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1. INTRODUCTION 

The structure of matter on a molecular length scale can be revealed by 
diffraction studies using radiation with wavelength in the AngstrI/Jm region. If 
the radiation couples weakly to the scattering objects, as is the case for 
neutrons and X-rays (but not for electrons), the interpretation of the diffraction 
pattern in terms of the underlying structure becomes particularly simple and 
reliable due to the validity of the Born approximation, which in this context is 
also called kinematical diffraction. On the other hand, if the coupling is weak, 
the beam has to be sufficiently intense and/or the sample must be of sufficient 
size to obtain an accurate diffraction pattern within a reasonable time. In a 
surface structure the number of diffracting atoms, confined within a 
nanometer thick surface layer, is comparatively small. 

For this reason neutron diffraction has not yet been developed to be a 
significant tool in surface science although neutrons are sensitive to 
magnetism and to hydrogen locations by the use of a controlled isotopic ratio of 
protons to deuterons. 

Very intense X-ray beams are now available in synchrotron radiation 
laboratories, and surface X-ray diffraction methods have been developed con
comitantly. In this paper we shall confine ourselves to describing methods for 
studying surfaces of liquids. These can be simple liquids such as water or 
methanol for which the surface diffuseness due to thermal fluctuations has 
been determinedt, they can be liquid crystals with smectic layering near the 
free surface2, or they can be heterogeneous systems such as a monolayer of 
amphi philic molecules on a water surface3. 

It is useful to distinguish between two geometries of the diffraction 
experiment as shown in Fig. 1.1. Specular reflection, shown in the top part 
has a wavevector transfer Q perpendicular to the liquid surface and thus 
measures the average density variation across the surface. In the diffraction 
geometry, shown in the bottom part, surface sensitivity is obtained by means of 
grazing incidence of the incoming beam. In-plane structure of the surface is 
probed by scanning the angle 28 or the corresponding horizontal wavevector 
transfer Qhor. For fixed 28 or Qhor the intensity variation with Qz as observed, 
e.g., with a vertical position sensitive detector reflects the structure 
perpendicular to the surface just as does specular reflection. Nevertheless the 
two methods do not necessarily provide identical information. If, for example, 
we consider a monolayer film on water with coexisting two-dimensional 
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Fig. 1.1 . Top: Specular reflection geometry probes the density profile across 
the interface. 
Bottom: By grazing incidence the X-ray penetration depth 11. can be 
limited to a few nanometers . The evanescent wave is diffracted by 
the in-plane structure of the Langmuir film . 

crystalline and liquid phases, the Qz variation of intensity at 28 corresponding 
to Bragg reflection from the crystalline phase reflects the thickness of the 
crystallites only, whereas the specular reflection pattern measures some sort of 
average thickness of the liquid and crystalline film. 

The paper is organized as follows. First we recall and discuss Snell's and 
Fresnel's laws for X-ray optics. We then derive the general relation of the 
density profile across the surface to specular reflectivity (Fig. l.Ia) and to the 
Qz-variation in grazing incidence diffraction (Fig. 1.Ib). Specular reflectivity 
is illustrated by two examples. The first is reflection from a bare water surface 
and the determination of the diffuseness of the air-water interface due to 
thermally excited capillary waves. In the second example we consider a 
monomolecular film of an amphiphilic molecule, arachidic acid, floating on 
water, as the area per molecule is varied by a moveable barrier in a Langmuir 
trough4. 
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The reflectivity data, analyzed in terms of a smeared box model of the 
molecular density, suggests that the hydrocarbon tails are close-packed but tilt 
uniformly as more area becomes available per molecule. 

The grazing incidence diffraction (GID) technique is used to examine the 
molecular structure of the arachidic acid film in more detail. By mapping the 
intensity variation with both 28 and of (Fig. 1.1b) we find: 

(i) In the most compressed phase the molecules are upright and form a 
hexagonal lattice. 

(ii) As the pressure is released the molecules tilt towards their nearest 
neighbours and the hexagonal lattice becomes uniaxially distorted in the 
direction of tilt. 

(iii) The tilt angle and the density profile deduced from the GID data are 
consistent with the interpretation of the specular reflection data. 

2. X-RAY OPTICS 

For X-rays or neutrons of wave vector k the refractive index, n, of a medium 
can be simply related to the scattering properties of the medium, see, e.g., 
appendix of Ref. 3. For X-rays the relevant parameters are the Thompson 
scattering length of a single electron, ro, and the electron density, Pel: 

n = I-Ii, o=2np r k - 2 
el tJ 

Here, for simplicity we have neglected absorption effects and effects occur
ring when the photon energy is close to a resonance between the electron shells 
of the atom. The geometry of refraction at a sharp interface is as depicted in 
Fig. 2.1 with the angles a and a' being related by Snell's law: cos(o)/cos(o') = n. 
Since n is only very slightly less than unity (and can be written as n = l-oc2/2) 

I R 

z 

Fig. 2.1. The geometry of glancing incidence retzection and transmission 
at a discontinuous interface. 

115 



all glancing angles are small and expansion of Snell's law yields 

The reflectivity RF is the square ofthe ratio of the reflected and incident wave 
amplitudes. For small angles the Fresnel law for a sharp interface becomes 
particularly simple; The corresponding Fresnel reflectivity RF is 

Rt, =1(0-0')/(0+0')12 

ail>a 
c 

(0/20)4. 
c (2.1) 

Similarly one finds the transmitted or refracted wave intensity TF, 
normalised to the incident intensity, 

T f' = 120/(0 +0')12 . 
(2.2) 

Snell's and Fresnel's laws are derived by satisfying the boundary conditions for 
the X-ray wave fields at the interface. 

Next, to include absorption effects in the refractive index, n, consider a 
plane wave, exp( -ikz), at normal incidence on a semi-infinite medium with 
linear absorption coefficient p. On entering the medium the wavevector is 
changed to nk. We would like to write the plane wave in the medium as 
exp( -inkz}, but we require an exponentially decaying amplitude exp(-pzl2). 
Formally, this is obtained by letting n be a complex number with an imaginary 
part -i(3, with the relation to p given by equating -13kz with -pzl2 or 
13 = p/(2k). Including absorption effects thus leads to a complex index of 
refraction 

with n = 1 -1i-if3 (2.3) 

(2.4) 

and 

(2.5) 

In Eqs. (2.4) and (2.5), f' and f" are the real and imaginary parts of the 
anomalous dispersion correction to the atomic scattering factorS, which can be 
important when the X-ray energy is close to an absorption edge. Z is the 
number of electrons. Below, for simplicity, such effects will be assumed to be 
included in the electron densities, when necessary. 

