large number of sequenced genomes now available, and the observation
that functionally important regions are evolutionarily conserved, has led to efforts to
incorporate conservation into the models and methods of biological sequence anal-
ysis. Pair HMMs were introduced in [2] as a way of including alignment problems
under the HMM framework, and recently [4] they were combined with GHMMs
(forming GPHMMS) to carry out alignment and genefinding with homologous seg-
ments of the mouse and human genomes. Use of the program SLAM on the whole
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Figure 4: Forward half of the Genscan GHMM state space

mouse genome (http://bio .math.berkeley. edu/slam/mouse/) demonstrated the
value of GPHMMSs in this context.

10. Challenges in biological sequence analysis

The first challenge is to understand the biology well enough to begin biological
sequence analysis. This part will frequently involve collaborations with biologists.
With HMMs, GHMMs and GPHMMSs, designing the underlying architecture, and
carrying out the modelling for the components parts, e.g. for splice sites in genefind-
ing GHMM is perhaps the next major challenge. Undoubtedly the hardest and most
important task of all is the implementation: coding up the algorithms and making
it all work with error-prone and incomplete sequence data. Finally, it is usually a
real challenge to find good data sets for calibrating and evaluating the algorithms,
and for carrying out studies of competing algorithms.

For a recent example of this process, which is a model of its kind, see [3]. There
an HMM is presented for the so-called o' recognition sites, which involve two DNA
motifs separated by a variable number of base pairs. In addition to the examples
mentioned so far, there are many more HMMs in the bioinformatics literature, see
p. 79 of [2] for ones published before 1998.

11. Closing remarks
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In this short survey of biological sequence analysis, I have simply touched on
some of the major ideas. A much more comprehensive treatment of material covered
here can be found in the book [2], whose title not coincidentally is the same as
that of this paper. Many important ideas from biological sequence analysis have
not been mentioned here, including molecular evolution and phylogenetic inference,
and the use of stochastic context-free grammars, a form of generalization of HMMs
suited to the analysis of RNA sequence data.

At this Congress I have talked (and am now writing) on the research of others,
in an area in which my own contributions have been negligible. I chose to do so
upon being honoured by the invitation to speak at this Congress because I believe
this topic — HMMSs — to be one of the great success stories of applying mathematics
to bioinformatics. In my view it is the one most worthy of a wider mathematical
audience. I hope that the fact that there are many others better suited than me to
speak on this topic will not prevent readers from appreciating it and following it up
through the bibliography.

I owe what understanding I have of this field to collaborations and discussions
with a number of people, and I would like to acknowledge them here. Firstly, Tony
Wirth, Simon Cawley and Mauro Delorenzi, with whom I have worked on HHMMs.
Next, it has been an honour and pleasure to observe from close by the development
of SLAM, by Simon Cawley, Lior Pachter and Marina Alexandersson. Finally I'd
like to thank Xiaoyue Zhou and Ken Simpson for their kind help to me when I was
preparing my talk and this paper.
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