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To Jim Lambek 



Preface 

This is a concise introductory textbook for a one-semester (40-class) course 
in the history and philosophy of mathematics. It is written for mathemat­
ics majors, philosophy students, history of science students, and (future) 
secondary school mathematics teachers. The only prerequisite is a solid 
command of precalculus mathematics. 

On the one hand, this book is designed to help mathematics majors ac­
quire a philosophical and cultural understanding of their subject by means 
of doing actual mathematical problems from different eras. On the other 
hand, it is designed to help philosophy, history, and education students 
come to a deeper understanding of the mathematical side of culture by 
means of writing short essays. The way I myself teach the material, stu­
dents are given a choice between mathematical assignments, and more his­
torical or philosophical assignments. (Some sample assignments and tests 
are found in an appendix to this book.) 

This book differs from standard textbooks in several ways. First, it is 
shorter, and thus more accessible to students who have trouble coping with 
vast amounts of reading. Second, there are many detailed explanations of 
the important mathematical procedures actually used by famous mathe­
maticians, giving more mathematically talented students a greater oppor­
tunity to learn the history and philosophy by way of problem solving. For 
example, there is a careful treatment of topics such as unit fractions, perfect 
numbers, linear Diophantine equations, Euclidean construction, Euclidean 
proofs, the circle area formula, the Pell equation, cubic equations, log table 
construction, the four square theorem, quaternions, and Cantor's set the­
ory. Third, several important philosophical topics are pursued throughout 
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the text, giving the student an opportunity to come to a full and consistent 
knowledge of their development. These topics include infinity and Platon­
ism. In the essay questions, students are challenged to address a wide range 
of important topics. In short, this book offers, in fewer pages, a deep pene­
tration into the key mathematical and philosophical aspects of the history 
of mathematics. 

The research for this book was carried out at McGill University from 
1989 to 1992, and I should like to acknowledge the support of the Social 
Sciences and Humanities Research Council of Canada from 1989 to 1991. I 
am also greatly indebted to Jim Lambek, whose own course in this subject 
was the inspiration and basis of this work. The final version of this book 
was created at the University of Regina from 1992 to 1993, and I should like 
to thank the university for the opportunity of teaching the material in a lib­
eral arts course entitled 'Mathematical Problems, Ideas and Personalities'. 
I should also like to thank Andonowati, J. Brown, E. Choueke, J. Denton, 
D. Hanson, 1. Rabinovitch, and D. Zhang for their help and encouragement. 

W. S. ANGLIN 
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1 
Mathematics for Civil Servants 

Aristotle thought that mathematics was begun by the priests in Egypt, 
'because there the priestly class was allowed leisure' (Metaphysics 981b 
23-24). Herodotus, however, believed that geometry was created because 
the annual flooding of the Nile necessitated surveying, to redetermine land 
boundaries. Indeed, Democritus called the Egyptian mathematicians 'rope­
stretchers' . 

From a philosophical point of view, it is interesting that the Egyptians 
held that mathematics had a divine source. It had been given them by the 
god Thoth. 1 In this book, we shall encounter a view, called A ristotelianism, 
which sees mathematics ascending from the human animal, and another 
view, called Platonism, which sees mathematics descending from a divine 
realm. 

The Moscow Papyrus 

Our only sources of information on the mathematics of ancient Egypt are 
the Moscow Mathematical Papyrus and the Rhind Mathematical Papyrus. 
The Moscow Mathematical Papyrus dates from 1850 B.C., about the time 
of Abraham. V. S. Golenishchev acquired it in 1893 and brought it to 
Moscow. 

The most interesting problem in the Moscow Mathematical Papyrus is 

lSee Plato's Phaedrus 274c-d 
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Problem 14. This is a computation of the volume of a frustum, using the 
correct formula. A frustum is a pyramid with a similar pyramid cut off its 
top. If it has a square base of side a, and a square top of side b, and if 
its height is h, then, as the ancient Egyptians realised, the volume of the 
frustum is 

h(a2 + ab + b2 ) 

3 
Note that if b = 0, we get the formula for the volume of a square-base 
pyramid: a2 h/3. 

We do not know how the Egyptians arrived at these formulas. Perhaps 
it was by trial and error. 

The Rhind Papyrus 

The Rhind Mathematical Papyrus is a copy of an even earlier work. It was 
copied by a scribe called Ahmose in 1650 B.C., about the time Joseph was 
governor of Egypt. Alexander Henry Rhind acquired it in Luxor, Egypt, in 
1858, and the British Museum bought it from his estate in 1865. 

The Rhind Mathematical Papyrus opens by promising the reader 'a thor­
ough study of all things, insight into all that exists, knowledge of all ob­
scure secrets'. In fact, it is a sequence of solved problems in elementary 
mathematics, a Schaum's Outline for aspiring scribes. These scribes had to 
calculate how many bricks were needed to build a ramp of a certain size, 
how many loaves of bread were required to feed the slave labourers, and so 
on. 

To multiply 70 by 13, the Egyptians would work as follows: 

70 13 / 
140 6 
280 3 / 
560 1 / 
910 

In general, the method was to set up two columns, each headed by one of 
the multipliers. The entries in the first column were doubled, while those 
in the second column were halved (first subtracting 1 if the number was 
odd). Finally, those entries in the first column beside odd second column 
entries (the checked ones) were added. (The method works because the 
odd-numbered entries in the second column correspond to l's in the scale 
2 expression of the second multiplier.) 

The Rhind Mathematical Papyrus shows us how the Egyptians divided, 
extracted square roots, and solved linear equations. They used the formula 
(4/3)4r2 for the area of a circle (giving 3.16 as an approximation for n), 
and they did interesting work with arithmetic progressions. Problem 64, for 
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example, was to find an arithmetic progression with 10 terms, with sum 
10, and with common difference 1/8. 

Unit Fractions 

From the Rhind Mathematical Papyrus we learn that the ancient Egyptians 
expressed all fractions (except 2/3) as sums of distinct unit fractions (that 
is, fractions of the form l/n, with n a positive integer). Thus they wrote 
2/9 as 1/6 + 1/18, and 8/11 as 

1 1 1 1 
2 +"6 + 22 + 66 

In 1880, J. J. Sylvester proved that any proper fraction alb can be written 
as a sum of distinct unit fractions. This is certainly true when the numerator 
a = 1. Suppose it true for proper fractions with numerator < a (with a > 1). 
Let l/q be the largest unit fraction less than a/b. Then 

Hence a < aq - b < a. But 

1 a 1 
-<-<-­
q b q-l 

a 1 aq-b 
-=-+--
b q bq 

By the induction hypothesis, ai;b is a sum of distinct unit fractions. More­

over, none of them is *' since 

1 aq - b 
->--
q bq 

This completes the proof-and gives us a way to find a distinct unit fraction 
sum equal to a given proper fraction. 

For example, to express 3/7 in the Egyptian manner, we round 7/3 up 
to the nearest integer, namely, 3. Then 1/3 is the largest unit fraction less 
than 3/7. We have 

3 1 2 
7 3 21 

The largest unit fraction less than 2/21 is 1/11, and we obtain 

2 1 1 

21 11 231 

Hence 
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Note that this is not the only possibility. For example, we also have 

3 1 1 1 
"7 ="4 +"7 + 28 

Recently Paul Erdos posed the problem of showing that if n is an integer 
> 4, then 4/n is a sum of three distinct unit fractions. This problem has 
not yet been solved, although there are some partial results: 

4 
4m+2 

4 
4m+3 

4 

8m+5 
4 

3m+2 

1 1 
--+-:-----,--;-;-:------:-
m+ 1 (m+ 1)(2m+ 1) 

1 1 1 -- + + --,----------,---,-----......,-
m + 2 (m + 1)(m + 2) (m + 1)(4m + 3) 
111 

2(m + 1) + 2(m + 1)(3m + 2) + 2(3m + 2)(8m + 5) 
111 --+ + --;------;-:----,-

m+l 3m+2 (m+l)(3m+2) 

Great Pyramid Nonsense 

Attempts have been made to use the dimensions of the Great Pyramid 
(built about 2600 B.C.) to draw conclusions about Egyptian mathematics. 
For example, it is claimed that half the perimeter of the base of the pyramid, 
divided by its height, equals 3.14. From this it is supposed to follow that 
the Egyptians of 2600 B.C. knew the value of 7r to two decimal places. 
Against this idle speculation, we advance the following considerations. (1) 
Over the centuries, people have taken stone from the pyramid for their own 
building projects; the original surface of the pyramid has thus disappeared, 
and we have no way of knowing its original dimensions with two-decimal­
place accuracy. (2) There are dozens of ratios one can calculate given the 
alleged dimensions of a pyramid; it is not surprising if one of them happens 
to be close to 7r. (3) In the Rhind Papyrus, the value used for 7r is about 
3.16; ifthe Egyptians knew a better approximation for 7r in 2600 B.C., they 
would not have been using a worse one in 1650 B.C.2 

Exercises 1 

1. Using the fact that the volume of a pyramid is 

~ x base x height 

2Martin Gardner gives a good account of Great Pyramid nonsense in Fads 
and Fallacies in the Name of Science. 
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show that the Egyptian formula for the volume of a frustum is correct. 

2. Find 1359 x 2578 in the Egyptian manner. 

3. Find an arithmetical progression with 10 terms, sum 10, and common 
difference 1/8. 

4. If the scribe receives 1 + 1/3 out of every 42 portions, while the Illahun 
Temple Director receives 10 out of every 42 portions, how much does 
the Director get when the scribe gets 2 + 1/6 + 1/18 loaves? 

5. Express 13/14 as a sum of distinct unit fractions. 

6. Express all the proper fractions with denominator 11 in the Egyptian 
manner. 

7. Prove that 8/11 cannot be written as a sum of fewer than 4 distinct 
unit fractions. 

8. Express 4/253 as a sum of three distinct unit fractions. 

9. Show that if p is prime, 2/p can be expressed as a sum of two distinct 
unit fractions in exactly 1 way. 

10. Show that the expression given above for 4/(3m+2) as a sum of three 
distinct unit fractions is correct. 

11. Show that if p + q = 4eJ, while p + e = gq (with e, J, g, p, and q 
positive integers) then 

4 1 1 1 -=-+-+­
P eJ eJg Jgp 

12. Show that, to solve the Erdos problem, it would suffice to show that 
if p is a prime of the form 24m + 1 then 4/p is a sum of three distinct 
unit fractions. 
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Challenges for Experts 

1. Let ajb be a proper fraction, and x, y, Z, w distinct positive integers 
such that ajb = 1jx + 1jy + 1jz + 1jw. Prove w < 288b8 • 

2. Show that 
1 1 1 1 1 
"2 + "3 + "7 + 43 + 1807 

is the largest proper fraction that can be expressed using five distinct 
unit fractions. 

3. Prove that there is no integer n such that every proper fraction can 
be written as a sum of n or fewer distinct unit fractions. 

Essay Question 

1. An archaeologist has found an old Egyptian building stone measuring 
1 cubit by 1 cubit by 1 cubit. 'This stone dates from 4000 B.C.,' he 
says. 'And if you add the distance between the opposite corners to the 
diagonal of one of the sides, you get a sum of 3.15 cubits. This proves 
that the Egyptians of 4000 B.C. used the value 3.15 for 7r.' Make up a 
reasoned reply to this statement to convince this fine professor that 
he has lost his wits. 
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The Earliest Number Theory 

The Sumerians and Babylonians 

The Sumerians lived in the southern part of Mesopotamia (Iraq). About 
2000 B.C., their civilisation was absorbed by the Babylonians, and Babylo­
nian culture reached its peak about 575 B.C., under Nebuchadnezzar. The 
mathematical achievements we shall discuss in this chapter are recorded on 
the clay tablets of the Sumerians and Babylonians. Most of these achieve­
ments go back as far as 2000 B.C. - about the time when Abraham's 
father was living in the Sumerian city of Ur. We shall use the word 'Baby­
lonian' for what is perhaps more accurately described as 'Mesopotamian' 
mathematics. 

The Babylonians used a counting scale, not of 10, but of 60, and this 
scale was taken over into Greek astronomy by Hipparchus of Nicaea (about 
150 B.C.). It is thanks to the Babylonians, and Hipparchus, that we have 
60 minutes in an hour. According to the prophet Ezekiel (573 B.C.), in the 
ancient system of weights, scale 60 was endorsed by God himself: 

Lord Yahweh says this: ... Twenty shekels, twenty-five shekels 
and fifteen shekels are to make one mina (Ezekiel 45:9-12). 

The Babylonians could solve linear and quadratic equations. They could 
even solve the simultaneous equations 

(3,200,000)2 

1,200 
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The Babylonians built pyramid-shaped 'ziggurats'. The first story of a 
ziggurat might measure n x n x 1, the second story (n - 1) x (n - 1) x 1, 
and so on - with the top two stories measuring 2 x 2 x 1 and 1 x 1 x l. 
The volume of such a ziggurat is 

and the Babylonians knew that this equals 

n(n + 1)(2n + 1) 
6 

a result first proved by Archimedes (287-212 B.C.). 
The Bible tells us that there was once an attempt to build a ziggurat 

'with its top reaching heaven' (Genesis 11:4). Perhaps the promoters of the 
Tower of Babel mistakenly believed that the infinite series 12 + 22 + 32 + ... 
converges. 

The Babylonians knew the formulas for the areas of the triangle, trapez­
ium, and circle. According to a clay tablet found in Susa in 1936, they used 
the value 3~ for 1r. 

Pythagorean Triples 

A triple (x, y, z) of positive integers, with x, y < z gives the lengths 
of the sides of a right angled triangle if and only if x 2 + y2 = Z2. Al­
though such triples are called Pythagorean triples, they were studied by 
the Babylonians, long before Pythagoras (525 B.C.). From a clay tablet 
called Plimpton 322, we know that the Babylonians were interested in a 
certain kind of Pythagorean triple, which we shall call a Babylonian triple. 
The triple (x, y, z) is a Babylonian triple just in case the lengths x, y, and 
z can be expressed in the form 

with u and v relatively prime positive integers having no prime factors 
other than 2, 3, and 5 (the prime divisors of the Babylonian scale 60). The 
numbers u and v are generating numbers. As the Babylonians realised, 

and hence the coordinates of a Babylonian triple are the lengths of the 
sides of a right-angled triangle, a Babylonian triangle. 

For example, (56,90, 106) is a Babylonian triple (with u = 9 and v = 5), 
but (28, 45, 53) is not (since we would have u = 7 with u having a prime 
factor other than 2, 3, and 5). 
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With one exception, the Pythagorean triples listed on Plimpton 322 are 

( 2 2)2 
Babylonian triples with v < 60 and u 2~~ < 2. They are arranged so 

2 2 
that the ratio u 2~~ decreases. 

The key columns on Plimpton 322 are the second column, which gives 
the side u2 - v 2 of the Babylonian triangle, and the third column, which 
gives its hypotenuse u2 + v2 • Translating these two columns into our scale 
ten numerals, we have the following table. 

Plimpton 322 

119 169 1 
3367 4825 2 
4601 6649 3 

12709 18541 4 
65 97 5 

319 481 6 
2291 3541 7 
799 1249 8 
481 769 9 

4961 8161 10 
45 75 11 

1679 2929 12 
161 289 13 

1771 3229 14 
56 106 15 

Square Roots 

The Babylonian method of extracting square roots is sometimes incorrectly 
called 'Heron's method', after Heron of Alexandria (75 A.D.), who included 
it in his Metrica. It is a special case of the iteration method of Isaac Newton 
(1642-1727). In essence, it goes as follows. 

Let al be the greatest integer less than ..,fR. For n = 1, 2, 3, ... , calcu­
late an+l = ~(an + R/an). Then aI, a2, a3, ... is a sequence of better and 
better approximations to ..,fR. 

To find, say, the square root of 2, the Babylonians proceeded as follows. 

1 
1 3 
-(1+2/1)=-
2 2 



10 2. The Earliest Number Theory 

~+i-
~ 

2 

17 2 
12 + IT 

12 

2 
= 

17 
12 

577 
408 

665,857 
470,832 

and so on - to any desired degree of accuracy. 

Exercises 2 

1. Solve the simultaneous equations 

x8 + x6y2 (3, 200,000)2 

xy = 1,200 

2. Using the theorem of Pythagoras, prove that if a triangle has sides 
with lengths x, y, and z, with x2 + y2 = z2 then that triangle has a 
right angle opposite the side of length z. 

3. By finding the generating numbers u and v, show that the right­
angled triangle with hypotenuse 169 and side 119 is Babylonian. 

4. Which row on Plimpton 322 gives, not a Babylonian triangle, but 
merely one similar to a Babylonian triangle? 

5. List the 15 Babylonian triples with v < 60 and ~~ :::; U;!~2 < J2. 

6. Find all the Babylonian triangles with hypotenuse :S 100. 

7. Find all Pythagorean triangles with perimeter 1716. Which of them 
are Babylonian? 

8. Use the Babylonian method to find the square root of 3. Use 5 terms 
of the sequence. 



Exercises 2 11 

9. Show that fractions f / 9 in the sequence of approximations to v'2 give 
integer solutions to the equation x 2 - 2y2 = 1. 

Essay Question 

1. Describe the Babylonian numeral system. Was it purely scale 60 or 
not? Why? 
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The Dawn of Deductive 
Mathematics 

Thales 

The ancient Greek world was not confined to what we now call 'Greece', 
but extended to Ionia (west Thrkey) in the east and to southern Italy in 
the west. The first Greek mathematician and philosopher was Thales of 
Miletus, a contemporary of the prophet Ezekiel (600 B.C.). (Miletus was 
on the southwestern coast of Thrkey.) According to Proclus, Thales visited 
Egypt and learned geometry there. Thales predicted the solar eclipse that 
occurred over Greece and Mesopotamia on May 28,585 Be. 

Plato repeats a story about Thales being an absent-minded professor 
who was so preoccupied with celestial matters that he failed to observe 
what was in front of his feet and once fell into a well (Theaetetus 17 4a). 
According to other anecdotes, however, Thales had a practical mind. He 
constructed an almanac, figured out how to calculate the distance of ships 
from shore, and he once cornered the market in olive oil. 

Thales is associated with a number of theorems in geometry: 
(1) a circle is bisected by a diameter; 
(2) the base angles of an isosceles triangle are equal; 
(3) vertically opposite angles are equal; 
(4) two triangles are congruent if their angles and one side are equal; 
(5) an angle in a semicircle is right. 

Theorem (5) is Thales's theorem. What it means is that if AC is a diameter 
of a circle and B is a point on the circumference of the circle (other than 
A or C), then LABC is a right angle (has 90 degrees). 
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All these theorems were known by the Egyptians and Mesopotamians. 
The reason they are associated with Thales is that he was the first person 
to offer proofs for them. This was an essential difference between pre-Greek 
and Greek mathematics: the Greeks established the logical connections 
among their results, deducing the theorems from a small set of starting 
assumptions or axioms. 

As a philosopher, Thales is famous for his statement that everything is 
made of water. This statement committed Thales to the following views: 

( a) there is more than one thing; 
(b) there is only one kind of thing (namely, water); 
(c) the physical universe should not be understood in terms of uncon­

nected fragments (e.g., quarks), but in terms of a continuous substance 
(e.g., space). 
The fact that contemporary physicists disagree with Thales about (b) and 
(c) is less important than the fact that it was Thales who first raised these 
issues. 

Anaximander and the Infinite 

Anaximander (610-540 B.C.) was a follower and compatriot of Thales. Ac­
cording to Anaximander, there are infinitely many worlds, all made out of 
an infinitely extended indeterminate substance that has always existed and 
will always exist. Earth, air, and fire are not forms of water, but forms of 
this 'Infinite'. 

Throughout the history of philosophy, there has been a debate as to 
whether there is anything 'actually' infinite in some respect. Everyone 
agrees that the set of natural numbers is at least 'potentially' infinite, in 
the sense that, no matter how far you count, you might count further. How­
ever, thinkers divide on the question of whether the set of natural numbers 
exists as a completed totality, as an 'actually' infinite object. 

Anaximander opened this discussion by coming out in favour of the in­
finite: the universe contains infinitely many worlds; the duration of the 
universe is infinite; the uniform material from which everything (including 
water) is made is infinite in bulk. The first opponent of infinites was Aris­
totle (384-322 B.C.). In Book III of the Physics, he cites Anaximander and 
tries to refute his position. 

Someone who believed in the existence of natural numbers might ar­
gue on Anaximander's behalf, saying that if the set of natural numbers is 
only potentially infinite, then it is actually finite, and thus it contains a 
largest natural number, which is absurd. Hence there is an (actually) infi­
nite number of natural numbers, and thus an infinite number of things in 
the universe. 

To this Aristotle might reply that numbers are not things that exist 
separate from the human mind, and hence a set of numbers need not have 
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an objective status as either actually infinite or actually finite: it could be, 
somehow, in between. 

According to standard logic, a set is either infinite or finite - there is 
no in between. However, there are nonstandard logics, such as intuitionist 
logic, in which one denies this. 

The Role of Individuals 

Many historians consider it important to tell their readers who discovered 
what first. In a history of mathematics - as opposed to a history of mathe­
maticians - this is not necessary. For example, our ignorance of the names 
of individual Egyptian and Mesopotamian mathematicians does not pre­
vent us from relating the history of their mathematics. As a member of an 
individualistic culture, and as a believer in a personal freedom of the will, 
I feel a need to praise individuals. However, it should be noted that this 
practice often obscures the key role that the mathematician's spouse, ed­
ucation, and culture inevitably play in his or her discoveries. Without the 
help of parents or teachers, Thales would have done nothing. Nor should we 
forget God. A theist might claim that if God did not create us and protect 
us, we would never discover anything. 

Exercises 3 

1. Let ABC be a triangle, and let d be a straight line through A and 
parallel to BC. Assuming that the 'alternate angles are equal', prove 
that the sum of the angles of ABC equals two right angles. 

2. Prove the theorem of Thales, using the previous exercise, and the fact 
that the base angles of an isosceles triangle are equal. 

3. Prove the converse of Thales's theorem: If A, B, and C are points on 
a circumference of a circle, and LABC is right, then AC is a diameter. 

4. How might you use the theory of similar triangles to calculate the 
distance of a ship from shore? 

Essay Questions 

1. How would the laws of arithmetic change if there was a largest nat­
ural number? 
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2. Comment on the following. A person is not just some material with 
uniform properties (e.g., mass-energy, spirit). Since there are persons, 
Thales was wrong to say 'all is water'. 

3. In discussing the origin of a piece of mathematical knowledge, is it 
more important to mention the individual discoverer - or the edu­
cational, technological, or spiritual background? 



4 
The Pythagoreans 

Pythagoras and Theano 

Pythagoras (570-500 B.C.) was born in Samos, a Greek island off the coast 
of what is now Thrkey. According to Iamblichus, Porphyry, and Diogenes 
Laertius, Pythagoras studied under the Babylonians, and he may have met 
the prophet Daniel in Babylon. From the clay tablet Plimpton 322, we 
know that the Babylonians had a well-worked-out theory of 'Pythagorean 
triangles', and Pythagoras would have learnt this from them. Pythagoras 
may have discovered the first proof of the 'theorem of Pythagoras', but he 
certainly did not discover the theorem itself. 

According to Iamblichus, Porphyry, and Diogenes Laertius, Pythagoras 
also studied under the 'Magi', or Zoroastrians. Indeed, it is not impossible 
that Pythagoras talked with Zoroaster himself. Nor is it impossible that 
Pythagoras studied in India. His belief in reincarnation certainly had an 
Indian origin. Perhaps Pythagoras met Buddha, another of his contempo­
raries. 

About 525 B.C., Pythagoras moved to Croton, a town in southern Italy, 
and founded the brotherhood of the Pythagoreans. He married a woman 
Pythagorean called Theano. Theano may have been the first woman math­
ematician. 



18 4. The Pythagoreans 

Number Mysticism 

Whereas Thales had claimed that 'all is water', Pythagoras taught that 'all 
is number'. For Pythagoras, this implied that everything could be under­
stood in terms of whole numbers and their ratios. In particular, every line 
segment was a whole number or ratio of whole numbers. Although the dis­
covery of the irrationality of the diagonal of the square of side 1 was made 
by followers of Pythagoras, Pythagoras himself was not aware of this. 

Pythagoras gave a special place to the number 10. He called it the 'divine 
number'. He was attracted by it probably for the following reasons. It is 
the scale in which the ancient Greeks counted. As the sum of the first four 
positive integers, it represents the three dimensions - with 1 for points, 2 
for lines, 3 for planes, and 4 for solids. Finally, there are ten vertices in the 
five-pointed Pythagorean star. 

Pythagorean Mathematics 

The Pythagoreans ascribed all their mathematical discoveries to Pytha­
goras, but there is not, in fact, a single theorem we can safely credit to the 
master. Pythagorean accomplishments include the following. 
(1) A Proof of the Theorem of Pythagoras 
The Pythagoreans were responsible for the proof of this theorem found in 
Euclid. They also found a proof of the converse of this theorem. 
(2) Means 
The Pythagoreans examined the arithmetic mean (a + b)/2, the geometric 
mean v'aJj, the harmonic mean 2ab/(a + b), and the relationships among 
them. 
(3) Perfect and Amicable Numbers 
A perfect number is a positive integer, such as 6, which equals the sum of its 
proper divisors: 6 = 1+2+3. The Pythagoreans found a formula giving even 
perfect numbers. See Chapter 5. An amicable pair is two positive integers, 
each of which is the sum of the proper divisors of the other. Iamblichus 
(300 A.D.) credits Pythagoras with a knowledge of the amicable pair 220 
and 284. 
( 4) Regular Solids 
The Pythagoreans discovered the dodecahedron, and proved that there are 
just 5 regular polyhedra. This accomplishment was unsurpassed until J. 
Kepler (1571-1630) discovered the lesser and greater stellated dodecahedra. 
See Chapter 6. 
(5) The Irrationality of v'2 
The Pythagoreans discovered that v'2 is not a ratio of whole numbers. 
They used integer solutions of x 2 - 2y2 = 1 to find good approximations 
to it. See Chapter 7. 
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Ten as a Triangle 

(6) Figurative Numbers 
If m is a positive integer, and t is a nonnegative integer, an (m + 2)-gonal 
number is a natural number of the form 

t 2 - t 
m--+t 

2 

The first few 3-gonal, or triangular, numbers are 

0, 1, 3, 6, 10, ... 

The first few 4-gonal, or square, numbers are 

0, 1, 4, 9, 16, ... 

The first few 5-gonal, or pentagonal, numbers are 

0, 1, 5, 12, 22, ... 

These numbers are called 'figurative' because they can be represented by 
figures made up of pebbles. For example, the triangular number 10 can be 
represented in the form of a triangle as in the above Figure. 

Looking at the sequence of squares, represented by pebble diagrams, the 
Pythagoreans noticed that n 2 + (2n + 1) = (n + 1)2, and 

1 + 3 + 5 + ... + (2n - 1) = n 2 

Fitting two equal triangular numbers together to form a rectangle, the 
Pythagoreans noticed that twice the nth positive triangular number is base 
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x height = n(n + 1). Since the nth positive triangular number is 1 + 2 + 
... + n, it follows that 

1 + 2 + ... + n = _n(-,--n_+_1....:...) 
2 

The study of figurative numbers has remained a central part of number 
theory. One of the highlights of the career of C. F. Gauss (1777-1855) was 
his proof that every positive integer is a sum of 3 triangular numbers. As 
another example, a 1989 Journal of Number Theory paper by N. Tzanakis 
and B. de Weger showed that there are exactly 6 triangular numbers that 
are products of three consecutive integers (the largest of these triangular 
numbers being 258,474,216). 

Exercises 4 

1. How might a Pythagorean have derived the fact that the angle at the 
tip of the points of his star is 36° ? 

2. What is the ratio of the side to the base in a triangle that is one of 
the points of the Pythagorean star? 

3. What is the ratio of a diagonal of a regular pentagon to its side? (Do 
not use analytic geometry or trigonometry in your answer; they had 
not been discovered yet.) 

4. Arrange 12 pebbles in such a way as to show that 12 is really pen­
tagonal. 

5. Show that 28 is perfect. 

6. Show that 220 and 284 are amicable. 

7. The number 12,285 is one member of an amicable pair. Who is its 
friend? 

8. Prove that every hexagonal number is triangular. 
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9. The largest triangular number that is a product of three consecutive 
integers is 258,474,216. What are the three consecutive integers? How 
long is the side of the triangle? 

10. Find the first three square triangular numbers. 

11. Find a triangular number greater than 1 that equals the sum of the 
cubes of its scale 10 digits. 

12. What is the exact area of a Pythagorean star with side I? 

Essay Question 

1. How can a glass of water be a number? How might Pythagoras have 
answered this question? 
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The Proof in Euclid 

The Pythagoreans were interested in perfect numbers, that is, numbers, 
such as 6 and 28, that equal the sum of their proper divisors. If s(n) denotes 
the sum of all the divisors of a positive integer n, including n itself, then n 
is perfect if and only if s(n) = 2n. 

The culmination of Book IX of Euclid's Elements (300 B.C.), is a proof 
that any positive integer of the form 

is perfect, provided 2m - 1 is prime. The proof is probably due to the 
Pythagorean Archytas (428-347 B.C.). It goes as follows. 

If p = 2m - 1 is prime, then the divisors of n = 2m - 1p are 

1, 2, 22 , •.. , 2m - I , p, 2p, ... , 2m - 1p 

Thanks to unique factorisation, we know this list is complete. The sum of 
these divisors is 

It should be noted that, although Archytas attempted to give a fully 
rigorous proof of unique factorisation for numbers of the form 2m - I (2m -

1), he failed to do so. The first fully rigorous demonstration of unique 
factorisation was given only in 1801, by Carl Friedrich Gauss (1777-1855). 
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Mersenne Primes 

An integer of the form 2m - 1 is prime only if m is prime. For if m = ab, 
with a, b> 1, we have the following factorisation: 

The converse is not true. Although 11 is prime, 211 - 1 is the product of 
23 and 89. 

Primes of the form 2m -1 give rise, as we have seen, to perfect numbers. 
Such primes are called M ersenne primes, after Father Marin Mersenne 
(1588-1648). In the preface of his Cogitata Physico-Mathematica (1644), 
Mersenne correctly stated that the first 8 perfect numbers are given by 

m= 2, 3, 5, 7, 13, 17, 19, 31 

He also claimed that 267 - 1 is prime. Here he erred. In 1903, Frank Nelson 
Cole gave a lecture that consisted of two calculations. First Cole calculated 
267 - 1. Then he worked out the product 

193,707,721 x 761,838,257,287 

He did not say a single word as he wrote down the numbers. The two 
calculations agreed, and Cole received a standing ovation. He had factored 
267 - 1, proving Mersenne wrong. 