Including absorption effects, Snell's law for small angles becomes 

2 '2 2. 
o =0 +OC +12f3 

(2.6) 

whereas the expressions (2.1) and (2.2) remain valid using a' from Eq. 2.6. 
The z-dependence of the transmitted wave amplitude is exp( -ik'a'z) which 

is proportional to exp( -k'Im(a')z). The lie depth for the intensity, A, is thus 
given by A-I = 2k'Im(a'). However, for X-rays the deviation ofn from unity is 
very small and the difference in length between k and k' can be neglected. The 
results for Rf', Tf' and A depend on several parameters: The incident angle a, 
density and absorption in the medium, as well as the wavevector. In order to 
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get an overview of this multi-parameter problem it is convenient to use 
suitable units and to estimate orders of magnitudes. The natural unit for 
angles is the critical angle ac. However, in connection with diffraction and 
reflection phenomena from non-homogeneous media, the wavevector transfer 
Qz == 2ksin(a) "'" 2ka is a more useful variable than just the grazing angle a. The 
natural unit for Qz is Q~ = 2kac which, incidentally, varies only slightly with 
substance: Qc = 0.0217 A-I for a light material such as water and Qz = 0.0678 
A-I for a heavy material like mercury. In terms of the dimensionless quantities 
x and x' for wavevector transfer and b for absorption 

x=Q IQ =a/a, x'=2ku'/Q =Q'/Q =u'/a (complex), b=-{2Ilk/Q2), (2.7) 
zc c c zc c c 

with x' determined from the dimensionless form ofEq. 2.6 

x2 = x,2 + I + i (2b) (2.8) 

and recalling explicitly the formula for Qc (cf. Eq. 2.4): 

(2.9) 

the final formulas for RF, TF and A become 

(2.10) 

(2.11) 

A-1{x)=Q Im{x'). 
c 

(2.12) 

Fig. 2.2 (left part) shows from top to bottom graphs of RF, AQc, TF and the 
phase of the reflected wave for different absorption parameters b. For X2: 1.4, 
the dependence on absorption is very small and the four quantities are 
compared to their asymptotic forms in the right part of Fig. 2.2. It may be 
useful to discuss separately the two limiting cases a~ac and a~ac as well as 
the special case of a = ac. 

(i) x> > lor 0> >oc: 
In this case the solution for x' in Eq. 2.8 yields Re(x') "'" x and Im(x') "'" - b/x. 

From Eq. 2.10 we find RF(X) "'" 1I(2x)\ in phase with the incident wave. The 
incident wave is almost completely transmitted though the interface, and the 
penetration depth is alp. The reflected intensity falls off as 

RF-+{Q 12Q )4 
c z 

(2.13) 

(ij) x< < lor 0< <oc: 

In this case x' is almost purely imaginary with Im(x') = 1, implying a 
reflectivity R}<'(x) close to unity. The reflected wave is out of phase with the 
incident wave, so the transmitted wave becomes very weak. It propagates 
nealy parallel to the surface with a minimal penetration depth of Qc-1, 
independent of a for a < <ac. Due to its small penetration depth, the wave field 
below the interface is called an evanescent wave. 
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Fig. 2.2. Dependence on x=Qz/Qc=a/ac of reflectivity , penetration depth, 
evanescent wave intensity and phase difference between reflected and 
incident wave for various values of the absorption parameter b. 
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(iii) x = 1 or u = uc: 

From Eq. 2.8 we find x'=lbl 1l2 (1 + i). Since b~1, RF(X) "" 1.The reflected 
wave is in phase with the incident wave implying that the evanescent wave 
amplitude approaches twice the incident wave amplitude. The penetration 
depth from Eq. 2.12 becomes Ibl- lI2 times larger than that for x~ 1. 

In summary then, we have considered reflected and transmitted waves for a 
grazing X-ray beam incident on a homogeneous, planar substance with a sharp 
interface. The transmitted wave intensity has a finite lie penetration depth A, 
partly due to ordinary absorption in the medium, but mainly due to the 
phenomenon of total external reflection. When the grazing angle a is less than 
the critical angle ac the transmitted wave propagates exactly parallel to the 
surface when ordinary absorption is neglected, and almost parallel to the 
surface for the absorption occurring in practice. This wave is called the 
evanescent wave. For a > ac the reflected wave has a finite intensity 
approaching (ac/2a)4 for a;P ac. 

For quantitative results at given wave vector k and a given material one 
first calculates the critical wavevector Qc using Eq. 2.9 and the absorption 
parameter busing Eq. 2.7. With this information figure 2.2 can be used directly 
to estimate penetration depth, reflectivity or evanescent intensity. For more 
accurate work use formulas 2.8 and 2.10-12 recalling that the quantity x' is a 
complex number. 

3. SPECULAR REFLECTIVITY AND INTERFACIAL DENSITY PROFILE 

On an atomic length scale the interface between the liquid and the vapour 
above it is not sharp. In this section we shall see how the specular reflectivity 
R(Qz) at wavevector transfer Qz is changed accordingly from the Fresnel 
reflectivity RF(Qz). The electron density profile is denoted p(z) and the density 
gradient p'(z), see Fig. 3.1. 

In order to derive R(Qz) we consider the reflected wave as a superposition of 
waves reflected from infinitesimal planes at varying depth z, implying the 
phase factor exp[iQz ,z]. At first we neglect refraction and absorption effects. 
The reflectivity of a thin plate6 with thickness LlZ can be derived from the 
following simple dimensional argument. The reflected wave is the result of 
Thompson scattering of the incident photon wave by the individual electrons. 
The reflected amplitude LlAr must be proportional to the incident amplitude 
Ai, to the scattering length of a single electron and to the number of electrons 
per unit area perpendicular to the incident beam, p(z)LlZ/sina. Since LlAr/Ai is 
dimensionless and the dependence on quantities with dimensions of length 
such as scattering length, density and plate thickness is exhausted by their 
product, the only additional length in the problem, the X-ray wavelength A 
must enter linearly. Hence, 

t::.A 
r - = c· }.. roo p(z)t::.z/sina 

A. 
I 

= c(Q2/4Q )· p(z)/p . t::.z 
c z 00 

(3.1) 
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k=2rr/A 

p~ 

1 

T 
Fig. 3.1. The density variation across a surface is indicated by shading in the 

left part and more quantitatively by the function p(z) in the right part. 
The reflectivity versus wavevector transfer Qz is related to the 
Fourier transform of the gradient of the density, p' (z). 

using Eq. (2.9) for Qc. Here, c is a dimensionless constant to be determined, and 
poo is the electron density below the interface region. 