Lucas's Test 

A French artillery officer and schoolteacher, Edouard Lucas (1842-1891), 
found an efficient way of testing whether 2m - 1 is prime. His ideas were 
refined by Derrick H. Lehmer (1905- ), leading to the following algorithm. 
Let 

Thus U2 = 14, and U3 = 194. If m > 2 then 2m - 1 is prime just in 
case 2m - 1 is a factor of Um-I. For example, since 25 - 1 is a factor of 
U4 = 37,634, it follows that 25 - 1 is prime, and hence 

is perfect. 
Thanks to Lucas's test - and the computer - we know that 2m - 1 

is prime when m has the 32 values given in the table. The ancient Greeks 
knew just the first 4 Mersenne primes. Mersenne himself knew the first 8. 
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Before 1950, we knew just the first 12 Mersenne primes. Then, with the help 
of the computer, another 20 came to light in the last half of the twentieth 
century. 

The 32 Exponents Known to Make 2m - 1 Prime 

2 107 9941 

3 127 11213 

5 521 19937 

7 607 21701 

13 1279 23209 

17 2203 44497 

19 2281 86243 

31 3217 110503 

61 4253 132049 

89 4423 216091 

9689 756839 

We do not know if there are infinitely many Mersenne primes. Nor do we 
know if there are any odd perfect numbers - although it has been shown 
that there is none < 10300 . 

Euler's Proof 

Every even perfect number has the form given by Euclid. This was proved 
by Leonhard Euler (1707-1783), as follows. 

Suppose n is perfect. Let n = 2m- 1q with q odd and m, q > 1. Each 
divisor of n has the form 2r d where 0 :s: r :s: m - 1, and d is a divisor of q. 
Thus 

s(n) = (1 + 2 + ... + 2m-l)s(q) = (2m - l)s(q) 

Since n is perfect, 
2mq = s(n) = (2m - l)s(q) 

and hence (2m - l)(s(q) - q) = q. 
Suppose s(q) - q > 1. Then q has distinct factors 1, s(q) - q, and q. 

(If s(q) - q = q then (2m - l)q = q, which is impossible.) Thus s(q) ~ 
1 + s(q) - q + q = s(q) + 1. Contradiction. Thus s(q) - q = 1. 

Hence s(q) = q + 1, so that q is prime. Moreover, the fact that 

(2m - l)(s(q) - q) = q 
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implies that 2m - 1 = q. 

The Fascination of Perfect Numbers 

Perfect numbers have always appealed to number mystics. In De Institu­
tione Arithmetica, Boethius (475-524) defines a superfluous number as one 
with s(n) > 2n, and a diminished number as one with s(n) < n. He writes: 

Between these two kinds of number, as if between two elements 
unequal and intemperate, is put a number which holds the mid­
dle place between the extremes like one who seeks virtue. 

In the City of God, Bishop Augustine (354-430) writes: 

Six is a number perfect in itself, and not because God created 
all things in six days; rather, the converse is true. God created 
all things in six days because this number is perfect, and it 
would have been perfect even if the work of the six days did 
not exist. 

Exercises 5 

1. Show that 8128 is perfect. 

2. Is 672 superfluous, diminished, or perfect? What is special about it? 

3. Suppose that perfect number A has divisors h, ... , ft. Then 

2 1 1 1 -=-+-+ ... +­
n hn hn ftn 

4. Prove that every even perfect number ends in 6 or 8. 

5. Prove that every even perfect number (except 6) has the form 

13 + 33 + 53 + ... + (2n+1 _ 1)3 

6. Show that if m and n are relatively prime positive integers, then 
s(mn) = s(m)s(n). 
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7. Show that if p is prime, 

8. Show that s( n) is odd iff n is a square or twice a square. 

Essay Question 

1. Comment on the quotations from Boethius and Augustine. 
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Regular Polyhedra 

A polyhedron is a solid whose surface consists of polygon faces. A polyhe­
dron is regular or Platonic if its faces are congruent regular polygons and 
if its polyhedral angles are all congruent. Five regular polyhedra are the 
following. 

The cube is bound by 6 squares, with 3 squares at a vertex. 
The tetrahedron is bound by 4 equilateral triangles, with 3 triangles 

at a vertex. 
The octahedron is bound by 8 equilateral triangles, with 4 triangles at 

a vertex. 
The icosahedron is bound by 20 equilateral triangles, with 5 triangles 

at a vertex. 
The dodecahedron is bound by 12 regular pentagons, with 3 pentagons 

at a vertex. 
Pythagoras himself knew of the first four of these solids, but it was 

Hippasus (470 B.C.) who discovered the dodecahedron. On one account, 
Hippasus was expelled from the Pythagorean order for failing to attribute 
the discovery to the Master. 

A proof that there are only these 5 regular polyhedra is found in Euclid's 
Elements (300 B.C.). This proof is based on the fact that if q regular p-gon 
faces meet at a vertex, then the sum of the q angles in the q faces is less 
than 3600 • This is proved rigorously in Proposition 21 of Book IX of the 
Elements, but it can be seen intuitively by imagining someone cutting the 
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The Five Regular Solids 

q edges and flattening the polyhedral angle. For example, if one cuts the 
three edges at the vertex of a cube and flattens the solid angle, the three 
right angles still have a common vertex, and one can see that their sum is 
less than a complete revolution. 

Since one can dissect a polygon with p sides into p - 2 triangles, the sum 
of the angles of a polygon with p sides is (p - 2) x 1800 • Each angle of a 
regular p-gon is thus (P-2)pX 1800 

• For a regular polyhedron whose faces are 
regular p-gons, with q p-gons meeting at a vertex, we thus have 

q (p - 2) x 1800 < 3600 

p 

or -21 < 1 + 1. Of course, p and q are each at least 3, and, moreover, p q 
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they cannot both be greater than 3 (lest ~ > ~ + ~). So there are only 5 
possibilities for p and q, one for each of the 5 regular solids already given. 

If p = 3 and q = 3, we get the tetrahedron. 
If p = 3 and q = 4, we get the octahedron. 
If p = 4 and q = 3, we get the cube. 
If p = 3 and q = 5, we get the icosahedron. 
If p = 5 and q = 3, we get the dodecahedron. 

The Timaeus 

The material in Plato's Timaeus is often attributed to the Pythagoreans. 
Certainly its theorising is in the spirit of the slogan 'all is number'. Plato 
explains the composition of the physical universe in terms of the five regular 
polyhedra. The cube is associated with earth, the tetrahedron with fire, the 
octahedron with air, the icosahedron with water, and the dodecahedron 
with the whole cosmos. Plato explains the boiling of water by means of a 
'chemical equation' which we might write as follows: 

That is, fire, with 4 faces, combines with water, with 20 faces, to produce 
2 air atoms (each with 8 faces) and 2 fire atoms (each with 4 faces). Note 
that the numbers of equilateral triangles 'balance': 

4 + 20 = 2 x 8 + 2 x 4 

A modern chemist would not accept Plato's explanations, but he would, 
like Plato, accept the Pythagorean idea that the physical universe can be 
understood in terms of whole numbers. For the modern chemist, these 
whole numbers are the atomic numbers of the elements. 

The Apex of the Elements 

The ancient Greeks were fascinated by the 5 Platonic solids. Without the 
help of trigonometry or calculus, they managed to prove all the basic prop­
erties of these solids. The final book in Euclid's Elements is devoted to 
them. For each of the five regular polyhedra, Euclid calculates the ratio of 
its side to the radius of the sphere that circumscribes it. 

For example, if one cuts an icosahedron in half, cutting along an edge 
AF (of length, say, 1), the resulting cross-section is a hexagon ABCDEF 
with CD the edge of the icosahedron opposite AF (see the figure below). 
AC and D F are diagonals in regular pentagons formed by the sides of 
the icosahedron. (You may have to construct an icosahedron out of, say, 
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Cross Section of an Icosahedron 

cardboard in order to see this.) Thus if AF = CD = 1, AC = DF = ¢, 
where ¢ is the 'golden ratio' 1+2v'5. (See Exercises 4, number 3.) 

The diameter of the circumscribing sphere is C F, which is the hypotenuse 
of the right triangle with sides CD and DF. Thus CF2 = 12 + ¢2, and 

hence the radius of the circumscribing sphere is y'1:,p2. 
Note that ¢ is also the ratio of the side to the base in a triangle that is 

one of the points of the 5-pointed Pythagorean star. For Leonardo da Vinci 
(1452-1519), this 'golden ratio' was a mark of beauty. The icosahedron or 
dodecahedron is beautiful partly because it expresses this ratio. 
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Exercises 6 

1. Make an icosahedron (by, say, taping together 20 identical equilateral 
triangles cut out of cardboard). 

2. Show that the radius of a sphere passing through the vertices of a 
cube with side 1 is 1. 

3. Show that the volume of an octahedron with side 1 is V;. 

4. What is the surface area of a dodecahedron of side I? 

5. Let V be the number of vertices of a polyhedron, E the number of 
its edges, and F the number of its faces. For each of the 5 regular 
solids, calculate V +F-E. (Euler noted the rather interesting result.) 

6. Show that the radius of a sphere passing through the vertices of a 
tetrahedron with side 1 is 1. 

Challenges for Experts 

1. Show that the radius of a sphere passing through the vertices of a 
dodecahedron of side 1 is ¢V3/2. 

2. Show that the volume of a dodecahedron with side 1 is 15+1\1'5. 

3. Show that the volume of an icosahedron of side 1 is 15i~\I'5. 

4. Show that if the same sphere passes through the vertices of an icosa­
hedron and through the vertices of a dodecahedron then 

dodecahedron area / icosahedron area 

= dodecahedron volume / icosahedron volume. 

5. If you join the centres of the 12 regular pentagon faces of a dodeca­
hedron you get an icosahedron. If the side of the dodecahedron is 1, 
prove that the side of the icosahedron is 5+130\1'5. 
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6. Show that an icosahedron can be placed inside an octahedron so that 
the 12 vertices of the icosahedron divide the 12 edges of the octahe­
dron in the golden ratio. 

7. Let R be the radius of a sphere circumscribed about a dodecahedron 
and r the radius of a sphere tangent to its faces. Then 

Show that the same ratio obtains for the icosahedron. 

Essay Questions 

1. Read and give a summary of the Timaeus. 

2. A piece of mathematics is elegant in so far as it is well-written, brief, 
illuminating, simple, unifying, and exciting. Comment. 
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Hippasus and the Leak 

Two lengths a and b are commensurable if there are positive integers p and 
q such that alb = p/q. When the Pythagoreans claimed that all things are 
numbers, they meant to imply that all pairs of lengths are commensurable. 
For the Pythagoreans, 'number' meant 'rational number'. 

Unfortunately, they soon discovered that the diagonal of a unit square 
is not commensurable with its side. A proof of this is found in Aristotle's 
Prior Analytics 41a23-30. Let ABCD be a square whose sides have length 
1. By the theorem of Pythagoras, the diagonal AC measures J2. Suppose 

v2 = AC/AB =p/q 

where p and q are positive integers. We may assume that p and q are 
relatively prime (have no common factor). In particular, we may assume 
that they are not both even. 

Now p2 = 2q2, so that p2 is even. As the Pythagoreans well knew, the 
square of an odd number is odd, while the square of an even number is even. 
Thus, from the fact that p2 is even, it follows that p is even. Suppose p = 2r. 
Then (2r)2 = 2q2 and hence q2 = 2r2. But this means that q is even as 
well. Contradiction. The assumption that AC and AB are commensurable 
leads to an absurdity. 

The Pythagoreans tried, at first, to keep this discovery a secret, as it 
undermined their philosophy. Some say it was Hippasus (470 B.C.) who 
leaked the secret and that he drowned as a punishment for having done so. 
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The Greeks did not know how to handle V2 in an arithmetic or algebraic 
fashion. They did, however, know that it was a length (of a diagonal), and 
they turned to geometry for an understanding of it. The problem of incom­
mensurables was one reason why they preferred to do algebra in a geometric 
manner. For example, the ancient Greeks thought of the distributive law 
a(b + c) = ab + ac as an addition rule for areas ofrectangles with the same 
width a. 

Diophantine Equations and Approximations to 
Irrationals 

The Pythagoreans found a way of approximating V2, as closely as could be 
desired, by rational numbers. Their method involved the use of 'Euclid's 
algorithm', a procedure found in Propositon 2 of Book VII of the Elements, 
and possibly due to the Pythagorean Archytas. In essence, it works as 
follows. 

Recall that if x is any real, then [xl is the greatest integer:::; x. Given 
some real number Xl, we form the following three sequences. First we have 

1 

If Xl is rational then so are all the other Xs, and this sequence will end 
when we hit a 0 denominator. If Xl is irrational then so are all the other 
X s, and this sequence will never end. 

Second, we form the sequence 

II [Xll 

h [X2lII + 1 

h [X3lh+1I 

14 [X4lh+h 

Third, we form the sequence 

gl 1 

g2 [X2l 
g3 [X3lg2 + gl 
g4 [X4lg3 + g2 
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and so on. 
If Xl = alb, a rational, then, for some n, we have Xn - [Xn] = 0, and 

agn -2 - bln - 2 = ± gcd(a, b) 

Hence we can use Euclid's algorithm to solve 

ax - by = ± gcd(a, b) 

Moreover, if Xl = VR, an irrational, then 

I/n/gn - VRI < 1/g~ 

so that I n/ gn gives us an approximation to VR. Finally, p and q are integers 
such that p2 - Rq2 = ±1 just in case, for some n such that [Xn] = 2[VR], 
p = In-l and q = gn-I· 

For example, suppose a Pythagorean wanted to find an integer solution 
to 

17x - 19y = 320 

He would reason in a way we would describe as follows: 

Also 

and, finally, 

17/19 
1 

17/19 - [17/19] = 19/17 

1 
19/17 - [19/17] = 17/2 

1 
= 17/2 - [17/2] = 2 

1 
2- [2] = undefined 

It 0 
h 1 

fa 8 

gl 1 

g2 1 

g3 9 

Hence 17 x 9 - 19 x 8 = ±1 so that 

17 x (9 x 320) - 19 x (8 x 320) = ±320 
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giving us an integer solution to the original equation. 
It should be noted that the Pythagoreans did not have the concept of a 

negative number (since they thought of numbers as collections of pebbles 
or lengths). It was Brahmagupta (628 A.D.) who first showed how to obtain 
all the integer solutions, negative as well as positive, to equations such as 
17x -19y = 320. 

To get approximations to vi2, the Pythagoreans would work as follows. 

vi2 

-----=_1_=_ = vi2 + 1 
vi2 - [vi2] 

1 =V2+1 
vi2+1-[vi2+1] 

so that [X2 ] = [X3] = ... = 2. Hence 

and so on. Also 

and so on. The sequence 

h 1 

12 3 

h 7 

14 17 

1/1, 3/2, 7/5, 17/12, ... 

gives better and better approximations to vi2, It also provides all the pos­
itive integer solutions of x 2 - 2y2 = ±1, namely, 

(1,1), (3,2), (7,5), ... 

The way in which Euclid's algorithm relates to equations such as x 2 -

Ry2 = 1 was not fully understood until 1768, when J. L. Lagrange pub­
lished a definitive paper on the subject. The Pythagoreans had insights 
that took over 2000 years to comprehend. 
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As a final example, let us use Euclid's algorithm to find a nontrivial 
solution to X 2 - 29y2 = ± 1. 

Xl J29 
[XlJ 5 

X 2 
1 v'29 + 5 v'29 + 5 

v'29 - 5 v'29 + 5 4 

[X2J 2 

X3 
v'29 + 3 

5 
[X3J 1 

X 4 
v'29 + 2 

5 
[X4J 1 

X5 
v'29 + 3 

4 
[X5J 2 

X6 
v'29 + 5 

1 
[X6J 10 

Since [X6J is twice [Xl], we stop here and calculate 16-1 and g6-l. 

h 5 

12 [X2Jh + 1 = 11 

h [X3Jh +h = 16 

14 [X4Jh +12 = 27 

15 [X5lJ4 + h = 70 

gl 1 

g2 [X2J = 2 

g3 [X3Jg2 + gl = 3 

g4 [X4Jg3 + g2 = 5 

g5 [X5Jg4 + g3 = 13 

Hence one solution to x 2 - 29y2 = ±1 is x = 70 and y = 13. 
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Exercises 7 

1. Prove that v'3 is irrational. 

2. Prove that {Y2 is irrational. 

3. Let a, b, c, and d be integers. Show that if a + bV2 = c + dV2 then 
a=c. 

4. Use Euclid's algorithm to find an integer solution of 91x + 221y = 
1053. 

5. Express 67/120 as a sum of distinct unit fractions by solving 

67x -120y = 1 

to get 67/120 = 1/120x + y/x, and then solving 

yx' - xy' = 1 

to get y/x = l/xx' + y' lx' and so on. 

6. Show that ax+by = c has no solution in integers unless c is a multiple 
of gcd(a, b). 

7. Use Euclid's algorithm to find an approximation of v'3 that is within 
10-10 of the true value. 

8. By factoring, find all pairs of integers x and y such that x 2 - 4y2 = 1. 

9. Use Euclid's algorithm to find a nontrivial integer solution of x 2 -

13y2 = 1. 

10. The Sultana used to divide her maids into two companies, one that 
would follow her five abreast, and one that would follow her seven 
abreast - both companies in rectangular formation. These compa­
nies, moreover, would consist of different numbers of maids on each 
of nine consecutive days. What is the smallest number of maidens the 
Sultana could have had? 
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11. Kind-hearted Doctor Diana lives on the side of the street with the 
even-numbered buildings. The sum of the numbers of the buildings 
to her left equals the sum of the number of the buildings to her right. 
Show that if her address is number D and there are B buildings on 
her side of the street then (2B + 1)2 - 2D2 = 1. Find out where she 
lives if there are fewer than 40 houses on her side of the street. 

Essay Question 

1. What did Pythagoras mean by 'number'? What did he mean by say­
ing 'all is number'? Why does the irrationality of J2 undermine this 
saying? 
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The Need for the Infinite 

Parmenides 

In opposition to Anaximander, Parmenides of Elea, Italy (480 B.C.) was a 
monist. That is, he held that the universe consists of only one object. The 
number of things that exists is just one. 

The unique thing, according to Parmenides, does not have infinite du­
ration, but exists timelessly, and changelessly: 'nor was it, nor will it be, 
since now it is, all together, one'. Nor does the one existing object have 
infinite spatial extension: 'it is completed on all sides, like the bulk of a 
well-rounded ball'. (The quotations are from J. Barnes, Early Greek Phi­
losophy, pages 134-5.) 

Parmenides taught that nothing moves, since motion implies the exis­
tence of more than one thing, namely, a finishing place and a starting place. 
Although it may look as if something is moving, this is just an illusion. 

Zeno 

Zeno (450 B.C.) was a disciple of Parmenides. He produced four arguments 
for the conclusion that there is no motion - this in support of the claim 
of his master. 



44 8. The Need for the Infinite 

Zeno's First Argument 

Motion is impossible, said Zeno, because a moving object must first go half 
the total distance it will travel, then half the remaining distance, and so 
on, forever. If a point moves from position 0 to position 1 on the number 
line, it first reaches position 1/2, then position 3/4, then position 7/8, and 
so on. At the nth stage, it is at position 1 - 2~. From the fact that there 
is no n such that 1 - 2~ = 1, it follows that that moving point never 
reaches position 1. It just cannot get through the infinite number of stages 
necessary to do so. Hence there is no motion, motion from 0 to 1 being 
typical of any motion whatsoever. 

In modern physics, we counter this argument by asserting that, indeed, 
the point can and does traverse each of the infinite number of intervals 
from 1 - in to 1 - 2}+1 for n = 1, 2, 3, ... - ad infinitum. There is no n 
such that the moving point does not cross position 1 - 2~. Starting from 
the premiss that there is motion, modern physicists invoke the infinite to 
explain it. Like Zeno, they assume that motion is continuous, but, unlike 
Zeno, they are willing to say that a moving object does pass over an infinite 
number of points. Zeno rejected the infinite, and so he rejected motion too. 
Modern physicists accept motion, and so they accept the infinite too. 

Zeno's Second Argument 

The famous runner Achilles and his rival (usually thought to be a tortoise) 
are racing along the positive number line. Achilles starts at position 0, but 
the tortoise has a head start, beginning at position 1. Since Achilles runs 
twice as fast as the tortoise, one might expect him to overtake the tortoise 
at position 2. However, when Achilles arrives at position 1, the tortoise is 
already at position 1 + ~; when Achilles reaches position 1 + ~, the tortoise 
has raced on to position 1 + ~ + ~; and so on. When Achilles finally gets to 
position 2 - 2~' for large n, the tortoise is still ahead, at position 2 - 2}+1 . 

Despite the appearances, which lead us to believe there is motion, Achilles 
will never catch up to the tortoise. 

In this second argument, Zeno again assumed, as we do, that space and 
time are continuous, and that, if there is motion, there is uniform motion. 
Zeno also assumed, unlike us, that Achilles and the tortoise can never 
'get through' the infinite number of stages into which Zeno analysed their 
motion. 

For modern physics, precisely, motion typically consists of the occupation 
of infinitely many distinct locations at infinitely many distinct instants -
all within a finite time interval. Because we accept the infinite, we do not 
find Zeno's argument troubling. However, if someone rejected the infinite, 
he or she would, indeed, have to reject the possibility of continuous motion. 
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Zeno's Third Argument 

At every instant, a flying arrow is in exactly one fixed place. Hence it does 
not really move. 

To this argument we would reply that the fact that the arrow covers 0 
distance in an instant does not imply that it covers 0 distance in an inter­
val consisting of an infinite number of instants. As every calculus student 
learns, there are cases in which 

Oxoo=l 

Zeno did not like the infinite, so he did not make this reply. 

Zeno's Fourth Argument 

This argument is open to various interpretations. One is the following. 
There are three rows of people: 

A A A A 
BBBB----. 

~ C C C C 

The As are stationary, the Bs are moving to the right at top speed, and 
the Cs are moving to the left at top speed. Relative to each other, however, 
the Bs and Cs are going at twice top speed, which is impossible. So there 
cannot be any motion. 

In answer to this argument we can either challenge Zeno's finitist as­
sumption that there is a top speed, or we can invoke the Theory of Special 
Relativity, which explains how the Bs and Cs can both be going at the 
speed of light relative to the As and yet not be going faster than the speed 
of light relative to each other. 

The General Form of Zeno's Arguments 

Each of Zeno's arguments has the following form: 

Rejection of the infinite 
+ other considerations (including the continuity of space) 
No motion 
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This form is logically equivalent to the form: 

Motion 
+ other considerations (including the continuity of space) 
Acceptance of the infinite 

Most of us accept the existence of motion and would sooner give up finitism 
than embrace the static reality of Parmenides. The modern physicist, for 
one, is quite happy to base the analysis of motion on the mathematician's 
real number system, accepting the existence of infinite sets of numbers. 

Democritus 

Democritus of Abdera (in north-east Greece) lived about 420 B.C. He 
claimed that everything is made up of tiny indestructible atoms. The num­
ber of these atoms, he said, is infinite, and the empty space containing 
them is also infinite. 

Democritus was a determinist. He asserted that 'from infinite time back 
are foreordained by necessity all things that were and are and are to come'. 
In harmony with this, he also held that everything happens without purpose 
or design. 

Commenting on the circular sections of a cone cut by planes parallel to 
its base, Democritus asked: 

Are they equal or unequal? For, if they are unequal, they will 
make the cone irregular as having many indentations, like steps, 
and unevennesses; but, if they are equal, the sections will be 
equal, and the cone will appear to have the property of the 
cylinder and to be made up of equal, not unequal, circles, which 
is very absurd. 

Exercises 8 

1. In the Cartesian plane, let 

1 
(24n ' 0) 

1 
(0, 24n+1 ) 

-1 
(24n+2 ' 0) 

-1 
(0, 24n+3 ) 
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Consider the path AoBoCoDoAlBlClDlA2B2C2 ... ' where each pair 
of adjacent points is joined by a straight line. Draw the beginning of 
this path. Show that this path has length J5. If you go along it, all 
the way, where will you end up? How many turns will you have made 
by the time you get there? 

2. Suppose that, at time t ~ 0, Achilles is at point 

- in polar coordinates - and the tortoise is at 

1 
(2 - - t) 

2t ' 

Where are they when t = 27r? How far apart are they at time t? Will 
Achilles ever catch the tortoise? 

Challenge for Experts 

1. Let 1(0) = 0 and, otherwise, I(t) = tsin(1/t). Then 1 is continuous, 
and, as t goes from 0 to 1, the graph of 1 is infinitely long. 

Essay Questions 

1. Does Zeno inadvertently prove that there is an infinite? 

2. How would you answer Democritus's question? Is Democritus think­
ing of a cone as an infinite number of circles, one on top of the other? 



9 
Mathematics in Athens Before 
Plato 

In 479 B.C., the Greeks drove off the Persians, and Athens emerged as a 
great centre of civilisation. This position she continued to hold, even after 
losing the Peloponnesian War to Sparta, in 404 B.C. 

Athens had some bad points. For example, she extended few rights to 
women, slaves, and foreigners. On the other hand, she provided an atmo­
sphere conducive to the arts and sciences. She had some of the greatest 
playwrights in history: Aeschylus, Sophocles, and Euripides. She helped 
form some of the world's greatest philosophers: Socrates, Plato, and Aris­
totle. Finally, she hosted some great mathematicians: Hippias (425 B.C.), 
Antiphon (425 B.C.), Hippocrates (425 B.C.), Theaetetus (369 B.C.), Eu­
doxus (408-355 B.C.), and Menaechmus (350 B.C.). 

Athens later had a strong intellectual rival in Alexandria, Egypt (founded 
in 332 B.C.), but she remained a centre of culture until 529 A.D., when 
Justinian closed the Academy founded by Plato. This was because the 
Academy had failed to accept the new Christian knowledge. 

Hippias and the Quadratrix 

The sophist Hippias (425 B.C.) came from Elis, on the west coast of Greece. 
In Plato's Protagoms, we hear Hippias resolving a dispute between Pro­
tagoras and Socrates. Hippias asks them to recall that Athens is 'the centre 
and shrine of Greek wisdom', so that 'it would be a disgrace if we produced 
nothing worthy of our fame but fell to bickering like the lowest of mankind' 



50 9. Mathematics in Athens Before Plato 

(Protagoras 337d-e). In the Lesser Hippias (366c-d), we hear Socrates teas­
ing Hippias about his mathematics: 

Socrates: And tell me, Hippias, are you not a skillful calculator 
and arithmetician? 
Hippias: Yes, Socrates, assuredly I aID. 

Socrates: And if someone were to ask you what is the sum of 
3 multiplied by 700, you would tell him the true answer in a 
moment, if you pleased? 
Hippias: Certainly I should. 
Socrates: Is not that because you are the wisest and ablest of 
men in these matters? 
Hippias: Yes. 

Hippias discovered a curve called the quadratrix, which can be used for 
trisecting an arbitrary angle. Consider a unit square ABCD with AB on 
top and DC on the bottom. Imagine that side AB moves at a rate of 1 
unit per second towards the opposite side DC. Imagine also that side AD 
rotates about D and toward DC, at a rate of 90° per second, so that, 
after 1 second, both AD and AB coincide with DC. At any time t (with 
o :::; t :::; 1), the two moving sides meet at a point P. The set of these points 
P is the quadratrix. 

In terms of modern analytic geometry and trigonometry, P has coordi-
nates 

1-t 
(tan(~(1-t))' 1-t) 

so that the equation of the quadratrix is y = xtan(~y), with 0 :::; y :::; l. 
To trisect an angle of, say, 60°, we place it so that its vertex is at D, one 

of its arms lies along DC, and the other arm meets the quadratrix at a point 
Q. If d is the distance from Q to DC, we construct a line parallel to DC, at 
a distance d/3 from BC. (There is a straightedge and compass construction 
for this.) If this parallel meets the quadratrix at P, then L P DC = 20°. 

FUrthermore, 
1· Y 
1m (7r) 

y---+o tan zy 

y 2 
sine ty) 7r 7f' 
~Y zy 

and hence the quadratrix meets DC at a point 2/7f' units from D. Hence it 
can be used to construct a square equal in area to a circle with radius l. 

Plato oppugned the quadratrix on the grounds that it is more elegant to 
use only straight lines and circles in the solution of mathematical problems. 
One ought to trisect angles using only a straightedge and compass. In 
1837, a French opium addict, Pierre Wantzel (1814-1848), proved that it 
is not possible to trisect an arbitrary angle using only a straight-edge and 
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compass. One has to use some other device, such as the quadratrix. Hippias 
was right and Plato wrong - but it took over 2000 years for Hippias to be 
vindicated. 

Antiphon and the Circle Area 

Antiphon (425 B.C.), another sophist, asserted the equality of all human 
beings. 

In mathematics, he was the first person to suggest that the area of a 
circle be calculated in terms of regular polygons inscribed in it. 

An inscribed square takes up more than 1/2 the area of a circle, while an 
inscribed regular octagon takes up more than 3/4 the area of a circle. As 
the ancient Greeks realised (see the Elements XII 2), one can use what we 
now call mathematical induction to show that an inscribed regular 2n-gon 
takes up more than 1 - 2}-1 of the area of a circle. 

If we inscribe a regular 2n-gon in a circle, its longest diagonals are di­
ameters of that circle. The ancient Greeks knew that the area of a regular 
2n-gon is proportionate to the square on its longest diagonal, and from 
this it follows that, in so far as a circle is like a regular 2n-gon, its area is 
proportionate to the square on its diameter: 

area of circle = k(2r)2 = (4k)r2 

where r is the radius of the circle. 
Antiphon argued for this (correct) conclusion by boldly asserting that a 

circle simply is a regular polygon with an infinite number of sides. 

Hippocrates and the Lunes 

Hippocrates came from the Greek island of Chios, near present-day Thrkey. 
(He was not the famous doctor.) Hippocrates had been swindled in business, 
and he went to Athens, about 430 B.C., in order to recover his property 
through legal action. The case dragged on, and Hippocrates spent the time 
studying and teaching geometry. 

Hippocrates was responsible for much of the material on circles and reg­
ular polygons in Books III and IV of the Elements. He was also the first 
person to find the precise area of a region bound by curves. 

Hippocrates constructed semicircles on the three sides of a right triangle, 
so that the semicircle on the hypotenuse AB went through the vertex C of 
the right angle (in harmony with the theorem of Thales), and so that the 
semicircles on the two 'legs' AC and BC lay outside the triangle. The ar­
eas included in the two smaller semicircles but outside the larger semicircle 
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lune AC 

A B 

The Lunes of Hippocrates 

are lunes (so named after the crescent moon). 
Hippocrates discovered and proved the fact that the sum of the areas of 

the lunes equals the area of the right triangle. 
The proof of Hippocrates: Since, by the theorem of Pythagoras, 

and since, as Antiphon had pointed out, the area of a circle, or semicircle, 
is proportionate to the square on its diameter, it follows that the sum of 
the areas of the semicircles on AC and BC equals the area of the semicircle 
on AB. Subtracting the areas where the semicircles overlap, it follows that, 
indeed, the sum of the areas of the lunes equals the area of the right triangle. 

Hippocrates also discovered and proved the following. Let ABC D be half 
a regular hexagon inscribed in a semicircle with diameter AD. Construct a 
lune by drawing, outside the hexagon, a semicircle on AB as diameter. Do 
the same, using diameters BC and CD. Then the area of the semihexagon 
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ABC D equals the sum of the areas of the three lunes, plus the area of a 
semicircle on BC. 

Duplicating the Cube 

Legend has it that, during a typhoid plague in 430 B.C., the Athenians 
consulted the oracle at Delos for help, and the oracle answered that they 
must double the volume of the cubical altar of Apollo. The Greeks were 
thus faced with the problem of constructing a length x such that x3 = 2. 

Hippocrates noted that one could do this if one could construct lengths 
y and z such that l/y = y/z = z/2. For then y would be the required cube 
root of 2. Of course, the Greeks knew how to find approximations to the 
cube root of 2. The problem was to find a geometrical construction that, 
theoretically, would give a length exactly equal to the cube root of 2. 

Socrates 

Socrates (469-399 B.C.) was Plato's mentor. He was not a mathematician 
but, as Plato portrays him in the Meno, he made use of mathematics 
in philosophy. In the course of a conversation about virtue with Meno, 
Socrates has one of Meno's uneducated slave boys 'double the square'. The 
boy at first thinks that one doubles the area of a square by doubling its 
side, but Socrates soon leads him to see his mistake. Then Socrates shows 
him the figure of a square with the midpoints of its four sides joined to 
form a smaller square. Socrates then gets the boy to 'remember' that it is 
the square on the diagonal of the original square that has double its area 
(see the figure). 

The mathematics was not very revolutionary, but the rest of Socrates's 
message was. Here was a boy quite capable of learning mathematics, and 
Meno was failing to educate him. 

Exercises 9 

1. Do you think Hippias could have told Socrates 'the sum of 3 multi­
plied by 700'? If so, what is the answer? 

2. Prove that an inscribed regular 2n-gon takes up more than 1 - 2n~' 
of the area of a circle. 
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The Diagram of the Meno 

3. Plimpton 322 refers to a right triangle with side 4961 and hypotenuse 
8161. What is the area of the lunes on this triangle? 

4. Prove the second of the lune theorems of Hippocrates. 

5. Show that if l/y = y/z = z/2 then y = 0. 

6. Prove that 0 is irrational. 
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Challenge for Experts 

1. Let Sk be the side of a regular k-gon inscribed in a circle of diameter 
1. Let Sk be the side of a regular k-gon circumscribed about a circle 
of diameter 1. Show that 

Essay Question 

1. Protagoras was a relativist, holding that any given thing 'is to me 
such as it appears to me, and is to you such as it appears to you'. 
In Theaetetus 169a, Plato suggests a mathematical argument against 
relativism. What is it? 
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Plato 

Plato (427-349 B.C.) was a student of Socrates. After Socrates's execu­
tion in 399 B.C., Plato travelled to North Africa, where he studied with 
Theodorus of Cyrene (Lybia), a mathematician who proved the irrational­
ity of the square roots of 3, 5, 6, 7, 10, 11, 13, 14, 15, and 17. 

At age 40, Plato visited Italy, and spent some time with the Pythago­
rean mathematician Archytas (428-347 B.C.). It was Archytas who first 
found a construction for the V'2. Plato's trip to Italy came to a sudden 
end when his enemy Dionysius I, ruler of Syracuse, sold him into slavery! 
Happily, one of Plato's friends ransomed him, and he returned to Athens. 

About 380 B.C., Plato found the Academy. At the entrance of this re­
search institute was the inscription: 

LET NO ONE IGNORANT OF GEOMETRY ENTER HERE! 

Plato was a realist: he held that reality exists independently of the human 
mind. He was also a correspondence theorist: he held that a statement 
is true just in case it correctly describes the actual state of affairs (in 
mind-independent reality). Not surprisingly, Plato attacked the relativism 
of Protagoras, according to which anything 'is to me such as it appears to 
me, and is to you such as it appears to you'. 

Plato believed that the objects in the universe fall into two very different 
classes, the material and the immaterial. Objects such as the sun, that bed, 
and Diana's body belong to the class of material things. Objects such as 
goodness, that circle, and Diana's soul belong to the class of immaterial 
things. A drawing of a square belongs to the material realm, but the square 
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itself belongs to the immaterial realm. Plato says of geometry students that 
they 

make use of the visible forms and talk about them, though they 
are not thinking of them but of those things of which they are 
a likeness, pursuing their inquiry for the sake of the square as 
such and the diagonal as such, and not for the sake of the image 
of it which they draw (Republic 510d). 

For Plato, the class of material things is characterised by contingency, 
change, uncertainty, ignorance, and imperfection. The drawing of the square 
can be erased. Its angles are not exactly right angles. Its sides are not abso­
lutely straight. On the other hand, the class of immaterial objects is charac­
terised by necessity, permanence, certainty, knowledge, and perfection. Real 
squares have sides that are infinitely thin and absolutely straight. Their 
properties can be deduced with infallible rigour. We can know with cer­
tainty that every square has two equal diagonals. For Plato, these squares 
are no mere abstractions or mental concepts. On the contrary, they are 
necessarily existing particulars. Just as the eye sees visible objects, which 
exist independently of the human body, so the 'eye of the soul' intuits 
immaterial objects, which exist independently of the human soul. 

For Plato immaterial things are good, but material things are bad. For 
example, 'Platonic friendship' is good, but sex is bad. (Even within mar­
riage, it should be minimised.) 

At the end of Book VI of the Republic, Plato discusses the two classes of 
things in terms of a line segment AE. This segment is divided at C, which 

A 

FORMS (circularity) 

IMMATERIAL 

B~ __________________________ __ 

MATH OBJECTS (a circle) 

C 
PHYSICAL OBJECTS (wheel) 

MATERIAL 
D~ ________________________ __ 

E IMAGES (picture of wheel) 

represents the boundary between the material (C E) and the immaterial 
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(AC). Segment AC is subdivided at B, and CE at D. The segment DE 
represents pictures, reflections, or shadows of physical objects. The segment 
CD represents the physical objects themselves. In the immaterial realm, 
segment BC represents mathematical objects, and segment AB represents 
Plato's forms. These forms are qualities such as goodness, beauty, oneness, 
circularity, squareness, humanity, and so on. According to Plato, a physical 
object is, say, circular just in case it 'participates' in the form of circularity. 
The mathematical objects have many 'instances': we can add two Is, or 
compare two circles. The forms, however, are unique: there is only one 
oneness and only one circularity. (See Aristotle, Metaphysics 987bI4-17.) 

Plato tells us that 
AC 
CE 

AB 
BC 

CD 
DE 

from which one can deduce that BC = CD (see Republic 509d and 534a). 
Thus we might have AB = 4, BC = CD = 2, and DE = 1. 

For Plato, the best way to get acquainted with the wonderful immaterial 
realm is to do mathematics. One should study number theory 'for facilitat­
ing the conversion of the soul itself from the world of generation to essence 
and truth'. One should study geometry 'to facilitate the apprehension of 
the idea of good' (see Republic 525c, 526e). Having turned his or her mind 
to visible geometric diagrams, the student then raises it to the circles them­
selves and finally 'sees' the form of circularity and the form of goodness 
that illuminates all the other forms. 

It is not clear where Plato thought the number 1 should go on the divided 
line. On the one hand, it is a mathematical object with various 'instances'. 
I can ask for the sum of four Is or warn the students not to confuse the 
subscript 1 with the 1 in the data. On the other hand, the ancient Greeks 
tended to identify the number 1 with oneness (the form). For example, in 
his proofs, Euclid uses the word 'monad' to refer to the number 1, but, 
in his definitions, he describes it as 'that by virtue of which each of the 
things that exist is called one' - which is exactly how Plato characterises 
the form of oneness. 

The importance of Plato in mathematics is due not to any mathematical 
contribution, but to the influence he exerted on others. It was Plato who 
insisted that a 'proper' solution of a geometry problem involves no curves 
other than the circle (see Timaeus 34a). It was Plato who emphasised the 
importance of clear definitions and postulates. Finally, it was Plato who 
encouraged the study of mathematics as a way of becoming virtuous. 

Exercises 10 

1. Prove the results of Theodorus. 



60 10. Plato 

2. Prove that, in the divided line, BC = CD. 

Essay Question 

1. Argue in favour of the view that mathematical objects exist indepen­
dently of the human mind. 
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Aristotle 

Aristotle (384-322 B.C.) was a student of Plato for twenty years, but he dis­
agreed with Plato about the nature of mathematics. For Aristotle, the word 
'two' was not a noun referring to an abstract object existing independently 
of physical objects, but an adjective describing a physical object (e.g., that 
two-metre ladder). The 'two' of the length is 'in' the ladder (Metaphysics 
1077a). 

Aristotle's Logic 

Aristotle's work on logical validity is found in the Prior Analytics. He 
distinguished four basic types of statements. 

PaS 
Each thing having property P also has property S. 
(All conservatives are cowards.) 

PeS 
Nothing has both property P and property S. 
(No Canadian is a billionaire.) 

PiS 
At least one thing has properties P and S. 
(Some professors are clever.) 
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PoS 
At least one thing has property P but lacks property S. 
(Some professors are not clever.) 

Note that Aristotle understood PaS to imply PiS. Thus for Aristotle the 
statement 

All unicorns have horns 

is false because there are no unicorns. 
A syllogism is a list of three of these statements. The first two are pre­

misses. They must share exactly one property letter (the P or S). The third 
statement is the conclusion. It must contain the two property letters not 
shared by the premisses. For example, the following are syllogisms. 

CaN All clever things are neurotic. 
PaC All professors are clever. 
PaN All professors are neurotic. 

CeW No conservative is a coward. 
BaC All businessmen are conservatives. 
BeW No businessman is a coward. 

SaP All students are poor. 
WiS Some women are students. 
WiP Some women are poor. 

CeB No Canadian is all bad. 
MiC Some businessmen are Canadians. 
MoB Some businessmen are not all bad. 

DaB All dogs bark. 
DaS All dogs sleep. 
BiS Some barking things sleep. 

CiY Some cowards are young. 
YiS Some young things are sweet. 
CiS Some cowards are sweet. 
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A syllogism is either valid or invalid. This has nothing to do with the 
truth of the statements in it. It has to do only with whether or not the 
conclusion follows logically from the premisses. The first four syllogisms 
given above are valid, even though some of the statements involved are 
false, because, in each case, the premisses could not be true without the 
conclusion also being true. The fifth syllogism is also valid, if we grant 
Aristotle's view that PaS implies PiS. The sixth syllogism, however, is 
invalid - even though all the statements in it are true - because the 
conclusion might be false, even though the premisses are true. The fact 
that some cowards are young and the fact that some young things are 
sweet do not rule out the possibility that all the sweet young things are 
brave. 

In the Posterior Analytics, Aristotle formulates what we call the deduc­
tive method. It was adopted by Euclid and has always been an essential 
characteristic of mathematics. This method consists of starting with propo­
sitions called axioms and then proving propositions called theorems. Each 
statement in a proof has to be justified either by an axiom or by a previously 
proved theorem or by a principle of logic. 

For Aristotle, the axioms of mathematics are truths, and hence the theo­
rems are also truths. Aristotle does not say, 'if there is a triangle with such 
and such a property, then the sum of its angles is two right angles'. Rather, 
he says, 'the triangle in virtue of its own nature contains two right angles' 
(Metaphysics IV 3). 

Aristotle also did pioneering work in modal logic. In De Interpretatione 
12 and 13, he notes the following implications. 

(1) If it is possible that p is not the case, then it is not necessary that p be 
the case. 

(2) If it is not possible that p be the case, then, necessarily, p is not the 
case. 

For example, if it is not possible to pass the exam then, necessarily, you 
will fail it. 

On Aristotle's scheme, every statement falls into exactly one of the fol­
lowing three categories. 
(A) It is necessarily true. 
For example: 2 + 5 = 7. 
(B) It is necessarily false (or impossible). 
For example: This dog is actually a telephone number. 
(C) It is contingent. 
For example: Hitler invaded Russia. The French never fought the British. 
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Aristotle and the Infinite 

Aristotle was a staunch finitist. He rejected infinite sets and infinite lines 
(Physics 206b, 266b, 207; Metaphysics 1084a). He rejected infinitesimals 
(Physics 266b). For Aristotle, the geometer can have arbitrarily long seg­
ments, but not a line that 'goes to infinity'. 

Aristotle had a number of reasons for rejecting the infinite. 

(1) The infinite is too big to be beautiful. In De Poetica 1450b-51a, Aris­
totle writes: 

to be beautiful, a living creature, and every whole made up of 
parts, must not only present a certain order in its arrangement 
of parts, but also be of a certain definite magnitude. Beauty 
is a matter of size and order, and therefore impossible ... in a 
creature of vast size - one, say, 1000 miles long - as in that 
case, instead of the object being seen all at once, the unity and 
wholeness of it is lost to the beholder. 

(2) Infinite lines lead to contradictions in kinematics. Suppose there were 
an infinite straight line AB. Let C be a point not on AB, and let XCY be 
another infinite straight line that rotates with C as its axis, cutting AB at 
a variable point P. Suppose that at 3 P.M., XCY is parallel to AB, and 
suppose that X CY rotates clockwise about C, at a constant rate of half 
a revolution per hour. Then XCY is parallel to AB at 4 P.M., 5 P.M., 6 
P.M., and so on - every hour on the hour. At all other times, XCY cuts 
AB at a point P, and, as each hour goes by, P travels the whole length of 
AB. However, said Aristotle, no distance is infinite if it can be traversed in 
a finite time. Thus AB is not infinite. Contradiction. (See On the Heavens 
271b26--272a20. ) 

(3) Infinite sets lead to contradictions in mathematics. If there is an infinite 
collection of objects, then it has a proper subset that is also infinite. For ex­
ample, the set of natural numbers contains the set of evens as a proper part, 
and the set of evens is infinite. However, said Aristotle, since the proper 
part is bounded by the whole and less than it, the proper part is not infi­
nite. Contradiction. (See Physics 204a20-29 and Metaphysics 1066bll-17.) 

(4) Aristotle also had a version of the 'Thomson lamp paradox'. Elab­
orating a bit on Aristotle, let us imagine a lamp that comes on at time 
t = 1 - 2~ if n is even, but goes off at time t = 1 - 2~ if n is odd. If, 
indeed, we can divide an interval of time into an actually infinite number 
of instants, then this lamp is theoretically possible, and, theoretically, it 
would turn on and off an actually infinite number of times in the time 
interval from t = 0 to t = 1. However, at time t = 1 the lamp would be 
neither on nor off - because the infinite is neither even nor odd. But this 



Exercises 11 65 

is impossible. Hence we cannot divide an interval of time into an actually 
infinite number of instants. (See Metaphysics 1083b37-1084a6.) 

As a replacement for the infinite, Aristotle put forward the idea of the 
potentially infinite. Imagine that Aristotle, using ruler and compass, is ac­
tually constructing the subintervals of a given segment, at a rate of one a 
minute. Imagine, moreover, that he will continue doing so for an indefinite 
period of time, so that, for any given whole number n, he will eventu­
ally construct more than n subintervals. Then, on the one hand, the set 
of constructed subintervals is never at any time infinite, but, on the other 
hand, its size is not bounded by some predetermined, fixed number. It is 
in this sense potentially infinite. (See Physics 206a18-26 and Metaphysics 
l048blO-18. ) 

Of course, we could press Aristotle, insisting that he say something about 
the size of the atemporal set of all the subintervals that will ever be con­
structed, but, in that case, he might only reply that, like the unicorn, it is 
neither finite nor infinite - because it does not exist. 

Exercises 11 

1. Express each of the following syllogisms in the P-S notation. Then 
say whether it is valid or not. If it is not valid, give a syllogism of the 
same form with true premisses and a false conclusion. 

(a) All mammals are camels. Some mammals do not swim. Therefore 
some camels do not swim. 

(b) All people called 'Socrates' are mortal. All mortals die. Therefore 
all people called 'Socrates' die. 

(c) Those who did not study did poorly. The boys did poorly. There­
fore the boys did not study. 

(d) No insects are birds. No birds are mammals. Therefore no insects 
are mammals. 

(e) All Nazis are cowards. All cowards are damned. Therefore there 
are some damned Nazis. 

(f) Some cake eaters are fat. No fat person is healthy. Therefore some 
cake eaters are not healthy. 

(g) All stupid people are victims of propaganda. No logic student is 
stupid. Therefore no logic student is a victim of propaganda. 

(h) No swans are black. Some black things are dogs. Therefore no 
swans are dogs. 
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(i) All statesmen are honourable. Some politicians are honourable. 
Therefore some statesmen are politicians. 

(j) Some animals are furry. Some furry things are cats. Therefore 
some animals are cats. 

(k) All old men are Pharisees. All old men are rich. Therefore all rich 
people are Pharisees. 

(1) All hippies smoke pot. No student smokes pot. Therefore some 
students are not hippies. 

(m) All hippies smoke pot. Some students do not smoke pot. There­
fore some students are not hippies. 

(n) No fossils can be crossed in love. An oyster may be crossed in 
love. Thus no fossil is an oyster. 

(0) Some poetry is original. No original work is producible at will. 
Thus some poetry is not producible at will. 

(p) Some pillows are soft. No pokers are soft. Hence some pillows are 
not pokers. 

(q) No misers are unselfish. None but misers save eggshells. Therefore 
everyone who saves eggshells is unselfish. 

(r) All my cousins are unjust. All judges are just. Therefore none of 
my cousins is a judge. 

(s) Some buns are rich. All buns are nice. Therefore some rich things 
are nice. 

(t) Pigs cannot fly. Pigs are greedy. Thus some greedy things cannot 
fly. 

2. Classify each of the following statements as necessarily true, impos­
sible, or contingent. 

(a) 2 + 2 = 50 

(b) Anyone who is someone's sister is female. 

(c) Aristotle was Plato's student. 

(d) Marilyn will go to Hollywood next week. 

(e) If there are 5 balls in 4 boxes, one of the boxes is empty. 

(f) If there are 5 balls in 4 boxes, one of the boxes contains at least 
two balls. 
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Essay Questions 

1. What trouble might a mathematician run into if he or she tried to 
base mathematics on a set of axioms that includes the axiom: there 
is no infinite set? 

2. How might Aristotle answer Zeno's arguments against motion? 

3. What might Anaximander say about Thomson's lamp? 



12 
In the Time of Eudoxus 

Theaetetus 

Plato had a brilliant student called Theaetetus, who died in battle in 369 
B.C. It was Theaetetus who showed that the square root of a natural num­
ber is irrational if and only if the natural number is not a square. Theaetetus 
was responsible for the material in Books X and XIII of Euclid's Elements. 

Eudoxus 

Eudoxus (405-355 B.C.) came from Cnidus, a small Greek island near 
present-day TInkey. He distinguished himself in astronomy, medicine, ge­
ography, philosophy, and, of course, mathematics. 

As a young man, Eudoxus studied at Plato's Academy, commuting on 
foot from Piraeus, the harbour district. Later he engaged in a philosophical 
controversy with Plato. Eudoxus was a hedonist, but Plato put wisdom 
above pleasure. (See Plato's Philebus and Aristotle's Nicomachaean Ethics 
1101 b27 and 1172b9 for an account of this debate.) 

Eudoxus was responsible for the material in Books V and XII of Euclid's 
Elements. Book V is a theory of proportion. We would define 'a is to b as 
c is to d' (written a : b :: c: d) to mean alb = cld. However, this definition 
presupposes our real number field. It presupposes that we already have 
some way of understanding what it is to multiply or divide arbitrarily 
given irrational numbers. Eudoxus, however, was starting from scratch. He 
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could not use multiplication or division to define proportion because it 
was part of his program to define multiplication and division in terms of 
proportion. The definition of proportion on which he based his presentation 
of the number system was the following: 

a: b:: c: d 

iff, for any positive integers p and q, (1) pa > qb iff pc > qd, and (2) pa = qb 
iff pc = qd, and (3) pa < qb iff pc < qd. 

(Eudoxus assumed that all the numbers were positive.) 

Eudoxus and the Circle 

Eudoxus gave the following proof that the area of a circle is proportionate 
to its diameter squared. Suppose k is the area of the circle with diameter l. 
(Hence k is the number we today call1r / 4.) Let c be a circle with diameter 
d. To obtain a contradiction, suppose 

kd2 < area c 

Let regular 2n-gons be inscribed in both circles, where n is so large that 

1 
--1 area c < area c - kd2 
2n -

(This is possible according to the 'axiom of Archimedes', which, in fact, 
shows up in Aristotle and goes back at least to Eudoxus himself.) Then 

( 1 - 2nl_l) area c > kd2 

Now, as Antiphon realised, an inscribed regular 2n-gon takes up more than 
1 - 1/2n - 1 of the area of a circle. Hence 

area of 2n-gon in c > kd2 

Antiphon also knew that the area of the 2n-gon inscribed in c is d2 times 
bigger than the one inscribed in the circle with unit diameter. Thus 

kd2 > area of 2n -gon in unit diameter circle x d2 > kd2 

Contradiction. 
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Similarly, we get a contradiction if we assume that kd? > area c. From 
this it follows that kd? = area c. 

Menaechmus 

Menaechmus (350 B.C.) studied under Plato and Eudoxus. It was Menaech­
mus who told Alexander the Great: 
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o King, through the country there are private roads and royal 
roads, but in geometry there is only one road for all. 

Menaechmus discovered the conics, defining them as 'sections' of a cone 
and deriving equivalents of their analytic geometry formulas. For example, 
he defined a parabola as the intersection of a right circular cone and a plane 
parallel to a straight line in the (surface of) the cone. 

Suppose the plane cuts the cone at points V, P, and Q, where V is the 
vertex of the parabola, and P and Q are points opposite each other on the 
cone. There is a circle BPGQ that is in the (surface of) the cone, at right 
angles to the cone's axis, and is such that its diameter BG is perpendicular 
to PQ. If BG meets PQ at M, then V M is the axis of symmetry of the 
parabola. 

Let A be the vertex of the cone, and let W be the point on the cone 
opposite V. Then triangle V M B is similar to triangle A WV (since V M 
and AWare parallel). Hence VM/BM = AW/VW, this being a constant 
independent of P. By the theorem of Thales, LBPG is right, and thus 
P M2 = BM x MG. Since V MGW is a parallelogram, we have M G = VW. 
Hence 

VM VM VM AW 
PM2 BM x MG BM x VW VW2 

which is a constant k, independent of the choice of P. This yields V M = 
kP M2, which is essentially the same as the analytic geometry formula for 
the parabola. 

Menaechmus used the conics to 'double the cube'. To do this, he may 
have used the fact we express as follows: the parabolas y = ~x2 and x = y2 

meet at a point whose y-coordinate is V'2. 
Plato was unhappy that Menaechmus did not stick to straight lines and 

circles, but, in 1837, a French opium addict, Pierre Wantzel, proved that 
it is not possible to construct a segment equal to V'2 using only straight 
lines and circles. Menaechmus was right to introduce new curves. 

Exercises 12 

1. Prove the theorem of Theaetetus. 

2. Using the definition of proportion given by Eudoxus, show that 

a : b :: c : d iff d : c :: b : a 
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3. In Eudoxus's proof that the area of a circle is kd2 , how exactly do we 
get a contradiction from the assumption that kd2 > area c? 

4. What is the intersection point of y = ~x2 and x = y2? 

5. What is the analytic geometry equation of the parabola if, in the 
above notation, AV = 4 and VW = 3? 

Essay Question 

1. Summarise the Philebus. 



13 
Ruler and Compass Constructions 

The ancient Greeks searched for a way of using a straightedge and a com­
pass to trisect an arbitrary angle and draw a segment of length ij2. They 
also tried to 'square the circle', that is, construct a segment of length y'7r. 
Finally, they struggled to find straightedge and compass constructions for 
regular polygons with 7, 9, 11, 13, and 17 sides. In all this they failed, but 
it was not proved until the nineteenth century that the reason for their 
failure was that all these problems are impossible - except one. In 1796 
Gauss discovered a straightedge and compass construction for the regular 
17-sided polygon. It was this discovery, the first advance on Greek con­
struction problems in 2000 years, that motivated Gauss to devote himself 
to mathematics. 

Sadly, it is now possible to obtain a Ph.D. in mathematics and not know 
that Euclid lived in Alexandria, Egypt, about 300 B.C., and wrote a book 
called the Elements. When we do geometry today, we usually start with 
a plane that already contains a point corresponding to every ordered pair 
of reals. Euclid was more parsimonious. He started with just two points 
(corresponding to (0, 0) and (1, 0)) and then constructed, one by one, just 
enough extra points to meet his immediate needs. 

The rules for construction were strict. 

(1) If A and B are previously given or constructed points, you can 'join 
AB', constructing the line segment AB; if this segment intersects any pre­
viously constructed line segments or circles, you have thereby constructed 
the points of intersection. 
(2) If AB is a previously constructed segment and 0 is a previously given 
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or constructed point, you can draw a circle (that is, a circumference) with 
centre 0 and radius ABj if this circle intersects any previously constructed 
line segments or circles, you have thereby constructed the points of inter­
section. 
(3) If AB is a previously constructed segment, you can lengthen, or 'pro­
duce', it in either direction to meet a previously constructed segment or 
circle (assuming that that segment or circle lies 'in its way'), and thereby 
construct a point. 
(4) The only way to construct anything is to apply the above rules a finite 
number of times. 

As examples, we give the following 8 constructions. 

Cl. To bisect an angle 
Let ABC be an angle, with previously constructed 'arms' AB and BC. 
With centre B and radius BA, cut BC in E. That is, construct a circle 
with centre B and radius BA. If the circumference meets BC in a point, 
call that point E. Otherwise, produce BC, in the direction going from B to 
C, until it meets the circumference in a point, which we shall call E. With 
centres A and E, construct two circles each with radius AE. These circles 
meet in two points. Let F be the meeting point that is on the side of AE 
away from B. Note that AEF is an equilateral triangle. Join BF. Then 
BF is the required bisector. This can be proved using the 'side-side-side' 
congruence theorem to show that triangles BAF and BEF are congruent. 

If !..ABC = 1800 then BF is perpendicular to AC. Thus construction 
01 is also a construction for drawing a perpendicular to a given segment 
through a given point in that segment. 

C2. To construct the right bisector of a segment 
Let AB be a previously constructed segment. With centres A and B, draw 
two circles, each with radius AB. These circles meet in exactly two points 
C and D. Join CD. Then CD is the required right bisector. 

Note that CD meets AB in its midpoint, and hence this construction 
also works as a construction of the midpoint of a given segment. 

C3. To construct a segment through a given point and parallel to 
a given segment 
Let A be the point and BC the segment. It is assumed that A is not on the 
line BC. With centre C and radius AB, draw a circle. With centre A and 
radius BC, draw a second circle to cut the first circle in point D, where D 
and B are on opposite sides of AC. Then AD is the required parallel. 

C4. To add two segments 
Let AB and CD be two previously constructed segments. With centre B 
and radius CD, draw a circle. Produce AB (in the direction from A to B) 
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so that it meets this circle at E. The segment AE is the required sum. 

C5. To multiply two segments 
Let AB and CD be previously constructed segments. With centres C and 
D and radius CD, construct two circles meeting in E and E'. With centre 
C and radius AB, cut C E (or C E produced in the direction from C to E) 
in F. If a and X are the two points with which Euclid started, so that OX 
is a unit segment, then, with centre C and radius OX, cut CD (or CD 
produced in the direction from C to D) in G. Join FG. Using C3, draw a 
segment through D parallel to FG, to meet CE (or CE produced) in H. 
Then CHis the required product. 

This is proved by using the theory of similar triangles. Since CH : CF :: 
CD: 1, it follows that CH = CF x CD = AB x CD. 

C6. To draw the multiplicative inverse of a segment 
Let AB be a previously constructed segment. With centres A and B, con­
struct circles with radius AB, to meet in C and C'. With centre A and 
radius OX (the unit segment), cut AC (or AC produced in the direction 
from A to C) in D. With centre A and radius a X, cut AB (or AB pro­
duced in the direction from A to B) in E. Draw a line through E that is 
parallel to BD to meet AC in F. Then AF is the required segment. 

C7. To construct the square root of a segment 
Let AB be a previously constructed segment. Add the unit segment OX 
to it, drawing a segment AC = AB + 1, with B between A and C. Using 
C1, erect a perpendicular to AC through B. Using C2, construct the mid­
point D of AC. With centre D and radius DC, draw a circle to cut the 
perpendicular at E. Then BE is the required square root. 

This is proved by noting that LAEC, being an angle in a semicircle, is 
right. Hence triangles ABE and EBC are similar. This gives AB : BE :: 
BE: BC, so that AB x BC = BE2. But BC = OX = 1. 

cs. To construct a Pythagorean star 
With centre a and radius OX draw a circle. Join XO and produce it to 
meet the circle in Y. Construct the midpoint C of OX . Construct the right 
bisector of Y X, meeting the circle in E. With centre C and radius CE, 
cut OY in F. With centre E and radius EF, cut the original circle in G 
and H. With centre G, and the same radius, cut the original circle again 
at J. With centre H, and the same radius, cut the original circle again at 
K. Join EJ, EK, GK, GH, and H J. 

From the above, it is clear that, starting with the unit segment OX, 
Euclid could construct segments of any positive rational length. He could 
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also construct segments equal in length to numbers like 

The reason that the Greeks failed to 'duplicate the cube' is simply that {Y2 
is not a number of this type. For example, if we had 

with a and b rational and Vc irrational, and 3a2b + c nonzero, then we 
would have 

or 

which is rational. Contradiction. 
The first rigorous proof of the fact that the duplication of the cube is 

impossible was given in 1837 by Pierre Wantzel (1814-1848). At the same 
time Wantzel showed that cos 20° is not a constructible length, and hence 
one cannot trisect an angle of 60° using only straightedge and compass. 

Drawing on the work of Carl Friedrich Gauss (1777-1855), Wantzel also 
proved that if p is an odd prime, a regular p-gon is constructible just in case 
p has the form 2n + 1. Odd primes of this form are named Fermat primes, 
after Pierre de Fermat (1601-1665), who mistakenly thought that 22k + 1 is 
prime for any natural number k. (Thanks to Leonhard Euler (1707-1783), 
we know that 225 has factor 641.) It is not known whether there are any 
Fermat primes greater than 65,537. 

The problem of squaring the circle held out until 1882, when C. L. F. 
Lindemann (1852-1939) proved that 1f is not constructible. 

Exercises 13 

1. Get a straightedge and compass and actually construct a regular 
hexagon. 

2. Give a straightedge and compass construction for a line through a 
given point not on a given line and perpendicular to the given line. 

3. Give a Euclidean construction for an angle of 3°. 
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4. Prove that the above construction for the five-pointed star works. 

5. Prove that if a regular polygon with n sides is constructible, then so 
is a regular polygon with 2n sides. 

6. Construct a common tangent to two given circles. You must apply 
Euclid's rules and not just 'move the ruler round til it touches both 
circles'. 