The resulting reflected wave amplitude Ar is obtained by integration ofEq. 
(3.1) with the appropriate phase factor exp[iQzz] included. We find 

with 

A 
~ = (c/i)(Q 12Q )2<jl(Q) 
A. c z Z 

I 

<jl(Q ) = iQ P -I f p(z)exp[iQ zl dz 
z z CD Z 

1 f dp(z) = p - --. exp[iQ· zldz 
00 dz Z 

(3.2) 

(3.3) 

(3.4) 

being the Fourier transform of the gradient of the density profile across the 
interface. In the limit of a sharp interface the density gradient approaches a 
delta-function, 4l(Qz) approaches unity and the reflectivity is 

(A IA)2F = Icf (Q 12Q )4. 1 
riC Z 

(3.5) 

In this derivation we have neglected refracting effects, which is equivalent 
to Qz~Qc. We saw in the previous section that in this limit RF = (Qc/2Qz)4 so 
we conclude that Icl2 = 1 and are lead to the conjecture 

(3.6) 
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replacing (Qc/2Qz)4 by the general form RF(Qz). 
We discuss the limits of validity of the master formula (3.6): In the 

superposition of reflected waves from thin plates we used the phase factor 
exp[iQzz] with Qz = 2ksina. A more accurate phase than Qzz would be 
Q'zz = 2ksina'·z with a' = (a2 _ac2 )( 

Furthermore, multiple scattering effects have been neglected, e.g., a 
reflected wave from a thin plate at Z2 might be reflected back into the substrate 
from another thin plate at z\ closer to the surface. Such multiple scattering 
effects are not important for Qz~Qc as the reflectivity for a plate gets very 
small in this limit, but for Qz approaching Qc the validity ofEq. (3.6) might be 
questioned. In order to elucidate this problem we show in Fig. 3.2 the 

. ~. ~ - - ~ine~at;cal ~he~ry (~qs. ~.3 , ;.6) ] 
~:~ \ J 

I<. .J 
P:: I ' 
~ ~· ·r ~ 

o. --Dynamical Theory (Parratt, 1954) ~ 
--Kinematical Theory, with refraction correction 

.. 5 6 7 B 9 10 11 12 13 14 

Qz/Qc (Qc = 0.0217 A-I) 

Fig. 3.2. Normalized reflectivity RIRF versus normalized wave vector transfer 
QzIQc, as calculated: 
---- (i) using the kinematical master formula, Eq. (3.4); 
-(ii) using Eq. (3.4) with refraction correction (replacing Qz by 

Qz';and 
--(iii) using the dynamical theory by Parratt1. 
Methods (ii) and (iii) give almost identical results, while (i) differs 
noticeably for Qz < 1 O·Qc, and significantly for Qz < 2 ·Qc. 

reflectivity of a particular density model corresponding to a typical amphi
philic monolayer on water as calculated using Eqs. (3.4) and (3.6), the so-called 
kinematic approximation. We now compare this to an exact calculation method 
devised by Parratt7 in 1954. The model used in both calculations consists of 
two stratified layers of different densities. The top layer corresponds to the tail 
density of the film, the next layer to the head density, cf. Fig. 1.1a. At each of 
the three interfaces (air-tail, tail-head, head-water) both incoming and 
outgoing rays can be reflected or transmitted and one imposes the usual 
boundary conditions for the electric field of the electromagnetic wave at each 
interface. This results in a set of coupled linear equations which can be solved7 

for the overall reflectivity. We conclude from Fig. 3.2 that the simple kinematic 
approximation, Eq. (3,4), is adequate for interpreting reflectivity data from 
amphiphilic monolayers on water for grazing angles exceeding twice the 
critical angle and that the remaining discrepancy can be repaired by inclusion 
of the refraction correction (Qz' instead ofQz in Eq. (3.4». 

Before closing this section let us go back and discuss in more detail the 
quantity 4>(Qz), the Fourier transform of the density gradient, in the case of a 
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monolayer on a substrate. It is convenient to separate the density into two 
parts 

(3.7) 

where Pl(Z) = poo·H(z) derives from the subphase or substrate, H(z) being the 
step function, and P2(Z) is the density due to the molecules in the monolayer. 
The effect of interfacial diffusiness will be discussed below in sections 5 and 6. 
Denoting the electron density in the molecule by Pm(x,y,z) and the average 
molecular area by A, P2(Z) becomes 

It follows from Eqs. (3.3), (3.4) and (3.8) that 

<l>(Q ) = 1 + p -1(iQ ) I P2(z)exp[iQ zldz 
z 00 z z 

= l+iQ (p A)-II p (x,y,z)exp[iQ zldxdydz. 
zoom z 

In terms of the molecular form factor 

!<'(Q) "" I Pm(r)exp[iQ· rld3r 

Eq. (3.9) becomes 

<l>(Q) = 1 + iQz(p",AJ-1I<'(O,Q,Q) • 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Using this form of cp(Qz) in the master formula Eq. (3.6) for the reflectivity it is 
particularly transparent that the specular reflection along Q = (O,O,Qz) is 
formed by the interference of waves scattered from the substrate, the first term 
in (3.11), and from the molecular film, the term with the molecular form factor 
F(O,O,Qz). 

In particular, we note in passing that the substrate scattering (measured 
perhaps with an uncovered surface) should not be subtracted from experi
mental data as a background. The correct experimental background is found by 
off-setting the detector laterally from the specularly reflected beam. 

4. GRAZING INCIDENCE DIFFRACTION AND BRAGG RODS 

In this section we discuss the similarities and differences between 
information obtained by specular reflection (XR) and by grazing incidence 
diffraction (GID). Experimental examples are discussed in section 7 below. 