7. Use Wantzel's results to prove that a regular polygon with 771 sides 
is constructible. 

Challenges for Experts 

1. Show that a regular 17-gon is constructible by proving the following: 
(a) let p = H -1 - J17 + V34 + 2J17); then p is a root of 

2w2 + w - 2 = - J17 

and hence a root of 

or 

(b) 3/10 < p < 4/10; 
(c) let q = (p-1)/(p+1); thenpq = p-q-1 and -6/10 < q < -4/10; 
(d) let 

and 
p(p2q 

Y=4-YW-4; 
then x + Y = p/2, XY = q/4, x 2 = px/2 - q/4, and y2 = py/2 - q/4; 
(e) (v'5 -1)/4 < x < 1/2 and -1 < y < 0; 
(f) let A be the acute angle whose cosine is x, and let B be the obtuse 
angle whose cosine is y; then 60° < A < 72°; 
(g) p3 = 2pq + 4p - 1 and p2q = q2 + 4q - p + 2; 
(h) since x 2 - px/2 + q/4 = 0, 

2p2x 2 - (2pq + 4p - l)x + (q2 + 4q - p + 2)/2 = 0 
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(using (g) above); hence 

2(px - q/2 - 1)2 - 1 = p/2 - x and 2(2x2 - 1)2 - 1 = y; 

similarly, 2(2y2 - 1)2 - 1 = x; 
(i) since x = cos A and y = cos B we have cos 4A = cos Band 
cos 4B = cos A; 
(j) hence cos 16A = 2(2 cos2 4A - 1)2 - 1 = 2(2 cos2 B - 1)2 - 1 = 
cos 4B = cos A, so that 16A ± A is a multiple of 3600 ; 

(k) 9000 < 15A < 10800 , so that 17 A is a multiple of 3600 , and hence 
A = (12/17)900 ; 

(1) A is constructible using only straightedge and compass, and hence 
so is A/4; 
(m) there is a straightedge and compass construction for a regular 
17-gon. 

2. Use the preceding exercise to construct a regular heptadecagon. 

Essay Question 

1. Does Plato's insistence that there be only two drawing instruments 
reflect the virtue of parsimony? What is parsimony, and is it a virtue? 



14 
The Oldest Surviving Math Book 

The city of Alexandria (on the northern coast of Egypt) was founded by 
Alexander the Great in 332 B.c. Ptolemy I made Alexandria his capital 
and opened a university there, about 300 B.c. This university, called the 
'Museum', soon had a library with more than 600,000 papyrus rolls. This 
library was destroyed by the Arabs in 641 A.D. 

The first chair of mathematics at the Museum was occupied by Euclid. 
He wrote books on optics, music, and astronomy, but his fame rests on 
the Elements, a collection of 13 small books that present the 'elements' or 
introductory parts of the mathematics studied in Alexandria. 

None of the theorems in the 13 books can be ascribed to Euclid himself. 
The Pythagoreans, including Archytas, were responsible for the contents of 
Books I, II, VI, VII, VIII, IX, and XI. Hippocrates was the genius behind 
Books III and IV. For Books V and XII we can thank Eudoxus. Books X 
and XIII are based on the work of Theaetetus. 

Euclid's contribution was the logical organisation of the Elements - its 
axiomatic structure in which everything is carefully deduced from a small 
number of definitions and assumptions. This structure served as a model 
for Aquinas's Summa Contm Gentiles, for Newton's Principia, and for 
Spinoza's Ethics. The Elements has been the most influential textbook in 
history. 

Our contemporary axiomatic approach is to take sets or natural numbers 
as basic, but Euclid, perhaps because he did not know how to give a set 
theoretical or arithmetic treatment of irrationals, started with points and 
lines. Euclid expressed the laws of arithmetic geometrically. For Euclid, a 
number is a line segment. 
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Another difference between us and Euclid is that Euclid regarded his 
starting assumptions not as mere hypotheses, but as truths. He intended to 
instantiate the ideal described by Aristotle at the beginning of the Posterior 
Analytics: sure knowledge is obtained by the rigorous deduction of the 
consequences of basic truths. These truths are either definitions or existence 
assertions. 

A Synopsis of the Elements 

Euclid begins the Elements with a list of 23 definitions. The first is that 'a 
point is that which has no part'. These are followed by 5 postulates govern­
ing what can be constructed and hence what has mathematical 'existence'. 
For example, the first postulate says: 'to draw a straight line from any point 
to any point'. In other words, given any two points, there is a straight line 
that passes through both of them. 

Euclid's fifth postulate is the famous Parallel Postulate: 

if a straight line falling on two straight lines make the interior 
angles on the same side less than two right angles, the two 
straight lines, if produced indefinitely, meet on that side on 
which are the angles less than the two right angles. 

In other words, if A and D are points on the same side of line BC, and 
L ABC + L DC B < 1800 then there is a point on that same side of BC where 
B A (suitably lengthened if necessary) meets CD (suitably lengthened if 
necessary) . 

For a long time mathematicians tried to prove the fifth postulate from 
Euclid's other starting assumptions (including some tacit ones), but in 
the nineteenth century, Eugenio Beltrami (1835-1900) and others showed 
that this cannot be done. The geometry obtained by adding the negation 
of the fifth postulate to Euclid's other axioms is a weird, but consistent, 
geometry called hyperbolic geometry. In hyperbolic geometry there are no 
squares, and not every triangle has a circumcircle. 

Following Euclid's 5 postulates are his 5 common notions, or logical 
truths. The first is 'things which are equal to the same thing are also equal 
to one another.' The fifth common notion is 'the whole is greater than the 
part'. Note that in modern set theory there is a sense in which the whole 
set of natural numbers is not greater than its part the set of evens, since 
the two sets can be placed in one-to-one correspondence. 

Following the 5 common notions are the 48 propositions of Book I, culmi­
nating in the theorem of Pythagoras and its converse. Before deducing its 
properties, Euclid is careful to show that it is indeed possible to construct 
a square on the hypotenuse. 

Book II gives a geometric treatment of some basic algebraic identities, 
such as the distributive law. It also includes the Law of Cosines. 
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Book III derives the basic properties of the circle. Euclid attempts to 
give rigorous proofs of his assertions, not merely relying on the diagrams. 
For example, he offers a proof of the fact that a point on a chord lies in 
the interior of the circle. 

Book IV gives constructions for the regular pentagon and the regular 15-
gon. This achievement was not surpassed until 1796, when Carl Friedrich 
Gauss (1777-1855) found a construction for the regular 17-gon. 

In Book V, Euclid uses Eudoxus's definition of proportion, together with 
the 'axiom of Archimedes', to deduce a basic field arithmetic for line seg­
ments. The commutativity of multiplication is proved in Proposition V 16. 

In Book VI Euclid studies similar (equiangular) triangles and proves that 
the length of a circular arc is proportionate to the angle it subtends at the 
centre of the circle. 

Books VII to IX are on number theory. Included are proofs for Euclid's 
algorithm (VII 2), the unique factorisation of square-free integers (IX 14), 
the infinitude of primes (IX 20), and the formula for even perfect numbers 
(IX 36). 

Book X investigates expressions like 

reducing them, if possible, to expressions with fewer square root signs (e.g., 
1 + y'6). 

Book XI presents the basic theorems of solid geometry. Euclid constructs 
a cone by rotating a right triangle about one of its sides. This takes him 
beyond straightedge and compass constructions. Indeed, by intersecting his 
cones with planes, he could have constructed the parabolas that Menaech­
mus used to duplicate the cube. Straightedge and compass constructions 
are only a proper subset of the constructions found in Euclid. 

Book XII is the masterpiece of Eudoxus. Without the aid of calculus, he 
manages to give a rigorous treatment of the volumes of the pyramid, cone, 
and sphere. 

Book XIII is the apex of the Elements. For each of the 5 regular polyhe­
dra, Euclid derives the ratio of its side to the radius of the sphere in which 
it can be inscribed. Euclid also proves that there are no other regular poly­
hedra than the 5 known to the Pythagoreans. 

In the remainder of this chapter, and in the next, we shall summarise the 
material in Books I, III, and VI of the Elements. This will give the reader 
what he or she needs to know to do some 'Euclidean geometry'. Sadly, this 
is now almost a forgotten art. It used to be taught in secondary schools, 
but it required imagination and insight, and so the average student (not to 
mention the average teacher) refused to do it, and it had to be replaced by 
a subject called 'Memorisation of Algebraic Formulas for Rote Application 
on the Test'. 
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Book I 

Euclid's first proposition is 'to construct an equilateral triangle'. Where­
as today we think in terms of a plane that is an infinite set of points and 
already contains an infinite number of equilateral triangles, Euclid's plane 
is at first empty (except for a couple of 'starting points'). Later it contains 
points and lines and triangles - but only those that have been constructed, 
one by one, using straightedge and compass. 

To construct an equilateral triangle on starting segment AB, Euclid con­
structs two circumferences, one with centre A and radius AB, and the 
other with centre B and radius BA. He assumes that they do not just pass 
through each other without touching but meet in a point C. He then joins 
C to A and to B. Of course, it is easy to show that ABC is equilateral: 
AC= AB = BA = BC. 

In Proposition 4, Euclid shows that if ABC and DEF are triangles 
such that LABC = LDEF, AB = DE, and BC = EF, then ABC is 
congruent to DEF. (That is, each side or angle of ABC has the same size 
as the corresponding side or angle of DEF, and their areas are equal too.) 
This is the side-angIe-side or SAS theorem. Its proof is not rigorous - it 
involves motion - and modern geometers prefer to take the SAS theorem 
as another postulate. (Note that in saying ABC and DEF are congruent, 
we arrange the letters so that the angles at the corresponding vertices are 
equal: LA = LD, LB = LE, and LC = LF.) 

In Proposition 5, Euclid applies SAS twice in order to prove that the 
base angles of an isosceles triangle are equal. That is, if, in triangle ABC, 
AB = AC, then LABC = LACB. Euclid's proof has been nicknamed 
the 'Pons Asinorum' or 'Bridge of Asses'. John Denton suggests that this 
is because the diagram looks like a bridge with piers, and the Arabic for 
'bridge piers' is 'bigalu al-qantara', an expression whose literal translation 
is 'the asses of the bridge'. 

To prove Proposition 5, Euclid produces AB to F and produces AC 
the same length to G. By SAS, triangles F AC and GAB are congruent. 
Hence FC = GB and LF = LG. Since FB = GC, it now follows that 
triangles BFC and CGB are congruent (SAS). Thus LFBC = LGCB 
and LBCF = LCBG. Since LABG = LACF (by the first congruence), it 
follows that 

LABG - LCBG = LACF - LBCF 

or LABC = LACB. 
Proposition 6 is the converse of Proposition 5: If LABC = LACB then 

AB = AC. For suppose AB > AC and let D be in AB so that DB = AC. 
Join DC. Then triangles DBC and ACB are congruent (by SAS). But 
D BC is only a part of AC B and has less area. Contradiction. Similarly, 
we get a contradiction if we assume that AB < AC. So AB = AC. 

Proposition 8 shows that if AB = DE, BC = EF, and CA = FD then 
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triangles ABC and DEF are congruent. For if they are not, there is a 
triangle A' EF, with A' and D on the same side of EF, which is congruent 
to ABC but distinct from DEF. Since A' E = AB = DE, it follows that 
LA'DE = LDA' E. Similarly, LA'DF = LDA' F. But LA'DE > LA'DF 
and hence LDA' E > LDA' F. Contradiction. Proposition 8 is the 'side­
side-side' or SSS congruence theorem. 

Proposition 15 tells us that if the straight line AEB meets the straight 
line DEC at E then LAED = LBEC. 

Proposition 16 states that if ABC is a triangle and D lies on BC 
produced (so that C is between B and D) then LACD > LBAC and 
LACD > LABC. Euclid proves this by bisecting AC at E and producing 
BE to F, so that EF = BE. Then, by SAS, triangles ABE and CFE are 
congruent, and hence 

LBAC = LFCE < LACD 

Hence, if G is on AC produced, 

LABC < LBCG = LACD 

the equality following from Proposition 15. 

Exercises 14 

Prove the following, using only the propositions given thus far. Do not use 
the fifth postulate or the fact that the sum of the angles of a triangle is 
two right angles. 

1. Prove Proposition I 15. 

2. Prove Proposition I 18: in any triangle the greater side subtends (is 
opposite to) the greater angle. 

3. Prove Proposition I 19, which is the converse of I 18. 

4. Prove Proposition I 20: in any triangle two sides taken (added) to­
gether are greater than the remaining one. 

5. Prove the angle-angIe-side congruence theorem (AAS): if LABC = 
LDEF and BC = EF and LACB = LDFE then ABC and DEF 
are congruent. Also if LABC = LDEF and AB = DE and LACB = 
LDF E then ABC and DEF are congruent. 
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Essay Question 

1. Are secondary school students today better off not having to learn 
Euclidean geometry? 



15 
Euclid's Geometry Continued 

Book I Continued 

Proposition 27 of Book I of the Elements tells us that if the 'alternate 
angles' are equal then the lines are parallel: if LAGH = LGHD then 
AB and CD are parallel (see the Figure on the next page). Proof: if AB 
(produced) does meet CD (produced) at X then GHX is a triangle in which 
the 'exterior angle' LAGH is not greater than the 'interior and opposite 
angle' LGH D - against Proposition 16. 

In Proposition 29, Euclid uses the fifth postulate for the first time. This 
is to prove the converse of Proposition 27. Suppose AB is parallel to CD. 
To obtain a contradiction, suppose LAGH -I LGHD, but, say, LAGH > 
LGHD. Then 

LGHD + LHGB < LAGH + LHGB = 1800 

Thus, by the fifth postulate, AB meets CD. Contradiction. Thus LAGH = 
LGHD. 

Proposition 32 shows that the sum of the angles in any triangle is two 
right angles. Indeed, if FCE is parallel to AB then LABC = LBCF = 
LECD (Prop. 29, 15). Also LBAC = LACE. Thus 

LABC + LBAC + LACB = LECD + LACE + LACB = 1800 

In non-Euclidean geometry, the sum of the angles of a triangle is not two 
right angles. 
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Diagrams for Propositions I 27, 32, and 35 

Proposition 33 states that if two sides of a quadrilateral are equal and 
parallel, then so are the other two sides. Proposition 34 states that the 
opposite sides and angles of a parallelogram are equal, and the diameter 
bisects the area. The proofs are left to the reader. 

In Proposition 35, Euclid broaches the topic of area, proving that 'paral­
lelograms which are on the same base and in the same parallels are equal to 
one another' (see the Figure above). The proof is as follows. By Proposition 
34, AB = DC and EB = FC. Also AD = BC = EF Thus 

AE = AD - ED = EF - ED = DF 

Hence by SSS, triangles ABE and DCF are congruent. Hence 
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area ABCD = area ABCF - area DCF 

= area ABCF - area ABE = area EBCF 

Furthermore, by the last part of Proposition 34, 

1 1 
area ABC = 2" area ABCD = 2" area EBCF = area EBC 

In other words, 'triangles which are on the same base and in the same 
parallels are equal to one another' - which is Proposition 37. Similarly, we 
have Proposition 41: ' if a parallelogram have the same base with a triangle 
and be in the same parallels, the parallelogram is double of the triangle'. 

Proposition 47 is the theorem of Pythagoras. The diagram is sometimes 
called the 'Bride's Chair' (see the Figure on the next page). To prove that 
if triangle ABC has a right angle at A then BC2 = AB2 + AC2, Euclid 
reasons as follows. By SAS, triangles F BC and ABD are congruent. Thus, 
using Proposition 41 twice, 

AB2 = area AGFB = 2 x area FBC = 2 x area ABD = area BDLJ 

Similarly, AC2 = area JLEC. Thus 

AB2 + AC2 = area BDLJ + area JLEC = area BDEC = BC2 

Proposition 48 is the converse of Proposition 47. Suppose AB2 + AC2 = 
BC2. Let LDEF be right, with ED = AB and EF = AC. By the theorem 
of Pythagoras, 

Hence DF = BG, and, by SSS, triangles BAC and DEF are congruent. 
Hence LBAC = LDEF = 900 • 

Book III 

In Book III of the Elements, Euclid derives the basic properties of the 
circle. 

Proposition III 3 states that if 0 is the centre of a circle and AB a chord, 
with point F on AB (between A and B), then OF is perpendicular to AB 
just in case F is the midpoint of AB. This is proved using congruences. 

Proposition III 12 states that if two circles touch one another externally 
then the straight line joining their centres passes through the 'point of 



90 15. Euclid's Geometry Continued 

G H 

K 

B 

E 

L 

D 

c 

D 

Diagrams for Propositions I 47 and III 20 

contact'. Euclid's proofrelies on Proposition I 20: 'in any triangle two sides 
taken together are greater than the remaining one'. 

Proposition III 20 notes that if 0 is the centre of a circle, AB a chord, 
and C a point on the circumference (on the same side of AB as 0) then 
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LAOB = 2 x LACB (see the Figure above). For 

LAOB = LDOB - LDOA 

= LOCB + LOBC - LDOA (Prop. I 32) 

2 x LOCB - LDOA (Prop. 15) 

= 2 x LOCB - 2 x LOCA (Prop. 32, 5) 

2 x LACB 

This leads immediately to Proposition III 21: 'in a circle the angles in 
the same segment are equal'. That is, if C and D are on the circumference 
of a circle with chord AB, and if C and D are on the same side of AB, 
then LACB = LADB (since each equals half the angle at the centre). 

Proposition III 22 states that if a quadrilateral's vertices lie on the cir­
cumference of a circle then the opposite angles sum to two right angles. 
The converse of this is also true, but Euclid omits it. 

Proposition III 35 states that if AEC and BED are chords of the same 
circle meeting at E, then AE x EC = BE x ED. This is proved using the 
theorem of Pythagoras. 

Proposition III 36 states that if point D is outside a circle and DB is a 
tangent to that circle, while DC A is a straight line such that C A is a chord 
of that circle, then DB2 = DC x DA. Again, the theorem of Pythagoras 
is used in the proof. 

Book VI 

Book VI concerns similar (equiangular) triangles. The key result is Propo­
sition VI 2: if a straight line be drawn parallel to one of the sides of a 
triangle, it cuts the sides of the triangle proportionately - and vice versa. 
In other words, if D is in side AB of triangle ABC, and DE is parallel to 
BC with E in AC, then BD/DA = CE/EA. Conversely, if D and E are 
in sides AB and AC, respectively, and BD/DA = CE/EA, then DE is 
parallel to BC. 

To prove this, Euclid uses what is, in effect, the formula for the area of 
a triangle (derived in Proposition VII). If DE is parallel to BC then 

BD/DA = BDE/DAE = CED/DAE = CE/EA 

Conversely, if BD/DA = CE/EA, construct DE' parallel to BC with E' 
in AC. To obtain a contradiction, suppose that E' is not E, but that, say, 
CE' > CEo Then CE'/E'A > CE/EA. But, by the above, CE'/E'A = 
BD/DA, so that BD/DA > CE/EA. Contradiction. 

Proposition VI 3 states that if D is in side BC of triangle ABC, and AD 
bisects LBAC, then BD/DC = BA/AC. This is proved by constructing 
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CE parallel to DA, with E in BA produced, and then applying Proposition 
VI 2. 

In Proposition VI 5, Euclid shows that if ABC and DEF are triangles 
such that AB/BC = DE/EF, and BC/CA = EF/FD, and BA/AC = 
ED / D F, then they are similar. 

Proposition VI 8 says that if !..BAC is right, and D is in BC so that 
AD is perpendicular to BC, then the three triangles so formed are similar. 
Hence AD2 = BD x DC. That is, AD is the 'mean proportional' between 
BD and DC. 

Exercises 15 

Give Euclidean proofs of the following. Remember that later proofs are 
built on earlier propositions, and you cannot prove, say, Proposition I 33 
using Proposition VI 2 (which comes later). You are not allowed to use 
analytic geometry or trigonometry. 

1. 133. 

2. I 34. 

3. I 41. 

4. III 3. 

5. III 12. 

6. III 22. 

7. The converse of III 22. 

8. III 35. 

9. III 36. 

10. VI 3. 
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11. VI 5. 

12. VI 8. 

13. Let DBCE be a straight line and A a point not on it. Suppose that 
the bisectors BF of LABD and CF of LACD meet at F. Suppose 
that the bisectors BC of LABE and CC of LACE meet at C. Prove 
that A lies on the line FC. 

14. Prove that any triangle with two equal angle bisectors is isosceles. 
That is, show that if ABC is a triangle and BM bisects LABC, with 
Min AC, and CN bisects LACB with N in AB, and if BM = CN 
then AC = AB. 

Hint: Suppose LABC < LACB, so that LABM < LACN. Sup­
pose BM and CN meet in J, and construct M' in JM so that 
LM'CN = LABM. Then M', N, B, and C are all on the circumfer­
ence of the same circle. (Why?) Since LM'CB > LCBN (why?) and 
since the greater angle stands on the greater chord, it follows that 
BM' > CN. Hence BM > CN. 

15. Let ABC be any triangle. Let A' BC be an equilateral triangle on 
BC, with A' and A on different sides of BC. Let B' AC be equilateral 
with B', B on different sides of AC. Let C' AB be equilateral with 
C', C on different sides of AB. Let A" be the centre of A' BC, B" the 
centre of B' AC, and C" the centre of C' AB. Prove that A" B" C" is 
equilateral. 

Hint: AA', BB', and CC' share a common point F on the circumcir­
cles of the three original equilateral triangles. 

16. An old map reads: 

Start from the gallows and walk to the white rock, counting 
your paces. At that rock, turn left and walk the same num­
ber of paces. Then leave your knife in the ground. Return 
to the gallows. Count your paces to the black rock, turn 
right and walk the same number of paces. The treasure is 
then midway between you and your knife. 

You have the map, you have found the rocks - but the gallows are 
gone! How do you find the treasure? 
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Hint: Drop perpendiculars to the line joining the rocks. There are two 
possible locations for the treasure. 

Essay Question 

1. The theory of regular polyhedra was a centerpiece of Greek mathe­
matics. Should people be given Ph.D.s in mathematics if they have 
no idea how it went? Support your answer with reasons related to 
the purpose of education. 



16 
Alexandria and Archimedes 

The school established by Euclid in Alexandria produced some first-rate 
mathematicians: Aristarchus, Archimedes, Apollonius, and Eratosthenes. 

Aristarchus 

Aristarchus (310-250 B.C.) came from S amos , as had Pythagoras. He gave 
an important application of mathematics to astronomy. Let SEM be the 
triangle whose vertices are the sun, earth, and moon (respectively). Aristar­
chus reasoned that when the moon is at its first quarter, !..SM E = 90°. 
That is why we see exactly half the part of the moon's surface that faces the 
earth. When the moon is at its first quarter, one can see the sun and moon 
together in the sky, at the same time. Thus Aristarchus was able to measure 
!..SEM. Using a drawing of a right-angled triangle with that same angle, 
Aristarchus found the ratio E S j EM. Without a telescope or space ship, 
he discovered that the sun is E S j E M times further from the earth than 
the moon is. (Aristarchus thought that ESjEM = 20, because he failed to 
measure !..SEM with sufficient accuracy. Actually, ESjEM = 300.) 

Thanks to observations of solar eclipses, Aristarchus knew that the ap­
parent diameter of the moon is equal to that of the sun. From this he 
deduced that the ratio of the sun's diameter to the moon's diameter is also 
ESjEM. 

By observing the shadow of the earth on the moon during lunar eclipses, 
one can calculate the relative sizes of earth and moon. Aristarchus used 
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this technique and his previous results, to calculate the ratio of the sun's 
diameter to the earth's diameter. As we shall see, Eratosthenes had a way 
of determining the size of the earth. The ancient Greeks were thus able to 
arrive at a knowledge of the size of the sun. 

Aristarchus based his work on the following correct assumptions about 
the solar system: 
(1) The sun, moon, and earth are spheres; 
(2) The earth goes around the sun, and the moon around the earth; 
(3) Light travels in straight lines; 
(4) The moon's light is a reflection of the sun's light; 
(5) Solar eclipses are caused by the moon's blocking the sun's rays to the 
earth, and lunar eclipses are caused by the earth's blocking the sun's rays 
to the moon. 

Archimedes 

Archimedes of Syracuse (287-212 B.C.) was the greatest mathematician and 
physicist before Isaac Newton. Many stories are told about Archimedes. 
One story relates that, while he was bathing, Archimedes suddenly discov­
ered a simple way of determining the ratio of gold to silver in a gold-silver 
alloy. Elated by his insight, he leapt from the bath, and ran through the 
streets of Syracuse, shouting Eureka!, which means I found it! Archimedes, 
however, had forgotten to put on his clothes! 

It was no accident that Archimedes made his discovery in the bath. 
Suppose you have an m kg crown made of gold and silver. Suppose you 
wish to determine the number x of kilograms of gold that the smith has 
put in it. If g is the density of gold and s is the density of silver, the volume 
of the crown is 

x m-x 
v=-+--

g s 

What Archimedes realised was that, by immersing the crown in a rect­
angular bath tub, and observing the increase in the water level, you can 
determine its volume v. Then, solving the equation for x, you can obtain 
the mass of gold in the crown. 

Thanks to his discovery, Archimedes was able to tell his friend, King 
Hieron, that the smith had cheated the king by charging him for pure gold, 
while in fact using a certain percentage of silver in the royal crown. 

When Syracuse was besieged by the Romans, Archimedes constructed 
some machines to help defend his city. In addition to catapults and cross­
bows, Archimedes designed a crane that lifted the Roman ships from the 
water and dropped them back in, stern first. When Syracuse finally fell, 
the Roman general Marcellus gave orders to bring Archimedes to him un­
harmed. These orders were not obeyed. Archimedes was slain by an un­
known soldier. There are various accounts of why this happened. Perhaps 
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it was simply because the soldier had watched his best friend being killed 
by one of Archimedes's machines. Those who take the sword die by the 
sword (Matthew 26:52). 

Archimedes wrote on many subjects, often solving problems by using 
what we would call calculus. He is thus, in a sense, one of the creators of 
that branch of mathematics. For example, he used calculus-like techniques 
to give the first proofs of many of our basic formulas, such as the formula 
for the area of a circle. As another example, he used calculus-like techniques 
to show that if two cylinders, each of radius 1, intersect each other at right 
angles, then their common volume is 16/3. (Note that a cross-section of 
the common volume, taken parallel to the plane containing the two axes of 
the cylinders, is a square. One 'adds up' these squares to get the volume. 
See the second edition of Schaum's Calculus, page 181.) 

In number theory, Archimedes posed a problem that took 2200 years to 
solve. This is the problem of the sun god's herd of cattle, which is equivalent 
to the problem of finding positive integers s and t such that 

S2 - (8 x 2471 x 957 x 46572 )t2 = 1 

This was not done until 1965, when H. C. Williams, R. A. German, and 
C. R. Zarnke used a computer to generate the 206,545 digit number that 
is the number of cattle in the sun god's herd. (See H. L. Nelson, 'A Solu­
tion to Archimedes' Cattle Problem', Journal of Recreational Mathematics, 
Volume 13, pages 164-176.) 

In geometry, Archimedes studied an area called the 'arbelos'. Let B be a 
point in straight line AG. Construct three semicircles with diameters AB, 
BG, and AG, all on the same side of AG. The area that is in the semicircle 
on AC but not in either of the two smaller semicircles is the arbelos (or 
'shoemaker's knife'). Archimedes found the area of the arbelos: 

At B erect a perpendicular to AC, to meet the large semicircle 
on AC at W. Then the area of the arbelos equals the area of 
the circle with diameter BW. 

Archimedes and the Circle 

As an example of Archimedes' mathematics, let us show how he proved 
that the area of a circle is 7rr2. (The first person to give the name 7r to 
the circle area constant was not Archimedes, but William Jones, in 1706.) 
Archimedes started with the following assumptions and theorems. 

(1) Circles and circle segments have areas. 
(2) The area of a set of pairwise disjoint triangles and circle segments equals 
the sum of the areas of those triangles and circle segments. If we dissect a 
circle into triangles and circle segments, the area of the circle is the sum 
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of the areas of the triangles and circle segments into which it has been 
dissected. Also, the area of the circle is greater than the sum of the areas 
of any proper subset of those triangles and circle segments. 
(3) Given any circle, there is a straight line segment that is longer than the 
perimeter of any convex polygon inscribed in the circle and shorter than 
the perimeter of any polygon circumscribing the circle. Any other such seg­
ment is equal in length to this one. And this segment is equal in length to 
the circumference of the circle. 
(4) Given any areas e and j, there is a natural number m, such that me> j. 
(See Aristotle's Physics 266b.) 
(5) A regular 2n-gon inscribed in a circle takes up more than 1- 2nl_l of its 
area. A regular 2n-gon circumscribed about a circle has an area less than 
1 + 2}-2 times that of the circle. 
(6) The area of a circle is proportionate to its diameter squared (as proved 
by Eudoxus; see the Elements XII 2). 

Using these assumptions and theorems, Archimedes derived the circle 
area formula by deriving two contradictions. 

(A) Suppose the circle has area x greater than the area t of a right triangle 
whose legs equal the radius and circumference of the circle. By (4) and (5), 
we can find a natural number n such that 

x - inscribed regular 2n-gon area < x - t 

and hence t < 2n -gon area. 
Let AB be a side ofthe inscribed regular 2n-gon and ON a perpendicular 

from the centre 0 of the circle to AB (with N being the midpoint of AB). 
Then ON is less than the radius of the circle. Using (3), we have 

2n(~AB x ON) 

~(2n AB)ON 
2 
1 . 

< 2" cIrcumference x radius 

t 

Contradiction. Thus (A) must be rejected. 

(B) Suppose now that x < t. By (4) and (5) there is a natural number n 
such that 

t > circumscribed regular 2n-gon area 
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However, if AB is a side of the circumscribed regular 2n-gon, then, by (3), 

2n(~AB) x radius 

~ (2n AB) x radius 

1. £ ad. > "2 clrcum erence x r lUS 

t 

Contradiction. Thus (B) must be rejected. 

Since assumptions (A) and (B) must be rejected, it follows from the Law 
of the Excluded Third that 
(C) The area of the circle equals that of a right triangle whose legs equal 
the radius and circumference of that circle. That is, 

1. £ ad. x = "2 clrcum erence x r lUS 

Let k be the length of the line segment equal to the circumference of the 
circle with diameter 1. (Thus k is what we call 'IT.) Then the area of this 
circle is k/4. Let c be a circle with radius r. Then, by (6), 

area of c (2r)2 
k/4 1"2 

and hence the area of c is kr2. 

Archimedes' proof of this formula was the culmination of 200 years of 
work, beginning with Antiphon (425 B.C.). 

Apollonius 

Apollonius (260-190 B.C.) came from Perga in the south of what is now 
Turkey. He wrote a book on conics that contained 400 theorems. Three of 
the things he is famous for are the following. 

(1) Apollonius discovered that if the same sphere passes through the ver­
tices of an icosahedron and the vertices of a dodecahedron, then 

surface area of dodecahedron volume of dodecahedron 
surface area of icosahedron volume of icosahedron 

(2) Apollonius was the first to suggest that the moon and planets move in 
epicycloids. This was an incorrect but very influential theory. 
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The Nephroid or Kidney 

Imagine a circle of radius r <::: 1 rolling around the outside of the circle 
x 2 +y2 = 4. Let P be a point on the rolling circle, and suppose that at time 
t = 0, P touches the circle x 2 +y2 = 4 at (2,0). If the circle ofradius r rolls 
in the counterclockwise direction, travelling at a uniform rate and returning 
to its starting position in 2n seconds, then at time t, the coordinates of P 
are 

( (2 + r) cos t - r cos ( ( 1 + ~) t), (2 + r) sin t - r sin ( ( 1 + ~) t) ) 

The path traced out by P is an epicycloid. When r = 2 the epicycloid is 
called a cardioid; with r = 1, it is a nephroid. 

(3) Apollonius discovered the inversion transformation. Let r be a given 
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positive number. Let P be a point in the straight line segment OP'. If the 
product 

OP x OP' =r2 

then P and P' are inverses, each of the other, with respect to the circle 
with centre 0 and radius r. A point in the circumference of this circle is 
its own inverse. It is not hard to prove the following. 

(a) The inverse of a straight line through 0 - that is, the set of points 
that are inverses of points in the line - is that same straight line. 
(b) The inverse of a straight line that does not pass through 0 is a circle 
whose circumference does pass through O. If A is its centre, then OA is 
perpendicular to the given line. 
(c) The inverse of a circle whose circumference passes through 0 is a 
straight line that does not pass through O. Again, if A is the centre of 
the given circle, the straight line is perpendicular to 0 A. 
(d) The inverse of a circle whose circumference does not pass through 0 is 
another such circle. 
( e) If a straight line is tangent to a circle at a point other than 0, then the 
inverse of that line is tangent to the inverse of that circle. 

Apollonius wrote a lost treatise on 'Tangencies' in which he gave a 
straightedge and compass construction for a circle tangent to three given 
circles. Using inversion, there is an easy way to do this, and this may have 
been the way actually used by Apollonius. 

Eratosthenes 

Eratosthenes of Cyrene (in North Africa) (275-195 B.C.) was chief librarian 
at Alexandria. He was interested in philosophy, poetry, history, philology, 
geography, astronomy, and mathematics. 

Eratosthenes suggested a method for making a list of all prime numbers. 
This method, called the Sieve of Emtosthenes, works as follows. Start with 
the sequence of positive integers ~ 2. Underline the 2, and cross out all 
the other multiples of 2. Go to the smallest positive integer n (on this list) 
which is neither underlined, nor crossed out, underline n, and cross out all 
the other multiples of n. Keep repeating the preceding step. In the end, the 
underlined numbers form a complete list of primes. 

To measure the earth, Eratosthenes correctly assumed that since the sun 
is so far from the earth, those of its rays that hit the earth can be re­
garded as parallel. (Here he used the result of Aristarchus.) Eratosthenes 
knew that Syene (present-day Aswan) is on the Tropic of Cancer. That 
is, at noon on midsummer's day (June 21), the sun is directly overhead. 
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~ ______________ ~~~~~~==~ __________ ~ ________ ~~s~un'srays 
Syene 

The World on Midsummer's Day 

At Alexandria, however, at noon on midsummer's day, the sun is 7° away 
from the point directly overhead. Since Alexandria is due north of Syene, 
the arc on the earth's surface between Alexandria and Syene subtends an 
angle of 7° at the earth's centre (see the Figure above). Eratosthenes knew 
the distance from Alexandria to Syene. In our metric units, it is 800 km. 
Using Euclid's theorem (VI 33) that the length of an arc is proportionate 
to the angle it subtends at the centre of the circle, Eratosthenes concluded 
that the circumference of the earth is, in effect, 

3~~0 x 800 = 41,000 km 

Hence its radius is 6500 km. 
Using the work of Aristarchus, Eratosthenes was able to calculate the size 

of the moon and the sun. Comparing their apparent sizes to their actual 
sizes, he was able to discover the distance to the moon and the distance to 
the sun - all without using any of our technology. 
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Exercises 16 

1. Suppose the moon is represented by the circle x2 + y2 = 1 and the 
earth's shadow on the moon is represented by a circle that passes 
through the three points (0, 0), and (-0.1364, ±0.9907). What is the 
ratio of the earth's diameter to that of the moon? 

2. Suppose you know the actual size of the moon. What is a simple way 
of finding its distance from the earth - without using anything Er­
atosthenes could not have used? 

3. The density of gold is 19300 kgjm3 , while that of silver is 10,500 
kgjm3 • Suppose that a 5 kg crown is made of gold and silver. What 
formula gives the mass of gold it contains in terms of its volume? 

4. Give a proof for Archimedes's result about the area of the arbelos. 
Also show that if the circle with diameter BW meets the semicircle 
on AB at U and the semicircle on BC at V then (1) W, U, and A 
are collinear; (2) UV is the direct common tangent to the semicircles 
on AB and BC; and (3) BW and UV are equal in length and bisect 
each other. 

5. Prove that a regular 2n-gon circumscribing a circle has an area less 
than 1 + 2}-2 that of the circle. 

6. Prove the following theorem, found in Book I of the Conic Sections 
of Apollonius. Suppose a straight line cuts a parabola in A and B. 
Suppose another straight line, parallel to AB, cuts the parabola in C 
and D. Let M be the midpoint of AB and N the midpoint of CD. 
Produce the segment M N until it cuts the parabola at X and keep 
producing it to Y, so that XY = M X. Then Y A and Y B are tan­
gents to the parabola. (You may use analytic geometry.) 

7. Draw a cardioid. 

8. Show that the equation of the nephroid is (x2 + y2 - 4)3 = 108y2. 

9. Let E be the centre of the circle x2 + y2 = 4, and let S be the centre 
of the rolling circle of radius 1 (for the nephroid). Show that P goes 
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around S 3 times for every time E goes around S - taking the point 
of view of someone sitting on S. 

Challenges for Experts 

1. Show that the cylinders x 2 + y2 = 1 and x 2 + Z2 = 1 have a common 
volume of 16/3. (Do not try this problem if you do not know some 
calculus.) 

2. Prove Properties (a) to (e) of inversion. 

3. Draw two nonoverlapping circles of different radii and a point P out­
side both of them. With centre P, draw a circle with radius so big 
that it encloses the first two circles. Take this big circle as a circle for 
inversion. Find a Euclidean method for constructing the inverses of 
the first two circles. These inverses will be circles. Construct a tangent 
common to these two circles. Construct the inverse to this tangent. 
This final inverse is a circle tangent to the two original circles and 
passing through P. 

4. Given three nonoverlapping circles, give a straightedge and compass 
construction for a circle tangent to all three. 

Essay Question 

1. If Archimedes were alive today, would he have a moral obligation not 
to help his country design weapons? Support your answer with rea­
sons related to the role of science in history. 
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The End of Greek Mathematics 

Hipparchus 

Hipparchus (180-125 B.C.) came from Nicaea, the town near present-day 
Istanbul, which was to be the site of the great pro-monotheistic council of 
325 A.D. Hipparchus was an astronomer. He calculated the duration of the 
year to within 6 minutes. 

Hipparchus was the father of trigonometry. He drew up a table giving, 
for each whole number angle with vertex at the centre of a circle of radius 
60, the length of the chord it cuts off that circle. For example, suppose 
LADB = 30°, with D the centre of the circle and DA = DB = 60. Then 
the chord in question is the segment AB. This has length 31.06, so that in 
Hipparchus's table, we find 

chord(300) = 31.06 

In modern terms, chord(x) = 120 x sin(~). To construct his table, Hip­
parchus used formulas we would express as 

sin( x ± y) = sin x cos y ± cos x sin y 

. 2 X 
2 sm C2) = 1 - cos x 
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Menelaus's Theorem 

Menelaus 

Menelaus of Alexandria (100 A.D.) founded spherical trigonometry. He is 
known for the following theorem, found, for the first time, in his Spherica. 

Let ABC be a triangle. Suppose D is on the line through B 
and C, E is on the line through A and C, and F is on the line 
through A and B. If exactly none or two of the points D, E, 
and F are on the sides of the triangle then: D, E, and Fare 
collinear if and only if BD x CE x AF = CD x AE x BF. 

Proof: Suppose D, E, and F are collinear in line z. We may suppose z 
does not pass through A, B, or C. Let A', B', and C' be points in z such 
that AA', BB', and CC' are all perpendicular to z. Then 

BD BB' 
CD CC' 
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CE CC' 
= 

AE AA' 
AF AA' 

= 
BF BB' 

Multiplying, we obtain the result. The converse now follows. 

Nicomachus 

Nicomachus of Gerasa (near Jerusalem) lived about 100 A.D. He was a neo­
Pythagorean, and he is known for being one of the first thinkers to locate 
the natural numbers in the mind of God. In his number theory book, the 
Introductio arithmeticae, he considers the following infinite triangle, noting 
that the sum of the numbers in the nth row is n3 . 

1 
3 5 

7 9 11 
13 15 17 19 

Diophantus 

In 250 A.D., Emperor Decius was executing Christians who refused to sacri­
fice to pagan gods. In Rome, Plotinus was teaching his version of Platonism. 
In Alexandria, Diophantus was working on his Arithmetica. 

In The History of the Church, Eusebius tells us that Bishop Anatolius 
(260 A.D.) wrote a book called Elements of Arithmetic. According to Michael 
Psellus (in the eleventh century), Anatolius dedicated a tract on Egyptian 
computation to Diophantus. Diophantus himself dedicated his Arithmetica 
to Dionysius, Bishop of Alexandria from 247 to 264. We do not know if 
Diophantus himself was a Christian, but it is not impossible. 

There were originally 13 books in the Arithmetica. Until 1973, we had 
only 6 of them. Then 3 more were discovered in an Arabic translation 
going back to the ninth century. (See Jacques Sesiano, Books IV to VII of 
Diophantus' Arithmetica.) 

The Arithmetica consists of solutions to algebraic problems. The solu­
tions are all rational numbers. Some of the problems are indeterminate and 
have more than one rational number solution. Diophantus is usually con­
tent to give just one solution, but in connection with Problem VI 15, he 
mentions an equation 'one can solve in an infinite number of ways'. 

As an example, let us consider Problem 9 of Book II: 

to divide a given number which is the sum of two squares into 
two other squares 
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That is, given rationals a and b, find a nontrivial rational solution of 

Diophantus takes the special case where a = 2 and b = 3, but his solution 
is easily generalised. He writes: 

take (x + 2)2 as the first square and (mx - 3)2 as the second, 
say (2x - 3)2. Therefore 

(x2 + 4x + 4) + (4x2 + 9 - 12x) = 13 

or 5x2 + 13 - 8x = 13. Therefore x = 8/5, and the required 
squares are 324/25 and 1/25. 

Note that with a = 1 and b = 0, we get an analysis of a typical Pythagorean 
triple. 

In connection with problem III 19, Diophantus notes that 65 is a sum 
of two squares in two ways since 65 'is the product of 13 and 5, each of 
which numbers is the sum of two squares'. This remark led T. L. Heath to 
speculate that Diophantus was aware of the relations 

The person who discovered these identities was actually al-Khazin (950 
A.D.). 

Diophantus was the 'father of algebra' in the sense that he was the first 
to make systematic use of a symbolic notation for algebraic expressions. 
He denoted + by juxtaposition, and - by the symbol A . 

He wrote K Y for x3 , ~ Y for x 2 , and <; for x. 

Pappus 

In 320 A.D., the Roman Empire had its first Christian emperor, Constan­
tine. In Alexandria, Athanasius was defending the divinity of Jesus against 
Arius, who thought that Jesus was merely a special kind of human. Also in 
Alexandria, Pappus was writing his encyclopaedic Collection. The school 
of mathematics had declined, and Pappus was its last lone genius. 

The following 'Theorem of Pappus' (actually due to Euclid) is Proposi­
tion 139 in Book VII of the Collection. It is more important than Pappus 
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Theorem of Papus 

realised. It expresses the commutativity of multiplication. It is fundamental 
in projective geometry. Hilbert used it as a key theorem in his presentation 
of Euclidean geometry. 
The Theorem of Pappus 
Suppose we have a straight line with points X, E, C, and A on it (in that 
order) and another straight line with points X, B, F, and D on it (in that 
order), meeting the first line in X. Suppose ED meets AB in L, and EF 
meets BC in N, and CD meets AF in M. Then L, M, and N are collinear. 
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Proof: Suppose CD and EF meet in U. (If they are parallel, the proof 
is slightly different.) Suppose AB meets CD in Wand EF in V. (See the 
figure above.) 

We apply the theorem of Menelaus 6 times, each time taking UVW as 
the triangle. 

With L, D, E, we have VLxWDxUE LW x DU x EV 
With A, M, F, we have VAxWMxUF AW x MU x FV 
With B, C, N, we have VBxWCxUN BWx CUxNV 
With A, C, E, we have VA x WC x UE AW x CU x EV 
With B, D, F, we have VB x WD x UF BWxDUxFV 

Multiplying the first three equations and dividing by the product of the 
last two equations, we obtain 

V L x W M x UN = LW x MU x NV 

and the result follows. 

Hypatia 

Hypatia (d. 415) was the daughter of Theon of Alexandria, who put out an 
edition of Euclid's Elements. Hypatia wrote commentaries on Apollonius 
and Diophantus. 

According to Socrates Scholasticus (380~450 A.D.), in Chapter 15 of Book 
VII of his History of the Church, Hypatia was murdered by a mob of 'Chris­
tians', led by one 'Peter'. This tragedy is sometimes blamed on the Chris­
tian bishop, Cyril, but there is no evidence to support this accusation. Cyril 
was a zealous leader, but we have no reason to think he 'incited' the crowd 
to make a physical attack on the pagan mathematician. Indeed, we have 
no reason to think that the murder had anything to do with religion and 
science. For all we know, the mob killed Hypatia simply because they were 
poor and unemployed, while Hypatia had a permanent well-paid job. 

Conclusion 

Towards the end of this era, Greek mathematics degenerated into mere 
commentaries and riddle solving. In 529 Emperor Justinian closed Plato's 
Academy, apparently because it opposed the Christian revelation, and the 
few remaining scholars went to Persia. In 641 A.D., Alexandria fell to the 
Arabs, who burned the famous library. This event may be taken to mark 
the final end of ancient Greek mathematics. 

It is sad that there were so few mathematicians in the early Christian 
church. Anatolius, and possibly Diophantus, were exceptions. Most of the 
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mathematicians at the Academy and the Museum rejected the new truths of 
Christ's revelation. This was unfortunate because the split between the old 
scientific learning and the vibrant new faith weakened the Roman Empire, 
which was the bulwark of civilisation in the West. If the mathematicians 
had joined the Christians, the Dark Ages would have been brightened by a 
dialogue between reason and faith. As it was, this dialogue was postponed 
to the later Middle Ages, when thinkers like Thomas Aquinas (1225-1275) 
advanced philosophies that were influenced as much by the Elements as by 
the Bible. 

Exercises 17 

1. What is the chord of 17°? 

2. Give the details of the proof of the converse in the theorem of Menelaus. 

3. Prove the theorem of Nicomachus on the triangle of odd numbers. 

4. Problem XI of Book IV of the Arithmetica of Diophantus is to find a 
rational solution of x 3 - y3 = X - y. Show that if a and b are relatively 
prime integers, one solution is 

±(b2 - 3a2 ) - 2ab 4ab 
x = and y - ---:::-----:-::-

3a2 + b2 - 3a2 + b2 

5. Prove the theorem of Pappus in the case in which CD and EF are 
parallel. 

Essay Questions 

1. Is it morally permissible to spend your days doing pure mathematics 
while your government is murdering members of a minority religion? 
What if you are yourself a member of that minority religion? 

2. Look up the accounts of Hypatia's death in several history of math 
books. Do they reflect any bias, going beyond the facts, to glorify 
Hypatia for some ideological purpose? 



18 
Early Medieval Number Theory 

Sun Tsu 

Sun Tsu (400 A.D.) was one of the first mathematicians to work on the 
'Chinese Remainder Problem'. He gave a way of calculating the solutions 
to the following problem: 

divide by 3, the remainder is 2; 
divide by 5, the remainder is 3; 
divide by 7, the remainder is 2; 
what is the number? 

Sun Tsu also gave a formula for determining the sex of a foetus: 

Take 49; add the number of the month in which the woman will 
give birth; subtract her age. From what now remains, subtract 
the heaven 1, subtract the earth 2, subtract the man 3, subtract 
the four seasons 4, subtract the five elements 5, subtract the six 
laws 6, subtract the seven stars 7, subtract the eight winds 8, 
subtract the nine provinces 9. If then the remainder be odd, the 
child shall be a son; and if even, a daughter. 

Note that in equating the odd with the masculine, Sun Tsu is in agreement 
with Pythagoras. 
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Thabit Ibn-Qurra 

Thabit (836-901) lived in Baghdad and was an active member of a neo­
Pythagorean group called the Sabians. He wrote on politics, grammar, 
Plato's Republic , smallpox, bird anatomy, beam balances, seawater salin­
ity, sundials, the Parallel Postulate, cubic equations, and the new crescent 
moon. He also did work in spherical trigonometry and what we would call 
calculus. 

Unlike Aristotle, Thabit believed there is an actual infinity. 
In his book Book on the Determination of Amicable Numbers, he gave a 

new rule: 

Let n be a positive integer > l. 
Let p = 3 x 2n - 1, and q = 3 x 2n - 1 - 1, and r = 9 X 22n- 1 - l. 
If p, q, and r are primes, then 2npq and 2nr are amicable 
(that is, each is equal to the sum of the proper divisors of the other). 

When n = 2, we have p = 11, q = 5, and r = 71, and we get the amicable 
pair 220 and 284. When n = 3 (or any multiple of 3), r is divisible by 7, 
and hence not prime. However, when n = 4, we obtain the amicable pair 
17,296 and 18,416. 

It is not known if Thabit's rule generates infinitely many amicable pairs, 
but it is known that there are some amicable pairs it does not generate, 
such as the pair 1184 and 1210, which was first discovered in 1866, by the 
sixteen-year-old B. N. 1. Paganini. 

As we shall see in Chapter 20, Thabit also gave a generalisation of the 
theorem of Pythagoras. 

Brahmagupta 

Brahmagupta (628 A.D.) was the first person to give a systematic presen­
tation of rules for working with negative numbers. He wrote: 

Positive, divided by positive, or negative by negative, is affir­
mative. Cipher [zero] divided by cipher, is nought. Positive di­
vided by negative, is negative. Negative, divided by affirmative, 
is negative. 

Brahmagupta had trouble with zero, but the rest is correct. 
Thanks to his theory of negative numbers, Brahmagupta was able to give 

a complete solution of the linear Diophantine equation ax + by = F. His 
solution was essentially the following. 
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Since there is no solution unless gcd( a, b) divide F, we may, without loss 
of generality, take it that gcd( a, b) = 1. For example, to solve 

4x+6y=2 

it suffices to solve the equation we get by dividing out the gcd of 4 and 6, 
namely, 2x + 3y = 1. In this second equation, the coefficients of x and y 
are relatively prime. 

Using Euclid's algorithm (see Chapter 7), we can find a single solution 
x = 9 and y = h. Moreover, for any integer k, 

a(g + bk) + b(h - ak) = F 

Thus all the numbers contained in the formulas x = 9 + bk and y = h - ak 
are solutions to the equation. 

Brahmagupta was no doubt aware of the fact that there are no other 
solutions. This can be shown as follows. 

If am + bn = F then 

a(g + m - g) + b(h + n - h) = F 

and hence a(m - g) = -b(n - h). Thus al( -b(n - h)). Since gcd(a, b) = 1, 
it follows that alh - n. Say ak = h - n. Then a(m - g) = abk, so that 
m - 9 = bk. Hence m = 9 + bk and n = h - ak. 

Brahmagupta also discovered a formula for the area of a cyclic quadri­
lateral, as we shall see in Chapter 20. 

Bhaskara 

Like other early Indian mathematicians, Bhaskara (1114-1185) liked to 
write mathematics in poetry: 

The square root of half the number of bees in a swarm 
Has flown out upon a jasmine bush; 
Eight ninths of the swarm has remained behind; 
A female bee flies about a male who is buzzing inside a lotus 
flower; 
In the night, allured by the flower's sweet odour, he went inside 
it 
And now he is trapped! 
Tell me, most enchanting lady, the number of bees. 

This is certainly a romantic way of asking for the solution of 

VX72 + (8/9)x + 2 = x 

One of Bhaskara's books was named after, and addressed to, his daugh­
ter, Lilavati. She is the 'enchanting lady' mentioned above. According to an 
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anecdote passed on by a Persian translator (Fyzi), astrologers had foretold 
that there was but one lucky moment at which Lilavati might marry. Un­
fortunately, one of Lilavati's pearls fell into the water clock, and it stopped 
without anyone noticing. The single lucky moment passed, and Bhaskara 
had to cancel the wedding. Since he could no longer give her a husband, 
Bhaskara decided to give his daughter a math book instead. 

Probably this story is false. A clever mathematician would have enough 
sense not to sacrifice his daughter's marriage to a foolish superstition. 

One of Bhaskara's feats in number theory consisted in finding the smallest 
positive integer solution of 

namely, x = 1,766,319,049 and y = 226,153,980. To do this he used the 
cakravala or 'cyclic process'. This process is equivalent to the simple con­
tinued fraction method, foreshadowed in Euclid's algorithm (see Chapter 
7), but not fully explained until J. L. Lagrange (1736-1813) wrote a paper 
on the subject, which appeared in 1768. 

Bhaskara believed in an actual infinity in mathematics. In his Vija-
Ganita or Basic Arithmetic, he writes: 

Quotient the fraction ~. This fraction, of which the denominator 
is cipher [zero], is termed an infinite quantity. In this quantity 
consisting of that which has cipher for its divisor, there is no 
alteration, though many be inserted or extracted; as no change 
takes place in the infinite and immutable God, at the period of 
the destruction or creation of worlds, though numerous orders 
of beings are absorbed or put forth. 

Exercises 18 

1. Find all the solutions to Sun Tsu's Chinese Remainder Problem. 

2. Solve the following problem of Sun Tsu: 'A pregnant woman, who is 
29 years of age, is expected to give birth to a child in the 9th month 
of the year. Which should be her child, a son or a daughter?' 

3. When does Sun Tsu's rule for sex determination give rise to a nega­
tive number? 
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4. Pursued by a lion, a tourist and her guide are dashing up the steps 
of a pyramid. The tourist takes 5 steps at a time, the guide 6, and 
the lion 7. Towards the end of this tale, the tourist is 1 step from the 
top, the guide 9, and the lion 19. How many steps are in the pyramid? 

5. Show that 1184 and 1210 are amicable. 

6. Show that 1184 and 1210 are not given by Thabit's rule. 

7. Prove that if n is a multiple of 3, then r (in Thabit's rule) is a mul­
tiple of 7. 

8. Prove that Thabit's rule works. 

9. Give all the solutions to the Diophantine equation 101x + 753y = 
100, ODD. 

10. How many bees were there? 

11. Solve x 2 - 13y2 = 1 in positive integers. 

12. Find the smallest 4 square triangular numbers. 

13. 'Of a flock of geese, ten times the square root of the number departed 
for the Manasa lake, on the approach of a cloud. An eighth part went 
to a forest of St'halapadminis. Three couples were seen engaged in 
sport, on the water abounding with delicate fibres of the lotus. Tell, 
dear girl, the whole number of the flock.' 

Essay Question 

1. What does Bhaskara's theological explanation of the fact that 00 ± 
x = 00 imply about his conception of God and the universe? 
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Algebra in the Early Middle Ages 

Wang Hs'iao-t'ung 

Wang served on the Astronomical Board of the T'ang government, about 
625 A.D. One of the problems he solved was the following: 

There is a right-angled triangle, the product of whose legs is 
706.02 and the hypotenuse of which exceeds one side by 36.9. 
Find it. 

This leads to a cubic equation that can be solved by inspection. 

Al-Khwarizmi 

At the beginning of the ninth century, Caliph al Mamun established a 
'House of Wisdom' at Baghdad. One of the first mathematicians associ­
ated with this House was Muhammed ibn-Musa al-Khwarizmi (825 A.D.), 
who came from the area south of the Aral Sea in central Asia. Our word 
'algorithm' comes from a book he wrote on the use ofIndian numerals. The 
book began, 'Spoken has al-Khwarizmi ... " or, in the Latin translation, 
'Spoken has Algoritmi ... '. 

AI-Khwarizmi's most important work was the Hisab al-jabr w'al-muqa­
balah, from which we get the word 'algebra'. The word 'al-jabr' means 
'combining', as in 'combining like terms' to solve an equation. 

AI-Khwarizmi's 'Algebra' contains nothing that was not known to the 
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ancient Greeks. There are few proofs, and one of them is woefully inade­
quate. This is al-Khwarizmi's 'proof' of the theorem of Pythagoras, which 
only works if the right triangle is isosceles! 

Al-Khwarizmi gives three approximations for 71". None of them is sup­
ported by any reasoning, and Al-Khwarizmi does not seem to care which 
one is used. Al-Khwarizmi was a transmitter of ancient Greek knowledge, 
not an original mathematician. 

Exercises 19 

1. Solve Wang's problem. 

2. One of the problems transmitted by Al-Khwarizmi was the following 
problem of Heron (75 A.D.): find the side of a square inscribed in a 
triangle with sides 10, 10, and 12. 

3. Abu Ja'far al-Khazin (950 A.D.) gave the following identity: 

(a2 + b2)(C2 + d2) = (ac =f bd)2 + (bc ± ad)2 

Prove that it is correct. 

Challenges for Experts 

1. In the Nine Sections of Mathematics (1247 A.D.), Ch'in Chiu Shao 
found a root of 

X4 - 763, 200x2 + 40,642,560,000 

using what is, in effect, Horner's method (rediscovered by William 
Horner in 1819). Show that Shao's polynomial has four linear factors. 

2. Horner's method for solving, say, f(x) = x3 +ax2+bx+c = 0, works 
as follows. Without loss of generality, suppose f(x) has a single root 
r between 0 and 10. Let d be its first scale ten digit. Let 

a' 1O(3d + a) 

b' = 100(3d2 + 2da + b) 
c' 1000f(d) 

g(x) x3 + a' x2 + b' x + c' 



Exercises 19 121 

Then g ( x) has a single root r' between 0 and 10. Moreover, if d' is the 
first digit of r', then d' is the second digit of r. For f (d+ (r - d)) = 0 iff 
g(lO(r-d)) = O. Use this to find the first 3 digits in the cube root of 2. 

3. Use Horner's method to find a root of Shao's polynomial. 

Essay Question 

1. Who has a better right to the title 'Father of Algebra', and why: 
Diophantus or al-Khwarizmi? 



20 
Geometry in the Early Middle Ages 

Thabit Again 

Thabit Ibn-Qurra (836-901) gave a generalisation of the theorem of Pythago­
ras: 

Let ABC be a triangle with LA obtuse. Let B' and C' be in 
BC such that LAB'B = LAC'C = LBAC. Then AB2+AC2 = 
BC(BB' + CC'). 

Apart from the above contribution, the only important original work in 
geometry in the early Middle Ages was done by Brahmagupta (628 A.D.). 

Brahmagupta Again 

Brahmagupta's most striking achievement was his discovery of the following 
formula for the area of a cyclic quadrilateral with sides a, b, c, and d: 

vI(s -a)(s - b)(s - c)(s -d) 

where s = ~(a + b + c + d) is the semiperimeter. 
Brahmagupta did not give a proof that this is, indeed, the formula for 

the area of the quadrilateral. If he had, he might have remembered to say 
that the quadrilateral does have to be cyclic (that is, inscribed in a circle). 
This he omitted to do. 
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We can prove Brahmagupta's formula as follows. Suppose that a convex 
quadrilateral has sides a, b, e, and d, with LE between sides a and band 
LF between sides e and d. 

E~--------1 

b 

Then its area squared is 

d 

(~absinE + ~edsinF)2 

F 

Now 

1 2 1 2 2 2 22 (s - a)(s - b)(s - e)(s - d) = -(ab + cd) - -(a + b - e - d ) 
4 16 

so that, by the Law of Cosines, 

1 
4(s - a)(s - b)(s - e)(s - d) = (ab + cd)2 - 4 (2abcos E - 2cdcos F)2 

Thus 

4 x area squared = 4(s - a)(s - b)(s - e)(s - d) - 2abed(cos(E + F) + 1) 

iff 
a2b2 sin2 E + 2abcdsinEsinF + e2d2 sin2 F 

= (ab + ed)2 - (a2b2 cos2 E - 2abedcosEcosF + e2d2 cos2 F) 

-2abedcos(E + F) - 2abcd 

Collecting the terms with a2b2, those with e2d2, and those with abed, we 
see that this is true. Hence we have the following theorem. 
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Theorem: A convex quadrilateral with sides a, b, e, and d, with LE be­
tween a and b, and LF between sides e and d has area 

1 
(s - a)(s - b)(s - e)(s - d) - 2abed(cos(E + F) + 1) 

where s = (a + b + e + d)/2. 
Hence if the quadrilateral is cyclic, so that E + F = 1800 , the area is 

J(s - a)(s - b)(s - e)(s - d) 

Note that with d = 0 we obtain Archimedes' formula for the area of a 
triangle. 

Brahmagupta also gave a formula for the diagonal of a cyclic quadrilat­
eral. Suppose g is the diagonal opposite angles E and F. Then 

a2 + b2 - 2abcosE = l = e2 + d2 - 2edcosF 

But cos F = - cos E (since the quadrilateral is cyclic) and hence 

Thus 

or 
2 (ae + bd)(ad + be) 

g = 
ab+ed 

Similarly, the square of the other diagonal is 

h2 = (ab + ed)(ae + bd) 
ad+be 

Using these formulas, Brahmagupta found quadrilaterals whose sides, di­
agonals, and areas are all rational. One of these was the cyclic quadrilateral 
with sides 52, 25, 39, and 60. 
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Exercises 20 

1. Prove Thabit's generalisation of the theorem of Pythagoras. 

2. Prove that if a triangle has sides of lengths a and b enclosing an angle 
E then its area is ~ ab sin E. 

3. Prove that if 8 = (a + b + c + d)/2 then 

(8 - a)(8 - b)(8 - C)(8 - d) = (ab + Cd)2/4 - (a2 + b2 - c2 - d2)2/16 

4. Prove that a quadrilateral is cyclic iff its opposite angles are supple­
mentary (that is, add up to 180°). 

5. If you know the sides of a cyclic quadrilateral, how can you determine 
the radius of the circumscribing circle? 

6. Prove that there is a cyclic quadrilateral with sides 52, 25, 39, and 
60. Prove that its diagonals and area are all integers. 