For simplicity, we assume a 2D-periodic structure ("2D-crystallinity") in 
the monolayer film floating on the subphase: The molecules are arranged in 
identical unit cells which form a regular lattice. Then, in GID, Bragg 
diffraction occurs when the lateral scattering vector Qhor, c.f. Fig. 1.1b, 
coincides with a reciprocal lattice vector Ghk: The scattering is concentrated in 
so-called Bragg Rods (parallel to the Qz-axis), defined by two Laue 
conditions or, in vector notation, by the equation Qhor=Ghk. By constrast, XR 
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is characterised by the condition Qhor=O. The substrate gives no Bragg 
diffraction for Qhor#O so in GID there is no interference between the scattering 
from the substrate and that from the film. The substrate scattering just 
contributes to a flat background which can be subtracted from the total 
intensity to obtain the GID signal. The purpose of using grazing incidence is to 
minimize the background level by illuminating a depth of only a few 
nanometers, c.f. section 2. The GID signal, Ihk(Qz), is proportional to the square 
of the unit cell structure factor (identical to the molecular form factor, Eq. 
(3.10), for the case of one molecule per unit cell): 

GID: Ihk(Qz l '" A;21 F(Ghk , Qz ll2 , (4.1) 

where Ac is the unit cell area. Compare Eq. (4.1) for GID with the XR result: 

XR: 
I (Q l=RF(Ql 11+iQ (p Al-1F(O,O,QlI2. 
00 z Z z 00 z 

(4.2) 

Thus, XR and GID measure different parts of the monolayer structure factor, 
corresponding to different projections of the monolayer structure. XR 
corresponds to the projection of the monolayer density onto the z-axis and 
includes also scattering from the sub-phase. GID - with Qz:::::O, i.e. , grazing 
exit as well as grazing incidence - measures the structure of the 
"2D-crystalline" part of the monolayer, as projected onto the x-y plane. 
Finally, measurement of the GID signal Ihk(Qz) versus Qz (so-called Bragg 
Rod scans) gives three-dimensional information about the 2D-crystalline part 
of the monolayer. 

We end this section with a couple of examples which further illustrate the 
similarities and differences between the XR and GID methods. 

(i) Assume, for example that only the aliphatic tails order laterally whereas 
the polar heads are laterally "disordered". This means that the 
Debye-Waller factor (implicit in Eq. (3.10» will be large and anisotropic 
for the "head" part of the molecule, so as to effectively make the heads 
invisible for :::::horizontal wavevector transfers Q. Thus, effectively, for 
GID the formfactor to be used is that describing the tails, - the polar heads 
will just contribute to the background together with the substrate. In XR 
the lateral disorder of the polar heads is irrelevant; they do indeed 
contribute to the average density modulation across the surface. 

(ii) Another example where XR and GID give complementary rather than 
identical information is that of a heterogeneous film: Islands of 2D-solid 
phase coexisting with a non-diffracting 2D-liquid phase. The GID 
measures the form factor of the molecules in the solid islands whereas XR 
yields some sort of average density profile across the surface. The wording 
"some sort of average" is deliberately vague, because one must distinguish 
between averaging the formfactor before squaring in Eq. (4.2) (coherent 
averaging) or averaging the reflected intensities which is obviously 
required if the size of the islands is much larger than the X-ray coherence 
length given by lIkx and l/ky of Fig. 5.2 in the following section. 

5. THERMAL ROUGHNESS OF LIQUID-VAPOUR INTERFACE 

Consider in Fig. 5.1 a liquid surface confined within the area LXL. A 
capillary wave with amplitude Uq and wavelength A or wave vector q has been 
excited. The excitation energy has two origins: the surface has been enlarged, 
which requires the surface tension energy Ec, and liquid has been lifted from 
troughs to crests, which requires the gravitational energy Eg. In the bottom 
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Fig. 5.1 . Top: 

Bottom: 

A capillary wave , confined within the area LX L , of 
wavelength t.. or wavevector q and amplitude Ug. 
Side view of one wavelength. The arc-element has a 
length de = [J +( dy/dx)2 J1I2dx or approximately 
/1 +j(uqqcos(qx))2/dx. 

part of Fig. 5.1 we consider one period of the wave. Note in passing that there 
will be L/t.. such periods along the x-axis. The excess surface is L(uqq/2)2A(Llt..) 
and the associated energy Ec = Vy(Uqq/2)2 where y is the surface tension. The 
gravitational energy for one period is the integral of dEg over half a period as 
the liquid in the trough in the second half of the period is lifted into the crest in 
the first half of the period. The entire gravitational energy is 
Eg = L2pg(uq/2)2. Since pg has dimension of energy/area times an inverse 
length squared, it can be written as 

pg == Y k2 
g 

where kg is a wave vector and therefore 

Equipartition of gives the thermal average value <Eq > = kBT/2 or 

Summing over all q-modes gives < u2 > : 

f 
k 

2- 2 22 1llax 221 
<u > =! 2. < u > = k Il1'(Ll2n) L - I(y(q +k W 2nqdq 

q q 0 g 
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or 

k2 +k2 k T k 
2 2 (max g) B 1 max < U > = k BT(2n) - (nJy)iog = - -log -- . 

e k2 2Il Y e k 
g g 

(5.5) 

In the integral over q-space we have introduced an arbitrary cut-offwavevector 
k max which is of order n/(molecular radius). 

In this derivation we have assumed that the effective surface tension is 
independent of wavevector. In reality this is not the case. In deriving the 
excess surface area of mode q we used that the line element de along the curved 
interface y(x) is (1 + (dy/dx)2)1/2 and we expanded the square root to first order 
as (1 + (dy/dx)2/2). Within this approximation the total energy is then a sum of 
independent, harmonic q-modes. However, with the square root expanded to 
higher orders one realizes that the modes are not harmonic: the energy of a q
mode contains all even powers of q. As long as (dy/dx)2 = (Uqq)2 < < 1 the 
harmonic approximation is accurate for describing the excitation of one single 
q-mode out of the ground state, but when it comes to excite this mode out of a 
general, thermally excited state, the population of the other q-modes matters 
for calculating Eq. It is convenient to write Eq as proportional to y(q)q2 with an 
effective surface tension y(q) depending on q. By symmetry there cannot be any 
term linear in q, and the coefficient to q2 must be proportional to kBT, as it 
reflects the thermall'opulation of the other q-modes. To order q2 the effective 
surface tension y(q) is therefore ofthe form: 

y(q)=y+akBTq2, 
(5.6) 

a being a dimensionless cQnstant. Meunier8 finds a=3/(8n). Rewriting Eq. 
(5.6) as 

y (q) = yO + (q/k )2), 
m 

(5.7) 