7. Show that there is a cyclic quadrilateral with sides 25, 25, 25, and 
39. What are the lengths of its diagonals and its area? 

Essay Question 

1. Why was so little mathematics done between the years 500 and 1000 ? 
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Khayyam and the Cubic 

The Three Friends 

When Omar Khayyam (1050-1123) was young, he and two fellow students, 
Nizam and Hassan, promised that if one of them became rich, he would 
share his wealth with the other two. Nizam did become rich, and it was 
only thanks to Nizam's money that Omar could give up tentmaking for 
mathematics. The word 'khayyam' means tentmaker. 

The Positive Roots of the Cubic Equation 

Omar spent some time writing poetry and some time working on a reform 
of the calendar, but much of his life was devoted to the cubic equation 

x 3 + ax2 + bx + c = 0 

There are 8 possibilities for the signs of a, b, and c, and Omar treated each 
one separately, finding positive solutions by means of intersecting conics. 
In some cases, Omar found the solution as the abscissa of an intersection of 
a hyperbola and a circle. In others, it was the abscissa of the intersection 
of two hyperbolas. Sometimes he used a parabola. 

Thanks to our modern notation and our system of negative numbers, we 
can summarise Omar's work in the following trivial theorem: 

Theorem 
x 3 + ax2 + bx + c = 0 and y = x 2 
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iff 
(x + a)(y + b) = ab - c and y = x 2 

Hence r is a real solution of x 3 + ax2 + bx + c = 0 
iff r is the abscissa of a point where the hyperbola (or straight lines) 
(x + a)(y + b) = ab - c meets the parabola y = x2 • 

The hyperbola in question has asymptotes x = -a and y = -b. It passes 
through the point (0, -cia), assuming a i= O. 

For example, consider the equation 

(x - l)(x - 2)(x - 3) = x 3 - 6x2 + 11x - 6 = 0 

The hyperbola has asymptotes x = 6 and y = -11. Its upper left branch 
meets the parabola y = x 2 at (1,1), (2,4), and (3,9). 

The Rubaiyat 

In the introduction to his book on cubic equations (the Al-jabr W'al Muqa­
balah), Omar comes across as a good Muslim. He writes: 

Praise be to God, lord of all worlds, a happy end to those who 
are pious, and ill-will to none but the merciless. May blessings 
repose upon the prophets, especially upon Mohammed. 

Omar complains that 

Most of our contemporaries are pseudo-scientists who mingle 
truth with falsehood, who are not above deceit and pedantry, 
and who use the little that they know of the sciences for base 
material purposes only. When they see a distinguished man in­
tent on seeking truth, one who prefers honesty and does his best 
to reject falsehood and lies, avoiding hypocrisy and treachery, 
they despise him and make fun of him. In all circumstances we 
seek refuge in God, the Helper. 

Omar was less religious in his poetry. The Rubaiyat (or Quatrains) is a 
pessimistic work in which Omar claims that the only important thing is 
wine, and the only certain thing is endless death: 

Oh, threats of Hell and Hopes of Paradise! 
One things at least is certain - This Life flies; 

One thing is certain and the rest is Lies; 
The Flower that once has blown for ever dies. 

Needless to say, Omar was not popular with the Muslim authorities. 
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Exercises 21 

1. Prove the trivial theorem. 

2. On the same graph, draw (x - 6)(y + 11) = -60 and y = x2 , showing 
the intersection points. 

3. Find an approximate solution to x3 + 2X2 + lOx = 20 by drawing a 
careful graph of (x + 2)(y + 10) = 40 and y = x2 • (As we shall see, 
this equation was important in the life of Fibonacci (1180-1250).) 

4. One of the problems in Khayyam's Al-jabr W'al Muqabalah is to 'di­
vide ten into two parts [summands] so that the sum of the squares of 
both parts plus the quotient obtained by dividing the greater [sum­
mand] by the smaller is equal to seventy-two'. Using algebra, find the 
exact solutions. 

5. One of Omar's theorems, expressed in terms of modern analytic ge­
ometry, is the following. Suppose b > 0, x is real, and x =I -c/b. Then 
x3 + ax2 + bx + c = 0 iff x is the first coordinate of a point where the 
circle 

(x+ a+2C/br +y2 = (a-2C/br 

meets the hyperbola x(y - Vb) = c/ Vb. Prove this. 

Essay Questions 

1. Would Omar have condemned those 'who use the little that they 
know of the sciences for base material purposes only' if he had not 
been independently wealthy? Why, or why not? 

2. Omar's life was a failure. His mathematics was trivial, and he failed 
to find God. Do you agree with this evaluation? Why, or why not? 
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The Later Middle Ages 

Fibonacci and the Rabbits 

In the thousand years from 300 to 1300, there was only one outstanding 
European mathematician, namely, Leonardo of Pisa (1180-1250), who was 
known as Fibonacci. He learned his mathematics in Algeria, where his 
father was a custom-house officer. 

In 1202, Fibonacci published his Liber Abaci in which he explained the 
Arabic system of numerals we now use and gave the Rabbit Problem: 

Suppose that rabbit pregnancy lasts one month, and that every 
female rabbit gets pregnant at the beginning of every month, 
from the time she is one month old on. Suppose that female 
rabbits always give birth to two bunnies, one male and one 
female. How many pairs of rabbits will you have on January 2, 
1203 if you start with a newborn pair on January 1, 1202? 

The number of rabbit pairs increases as follows: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... 

If Fn is the nth Fibonacci number, we have 
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De Moivre's Formula 

The following theorem was discovered by Abraham de Moivre, about 1730. 

Theorem Let s = 1+2V5 - this is the 'golden ratio'. Then the nth Fi­
bonacci number is the natural number nearest sn I J5. 
Proof: Let r = 1-2V5 . Then r + s = 1 and rs = -1. Thus 

= 

s(Fn - rFn- 1 ) 

s2(Fn_l - rFn- 2) 

sn-l (F2 - F1 ) 

sn-l(l - r) 

= sn 

Similarly, FnH - sFn = rn. Subtracting, we obtain (s - r)Fn = sn - rn, 
so that 

Fn = sn lv's - rn lv's 
Furthermore, rn I J5 is close to 0, and it is not hard to show now that Fn 
is the natural number closest to sn I J5. 

For example, the 10th Fibonacci number is the integer nearest 55.0036, in 
other words, 55. 

The Liber Quadratorum 

In 1225, Emperor Frederick II organised a mathematics contest. Leonardo 
answered all the questions correctly, winning easily. Two of the problems 
were the following: 

(1) solve x 3 + 2X2 + lOx = 20 
(2) find a rational alb such that (alb)2 ± 5 are both squares of rationals. 

If k is a positive integer such that, for some rational alb both (alb)2 ± k 
are squares of rationals, then k is congruent. Note that if k and x are pos­
itive integers, then k is congruent if and only if kx2 is congruent. Problem 
(2) of the contest was the problem of showing that 5 is congruent. 

In solving Problem 19 of Book III of the Arithmetica, Diophantus notes 
that in a right triangle, 

1 
(2 hypotenuse)2 ± area a square 
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From this it follows that if there is a Pythagorean triangle with area kx2 , 

then k is congruent. For example, the triangle with sides 9, 40, and 41 is a 
right triangle (since 92 + 402 = 412 ). Hence 

1 ("2 x 41)2 ± 180 = a square 

Since 180 = 5 x 62 , it follows that 5 is congruent. 
Conversely, if k is congruent, then there is a Pythagorean triangle with 

area kx2, for some integer x. Indeed, if 

(a/b)2 + k = (C/d)2 and (a/b)2 - k = (e/f)2 

then (bcf + bde)2 + (bcf - bde)2 = (2adf)2 and 

1 "2 (bcf + bde) (bcf - bde) = kb2d2 f2 

Fibonacci gave an account of his solution to Problem (2) in the Liber 
Quadratorum, or Book of Squares (1225). He did not make use of Diophan­
tus' identity, but followed a more complicated method. 

The Liber Quadratorum also contains the first proof of the formula 

(a2 + b2)(C2 + d2) = (ac =f bd)2 + (be ± ad)2 

This formula had been given by Abu Ja'far al-Khazin (950 A.D.), who 
mentioned it in connection with the same Problem 19 in Book III of the 
Arithmetica, where Diophantus gives a numeral instance of it. 

The Liber Quadratorum concludes with a treatment of 

The question proposed to me by Master Theodore, Philosopher 
to the Emperor 
I wish to find three numbers [positive integers] which added 
together with the square of the first number make a square 
number. Moreover, this square, if added to the square of the 
second number, yields thence a square number. To this square, 
if the square of the third number is added, a square number 
similarly results. 

In other words, the problem is to solve the simultaneous Diophantine equa­
tions 

x +y+ z +x2 w2 

w2 + y2 u2 

u 2 + z2 v 2 

Fibonacci notes that (7k)2 + (24k)2 = (25k)2 and (25k)2 + (60k)2 = (65k)2. 
He takes w = 7k, y = 24k, and z = 60k, and then looks for x: 

x+24k+60k+x2 = (7k)2 
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If a = 7k - x, this gives 
k = a(a - 1) 

7(2a - 13) 

With a = 7, we obtain k = 6 and x = 35. Hence y = 144 and z = 360. 

The Infinite 

Medieval Europe also produced some good work on the infinite. This was 
partly due to the fact that, believing in an actually infinite God, Medieval 
thinkers were not limited to Aristotle's potential infinity. 

Gregory of Rimini (1300-1358) maintained, against Aristotle, that 
God could create an actually infinite stone. Gregory explained that God 
could do this by creating equal-sized bits of the stone at each of the times 
t = 0, 1/2, 3/4, 7/8, .... 

Albert of Saxony (1350 A.D.) showed that one can take a proper subset 
of an infinite set and rearrange its elements so that it shows itself to be 
just as big and unbounded as the infinite set of which it is a proper part. 
Specifically, he noted that if one has an infinitely long beam of wood, with 
equal width and depth, one can saw it up into equal-sized cubic blocks with 
which one can fill the whole of what we call Euclidean 3-space. (Surround 
the first block with 33 - 1 more blocks, making a cube of side 3; then 
surround that cube with 53 - 33 more blocks, making a cube of side 5; 
and so on.) In modern terminology, what Albert proved is that there is 
a one-to-one correspondence between the set of triples (n, 1, 1), with n a 
positive integer and the set of triples (a, b, c), with a, b, and c any integers. 

Nicole Oresme (1350 A.D.) was the first mathematician to prove the 
divergence of the harmonic series 

1 1 1 1 
1+2+"3+4+··· 

Oresme also found the (finite) sum of the infinite series 

1 2 3 4 n 
2 + 4 + "8 + 16 + ... + 2n + ... 

Exercises 22 

1. What is the answer to the Rabbit Problem? 

2. Give a detailed account of the fact that Fn is the integer nearest 
sn / v'5, showing that, even for small n, the rn / v'5 does not throw 
things off. 
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3. Show that 41/12 is a solution to Problem (2) on Frederick's math 
contest. 

4. Prove that (~ hypotenuse)2 ± area = a square. 

5. Show that 30 is congruent. 

6. Show that if x is any positive integer, 6(12+22+. ·+x2 ) is congruent. 
Hint: look at 

(2X2 + 2x + 1)2 ± 4x(x + 1)(2x + 1) 

7. Show that if x is any positive integer, 8x3 - 2x is congruent. Hint: 
look at 

8. Show that 14 is congruent. 

9. Prove that the harmonic series diverges, using a method that does 
not involve calculus. 

10. Find the finite sum of Oresme's infinite series. 

Challenges for Experts 

1. Prove that Fn = Fk+lFn-k + FkFn- k- 1 where k is a positive integer 
less than n. 

2. Prove that gcd(Fn' Fm) = Fgcd(n,m)' 

Essay Questions 

1. Aristotle argued that there is no infinite collection, since it would 
have a proper part that was bounded by it and smaller than it, and 
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yet infinite too, which is absurd. How does Albert's one-to-one cor­
respondence answer this argument? 

2. In Volume II of his History of Mathematics, D. E. Smith notes that 

In the same years and in the same region in which Leonardo 
was bringing new light into the science of mathematics, St. 
Francis, humblest of the followers of Christ, was bringing 
new light into the souls of men. 

Comment on this quote, and, in particular, say whether you think 
Fibonacci and Francis brought 'new light' or merely old light from 
pre-Medieval times. 
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Modern Mathematical Notation 

Aside from the invention of our Indo-Arabic numerals (and the algorithms 
used to perform basic arithmetical operations with them) and the work of 
a few talented persons, such as Ibn-Qurra and Fibonacci, few significant 
advances in mathematics occurred in the thousand years after Diophantus 
and Pappus. In the fifteenth and sixteenth centuries, however, there was a 
spurt of activity, aided by the invention of printing (1450), which carried 
mathematics beyond the achievements of the ancients. 

Closely related to the invention of printing were improvements in math­
ematical notation. A powerful new symbolism emerged, the one we still use 
today. 

Johannes Regiomontanus of Konigsberg, Germany (1436-1476) gave 
the first systematic exposition of plane and spherical trigonometry. He 
wrote 'res' for x, and 'census' for x 2 • Columbus took a copy of Regiomon­
tanus's Ephemerides on his fourth voyage and used its prediction of the 
lunar eclipse of February 29, 1504 to intimidate some hostile Indians in 
Jamaica. 

Johannes Widman of Eger (now in Czechoslovakia) (1462-1500) in­
troduced the symbols + and - in his Mercantile Arithmetic, published in 
1489. 

Luca Pacioli of Italy (1445-1517) was a Franciscan. He used the 'res' 
notation of Regiomontanus, sometimes abbreviating 'res' as R. In 1509 he 
published the Divina proporiione, a book about the five regular polyhedra. 
It was lavishly illustrated by none other than Leonardo da Vinci (1452-
1519). There is a famous painting of Pacioli by Jacopo de' Barbari, which 
now hangs in the National Museum at Naples, Italy. It shows the friar with 
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his friend Guidebaldo and a model of a dodecahedron. 
Robert Recorde of England (1510-1558) was the first person to use the 

symbol = for equality, asserting that 'noe 2 thynges can be moare equalle' 
(Whetstone of witte, 1557). Recorde worked as a royal physician. He got 
into a tangle with the Earl of Pembroke and died in gaol. 

Christoff Rudolff of Germany introduced our square root sign in 1525. 
Michael Stifel (1487-1567) was a monk who became a follower of 

Luther. He introduced the symbols lA, 1AA, and 1AAA for A, A 2 , and 
A 3 . Stifel had a way of applying mathematics to the Bible that led him to 
conclude that Pope Leo X was the Beast of the Book of Revelation and to 
prophecy the end of the world for October 18, 1533. The peasants of Holz­
dorf, where Stifel was pastor, spent their money accordingly, and, when the 
world failed to end, Stifel found himself, not in heaven, but in a gaol in 
Wittenberg. 

Thomas Harriot of England (1560-1621) wrote aa, and aaa for a2 and 
a3 . He introduced the signs> and < for strict inequalities. 

In 1585 Harriot went to America where be became addicted to tobacco 
smoke. In 1605, after the discovery of the Gunpowder Plot, Harriot was 
briefly imprisoned on suspicion of having cast the horoscope of King James I. 
Harriot died of cancer in 162l. 

In 1603, Harriot proved the following formula for the area of a spherical 
triangle: 

( LA + LB + LC - 1800
) 271T2 

3600 

Proof: The great arcs AB and AC meet again at a point A', which is 
opposite A on the sphere. They cut out two slices of the surface, each with 
area 

LA 47fr2 
3600 

(It was Archimedes who first proved that the area of the whole surface is 
47fr2.) Similarly, the great arcs BA and BC meet again in a point B' and 
cut out two slices each with area 

LB 4 2 -- 7fr 
3600 

and the great arcs CA and CB meet again in a point C' and cut out two 
slices each with area 

These 6 slices cover the whole area of the sphere, and they cover the trian­
gles ABC and A' B'C' three times. Thus 

2 47fr2 = 47fr2 + 4( area ABC) ( LA+ LB+ LC) 
3600 

(since A' B'C' is identical to ABC) and the result follows. 
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Exercises 23 

1. Write the following in words, using no mathematical symbolism: 

2a2 + J a3 - 7 = 4a + 12 

2. Regiomontanus solved the following problem: find the angles of a 
cyclic quadrilateral with given sides a, b, c, and d. Do the same. 

3. Solve the following problem given by Pacioli: The radius of the in­
scribed circle of a triangle is 4, and the segments into which one side 
is divided by the point of contact (of the circle and the triangle) are 
6 and 8. Determine the other sides. 

4. What is the area of a spherical triangle with angles of 500 , 600 , and 
90°, if the radius of the sphere is 12? 

5. A spherical triangle with angles 45°, 60°, and 900 has area 1. What 
is the area of the sphere? 
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The Secret of the Cubic 

Cubic equations were studied in ancient times. Archimedes, for example, 
worked on the problem of cutting a sphere with a plane so that one of the 
resulting pieces has twice the volume of the other. The problem of where 
the sphere should be cut leads to the cubic equation 

x 3 - 3x + 2/3 = 0 

(see De Sphaera et Cylindro, Lib. II). 
Prior to the Renaissance, mathematicians found solutions of such equa­

tions either by arithmetical approximation or by geometrical methods. (Re­
call Menaechmus's solution of x3 - 2 = 0 as the y-coordinate of a point of 
intersection of the parabolas y = ~X2 and x = y2.) With the exception of 
some special cases, however, mathematicians were not able to give algebraic 
solutions to cubic equations. Indeed, in 1494 (just two years after Colum­
bus discovered America), Luca Pacioli (1445-1509) asserted that there is 
no general algebraic solution to the cubic equation. 

As an example, mathematicians would say of Fibonacci's equation 

that the solution was approximately 1.3688, or they would say that it was 
the abscissa of the point where the hyperbola we call (x + 2)(y + 10) = 40 
meets the parabola we call y = x 2 • They did not know that the root is 
exactly 

{/352 + 6v'3930 + {/352 - 6v'3930 - 2 
3 
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Nor did they know that there are also two nonreal roots. 
The person who first found the algebraic solution of one type of cubic 

equation was Scipio del Ferro (1465-1526), a professor at the University 
of Bologna, Italy. Ferro kept his result secret - so that he would have an 
advantage over other mathematicians in contests - but, just before dying, 
he passed it on to Antonio Fior. 

Tartaglia 

Niccolo Tartaglia was born in Brescia, Italy, in 1499. In 1512, the French 
sacked Brescia, and a French soldier split Tartaglia's jaws with a sword. It 
was thus that Tartaglia acquired his name, which means 'stammerer'. 

As a child, Tartaglia would go to the graveyard and write his mathematics 
on tombstones, since his family was so poor that they could not afford more 
ordinary writing material. 

In 1535, Fior challenged Tartaglia to a contest. Tartaglia, suspecting that 
Fior would ask him to give algebraic solutions of cubic equations, quickly 
worked out a general method for doing this. Both Fior and Tartaglia were 
able to solve equations of the form 

x3 +bx = c 

(with b and c given positive reals) but only Tartaglia was able to solve 
equations of the form 

x3 +ax2 = c 

(with a and c given positive reals). Tartaglia had the victory. Ferro's method 
did not apply to all types of cubic equations. 

The latter part of Tartaglia's life was embittered by a quarrel with Giro­
lamo Cardano (1501-1576). 

Cardano 

In his autobiography, Cardano tells us that in spite of attempts to abort 
him, he was born on September 24, 1501. Fascinated by signs and wonders, 
he studied medicine, mathematics, and astrology. 

When he was young, Cardano concluded from his astrological studies 
that he would not live to be 45 (De Vita Propria Liber, ch. X). However, 
he was still alive in 1570 when he was imprisoned for heresy, on account 
of having cast the horoscope of Jesus Christ. Cardano recanted and was 
released. In 1575, in chapter 39 of his autobiography, Cardano confessed: 

That branch of astrology which teaches the revealing of the fu­
ture I studied diligently, and much more, indeed, than I should; 
and I also trusted in it to my own hurt. 
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Basing himself on astrology, Cardano had also predicted long life for King 
Edward VI of England. Edward died at age 16. 

In 1531, Cardano married Lucia Bandarini, a woman who had first ap­
peared to him in a dream. She was only 15 when they married. Cardano 
gambled, and he relates that 

In a turn of ill-luck at dicing, I put to pawn my wife's jewelry 
and some of the furniture. 

The gambling was not good for his family life, but it did spur him on 
to study probability, so that Cardano is now considered to be one of the 
fathers of that subject. As for Lucia, she died in 1546, at age 3l. 

In 1539, in Cardano's house in Milan, Italy, Cardano cajoled Tartaglia 
into telling him the secret for solving cubic equations. This Tartaglia did, 
but only on the condition that Cardano would never reveal it. Indeed, Car­
dano swore 'by the Sacred Gospel' never to publish Tartaglia's discovery. 
In 1543, Cardano learned that part of the secret could be found in Ferro's 
posthumous papers, and he decided to give a complete treatment of the 
cubic equation in his Ars Magna, published in 1545. Why should he keep a 
secret whose 'key component' was already in Ferro's papers, where anyone 
could go and read it? It is in the Ars Magna that we find the first use of 
imaginary numbers. 

Cardano gave due credit to Tartaglia, but Tartaglia was annoyed that 
Cardano had broken the promise ~ and thereby deprived Tartaglia of his 
advantage in mathematics contests. 

In 1548, Tartaglia went to Milan to have a contest with Cardano. Car­
dano left town, but was represented by his student, Ludovico Ferrari (1522~ 
65). Tartaglia lost the contest and died in poverty 9 years later. 

In 1552, Cardano travelled to Scotland where he cured Archbishop John 
Hamilton of asthma. It was on the way back to Italy that Cardano met 
King Edward VI of England and made the ill-fated astrological prediction 
that His Majesty would have a long life. (Edward died in 1553.) 

Cardano preferred animals and angels over human beings. In chapter 13 
of his autobiography we read: 

I become the owner of all sorts of little animals that get attached 
to me: kids, lambs, hares, rabbits, and storks. They litter up the 
whole house. 

In chapter 53, we find: 

I am never more with those I love than when I am alone. For I 
love God and my good angel. 

There was an exception. In 1560, Cardano's son, Giambattista, was be­
headed for murder. Giambattista, tired of his wife's infidelities, had re­
sorted to the not-uncommon Renaissance solution of poison. Cardano was 
distraught, and he wrote a lament: 
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Who has snatched thee away from me ~ 
0, my son, my sweetest son? 
Who had the power to bring my age 
Sorrows more than I can count? 

Prince and Senate and ancient law 
Ordered thy doom whilst thou in rash haste, 
Brought an adultress the wage of her crime. 

Cardano's other son, Aldo, was a burglar who spent much of his life in gaol. 
In chapter 45 of his autobiography, Cardano assures us that 

all wisdom is from God, the Lord, and, as the Platonists think, 
our intellect is united thereto through the agency of Eternal 
Good. 

In his History of Western Philosophy, Frederick Copleston reports that 
Cardano believed that all matter is alive. Also Cardano disagreed with the 
orthodox Christian view that God created the world freely, rather than out 
of necessity. 

Cardano died in Rome, in 1576. 

Ferrari 

Ludovico Ferrari (1522-1565) came from Bologna, Italy. His solution to 
the quartic equation appears in the Ars Magna. Ferrari became rich in the 
service of Cardinal Ferrando Gonzago, but ill health forced him to retire to 
Bologna in 1565 to teach mathematics. According to W. Ball, in A Short 
Account of the History of Mathematics, Ferrari 'was poisoned the same year 
either by his sister, who seems to have been the only person for whom he 
had any affection, or by her paramour'. 

Viete 

Fran<;ois Viete (1540-1603) was a French lawyer and member of parliament. 
He helped Henry IV in a war against Spain by deciphering the Spanish code. 
Henry IV challenged Viete to solve an equation of degree 45, and Viete gave 
the answer almost immediately. (This problem had been posed by Adraen 
van Roomen in 1593.) 

Viete's other accomplishments include the following: 
1. He used trigonometry to help solve cubic equations (see Chapter 25); 
2. He showed how to construct a circle tangent to three given circles, using 
only straight-edge and compass; 
3. He discovered the identity sin A + sinB = 2 sin A!B cos A;B (and the 
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three identities similar to it); 
4. He noted that if al = Vf72 and an+! = J(l + an )/2 then the product 
aIa2a3 ... = 2/rr. 

Viete described his mathematics as 'not alchemists' gold, soon to go up 
in smoke, but the true metal, dug out from the mines where dragons are 
standing watch'. 

Exercises 24 

1. Tartaglia wrote a number theory book that contains the following 
puzzle: Three couples wish to cross a wide river using a boat that 
holds only two people. How can they do this if no woman is to be 
with a man unless her husband is present? 

2. Tartaglia'S book also contains the following: Three people wish to 
divide 24 ounces of oil equally. The oil is in a single jar, and the three 
people have irregularly shaped measuring jars of capacity 5, 11, and 
13 ounces. How can they divide the oil? 

3. In his Liber de Ludo Aleae (Book on Games of Chance), Cardano 
gives the correct answer to the following: if you throw three dice 
three times, what is the probability of getting at least one one each 
time? 

4. Cardano thought the following had answer 2/5: if you throw two dice 
three times, what is the probability that you will get at least one one 
at least two times? Show that the correct answer is 5203/23328. 

Challenges for Experts 

1. Show that 

sin x x x x x 
2 . x = (cos -2 ) (cos 22) (cos 23 ) ... (cos - ) 

n SIn 2n 2n 

whence 
sin x x x x 
~ = (cos 2" ) (cos 22 ) (cos 23 ) ... 

(Recall that limh---+o (sin h) / h = 1.) 

2. Prove Viete's formula for 2/rr. (Recall that cosA/2 = J(cosA + 1)/2.) 
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Essay Questions 

1. Was Cardano wrong to break his promise to Tartaglia? Why or why 
not? 

2. Is it ever right to keep a scientific discovery secret, rather than shar­
ing it with the world? Why? 

3. The sun, moon, and planets are unthinking chunks of matter. Their 
movements are determined by well-understood physical laws. We, on 
the other hand, have free will. We can choose to mould our characters 
in any way we decide is good. We make our own future. Our future is 
not implicit in any horoscope. Identical twins, for example, can, and 
often do, choose different careers. Thus astrology has no truth in it. 
Comment on this. 

4. Astrology fusses about the moment of birth. Yet this moment is less 
important than the moment of conception, or the moment when a 
person first has brainwaves, or the moment when a person utters 
their first sentence. Birth is just a geographical change relative to 
the mother. Thus there is no reason to think there is any truth in 
astrology. Comment on this. 

5. In helping Henry IV fight the Spanish, Viete was using his God-given 
mathematical talent in the service of hatred and violence. This was 
wrong. Comment on this evaluation. 



25 
The Secret Revealed 

In this chapter we give the solution to the cubic equation that is essentially 
that of Ferro, Tartaglia, and Viete. We also give the solution to the quartic 
equation, due to Ferrari. 

The Cubic 

First recall that any complex number x + yi can be written in 'polar form' 
r(cosA + i sin A) where r is a nonnegative real and A is a real. Since (as 
Viete first showed) 

cos3A = cos3 A - 3 cos A sin2 A 

sin3A = 3cos2 AsinA - sin2 A 

it follows that 

(r(cosA + isinA))3 = r3(cos3A + isin3A) 

Now let w = (-1+A)/2. A calculation shows that w2 = (-1-A)/2. 
We have w + w2 = -1, w - w2 = A, and, finally, w3 = 1. 

Let s be any real and let t be its real cube root. (This number is not, in 
general, 'constructible' using straightedge and compass, but Cardano had 
no doubts about its existence.) Then 

x3 - S = (x - t)(x - tw)(x - tw2 ) 
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so that x 3 - S = 0 has exactly 3 solutions, namely, t, tw, and tw2 . 

The general cubic (after division by the leading coefficient) has the form 

x 3 + ax2 + bx + c = 0 

where a, b, and care reals. Putting x = y - a/3 (a trick discovered by 
Tartaglia), this equation becomes 

y3 _ 3py - 2q = 0 

where 
a2 - 3b -2a3 + 9ab - 27c 

p = 9 and q = 
54 

If p or q is 0, the solution is trivial. Suppose this is not so. 
Let U and v be the (possibly nonreal) roots of z2 - yz + p (where y3 -

3py - 2q = 0). Then U + v = y and uv = p. Substituting U + v for y in 
y3 _ 3py - 2q = 0, we obtain 

U 3 + v 3 + 3(uv - p)(u + v) - 2q = 0 

or 
u3 + v3 = 2q 

Since, moreover, u 3v 3 = p3, it follows that u 3 and v3 are the solutions of 

Therefore we have, say, 

Thus x = y - a/3 = u + p/u - a/3, where u is a cube root of 

If one of these cube roots is Ul, then the others are UIW and UIW 2 . Let 
VI = p/UI. Then 

UIW + P/(UIW) = UIW + VIW 2 

UIW2 + p/(UIW2 ) = UIW 2 + VIW 

Hence the cubic has the following three solutions only: 
UI + VI - a/3 
UIW + VIW 2 - a/3 
UIW2 + VIW - a/3 

For practical cubic equation solving, we consider 3 cases: 
Case 1. q2 - p3 > o. Let r = J q2 - p3. Let UI be the real cube root of 
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q + r. Then VI = p/UI is real, and hence VI is the real cube root of q - r. 
The solutions are the real number UI + VI - a/3 and the nonreal numbers 

UIW + VIW 2 - a/3 

UIW2 + VIW - a/3 

(These numbers are nonreal, lest UI = VI and r = 0.) 

Case 2. q2 - p3 = O. Let UI = VI = yip. The cubic has exactly two 
solutions: 2UI - a/3 and -UI - a/3 (since W + w2 = -1). 