2 
k.: = a kB T/y , a = 3/ (8Il ) , 

(5.8) 

we find, in analogy with Eq. (5.4) 

(5.9) 

i.e. the same form as Eq. (5.5) but with the arbitrary cut-off wavevector k max 
replaced by the mode-mode coupling parameter km known from Eq. (5.8). F:or 
water the numerical values are 1.63 A-I and 1.23 A-I, respectively. The 
relative difference between loge(kmax/kg) and loge(kmlkg) is thus only 1.6 per 
cent. We now generalize this result to the case where the base surface is 
covered by a monolayer8. This layer has a certain stiffness against undulations 
so a fluctuation as given in Fig. 5.1 will require an additional energy of the 
form t ·K-Uq2q4 . V. Expressing K in units of kBT by the dimensionless 
numberK 

(5.10) 
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we see immediately from (5.9) that k m -2 in the integral must be replaced by 

(5.11) 

The lower limit of zero in the two-dimensional integral (5.9) is a,n idealization 
which cannot be fulfilled in an actual experiment. Here one must distinguish 
between intensity which is specularly reflected and intensity scattered out of 
specular reflection by the surface roughness. This, then is a matter of the 
lateral wavevector resolution widths ky along the direction of the beam 
projected onto the surface and kx perpendicular to this direction. In practice 
both kx and ky are much larger than kg, so the second term in the integrand 
in Eq. 5.9 can be neglected. The observed roughness ° is then given by 

0 2 = kBT/(4n2y) r r [q2+k;,;2q~-'dqxdqy. (5.12) 

x y 

The integration area is indicated in Fig. 5.2 as the shaded area. In a synchro
tron X-ray reflectivity experiment the resolution may well be entirely 
determined by the detector apertures (width Wd, height hd) relative to the 
distance D between sample and detector since the incident beam collimation 
usually is very narrow. In that case the resolution function· is box-like with 
dimensions as indicated in Fig. 5.2. Utilizing that the resolution perpendicular 
to the beam is much broader than along the beam, cf. Fig. 5.2, the integral 5.12 
can again be carried out analytically'. The result is a roughness parameter ° 
which depends logarithmically on the wavevector transfer Qz because the 
resolution rectangle varies linearly with Qz: 

k =Q (h IDJ. 
y z d' 

(5.13) 

Note that neither the gravity term kg nor the width of the detector aperture Wd 
appears in this final result. 

Daillant et al. find in their study of a behenic acid film on water9 , that for 
surface pressures below 17 mN/m the action of the behenic acid film on the 
thermal roughness is just to diminish the surface tension from the pure water 
value of 72 mN/m to (72-17)mN/m = 55 mN/m and indeed they find arms. 
roughness oexp varying as y-1I2 as shown in the left part of Fig. 5.3 which is 
reproduced from Ref. 9. Furthermore, oexp agrees with a as calculated above 
without any adjustable parameters. In their original study of thermal 
fluctuations on a water surface Braslau et al. found l oexp 10% larger than ° 
from (5.13). Recent measurements using in situ monitoring of surface tension 
and ultra pure waterlO indicates that our original results' might have been 
influenced by an impure surface, both for water and carbon-tetra-chloride, and 
it seems as though the capillary wave model indeed accounts for the entire 
roughness of the surface of simple liquids like water, methanol and carbon
tetra-chloride. 

Most interestingly, Daillant et al.9 find a discontinuous decrease in -V y·o 
around a surface tension of 53 mN/m. They ascribe this observation to a first 
order phase transition of the monolayer from a soft layer with a small value of 
the bending constant to a more rigid layer with a bending constant of around 
200 kT. Because the observed effect only varies as the square root of the 
logarithm ofkMlky, cf. Eq. 5.13, it requires either a very rigid layer (K pI) or a 
low surface tension y to significantly reduce the pure capillary wave roughness. 
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Fig. 5.2. The capillary r.m.s . roughness a is obtained by integrating Eq . 
(5.12) over the whole plane except for the inner rectangle 
determined by the experimental resolution. 
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Fig. 5.3. Roughness parameter a for a behenic acid monolayer, ref. 9. The 
jump at y - 53 mNlm corresponds to the monolayer attaining a 
large rigidity against bending for y < 53 mNlm. 
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6. REFLECTIVITY OF ARACHIDIC ACID FILM 

The simplest monolayers may be those composed of fatty acids. The 
molecules consist of a hydrocarbon chain and a carboxylic acid headgroup. The 
lateral pressure as a function of molecular area A for one representative of this 
class, arachidic acid on a pure water subphase is given in the inset of Fig. 6.1. 
On compressing the monolayer to a molecular area of At = 24 A2, the lateral 
pressure remains below the detection limit of 1 mN/m. On further increasing 
the molecular density the pressure increases almost linearly with decreasing 
A. At a distinct pressure Os = 25 mN/m and molecular area As = 19.8 A2 the 
pressure/area isotherm becomes very steep. The phases above and below Os 
have previously been called solid and condensed liquid\ respectively. We will 
show to what extent X-ray scattering provides a better picture. 
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Fig. 6.1. Normalised X -ray reflectivity R/RF vs. vertical wave vector 
transfor Qz, for arachidic acid monolayers on pure water (pH 5.5, 
T = 20°C). The measurements are displaced vertically by 0.25 
units and correspond to the surface pressures indicated on the 
isotherm of the insert. 

Fig. 6.1 gives the reflectivity vs. wave vector transfers Q:t; perpendicular to 
the surface for various surface pressures indicated as by arrows in the 
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isotherm. One clearly observes a shift of the extrema to lower Qz wi th 
increasing surface pressure. 

The full lines through the data points represent a simple box model of the 
monolayer density p(z) with some adjustable parameters. In the model, the 
aliphatic tail region has a constant density PT and a certain thickness IT 
whereas the polar head region has density PH and thickness IH, see figure 6.2. 
The sharp box edges are smeared by one common Gaussian function so the 

p'(z ) 

z 

z 

Fig. 6.2. Two-box density profile model of a Langmuir film . The boxes, 
describing the tail part and the polar head part respectively, are 
smeared by a Gaussian, as indicated by the full line. The density 
gradient in this model is two positive Gaussians followed by one 
negative Gaussian. 

model contains five parameters: Two thicknesses, two densities and a smearing 
parameter. This model has the virtue that the Fourier transform of the density 
gradient can readily be written down. Let the origin be in the middle of the 
head group region which extends from -eH/2 to +eH/2 with a density of PH. 
The tail region extends from -eT-eH/2 to -eH/2 with a density of PT. The 
density gradient is thus a set of Gaussians, all with the same width parameter 
0, and located at the edges of the boxes at z = -eT-eH/2, -eH/2 and +eH/2. 
The height of each Gaussian is the difference between consecutive box 
densities. The Fourier transform of a Gaussian is a Gaussian itself, so 
altogether we find for the Fourier-transform, cp(Q) == (l/poo)! p'(z)exp(iQz)dz, of 
the density gradient p'(z) to be: 
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In order to obtain a direct qualitative understanding of the features in the 
normalized reflectivity, R(Q)IRI<'(Q) = 14>(Q)12 , we shall make one further 
approximation in taking the tail density to be almost that of water, i.e. PT = 
pw. In that case we get 4>( Q) = 4> 1 (Q) with 

tP)(Q)exp(Q20212) = exp[ - iQ(eT +eH/2)} - 2i(PH/pw -1)sinIQeH/21. 
(6.2) 

In the complex plane it is easy to visualize the two terms on the right hand 
side ofEq. (6.2) versus Q. The first term starts out at (1,0) for Q = ° and then 
moves clockwise around the unit circle as Q increases . The second term is 
bound to the imaginary axis. It starts out at (0,0), then increases almost 
linearly with Q along the negative axis and then continues along the 
imaginary axis as a sine wave versus Q. Suppose for the sake of argument that 
til = tT and PH/poo = 1.5. For Q(tT+ t1l/2) = 012 there is maximal 
constructive interference with the first term being at (-i,O) and the second term 
being at (-i/2,0). At a 3 times larger Q there is complete destructive 
interference as the first term is at (+i,O) and the second term is at (-i,O). At a 5 
times larger Q we have again constructive interference, the first term being 
again at (-i,O) and the second term being at (-i/2,0) etc. When, in reality, tIl is 
considerably smaller than tT this second constructive interference will 
obviously be larger than the first, as observed in Fig. 6.1. If the minimum in 
the reflectivity data is very pronounced, the data become very sensitive to the 
values of parameters, because a deep minimum simply reflects a very delicate 
balance in the destructive interference phenomenon. From the second term in 
Eq. (6.2) one also deduces that the height and depth of the reflectivity extrema 
depend sensitively on (PH - pw). The head group density is therefore determined 
very accurately. 

Best fit results are shown in Table 1. 

Table 1. Fitted parameters of the model densities p(z) of Fig. 6.2, 
corresponding to the reflectivity data of Fig. 6.1. The densities are 
normalized to the density of water, Pw = Pw = 0.334 e1A3. 

n A NT eT PT/pw ell PH/pw NH 0 

label mN/m A" - A - A - - A 

Ii 25.0 19.8 157 224.2 0.983 3.07 1.59 32 3.38 

y 21.6 20.5 2157 23.4 0.979 3.48 1.48 35 3.22 

jl 15.9 21.7 =157 22.2 0.977 3.88 1.38 39 2.99 

a 11.0 22.7 =157 32.2 0.977 4.43 1.31 44 2.93 

What are reasonable dimensions of the boxes of constant density? First, 
consider the hydrocarbon tail. According to Ref. 11 the average distance 
between two CH2 groups, projected onto the molecular axis is 1.265 A. Each 
CH2 group contains 8 electrons and is in Fig. 6.3 represented by a Gaussian 
distribution of width a = 1 A (which is certainly smaller than the final fitted 
smearing parameter). The neighboring CH2 group contributes a similar 
Gaussian but displaced 1.265 A along the z-axis. The last hydrocarbon group of 
the aliphatic tail is a CH3 group with 9 electrons. If this is also represented by a 
Gaussian of the same width the height must be 9/8 of the height of the CH2 
Gaussians. As is apparent from Fig. 6.3, the molecular density is well 
approximated by the two-box model, provided only that the terminal CH3 
group is represented by a segment (9/8)·1.265 'A long, to give the correct 
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number of electrons in the tail. The tail length in the all-trans configuration is 
thus 

e~= [n+(9/S) I- 1.265 A (6.3) 

The z-positions of the atoms of the COOH head group are more difficult to 
assign. A plausible choice was made in Fig. 6.3. 
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M 1 
.~ 0 •• + 

I I 

~ I 
N + 
0. I 
;.., 

1 '·'t 
Fig. 6.3 . Top: 

z[.A] 

Space-filling model of the molecule. 
Bottom: Full lines: Each CH2 group is represented by a Gaussian 

succesively displaced by 1.265 A. For the terminal CH3 
group and the polar head group COOH, see text. 
Dashed lines: Box model and smeared box model of the 
density. The width parameter 0 = 1 A was chosen for 
display purposes. In reality , the fitted 0 = 3 A. 

For arachidic acid the number n of CH2 segments is 18 and one obtains 
eOT = 24.2 A. Thus the number of fitting parameters was reduced to four. With 
the density PT determined from the parameter fit one then calculates the 
number NT of electrons in the hydrocarbon moiety according to 

NT = p,~eT 
(6.4) 

For the particular case one obtains NT 157e-/molecule which has to be 
compared with the number NT = 153e-/molecule derived from the molecular 
formula (CH3-(CH2hs) of the tail. This discrepancy may be an artefact 
introduced by the simplicity of the two box model or indicates that part of the 
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hydrocarbon moiety may be penetrated by water (the discrepancy corresponds 
to 40% of one water molecule). Now keeping the number NT constant, 
independent of molecular area, PT and iT are related according to Eq. (6.4) and 
the model parameters of table 1 are deduced using four independent fitting 
parameters. 

The tail region thickness, iT> decreases monotonically as the area per 
molecule increases. This, together with the constancy of PT, strongly indicates 
that the aliphatic tails are predominantly in the all-trans configuration and 
uniformly tilted. From geometric considerations one can then derive the tilt 
angle t by comparing the length iT of the tilted tail with the value iO T for 
vertical orientation: 

(6.5) 

One derives that on going from At to As the tilt angle t continuously decreases 
from about 30° to 0°. 