Case 3. q2 - p3 < O. Let r = Jp3 - q2. Since r2 + q2 = p3, it follows that 
q + ir can be written in polar form as p3/2(cosa + isina) for some real 
angle a. (a = arctan(r/q) if q > 0 and a = arctan(r/q) + 7l" if q < 0.) Let 

e = ylpcos(a/3) 

1= ypsin(a/3) 

Then (e+ Ii? = q+ir. Hence we can take UI = e+ Ii. Since e2 + p = p, it 
follows that VI = P/UI = e- Ii. Hence the cubic has the following solutions: 

2e - a/3 
UIW + VIW 2 - a/3 = -e - 1v'3 - a/3 
UIW2 + VIW - a/3 = -e + 1v'3 - a/3 

In summary, we have the following solution for the cubic equation 

x 3 + ax2 + bx + c = 0 

1. Compute 
a2 - 3b -2a3 + 9ab - 27c 

p= 9 and q = 54 

IT either of these is 0, the problem is trivial. 
2. Compute q2 - p3 and go into the case in question. 
3a. IT q2 - p3 > 0 let 

UI = ~q+ Jq2 _p3 

VI = ~q- Jq2 _p3 

(where the cube root is the real cube root). The solutions are 

UI + VI - a/3 
UIW + VIW 2 - a/3 
UIW2 + VIW - a/3 

3b. IT q2 - p3 = 0 the solutions are 
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2f,(q - a/3 
-f,(q - a/3 

3c. If q2 - p3 < 0, let r = Jp3 - q2 and let a = arctan(r/q) if q > 0 -
or let a = arctan(r/q) + 11' if q < O. The equation has three real solutions: 

2y'Pcos ~ - a/3 
-y'Pcos ~ ± J3Psin ~ - a/3 

The Quartic 

The general quartic equation has the form 

It was treated by Ferrari as follows. Let y be a real root of 

Let 

A 
a2 

= --b+y 
4 

B 
ay 

-c+-
2 

C 
y2 

-d+-
4 

Then 4AC = B2. 
The quartic equation is equivalent to 

or 
lIB 

(x2 + "2 ax + "2y)2 = A(x + 2A)2 

provided A =1= O. (If A = 0 the solution is trivial.) Then the quartic is 
equivalent to 

X2+(~±JA)X+¥..±~ =0 
2 2 2~ 

with the signs corresponding. This leads to at most 4 solutions. 
In the Ars Magna Cardano solves the equation 

X4 - lOx2 + 4x + 8 = 0 
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The equation 
y3 + lOy2 - 32y - 336 = 0 

has root -6. (This can be found by checking the divisors of 336: there is 
no need to use the full cubic apparatus.) Here A = 4 and B = -4. The 
quartic is thus equivalent to 

x 2 ± 2x - 3 =t= 1 = 0 

This has solutions 1 ± J3 and -1 ± J5. 

The Quintic? 

For over 200 years people tried to find similar methods for solving equations 
of degree 5. They failed. It was only in 1799 that Paolo Ruffini (1765-
1822), an Italian physician, proved that there is no algebraic solution for 
the general equation of degree 5 (or higher). His proof was not clear and 
rigorous, but it was soon supplemented by the work of Niels Abel (1802-
1829) and Evariste Galois (1811-1832). It is not possible to go beyond 
Ferro, Tartaglia, Viete, and Ferrari. 

A Recent Application of the Cubic Formula 

In 1955, Roy E. Wild used the above solution to the cubic equation to 
sharpen a result of J. Lambek and L. Moser. Wild showed that the number 
of primitive Pythagorean triangles with area less than n is approximately 

.531 Vn - .297 ijn 

(see the Pacific Journal of Mathematics, 5 (1955), 85-91). 

Exercises 25 

In the following problems, do not use decimal approximations. 

1. Give the exact solutions of Fibonacci's equation x 3 + 2x2 + lOx = 20. 

2. Give the exact solutions of the equation sent by Zuanne da Coi to 
Tartaglia in 1530: x 3 + 6x2 + 8x = 1000. 

3. An oracle ordered a prince to build a sacred building whose volume 
should be 400 cubits, the length being 6 cubits more than the width 
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and the width 3 cubits more than the height. What was its height 
supposed to be? (This problem comes from the Ars Magna.) 

4. Divide 10 into two summands the product of which is 40. (This prob­
lem comes from the Ars Magna.) 

5. A merchant bought 1 pound of saffron, 2 of cinnamon, and 5 of pep­
per (all these being sold by weight). He paid 6 aurei. The price of the 
5 pounds of pepper was to the price of the 2 pounds of cinnamon as 
the price of the 2 pounds of cinnamon was to the price of the saffron. 
Again, at the same prices per pound, he bought 30 pounds of saffron, 
50 pounds of cinnamon, and 40 pounds of pepper, all for 100 aurei. 
How much was a pound of saffron? (This problem comes from the 
Ars Magna.) 

6. Solve Archimedes's sphere problem. 

7. Where exactly does the parabola y = _x2 + 3x + 4 meet the circle 
x 2 + y2 = 100? 

8. Two ladders, 20 and 30 metres long, cross at a point 8 metres above 
a lane bordered by two rows of high buildings. Each ladder reaches 
from the base of one wall to some point on the opposite wall. Exactly 
how wide is the lane? 

9. Show that x 3 - 3cx + c3 = 0 has 3 distinct roots iff 0 < c < 22/ 3 . 

10. What are the 4 primitive Pythagorean triangles with area less than 
100? 

Essay Question 

1. Since there are efficient ways of getting good approximations to the 
roots of cubics, there is no point having an algebraic formula giving 
the exact roots. Ferro's work was a waste of time. Comment. 



26 
A New Calculating Device 

John Napier (1550-1617) was a Scottish Baron who gave 20 years of his life 
to the construction of logarithms. Like Stifel, he was interested in proving 
that the Pope was Antichrist, and in 1594 he published' A plaine discovery 
of the whole Revelation of St. John'. Part of Napier's discovery was that 
the world would end before 1700. 

Once one of Napier's servants was stealing from him. In order to expose 
the thief, Napier told his servants to go, one by one, into a darkened room 
where they must pat his psychic rooster. He assured them that the rooster 
would know from the patting who had been stealing and would then tell 
Napier. Unknown to the servants, Napier had smeared soot on the bird. 
The thief, who had not dared to touch it, was the only one with clean 
hands! 

Napier describes his technique for calculating logs in his Mirifici Loga­
rithmorum Canonis Constructio, which was published in 1619, two years 
after his death. This Construction of the Wonderful Canon of Logarithms 
is tricky to read because what Napier calls the 'logarithm' of x is actually 

7 X 
10 logl/e 107 

The book is also tedious, because Napier pays minute attention to error 
bounds. However, if we simplify and modernise Napier's presentation some­
what - as we do in this chapter - we obtain a lucid piece of mathematics. 

Napier's basic ideas are these. Suppose there is a particle on the neg­
ative half of the real number line moving towards the origin at a speed 
proportionate to its distance from the origin. At time 0, it is at -1. For 
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any distance d, there is a time when the particle is that distance from the 
origin. Call this time the 'logarithm' of d. 

Assume that the constant of proportionality is 1. Then dx/dt = -x and 
x(O) = -1. Hence x(t) = -e-t , and so 

t = -loge d = logl/e d 

In this section 'log x' shall mean logl/e x. Note that logl/e d decreases as d 
increases from ~ to 1. 

Napier used the following three ideas to calculate his tables. (1) When 
z is very close to 0, 10g(1 - z) ~ z. (2) The natural number powers of 
8 = 1 - lO-m - where m is a natural number - are easy to calculate. For 
82 = 8(1 - lO-m ) = 8 - 8/lOm . Similarly, 83 = 82 - 82 /lOm . It is always 
just a matter of shifting the decimal point m places and subtracting. Thus 
Napier has 

0.999,990,000,000,000 

0.999,990,000,000,000 

-.000,009,999,900,000 

0.999,980,000,100,000 

0.999,980,000,100,000 

-.000,009,999,800,001 

0.999,970,000,299,999 

(3) Near 1, the log curve is smooth, and linear interpolations give excellent 
approximations to it. 

Near -1, Napier's particle is moving at about 1 unit/second, and we can 
take it that log d = 1 - d for d = 1 - 10-5 = 0.99999. As in (2), Napier 
calculates d, d2 , ••• , d50 • He finds that d50 = 0.999,500, 122,5. Hence 
log 0.999,500, 122, 5 = 50 x log d = 50 x 0.99999. With linear interpolation, 
Napier can thus obtain a very accurate value for logu where u = 0.9995. 

Next, using ideas similar to those in (2), Napier quickly and accurately 
calculates u 2 , u 3 , ••• , u 20 • He obtains u 20 = 0.990,047,358. Using inter­
polation, he then gets a very accurate value for log w where w = 0.99. (A 
pocket calculator will not be more accurate.) 

For a = 1, 2, ... , 20, and b = 0, 1, ... ,68, Napier calculates uawb • This 
gives him 1380 points between u = 0.9995 and u20w68 = 0.499,860,940 for 
calculating logarithms in that range. 

For example, U 19W 68 = 0.500, 110,996 > ~ > 0.499,860, 940 = U 20w68 • 

Where 

we have 

k = _lo-,,-g--,-( U_1-:;-9-:::-W_6-;;-:8 ),;-__ I-;::og-;:-(,-u-;;-:2o;:-w_6_8-'-.) 

u19W 68 - u20W 68 
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= 20 log u + 68 log w - 0.000,278 = 0.693, 147 

This value of log! is accurate to 6 decimal places. 
It is now easy to calculate other logs. For example, if 0 < t < !, we can 

find log t by finding a positive integer m such that ! < 2m t < 1. With such 
an m we have 

1 
logt = log2mt + mlog 2" 

As another example, the log of 2 (to our base l/e) is just -log!. 

Henry Briggs (1561-1631) travelled to Edinburgh in 1615 to discuss log­
arithms with Napier. They agreed that there were many advantages to 
having logs to the base 10. In 1617 Napier died, but Briggs continued the 
work, publishing tables for logs to the base 10 in 1624. 

Exercises 26 

2. Graph y = logx 2. 

3. Show that to calculate the logarithm of any positive real number, it 
suffices to have a table of logarithms of primes. 

4. Verify the following: 

loge 9601 = loge(l + 1/9600) + loge 96 + 2 loge 10 

1+_1_ 
= log 19201 + 7 log 2 + log 3 + 2 log 5 

e 1- _1_ e e e 
19201 

5. Show that 

Challenge for Experts 

1. How should Napier have had his particle moving to get logs to base e? 



27 
Mathematics and Astronomy 

Galileo 

Thanks to Einstein, we are aware that motion is relative. One can choose 
any heavenly body one likes as a fixed frame of reference for studying the 
motion of other heavenly bodies. One can say that the earth goes around the 
sun or one can say that the sun goes around the earth. From a mathematical 
point of view, it is best to take as a fixed frame of reference neither the 
earth nor the sun, but the centre of mass of the solar system - because 
this choice makes the mathematics of solar system motion simpler. From 
Einstein's point ofview, then, it seems silly that Galileo Galilei (1564-1642) 
and the Inquisition fought over whether the earth goes around the sun or 
vice versa. 

Galileo was born in Pisa, Italy, on the day Michelangelo died. He did not 
make any original contributions to mathematics. His much tooted result 
that the set of square integers can be placed in one-to-one correspondence 
with the set of natural numbers was well known to Medieval thinkers, such 
as Albert of Saxony. So if he did not contribute to mathematics, what is 
Galileo doing here? 

Galileo is sometimes included in histories of mathematics because the 
anti-Catholic historian wants the chance to tell everyone how badly the 
Catholic Church treated Galileo. David M. Burton, for example, tells us 
that 

Although 70 years old and seriously ill, the author of the Di­
alogue [Galileo] was summoned to Rome to stand trial before 
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a tribunal of the dreaded Inquisition (p. 333 in The History of 
Mathematics) . 

Burton also tells us that Galileo's book was placed on the Index of Pro­
hibited Books, 'where it remained until 1822'. Writers who do not dislike 
the Catholic Church sometimes include Galileo 'to set the record straight' 
and show that there is no contradiction between religion and science: if 
the Bible presupposes a Babylonian cosmology, it does so, not to teach 
us physics, but to express the truth that a unique personal God created 
the stars and planets. In other words, Galileo is like Hypatia. Neither did 
much for mathematics, but both are tools for those who want to make 
philosophical points. 

Kepler 

Johann Kepler (1571-1630) studied at the University of Tiibingen. He orig­
inally wanted to be a Lutheran minister but his interest in astronomy led 
him to change his plans. In 1594, he obtained a lectureship at the University 
of Gratz, Austria, but he lost it when the city fell to the Catholics. 

Kepler discovered two of the star-polyhedra, and in his work on conics, 
he introduced the notion of a 'point at infinity'. Kepler gave us the word 
'focus', which is Latin for 'hearthside'. He also worked out the volume of 
the 'apple', this being a solid obtained by rotating a major segment of a 
circle around its boundary chord. 

Kepler's first marriage was not happy. The woman went mad and died. 
Howard Eves reports that 

his second marriage was even less fortunate than the first, al­
though he took the precaution to analyze carefully the merits 
and demerits of eleven girls before choosing the wrong one. 

Kepler's primary interest was astronomy. Seeking a geometric explana­
tion for the distances of the various planets from the sun, he began by 
constructing an equilateral triangle with its vertices on the orbit of Saturn 
(which he assumed was circular), and then inscribing a circle in this tri­
angle to represent the orbit of Jupiter. Kepler's construction did, more or 
less, give the correct ratio for the distances of Saturn and Jupiter from the 
sun. Kepler extended his idea by constructing a square with its vertices on 
the orbit of Jupiter and inscribing a circle in this square to represent the 
orbit of Mars. Here, however, the data did not conform to the theoretical 
model. 

Undiscouraged, Kepler replaced the circles by spheres and the regu­
lar polygons by regular polyhedra. There were five planets (or so Kepler 
thought) and five regular polyhedra. This could not be an accident! Ke-
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pIer succeeded in making this new model fit the observational data, more 
or less, and he published his theory in Cosmic Mystery (1596). 

In 1601, Tycho Brahe died, and Kepler, who was his assistant, inher­
ited his job (as 'Imperial Mathematician' of the Holy Roman Empire) and 
his very accurate astronomical data. These data convinced Kepler that he 
needed to revise his theory once more. In 1609, after an intense study of 
the orbit of Mars, Kepler came to the following conclusions: 
(1) Each planet moves in an ellipse with the sun at one focus; 
(2) The line joining the sun to a planet sweeps out equal areas (bounded 
by the ellipse) in equal times. 

In 1619, Kepler added his third law: 
(3) The square of the period of revolution of a planet (its 'year') is propor­
tionate to the cube of the length of the major axis of its orbit. 

This time Kepler was right. Applying Apollonius' previously 'useless' 
work on conics, Kepler found a beautiful mathematical explanation of the 
motion of the planets. In everything he did, Kepler was driven by a fer­
vent Pythagorean belief that there is no phenomenon that does not have a 
mathematical structure. 

Exercises 27 

1. According to Kepler's initial model, what is the ratio of the radius of 
Saturn's orbit to that of Jupiter's orbit? 

2. Kepler saw a circle as a polygon with infinitesimal sides. It was made 
up of 'little triangles', each with height r, the radius of the circle. 
Show how Kepler used this conception of the circle, together with 
the formula for the circumference of the circle, to derive the correct 
formula for the area of the circle. 

Challenge for Experts 

1. What is the volume of the apple with diameter 2 and chord 1 ? (This 
question requires calculus.) 
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Essay Questions 

1. Psalm 104 praises God 'who laid the foundations of the earth, so 
that it should not be moved forever'. Write a short essay showing 
that this verse can be interpreted in a way that respects both the 
truth of God's revelation and the truth of Science. 

2. Comment on the following. Socrates and Jesus were willing to die for 
what they believed was right, but Galileo recanted because he was a 
coward. 



28 
The Seventeenth Century 

The seventeenth century saw an explosion of mathematical activity. A few 
of the important mathematicians were Desargues, Descartes, Fermat, Pas­
cal, Torricelli, Wallis, Newton, and Leibniz. We shall report on their work 
in this and the next three chapters. 

Desargues 

Girard Desargues (1591-1661) founded projective geometry. Partly because 
of his obscure style, his achievement was not recognised until 1845, when 
Michel Chasles chanced upon a copy of his book and realised its importance. 
Desargues's famous theorem is this: 

If two triangles, in the same plane or not, are such that the 
lines joining pairs of corresponding vertices are concurrent, then 
the points of intersection of pairs of corresponding sides are 
collinear (if only on the 'line at infinity'), and conversely. 

The Figure on the next page shows the 'parallel case' for two triangles in 
the same plane. According to the theorem, if the lines joining the corre­
sponding vertices meet at 0, and if AB is parallel to A' B', and if AC is 
parallel to A' C', then BC is parallel to B' C'. In his Foundations of Geom­
etry, David Hilbert (1862-1943) showed that, even in the absence of the 
axiom of Archimedes, the theorem of Desargues can be used for defining 
multiplication within Euclidean plane geometry, and for proving, within 
that geometry, that multiplication is associative. 
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Desargues's Theorem 

Descartes 

Rene Descartes (1596-1650) was born the year before his mother died. He 
attended school at the Jesuit college of La Fleche, where, on account of his 
delicate health, he was allowed to sleep in. It was during his morning hours 
in bed that Descartes thought out many of his ideas. 

In 1618, Descartes joined the army of Prince Maurice of Nassau. Ten 
years later, he settled in Holland, where he devoted himself to writing 
philosophy. In 1635, he had a daughter by a servant girl, Helen. In 1649, 
Descartes moved to Stockholm to tutor Queen Christina. The queen in­
sisted on having her lesson at 5:00 A.M. Descartes, a late riser from his 
days at La Fleche, did not survive the winter. 

It was Descartes who wrote: 

no opinion, however absurd and incredible, can be imagined, 
which has not been maintained by some one of the philosophers. 

This quotation is found in Part II of the Discours de la Methode pour 
bien conduire sa Raison et chercher la Verite dans les Sciences (1637). 
This 'Discourse' explained Descartes's program of systematically doubting 
accepted knowledge and then carefully building an edifice of true knowledge 
on clear and certain principles - such as 'I think, therefore I exist'. 

Descartes's epistemological edifice included a geometrical proof of the 
existence of God. This proof was a version of the Ontological argument, 
which goes back to Augustine: 
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recurring to the examination of the idea of a Perfect Being, I 
found that the existence of the Being was comprised in the idea 
in the same way that the equality of its three angles to two right 
angles is comprised in the idea of a triangle, or as in the idea 
of a sphere, the equidistance of all points on its surface from 
the centre, or even still more clearly; and that consequently it 
is at least as certain that God, who is this Perfect Being, is, or 
exists, as any demonstration of geometry can be. 

Unfortunately for Descartes, there are triangles - in hyperbolic geometry 
- whose three angles do not add up to two right angles. We need to 
repair Descartes' argument by adding the word 'Euclidean' before the word 
'triangle' . 

Part of Descartes' re-examination of accepted knowledge was a re-ex­
amination of geometry. In his search for precision and logic, he related all 
the components of a geometry figure to two straight lines: what we call the 
x-axis and the y-axis. Descartes' work on geometry was published as an 
appendix to the 'Discourse'. It was both a fruit and a vindication of his 
way of doing philosophy. 

The geometrical appendix is divided into three 'books'. The first book 
gives the basic rules of what we call analytic geometry and addresses a 
problem that defeated Pappus. One version of this problem, expressed in 
modern notation, is the following: 

x 3 -2x2 -x+2 
graph y = -----­

x 
This was beyond the ancient Greeks, but it was well within the range of 
Descartes' new geometry. 

In the second book of the geometrical appendix, Descartes considers 
equations of the form 

F(x,y) = ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 

He shows that if (1) a ~ 0, and (2) the quadratic does not factor into linear 
factors, and (3) at least two points satisfy the relation, then the equation 
represents an ellipse if ab > h2, a hyperbola if ab < h2, and a parabola if 
ab = h2 • Descartes also gives a way of finding a tangent to a given conic, 
through a given point - without using calculus. 

The third book of the appendix on geometry contains observations on al­
gebraic equations, including the 'Rule of Signs', which goes back to Thomas 
Harriot in 163l. 

Descartes was pro-infinity. He asserted that our concept of the infinite is 
logically and epistemologically prior to our idea of the finite: 

I clearly perceive that there is more reality in the infinite sub­
stance than in the finite, and therefore that in some way I pos­
sess the perception (notion) of the infinite before that of the 
finite. 
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In his appendix on geometry, Descartes states that a 'locus' is an infinite 
set of points. For example, a straight line, or circle, is an infinite collection 
of ordered pairs. 

Fermat 

Pierre de Fermat (1601-1665) was a councillor for the parliament of Toulouse, 
a town in the south of France, and he only did mathematics in his spare 
time. He published only one mathematical article during his lifetime. His 
contributions to mathematics are contained in his correspondence and in 
papers found after his death. 

Fermat gave a presentation of analytic geometry in his Ad Locas Planos 
et Solidos Isagoge. As Boyer notes in his History of Analytic Geometry: 

Analytic geometry was the independent invention of two men, 
neither one of whom was a professional mathematician. Pierre 
de Fermat ... was a lawyer with a deep interest in the geometri­
cal works of classical antiquity. Rene Descartes ... was a philoso­
pher who found in mathematics a basis for rational thought. 

It should be noted that Descartes believed he was finding a basis for math­
ematics in rational thought, rather than the other way round. 

In his correspondence with Pascal, Fermat helped develop the theory of 
probability. He also found a way of constructing a plane tangent to four 
given spheres, and he came close to developing calculus. 

Today Fermat is best known for his discoveries in number theory. It 
was Fermat who first proved that 1 is not a congruent number, and it 
was Fermat who first conjectured that every natural number is a sum of 
n n-gonal numbers. He also discovered what is now called Fermat's little 
theorem. 

Fermat's Little Theorem: 
If p is a prime, and a is any integer, then p is a factor of aP - a. 

Proof: The theorem is true when a = O. Suppose it true for a. By the 
binomial theorem (known to the Arabs and Chinese long before Fermat), 

(a + l)P = aP + (i) aP- 1 + ... + (p ~ 1) a + 1 
But if 0 < k < p then p divides (~), and hence, for some integer m, 

(a + l)P = aP + mp + 1 

On the induction hypothesis, p divides aP - a. Hence p divides 

(a + l)P - (a + 1) = aP - a + mp 
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The result now follows by mathematical induction. 

In reading a translation of Diophantus's Arithmetica, Fermat came across 
the equation x 2 + y2 = z2 (see Book II, Problem 8). In the margin of this 
translation, Fermat wrote a note to the effect that if n > 2 then there are 
no positive integers x, y, and z such that xn + yn = zn: 

To divide a cube into two other cubes, a fourth power, or in 
general any power whatever into two powers of the same de­
nomination above the second is impossible, and I have assuredly 
found an admirable proof of this, but the margin is too narrow 
to contain it. 

Fermat's assertion is called his 'Big Theorem' or 'Last Theorem' because, 
for a long time, it was the only one of Fermat's conjectures we could neither 
prove nor disprove. Finally, in 1993, Andrew Wiles presented work which, 
soon afterwards, led him to a proof that Fermat was right. 

Fermat himself may have had a proof for the case in which n = 3. He 
certainly had the proof for the case with n = 4. In 1823, Legendre disposed 
of the case with n = 5, and, in 1832, Dirichlet handled the case with n = 7. 
In 1849, Kummer vindicated Fermat's claim for all n < 100, except 37, 59, 
and 67. 

Exercises 28 

1. Assuming the usual theory of similar triangles, give Euclidean proofs 
of the parallel case of Desargue's theorem, and its converse. (The con­
verse is: if AB, A' B', and AG, A'G', and BG, B'G' are three pairs 
of parallels, then AA', BB', and GG' are concurrent.) 

2. Is the following argument logically valid? 

If you are using the word 'God' correctly, then God is as 
great a being as possible. If God merely exists in the human 
imagination then he is not as great as he would be if he 
really existed. If God is not as great as he would be if he 
really existed, then God is not as great a being as possible. 
Hence, if you are using the word 'God' correctly, God does 
not merely exist in the human imagination. 

3. Graph 

x 
Why did Newton call this curve the 'trident'? 
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4. Graph the 'folium of Descartes': x3 + y3 = 3xy. 

5. 2x2+3xy+4y2+7x = 1 is the equation for which sort of conic? Why? 

6. Let A(x, y) be a point on the parabola y = x 2 /4p. What is the equa­
tion of a line through A with slope m? Descartes showed that m must 
be x/2p if that line is to meet the parabola only at A (and hence be 
a tangent). Do the same. 

7. What is the smallest positive integer that quadruples when its final 
(scale 10) digit is shifted to the front? 

Essay Question 

1. Give reasons for and against the thesis that the best mathematics is 
done by nonmathematicians. 
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Pascal 

A Madman? 

Some historians feel that to be 'scientific' they must do their work on the 
assumption that there is no God. This assumption leads to curious results 
when the history involves religious persons, such as Blaise Pascal (1623-
1662). Throughout his life, Pascal was an excellent writer, philosopher, and 
mathematician. Yet, because of his religious priorities, historians such as E. 
T. Bell have branded him a madman. In Men of Mathematics, Bell writes: 

we shall consider Pascal primarily as a highly gifted mathemati­
cian who let his masochistic proclivities for self-torturing and 
profitless speculations on the sectarian controversies of his day 
degrade him to what would now be called a religious neurotic. 

A few pages later, Bell laments: 

If only the man could have been human enough to let himself 
go when his whole nature told him to cut loose, he might have 
lived out everything that was in him, instead of smothering the 
better half of it under a mass of meaningless mysticism and 
platitudinous observations on the misery and dignity of man. 

s. Hollingdale follows suit. In Makers of Mathematics, he asserts that 
Pascal's 
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u 

F 

Pascal's Mystic Hexagram 

outstanding intellectual powers were exercised mainly on sterile 
theological speculations occasioned by the sectarian religious 
controversies of his day. 

What did Pascal do so that he is at once hailed as a genius at reasoning 
and condemned as mentally ill? 
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Before November 23, 1654 

Pascal's early work was in geometry. At about age 16, he discovered, and 
proved, the theorem that the opposite sides of a 'mystic hexagram' in­
scribed in a conic meet in 3 points that are collinear (if only on the 'line at 
infinity'). For example, suppose we have the points A, D, F, B, E, and C, 
in that order, on the circumference of a circle. Suppose AB and DE meet 
at L, and BC and EF meet at N, and, finally, CD and FA meet at M. 
Then L, M, and N lie in a straight line. 

At about age 18, Pascal built the world's first computer. Within a few 
years, he had built, and sold, about fifty machines. The computer language 
PASCAL is named in his honour. 

During his early twenties, Pascal studied atmospheric pressure. In 1651, 
he published an article in which he proved that the earth's atmosphere 
weighs 8.2 x 1018 pounds. Pascal had to argue against Aristotle's false 
belief that there is no such thing as a vacuum. The metric unit for pressure 
is named after Pascal: 

1 pascal = 1 newton per square metre 

During his late twenties, Pascal worked with Fermat in the development 
of probability theory. Pascal solved the following problem, proposed by a 
gambler, Chevalier de Mere: 

How many times must you throw two dice in order to have at 
least half a chance of getting double sixes? 

Pascal also solved the 'Problem of the Points': 

Two players are flipping a coin. Every time a head comes up 
Player 1 gets 1 point. Every time a tail comes up Player 2 gets 1 
point. It has been agreed that the first player to get 100 points 
wins $1000. Suppose Player 1 has 100 - m points, and Player 2 
has 100 - n points. What is the probability f(m, n) that Player 
1 will win? 

Pascal showed that, if r = m + n - 1, then 

This can be proved from the fact that 

1 1 
f(m + 1, n) = 2f (m, n) + 2f (m + 1, n - 1) 

Pascal also worked on the concept of mathematical expectation. There is 
a distribution in probability named after him. 
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In August 1654, in connection with his studies in probability, Pascal 
wrote a treatise on what is now called 'Pascal's triangle' (although it had 
previously been given by Chu Shih-chieh (Zhu Shijie) in 1303). The first 6 
rows of this infinite triangle are as follows. 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 

Note that each number is the sum of the two above it. As Shih-chieh had 
realised, the nth row of the triangle gives the coefficients of the powers of 
x in the expansion of (x + 1) n. Pascal proved such things as the fact that 
the kth entry in row n is 

and the fact that the sum of the entries in the nth row is 2n. 

November 23, 1654 

On November 23, 1654, Pascal's horses went wild, and his carriage nearly 
fell into the Seine. That night Pascal had a religious experience. He reported 
it as follows: 

God of Abraham, God ofIsaac, God of Jacob, not of the philoso­
phers and the professors. Certainty. Certainty. Sentiment, Joy, 
Peace. God of Jesus Christ. 

From that moment on, Pascal lived in harmony with the words of Saint 
Paul: 

while the Jews demand miracles and the Greeks look for wis­
dom, here are we preaching a crucified Christ; to the Jews an 
obstacle that they cannot get over, to the pagans madness, but 
to those who have been called, whether they are Jews or Greeks, 
a Christ who is the power and wisdom of God. For God's fool­
ishness is wiser than human wisdom (1 Corinthians 1:22~25). 

As a result of his conversion, Pascal got involved, not in the 'sectarian 
controversies of his day', but in the age-old discussion about the way in 
which God helps people freely choose to do good. The fruit of this was 
the beautifully written Provincial Letters, which continues, to this day, to 
draw the praise of theologians and philosophers. 

In 1658, Pascal interrupted his work in the philosophy of religion to 
produce a treatise on the cycloid. This is the curve traced out by a point 
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on the rim of a wheel as the wheel moves over level ground. The techniques 
Pascal used in this treatise were close to those of calculus. 

Also in 1658, Pascal wrote a lucid article about mathematical reasoning. 
In this article, he discussed the nature of definition, the nature of numbers, 
and the concept of infinity. 

Pascal's last and unfinished work is the Pensees - this means 'Thoughts'. 
This is his defence of the truth of the Christian faith. It is in this work that 
we find 'Pascal's wager', a mathematical proof that it is wiser to believe in 
God. Pascal's wager goes as follows. 

Suppose there is a nonzero number E (perhaps extremely small) that is 
the probability of there being a God. If there is no God, and you believe 
in God anyway, then, although you will be deluded, and although you may 
suffer the mockery of atheists (for nothing), your loss will not be enormous. 
Let us say that it will not exceed 1 'utile' of happiness. If, however, there 
is a God, and you believe in him, he will make you very happy, giving you 
at least, say, ~ utiles of happiness. Hence the mathematical expectation of 
believing in God is at least 

2 
E X - - (1 - E) x 1 = 1 + E 

E 

On the other hand, if there is no God and you do not believe in God, you 
may gain a little, but not more than, say, 1 utile of happiness. However, 
if there is a God, and you do not choose to believe in him, then you will 
not get anything good out of your not believing in him. The mathematical 
expectation of not believing in God is thus less than 

(1 - E) x 1 + E X 0 = 1 - E 

Since 1 + E > 1 - E, and since, other things being equal, a wise person 
will act in such a way as to maximise the expectation of their happiness, it 
follows that, other things being equal, a wise person will choose to believe 
in God. 

The Real Madman 

What about E. T. Bell? Given Bell's view, we have the following conclu­
sions: 
(1) a person who lacks reason is an expert at mathematical reasoning; 
(2) a person who lacks reason writes a lucid philosophical article on reason; 
(3) a person with 'masochistic proclivities' delights in the joy and peace he 
finds in God; 
(4) a writer of 'platitudinous observations' is a brilliant author; 
(5) a writer of 'profitless speculations' is a world-famous philosopher. 
These conclusions are insane, and one might well raise some questions about 
Bell's mental state. 
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Exercises 29 

1. Make your own drawing of Pascal's mystic hexagram, and show, from 
the drawing, that the three meeting points are collinear. 