Considering the parameters in table 1 for the head group, the correlation 
wi th molecular models is more ambiguous since the hydrophilic region not only 
contains the carbonyl group but probably also some water. In analogy with 
Eq. (6.4) NH is determined by the product of iii and PH" The number of electrons 
in the carbonyl group COO- is 23, so the data Indicate a hydration of one water 
molecule per carbonyl group at the highest pressure increasing to two water 
molecules per carbonyl group at the lowest pressure. The decrease of iH with 
increasing pressure may indicate a gradual confining of the head group 
moieties in a plane parallel to the surface. If this ordering were perfect, iH 
would correspond to the dimension of a COO- group in the direction of its 
symmetry axis. From molecular models one estimates values between 2.5 and 
3.0 A, not far from the value of iH at the highest pressures. 

7. IN-PLANE DIFFRACTION AND BRAGG ROD DATA FROM ARACHIDIC 
ACID FILM 

In this section we discuss grazing incidence diffraction (GID) from a 
monolayer of arachidic acid on water. 

The geometry for GID experiments is shown in Fig. 7.1. The top view shows 
the footprint of the grazing incidence beam on a water/film surface as well as 
the specular reflected beam. The grazing incidence angle is typically 0.8 times 
the critical angle for total reflection so according to Eqs. (2.12), (2.8) and Fig. 
2.2 the penetration depth of the evanescent wave (EW) is around A = 
1.7/Qc or 77 A. The EW is diffracted by the monolayer, and we select for 
detection a horizontal scattering angle of 28 by the Soller collimator and a 
vertical scattering angle of ar by the Position Sensitive Detector PSD. The 
signal is diffrated from the "crossed-beam-area" ABCD of the monolayer and it 
is clear that the signal rate is proportional to the widths of the two crossed 
beams. A broad Soller collimator is thus much more efficient than a slit 
geometry. 

Let us first consider the compressed state where the molecular area is As 
and where according to the specular reflectivity data the molecules are 
upright. The ordered structure forms a hexagonal lattice with a corresponding 
reciprocal lattice as indicated by the broken lines in Fig. 7.2 (top part). The 
Bragg scattering selection rule (the horizontal component, Qhor, of the 
scattering vector must coincide with a reciprocal lattice vector Ghk) implies 
that the scattering seen in a side view (bottom part) is confined to vertical 
Bragg rods through Ghk.- Due to the finite length L of the molecule the 
intensity along a Bragg rod is not constant but peaks at Qz=O with a width of 
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Fig . 7.1 Top view and side view of the OlD geometry. The footprint of the 
grazing incidence beam is indicated by the darker area of the 
Langmuir film . The position sensitive detector PSD has its axis 
along the vertical direction. Only the crossed-beam-area ABeD 
contributes to the scattering. 

order niL. If, more specifically, we model the molecule by a cylinder of length L 
and diameter a , the molecular form factor along the molecular axis Qz' is 

S(u)=sin(u)/u 
(7.1) 

with u=Q~U2. 
The radial molecular formfactor, R(IQrl), at radial Qr reflects the electron 

distribution of the CH2 groups projected onto a plane perpendicular to the 
molecular axis. Each CH2 group has an electron distribution similar to that of 
oxygen and therefore its Fourier transform is approximately the atomic 
scattering factor of oxygen. The CH2 groups are connected in a zig-zag line 
wi th a-110° opening angle and a distance of 1.54 A. The molecule is assumed to 
rotate freely, so the center of each CH2 group is evenly distributed on a circle of 
radius R=(1.54/2)cos(110/2)=0.44 A. The final electron distribution is the 
convolution of each CH2 distribution with the center distribution so the 
Fourier transform is the product of the center distribution, Jo(QrR), and the 
oxygen scattering factor fO(Qr). Within the range of interest, 1.5 A -\ < Qr < 
2.0 A - I , the radial formfactor is well approximated by a Lorentzian in terms of 
the dimensionless variable v ;: Qra 

(7.2) 

with a=0.38 A. 
We now consider the model proposed on the basis of the reflectivity data: 
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Fig 7.2 At high pressures the molecular electron density is modelled by an 
upright cylinder of length L and diameter a, the molecules forming a 
hexagonal lattice (broken line). At lower pressures the molecules tilt 
and the unit cell becomes distorted to a centered orthorhombic cell 
(full line). The lower, right panel indicates the B ragg selection rule 
(rods) and the formfactor of a tilted molecule (ellipse). 

For pressures lower than Os the area per molecule , A, becomes larger than As 
and the molecules tilt but remain closed packed, i.e., the tilt angle t is given 
by 

cos(t) = A/A, 
(7.3) 

Tilt angles t deduced from Eq. (7.3) were previously shown l2 to agree well with 
the values deduced from Eq. (6.5). With tilted molecules, the Bragg selection 
rule still holds but the molecular formfactor, indicated by the ellipse in the 
right bottom part of Fig. 7.2, tilts. In Fig. 7.2 a particular tilt direction (towards 
nearest neighbour) was chosen but in general we define the Qx-axis as the tilt 
direction. In the particular case of tilting towards nearest neighbour we see 
from Fig. 7.2 that along the (1,-1) and (-1,1) Bragg rods the intensity still 
peaks at Qz=O, whereas along the (0,-1) and (-1,0) rods the intensity peaks 
at Qz>O and that along the (1,0) to (0,1) rod at Qz<O - the latter not being 
observable as only scattering away from the water surface can be detected. In 
the cylinder model the molecular formfactor is still as given in Eq. 7.1 and 7.2 
in the molecular frame (Qx',Qy,Qz') so in the laboratory frame we insert u and 
v from 

(7.4) 
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u = (Q cost - Q sint)L/2 
with Z x 

(7.5) 

QX = IGhklcoslJlhk' Qy = IGhklsinlJlhk ' 
(7.6) 

Ghk being the reciprocal lattice point considered and 1¥hk the angle from 
Ghk to the tilt direction. Since the sample is a two-dimensional powder the 
observed Bragg rod intensity, Iobs(Qz), contains contributions from several 
(h,k) reflections. The tilting of closed-packed molecules implies a distortion 
or strain of the hexoganallattice to a centered orthorhombic lattice as is also 
indicated in Fig. 7.2, so that the optimal 28 position for observing different 
(h,k) rods may split beyond the experimental resolution for sufficiently large 
tilt - in the example of Fig. 7.2 into a high angle peak for the {I, -I} rod and 
a low angle peak for the {0,1} and {1,0} rods. After discussing this tutorial 
model let us look at the actual data in Fig. 7.3, left column. At the two 
highest pressures (panels c and d) there is no observable splitting in 28 but 
at the two lowest pressures (panels a and b) the optimum 28 position for 
the Bragg rod centered around Qz. = 0 (open circles) is larger than for the 
Bragg rod which peaks at Qz "" 0.5 A-I (crosses). 

The data exhibit a very sharp peak at Qz ;:, O. The width is of order 
Qc - the critical scattering vector for total reflection. This is an interference 
effect analogous to that discussed in section 2: Recall that for 28 = 0 
and 0i = Of = 0c, the incident and total reflected beams interfere 
constructively to produce maximum intensity above and below the 
interface (cf. Fig. 2.2, third panel). In the present case 28 is around 19° so 
clearly neither the incident nor the specular reflected beams contribute 
directly. Around 28 = 19° the beam(s) must have undergone diffraction by 
the in-plane ordered structure of the monolayer. However, the diffracted 
rays are distributed over a range of angles Of, c.f. Fig. 7.1, and, in particular, 
the diffracted rays with Of = +oc and the rays diffracted into Of = -Oc and 
then total-reflected in the interface will interfere constructively. Once this 
mechanism is appreciated it can of course be accounted for in model 
calculations. In terms of x == or/oc the interference effect implies a factor 
Vex) 

{ 
2x 

V(x) = 2 ~ 
2x/(x+(x -0'), 

forO < x < 1 (7.7) 
forx > 1 

in the diffracted amplitude, cf. Eqs. (2.6) and (2.11) and Ref. 13. 
The data are compared with the tutorial model of tilted cylinders in 

columns 2 and 3 of Fig. 7.3. In model 1 the molecules tilt towards nearest 
neighbours, in model 2 towards next nearest neighbours. In both models 1 
and 2 the intensity is calculated as the sum over the Bragg points 
(1,0),(1,0),(1, -1) etc. of (S(u)R(v)V(x»2 from Eqs. 7.1-7 using tilt angles t of 
7°, 14°,20°, and 22° respectively from bottom to top. The squared structure 
factors are multiplied by the Gaussian smearing exp(-(Qzu)2) with a 
smearing parameter of u = 1 A - considerably smaller than the over-all 
smearing of around 3 A found in the reflectivity data as discussed further 
below. As cylinder length L we used the tail length of24.2 A from Eq. 6.3. 

The tilt angles, t, were determined from Eq. 7.3, inserting for A the unit 
cell area Acell, calculated from the observed 29 peak positions. Apart from 
the smearing parameter and one over-all scale factor for all the model 
curves of Fig. 7.3, the only free parameter in generating the intensity profile 
of the Bragg rods is thus the direction of tilt. In comparing thl! data 14 with 
the model we note the following points: 
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Fig. 7.3. DATA. Arachidic acid. 2D-powder Bragg rods observed at 
nominal pressures of 10,16,20,21 mNlm (panels a to d, 
respectively). In case c and d the optimal 28 settings for 
the merging peaks at Qz = 0 and Qz > 0 coincide, but 
in case a and b they split as indicated by open circles 
(optimum 28 for Qz = 0) and crosses (optimum 28 for 
Qz == 0.5 A-I). 
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MODELS. Both models are the tutorial model of Fig. 7.2 . In model 
1 the molecules tilt towards nearest neighbours, in 
model 2 towards next nearest neighbours . All other 
parameters are essentially determined from the 
reflectivity data. The dashed lines represent a perturba
tion of the models: The molecules were tilted in a 
direction 8" from the symmetry directions. 



(i) Modell approximates the data quite well at all four tilt angles, whereas 
model 2 cannot at all account for the considerable intensity observed 
around Qz = 0 for large tilt angles. The model demonstrates in a simple 
way that GID data are quite sensitive in determining the tilt direction as 
well as its magnitude. 

(ii) The smearing parameter aGIO is only 1 A compared to aXR = 3 A for the 
XR data. This may be related to the different coherence lengths probed in 
XR and GID experiments. The coherence length defines the size of the area 
inside which the squared deviations from ideal flatness are averaged to 
yield a roughness parameter a. For XR, this has already been discussed at 
length in section 5. The relevant quantity for XR is the lateral Q
resolution area. In Fig. 5.2 this area is a rectangle with dimensions of the 
order 10-2 A on one side and 10-3 on the other side. In GID the 28 peak 
width is typically 8 == 0.30 == 5 mrad, to be compared with an instrumental 
resolution width of 0.1 o. The intrinsic width is therefore of the order k8 "" 
2·10-2 A-I, so the coherence length is much shorter in the GID 
experiment than in in the XR experiment. Consequently aGIO may be 
expected to be smaller than 0XR, as indeed observed experimentally. 

8. CONCLUSION 

The application of X-ray scattering methods to the study of the liquid
vapour interface has been developed theoretically and illustrated by 
experimental examples. The surfaces of simple liquids are rough due to 
thermally excited capillary waves. The interface can be characterized by one 
parameter, the rms. diffuseness, a, which can be determined by X-ray 
reflectivity measurements, as illustrated for the case of water. 

A liquid surface with a surfactant monolayer requires more structural 
parameters for its characterization. By X-ray reflectivity the densities and 
thicknesses of constituent sub-layers can be deduced. For rod-like arachidic 
acid molecules, the results could be interpreted in terms of tilted, close-packed 
molecules, with the tilt angle determined from a cosine relation, Eq. (6.5). 
Grazing Incidence Diffraction gives information about the lateral order in the 
interface: lattice spacings and correlation length. By measurement of the 
intensity variation along the Bragg rods, structural information 
complementary to that from X-ray reflectivity can be obtained. For arachidic 
acid monolayers, this allows determination of the tilt angle by a sine relation, 
Eq. (7.5) and figure 7.2. 

Finally, we note that the methods here presented are applicable as well to 
hard interfaces, e.g., surfaces of crystalline solids or Langmuir-Blodgett films4 

of surfactant molecules on solid supports. 
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