2. Solve the problem of the two dice. 

3. Using mathematical induction (a technique employed in Euclid), show 
that the (n + l)-th Fibonacci number is 

4. Two jacks and an ace are placed face down on a table. You get to pick 
one of them (without turning it over). If you pick the ace, you get to 
marry the charming royal heir. If you pick a jack, you get nothing. 
So you choose a card, without yet turning it over. At this point, the 
organiser of the game, who knows exactly where the ace is, chooses a 
jack from one of the two cards you have not picked, and turns it over. 
He says, 'if you want, you can stick to your original choice. However, 
if you give me $300, I'll let you change your mind and pick the other 
face-down card.' You desperately want to marry the royal heir, but 
should you take this offer? Why or why not? 

5. Some crazy math teacher tells you that the equation of the cycloid is 

y = arccos(l - x) - V2x - x 2 

but she does not tell you the radius of the wheel or the starting po­
sition of the point on the rim, or the direction in which the wheel is 
rolling! Supply this missing information. 

Challenges for Experts 

1. Show that Pascal's solution of the Problem of the Points is correct. 

2. Find the area under the cycloid. 
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3. Check the following proof of Pascal's mystic hexagram theorem. By 
the theorem of Menelaus, applied to triangle UVW in connection 
with points L, D, E (see the Figure above) we obtain 

V L x W D x U E = LW x DU x EV 

With the same triangle and points A, M, F, we obtain 

VA x WM x UF = AW x MU x FV 

With the same triangle and points B, C, N, we obtain 

V B x WC x UN = W B x UC x NV 

Thus 

VL x WD x UE x VA x WM x UF x VB x WC x UN 

= LW x DU x EV x AW x MU x FV x WB x UC x NV 

But 

UExUF 

VAxVB 

WCxWD 

UCxUD 

VExVF 

WAxWB 

(Why?) Hence, cancelling, we have 

VLx WMx UN=WL x UMx VN 

By another application of Menelaus's theorem, L, M, and N are 
collinear. 

Essay Questions 

1. Is it psychologically possible to choose one's beliefs in order, say, to 
maximise one's expectation of happiness? Why or why not? 

2. Was Pascal right to spend more time on philosophy and prayer than 
on mathematics? Why? 
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Torricelli 

Evangelista Torricelli (1608-1647) was the person who invented the barom­
eter. He found the length of the logarithmic spiral r = eO as () goes from 
o to -x, and he showed that, although the area under the curve y = 1/x 
from x = 1 to 00 is infinite, the solid obtained by revolving this area about 
the x-axis has a finite volume. In 1644, Torricelli published an original 
proof of the fact that the area under the cycloid is 3 times the area of the 
wheel that generates it. This led to a priority dispute with Gilles Persone 
de Roberval (1602-1675) who had previously solved the same problem but 
not published his solution. 

Torricelli also solved a problem posed by Fermat: 

Let ABC be a triangle, each of whose angles is < 1200 • Find 
the point T such that T A + T B + TC is minimised. 

Torricelli found the point by constructing equilateral triangles ABC', BC A', 
and CAB' on the sides of ABC and outside it. He showed that AA', BB', 
and CC' are concurrent at the desired point T. 

Wallis' Expression for 7r 

John Wallis (1616-1703) held the Savilian chair of geometry at Oxford. 
He was a royalist, and he ended up as a chaplain to Charles II. He also 
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invented a system for teaching deaf mutes. 
Wallis discovered that 

This can be proved as follows. Let f(n) be the fraction in the expression. 
Let k be a positive integer> 1. Using integration by parts, we have 

r/2 k -1 r/2 

I(k) = Jo sink xdx = -k- Jo sink- 2 xdx 

Thus 
I(2n) = ((2n + 1)f(n))-1/2~ 

while 
I(2n + 1) = (f(n)j(2n + 1))1/2 

Since sin2n+1 x S; sin2n x S; sin2n- 1 x, then, taking integrals, we obtain 

(f(n)j(2n + 1))1/2 S; ((2n + 1)f(n))-1/2~ S; (f(n)(2n + 1))1/2 j(2n) 

so that 
2f(n) S; 7r S; 2f(n)(2n + 1)j(2n) 

and the result follows. 
Wallis also gave a proof of the Parallel Postulate based on the assumption 

that two triangles can be similar but not congruent. 

Newton 

Isaac Newton (1642-1727) was born on Christmas Day, about three months 
after his father died. His mother abandoned him when he was 3. In 1661, 
he went to Cambridge University, where he met Isaac Barrow (1630-1677), 
who was the first mathematician to realise that 

lb f'(x)dx = f(b) - f(a) 

This is the fundamental theorem of calculus. During 1665 and 1666, Newton 
did much of the work for which he is acclaimed as one of the founders of 
calculus (the other being Leibniz). He also analysed the nature of colour, 
discovered the generalised binomial theorem, and produced a theory of 
gravitation. 

The generalised binomial theorem states that if x is any real between -1 
and 1, and m is any real number, then 
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where 
m(m - l)(m - 2) ... (m - (k - 1)) 

ak = k! 

For example, 

1 X x 2 x 3 5x4 
(1- xp = 1- - - - - - - - _ ... 

2 8 16 128 

When m is a positive integer, the terms are all 0 after a certain point, and 
the formula is just the 'nongeneralised' binomial theorem known to the 
Arabs and Chinese long before. However, when m is not a positive integer, 
we have something wholly new. 

The Law of Gravity 

Newton's Law of Universal Gravitation states that, for some constant G, 
the force of gravitational attraction between two objects A and B, with 
masses mA and mE, respectively, and separated by distance r is 

More precisely, suppose A is a sphere and suppose that the density of the 
material in A is a function of the distance of that material from the centre 
of A. Suppose that B is a similar sphere, wholly outside A. Then if r is 
the distance between the centres of A and B, the gravitational attraction 
between them is given by the above formula. It turns out that 

G = 6.67 X 1O-1l Nm2 

kg2 

Newton also realised that if A is as above and C is an object much smaller 
than A and inside A, then the gravitational attraction that A exerts on C 
IS 

I 

G mAme 
r2 

where m~ is the mass of material in A that is closer to the centre of A 
than C is, me is the mass of C, and r is the distance between C and the 
centre of A. This has some interesting consequences. 

For example, suppose A is a planet with uniform density d, with no 
atmosphere and with a narrow hole along one of its diameters. Suppose 
that you drop a small object C down this hole. Then C will come to rest 
on the other side of the planet, in a time that is independent of the radius 
of the planet. 

As another example, suppose A is a planet with a spherical inner core 
of radius R and uniform density 5. Suppose that the radius of the whole 
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planet is 5R and that the material not in the inner core has uniform density 
1. Suppose there is a narrow straight hole, going through the centre of 
this planet. Then, if a ball is dropped down this hole, its weight at first 
decreases, then increases, and finally decreases to zero. Indeed, if R < x < 
5R, then the weight of the ball at distance x from the centre of the planet 
is proportionate to 

4R3 +x3 

x 2 

and this expression has a minimum at x = 2R. 

The Cows in the Meadow 

In 1669, Barrow resigned from his job at Cambridge University so that 
Newton could have it. For almost thirty years, Newton worked as a profes­
sor. His lectures did not always attract many students. In Journey through 
Genius, William Dunham reports that 

Newton's lectures would last for half an hour except when there 
was no one at all in the audience; in that case he would stay 
only 15 minutes. 

In 1696, Newton quit his job as a professor, to work as the Master of the 
Mint. However, he did not entirely give up mathematics. About 1772, he 
posed the following problem: 

Suppose that grass grows at a constant rate. For i = 1, 2, 3, 
suppose it takes Xi oxen ti weeks to eat all the grass on ai acres. 
Prove that 

Newton lived on to age 84. 

Newton's Modesty 

Newton believed that if he had seen farther than others, it was only because 
he 'stood on the shoulders of giants'. Newton likened himself to a child: 

I seem to have been only a boy playing on the seashore, and 
diverting myself in now and then finding a smoother pebble or 
a prettier shell than ordinary, whilst the great ocean of truth 
lay all undiscovered before me. 
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Exercises 30 

2. Show that the absolute values of the coefficients in the binomial ex­
pansion of (1 + x)-3 are the triangular numbers. 

3. Let C(m, n) be the coefficient of xn in the binomial expansion of 
(1 + x)-m where m is a positive integer. Prove that 

C(m+ 1,n+ 1) = C(m,n+ 1) - C(m+ 1,n) 

4. What is the gravitational attraction between two 40 kg persons, sep­
arated by 107 va metres? 

5. Let h be the starting height of the grass and g the height added every 
week through growth. Show that in 1 week 1 ox eats 

hal + gtlal 
Xltr 

units of grass. Then solve Newton's cow problem. 

Challenges for Experts 

1. Show that the volume of Torricelli's solid of revolution is 1r. 

2. Let f (x) = 1 + al x + a2x2 + ... , with ak as defined in the text above. 
Differentiating term by term, show that (1 + x)f'(x) = mf(x). From 
this prove that 

~ f(x) = 0 
dx (l+x)m 

so that, for some constant C, f(x) = C(l+x)m. Finally, show C = 1. 

3. Solve the problem Fermat gave to Torricelli. 

Essay Question 

1. Was Newton being unduly modest, or just accurate, in his self-evalua­
tion? 
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Leibniz 

Gottfried Wilhelm Leibniz (1646-1716) was born in Leipzig, Germany. His 
father died when the boy was only 6. Leibniz educated himself, using his 
late father's library, and entered university in Leipzig when he was only 
15. In 1666, he was refused his degree of Doctor of Law on the grounds 
that he was too young. In the same year, Leibniz conceived the idea of 
symbolic logic, a universal language in which all rational thinking could be 
expressed. 

Leibniz worked as a diplomat for the Elector of Mainz. It was in this ca­
pacity that he went to Paris in 1672 to convince Louis XIV to attack Egypt 
(rather than some European country). This diplomatic mission failed, but 
Leibniz had a chance to meet many of the leading intellectuals. For exam­
ple, it was in Paris that he met Christian Huygens, who introduced him to 
geometry and physics. 

Huygens challenged Leibniz to sum the series 

111 
1+-+-+···+ + ... 

3 6 ~n(n + 1) 

Leibniz solved the problem thus: 

1 (1 1) 
~n(n + 1) = 2 :n: - n + 1 

so the series equals 

1 1 1 1 1 1 
2(1- - + - - - + - - - + - - ... ) = 2(1 + 0) = 2 

2 2 3 344 
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In the twentieth century, we would object to this on the grounds that 
Leibniz might equally well have said 

1 _ 2 (n + 1 _ n + 2) 
~n(n+1) - n n+1 

so the series equals 

3 3 4 4 5 5 
2(2 - - + - - - + - - - + - - ... ) = 2(2 + 0) = 4 

223 344 

We now prefer to solve this problem by first showing that the mth partial 
sum of the series is 

2(1 __ 1 ) 
m+1 

and then taking the limit as m goes to infinity. 
In 1673 Leibniz visited the Royal Society in England. In 1675, he was 

back in Paris, developing the calculus and using almost the same notation 
we use today. It was at this time that Leibniz derived the rule for the 
derivative of a product of two functions. Unknown to Leibniz, Newton had 
done the same work ten years earlier. However, it was Leibniz who published 
it first, in 1684. Some British mathematicians unjustly accused Leibniz of 
plagiarising Newton's work, and a bitter priority battle was fought. 

Leibniz thought ofthe 'dy' and 'dx' in dy/dx as 'infinitesimal' quantities. 
Thus dx was an infinitely small nonzero increment in x and dy, defined as 

dy = f(x + dx) - f(x) 

was also (usually) different from O. For example, if y = f(x) = x 2, then 

dy = (x + dX)2 - x 2 = 2x(dx) + (dx)2 

This represented the rise of the function f corresponding to a run of dx. 
Hence the slope of the tangent at x was 

rise = dy = 2x + dx 
run dx 

and hence, now equating the dx to 0, the tangent at x had slope 2x. 
The concept of the infinitesimal, which was also found in Newton's work, 

was criticised by philosopher and bishop George Berkeley (1685-1753). 
How, he asked, can we divide by dx if it is O? How can we get the slope of 
the tangent to be 2x, rather than 2x + dx, if it is not O? Either dx is 0 or 
it is not, and either way there is a problem. 

Nineteenth-century mathematicians Augustin Cauchy and Karl Weier­
strass agreed there were problems and responded by putting calculus on 
the firm footing it has today. In the twentieth century, dy / dx is seen not 
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as a quotient, but as a limit of a quotient: dy/dx is the number L(x) such 
that, for any given E > 0, there is a number 8 such that 

\ f(t)-f(X)_L(X)\<E if It-xl<8 
t-x 

There is also, today, a rigorous version of the infinitesimal itself. In 1966, 
Abraham Robinson introduced 'nonstandard' real numbers, some of which 
are less than any rational but greater than o. Whereas Leibniz's infinites­
imals are simple but not rigorous, those of Robinson are rigorous but not 
simple. Nonstandard analysis is a complicated and bizarre system. It seems 
too ugly to be true. 

Leibniz himself did not think that there really were any infinitesimals. 
He considered them to be 'fictious' - useful but not part of the universe. 
He held the same view of imaginary numbers and infinite numbers (New 
Essays II 17). On the other hand, in a letter to Simon Foucher in 1693, 
Leibniz claimed that 'the smallest particle should be considered as a world 
full of an infinity of creatures'. Although there was, for Leibniz, no mathe­
matical number corresponding to them, there were infinitely many objects 
in nature. 

Leibniz is famous for his assertion that this is the 'best of all possible 
universes'. (Given that God created the universe, could he have failed to 
create the best?) Voltaire ridiculed this view in his Candide, but it is un­
likely that Leibniz intended 'best' to mean 'most pleasant' - as it did in 
the simple-minded interpretation of Voltaire. 

Leibniz's most original contribution to philosophy was the system of the 
Monadology. In this work he proposed the idea that the universe is made 
up of simple substances, called 'monads', which are capable of perception. 
Human souls are monads with memory and reason. The monads 'have no 
windows' in the sense that they have no direct interaction with the rest 
of the universe. They are related to each other only by a 'pre-established 
harmony', set up by God. 

Leibniz was a theist. In Section XXIII of the Discourse on Metaphysics, 
he writes: 

This is in fact an excellent privelege of the divine nature, to have 
need only of a possibility or an essence in order to actually exist. 

In other words, the statement 'God exists' is not contingent: it is either 
impossible that God exist, or necessary that God exist. Leibniz argued that 
it is possible that God exist, and he concluded that it is necessary that God 
exist. At the end of the Discourse on Metaphysics, Leibniz claims that God 
wants a personal relationship with human beings. 
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Exercises 31 

1. Give a proof of the product rule for derivatives. 

2. Show that the nth derivative of f9 is 

3. In 1716, Leibniz found a side 3 magic cube, with its 27 rows and 4 long 
diagonals each adding up to 42. Show that the following represents 
such a cube. 

8 15 19 
12 25 5 
22 2 18 

Challenge for Experts 

24 1 17 
7 14 21 

11 27 4 

10 26 6 
23 3 16 
9 13 20 

1. Suppose a right circular cone has a base of diameter d and a height 
h. Suppose it is cut by a plane parallel to its axis at a distance x from 
its axis. Leibniz used his calculus to derive the volumes of the two 
parts (in terms of d, h, and x). Do the same. 

Essay Question 

1. Write a paragraph on the following. Since there is no largest cardinal 
number, there is no 'best' universe. God simply had to pick some very 
good universe and create it. Thus we cannot blame God if this is not 
the best of all possible universes. 
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The Eighteenth Century 

De Moivre 

Abraham de Moivre (1667-1754) was French but he was a sincere Protes­
tant and he had to leave France for England in 1688, not long after the 
Edict of Nantes was revoked (in 1685). 

De Moivre is famous for his formula 

(cos x + isinxt = cosnx + isinnx 

He is also well known for his work in probability. In 1718 he published the 
Doctrine of Chances, which contained a series of solved problems, such as 
the following: 

Suppose that three tickets will be given prizes in a lottery hav­
ing 40,000 tickets. What is the chance of winning at least one 
prize if you buy 8000 of those tickets? 

It was de Moivre who first found the formula for the nth Fibonacci 
number, and it was de Moivre (not James Stirling) who first discovered 
'Stirling's formula': 

n! ~ J27rn (~r 
For example, 10! = 3,628,800 and the formula gives 3,598,695.6. 

Society failed de Moivre. In spite of several publications and a letter of 
recommendation from Isaac Newton, de Moivre was never given a proper 
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job in mathematics. He had to earn his living tutoring and answering prob­
ability questions for gamblers. 

As de Moivre approached the end of his life, he slept an extra fifteen 
minutes a day. When he reached the full twenty-four hours, he died. 

Euler 

Leonhard Euler (1707-1783) was Swiss. He spent part of his life in Berlin 
but died in Saint Petersburg, Russia. In 1766, at age 60, Euler became 
blind, but this did not slow his flood of publications. 

Euler's collected works run to about 75 large volumes. Included are ar­
ticles on shipbuilding and a reasoned defense of the divine origin of the 
Bible. Some of the many results in mathematics are the following. 
(1) If a convex polyhedron has V vertices, F faces, and E edges, then 

V+F-E=2 

For example, a cube has 8 vertices, 6 faces, and 12 edges, and 8+6-12 = 2. 
(2) 

(3) 
1 1 1 1 71"2 

12 + 22 + 32 + 42 + ... = 6 
(4) Every even perfect number has the form 2n - 1 (2n - 1), with 2n - 1 
prime. 
(5) If cjJ(n) is the number of positive integers not greater than the positive 
integer n and relatively prime to it, and if a is a positive integer relatively 
prime to n, then nla<!>(n) - l. 
(6) Fermat was wrong when he conjectured that all numbers of the form 
22n + 1 are prime, since 6411225 + l. 
(7) The circumcentre, orthocentre, and centroid of any nonequilateral tri­
angle are collinear. (The line that passes through these three points is the 
Euler line. ) 

The last result can be proved as follows. Let ABC be the triangle, with 
A' the midpoint of BC. Let H be its orthocentre, 0 its circumcentre, and G 
its centroid. Let H' be such that G is between 0 and H' and H' GIGO = 2. 
Since GAIGA' = 2, it follows that AGH' and A'GO are similar. Hence AH' 
and OA' are parallel. Thus AH' is perpendicular to BC. Similarly, CH' is 
perpendicular to AB. Thus H' is H. 

Euler tried to prove that every natural number is a sum of four natural 
number squares. He failed to do this, but he provided some partial results 
that helped J. L. Lagrange in a successful attempt on that problem. Euler's 
partial results were the following. 
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Lemma A: If 

then 

p = ae+bf+cg+dh 

q = af - be + ch - dg 

r ag - bh - ce + df 

s ah + bg - cf - de 

Hence if every prime is a sum of four squares, so is every natural number. 

Lemma B: For every odd prime p there is an integer m such that 0 < 
m < p and mp is a sum of four squares. 
Proof: The squares 02 , 12 , 22 , .•. , (~) 2 all leave different remainders 
when divided by p. For suppose A2 = ap+r and B2 = bp+r, with A > B. 
Then p is a factor of 

A2 - B2 = (A - B)(A + B) 

However, 0 < A - B, A + B < p, so p is a factor of neither A - B nor 
A + B. Contradiction. 

Similarly, 

-1-02 , -1-12 , -1-22 , ••• ,-1-(p;1r 
all leave different remainders when divided by p. 

Each of the above two lists has E:}! members. Together, they contain 
p + 1 integers. Since there are only p possible remainders when one divides 
by p, there is some x 2 from the first list and some -1 - y2 from the second 
list that leave the same remainder when divided by p. Hence p divides their 
difference, x 2 + y2 + 1. That is, for some integer m, we have 

mp = x 2 + y2 + 12 + 02 

Moreover, since 0 :-::; x, y < ~ it follows that 0 < m < p. 

Nicolas Condorcet's Elogium of Euler describes Euler's death: 

he dined with Mr Lexell and his family, talked of Herschell's 
planet, and of the calculations which determine its orbit. A 
little after he called his grand-child, and fell a playing with him 
as he drank tea, when suddenly, the pipe, which he held in 
his hand, dropped from it, and he ceased to calculate and to 
breathe. 
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Laplace 

Pierre Simon Laplace (1749-1833) was born of poor parents, but ended up 
as a marquis under the restored Bourbons. Politically, he was an oppor­
tunist. 

Napoleon once told Laplace, 'you have written a big book on the universe 
without mentioning its creator' - to which Laplace replied, 'I do not need 
that hypothesis'. The book in question was the Mecanique Celeste. In it, 
Laplace argued that, gravitational perturbations notwithstanding, the solar 
system is stable - and hence does not need occasional adjustments by a 
God. 

Laplacian mechanics is sometimes associated with an impersonal ma­
terialistic determinism, according to which our every thought and choice 
can be predicted by a clever 'demon'. The demon starts with a full and 
exact description of the universe at some moment in the distant past, and 
then, using the laws of physics, deduces exactly where, say, the atoms in 
the President of the United States will be on December 1, 2020 A.D. This 
idea is not consistent with what we now know about the laws of physics, 
namely, that they are statistical in nature. 

Laplace's great contribution to mathematics was his phrase, 'it is easy to 
see'. Nathaniel Bowditch (1773-1838), who translated much of the Mecan­
ique Celeste into English, wrote: 

I never came across one of Laplace's 'Thus it plainly appears' 
without feeling sure that I had hours of hard work before me to 
fill up the chasm and find out and show how it plainly appears. 

Legendre 

Adrien Marie Legendre (1752-1833) contributed to geometry, number the­
ory, and the theory of elliptic functions. His Elements de Geometrie was 
a famous reworking of Euclid. In one of the editions, Legendre showed 
that the parallel postulate follows from the axiom of Archimedes and the 
assumption that there is a square. 

In number theory, Legendre was the first person to prove, in 1825, that 
the equation x 5 + y5 = z5 has no solution in positive integers. 

In 1792, when he was 40, Legendre married a woman not quite half his 
age. As we shall see in the next chapter, Lagrange did the same thing in 
the same year. 
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Exercises 32 

1. Prove de Moivre's formula for positive integers n. 

2. Use de Moivre's formula to find the cube roots of 1 + R. 

3. Solve de Moivre's lottery problem. 

4. Show that the triangle with vertices (0,0), (12,0), and (16,8) has 
circumcentre (6,8), orthocentre (16, -8), centroid (28/3,8/3), and 
Euler line 8x + 5y = 88. 

5. Euler conjectured that a5 + b5 + c5 + d5 = e5 has no positive integer 
solutions. In 1966, L. Lander and T. Parkin found a counterexample 
with a = 27, b = 84, c = 110, d = 135, and e = 144. Verify that this 
is a counterexample. 

Challenges for Experts 

1. Let 
enn! 

g(n) -- nn.jii 

Then, where f is defined as in the section on Wallis in Chapter 30, 

(g(n))2 = J (4n + 2)f(n) 
g(2n) n 

2. Hence, taking limits as n goes to infinity and assuming that g(n) has 
a finite nonzero limit as n goes to infinity, 

lim g(n) = v'21T 
n---+oo 

and Stirling's formula follows. 

3. Prove that g( n) does have a finite nonzero limit as n goes to infinity. 
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Essay Questions 

1. Every math professor should be fired every five years, so that peo­
ple like de Moivre could get good jobs and the deadwood would be 
cleared away. Comment. 

2. In his article 'Rettung der G6ttlichen Offenbahrung' (1747), Euler 
claims that the Bible offers us a way to be happy. Comment on this 
claim. 

3. Even if the solar system is gravitationally stable, it still needs God 
to keep it in existence. Comment. 

4. Is it ethical for mathematicians to use the expression 'it is easy to see' 
when (1) this is not scientific language, (2) it is boastful, and (3) it 
causes many students humiliation and frustration when they do not 
see? 
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Lagrange 

Joseph and Renee 

Joseph Louis Lagrange (1736-1813) was born in Italy. His father lost the 
family fortune through speculation, but Lagrange later commented that if it 
had not been for this bad luck, he might never have turned to mathematics. 

In 1764, Lagrange went to Paris and met the French mathematicians. 
Clairaut described him as 

a young man, no less remarkable for his talents than for his 
modesty; his temperament is mild and melancholic; he knows 
no other pleasure than study. 

From 1766 to 1787, Lagrange worked in Berlin, but after the death of 
Frederick II, Lagrange moved to Paris, where he became a favourite of 
Marie Antoinette - just in time for the Revolution! 

Lagrange was involved in the introduction of the metric system. When 
people pleaded the advantages of base 12, he would ironically defend base 
II. 

About 1790, Lagrange became subject to fits of depression and loneliness. 
He no longer wanted to do mathematics. He was rescued from this state 
by the love of a teenaged girl, Renee Lemonnier, who insisted on marrying 
him. They married in 1792, and, for the remaining twenty years of his life, 
Lagrange was happy and mathematically productive. 
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Some of Lagrange's Triumphs 

Among Lagrange's many achievements are the following: 
(1) an explanation of why the moon always shows the same face to the 
earth; 
(2) the first proof (given in 1771) of John Wilson's theorem that if p is a 
prime, then it factors (p - I)! + 1, and conversely; 
(3) the first proof (given in 1766) that if R is any given positive nonsquare 
integer, then x 2 - Ry2 = 1 has a positive integer solution; 
(4) the first complete solution of the Diophantine equation 

AX2 + Bxy + Cy2 + Dx + Ey = F 

(5) the first proof (given in 1770) that every natural number is a sum of 
four natural number squares; 
(6) a systematic theory of differential equations; and 
(7) his book M ecanique analytique (1788). 

Four Square Theorem 

Euler had shown that if p is an odd prime, then there is an integer m with 
o < m < p such that mp = a2 + b2 + c2 + d2 (for some natural numbers 
a, b, c, and d). Consider the least such number m. As we saw in Chapter 
32, in order to establish the theorem that every natural number is a sum 
of four squares, it suffices to show that m = 1. 

Lemma C: If p is an odd prime and m is the least integer such that 
o < m < p and mp = a2 + b2 + c2 + d2 for some natural numbers a, b, c, 
and d, then m is odd. 

Proof: If m is even, then 0, 2, or 4 of a, b, c, and d are odd. Pairing the 
odd numbers, we get, say, 

mp 

2 

which is an expression of '!if as a sum of four natural number squares. 
Since"¥- < m, this is impossible - by m's minimality. So m is odd. 

Using Lemmas A and B (see Chapter 32) and Lemma C, Lagrange proved 
the following in 1770. 

Every natural number is a sum of four natural number squares. 
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Proof: Since 2 = 12 + 12 + 02 + 02 , Lemma A implies that it suffices to 
prove that every odd prime p is a sum of four squares. 

Let p be any odd prime and let m be the least integer between 0 and p 
such that mp is a sum of four squares. (That there is such an m follows 
from Euler's Lemma B.) By Lemma C, m is odd. 

To obtain a contradiction, suppose m :::: 3. 
Suppose mp = a2 + b2 + e2 + d2 and let x be the integer closest to aim. 

Then lalm - xl < ~ and x' = a - mx is between -~ and ~. Let y, Z, and 
w be the integers closest to blm, elm, and dim, respectively. Then 

y' b - my 

z' e - mz 

w' d-mw 

are each between - ~ and ~. 
Let Z' = x'2+ y'2+ z'2+ W '2. Then Z' < 4(~)2 = m 2. Also Z' -I- 0, lest m 

divide each of a, b, e, and d, with the result that m 2 divide a2+b2+e2+d2 = 
mp. This is impossible because p is prime, and 1 < m < p. 

Let Z = x 2 + y2 + z2 + w2. Let T = xx' + yy' + zz' + ww'. Then the fact 
that mp = a2 + b2 + e2 + d2 implies that 

mp = m 2Z + 2mT+Z' 

(since a = x' + mx, and so on). 
Let M = Z'lm = p - mZ - 2T, an integer. Since Z' -I- 0, it follows that 

M -I- o. Also, since Z' < m 2 , it follows that M < m. 
Now 

(since M = Z'lm). 

Mp (Mlm)mp 

(Mlm) (m2Z + 2mT + Z') 

ZMm + 2MT + MZ'lm 

Z Z' - T2 + (T + M)2 

By Lemma A, ZZ' = T2 + q2 + r2 + 8 2 for some natural numbers q, r, 
and 8. Thus Mp = q2 + r2 + 8 2 + (T + M)2, a sum of four squares. But 
M < m. Contradiction. 

Exercises 33 

1. Verify Wilson's theorem for p = 7. 

2. Use factorisation to find all the integer solutions of 

14x2 + 53xy + 14y2 - 13x - 23y + 3 = 0 
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3. Write 99 as a sum of four squares. 

4. Prove that a natural number of the form 8n + 7 cannot be written as 
a sum of three squares. 

5. Let x = (m-m3 )/6, where m is an integer. Show that x is an integer. 
Then show that 

a sum of 5 cubes. 

6. Write 239 as a sum of 9 nonnegative cubes, and show that it cannot 
be written as a sum of 8 nonnegative cubes. 
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Nineteenth-Century Algebra 

It was in the nineteenth century that algebra acquired the very abstract 
nature it has today. The key event in its development was the overthrow 
of the law of commutativity for multiplication (that is, for all x and y, 
xy = yx). This was accomplished by William Rowan Hamilton (1805-1865) 
who, incidentally, was the first person to conceive of complex numbers 
as ordered pairs. Just as many people before Lobachevsky thought that 
Euclid's parallel postulate was a kind of sacred truth, so many people before 
Hamilton thought that the law of commutativity for multiplication was 
ineluctable. For us it is a commonplace that this law need not hold, since 
we have a ready example of noncommutativity in matrix multiplication. 
Hamilton, however, made his discovery about fifteen years before matrix 
algebra had been discovered. 

The system Hamilton discovered is the 'quaternions'. This system not 
only shows that one can 'break' fundamental 'laws' of arithmetic, but 
also serves as a kind of theory of three-dimensional vectors. Hamilton's 
noncommutative multiplication is closely related to the cross product for 
3-component vectors (which was investigated after Hamilton's work on 
quaternions) . 

Hamilton's idea dawned on him as he crossed Broome Bridge in Dublin, 
Ireland, while walking with his wife, on October 16, 1843. He wrote about 
his discovery to his son Archibald: 

An electric circuit seemed to close; and a spark flashed forth 
... Nor could I resist the impulse - unphilosophical as it may 
have been - to cut with a knife on a stone of Brougham Bridge, 
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as we passed it, the fundamental formula with the symbols, i, 
j, k; namely, 

A quaternion is a 'number' of the form a + bi + cj + dk where a, b, c, and 
dare reals, and i, j, and k are special numbers subject to the rules cut on 
the bridge. 

If quaternion multiplication were commutative, we would get a contra­
diction. For ijk = -1 implies that ijk2 = -k, whence -ij = -k. Also 
jiij = 1, so that jiijk = k, whence -ji = k. With commutative multipli­
cation we get -k = k and hence k = 0 ~ although k2 = -1. To avoid this 
contradiction, we must have ij =I- ji. 

Although they do not obey the law of commutativity for multiplication, 
the quaternions do obey the other laws for fields. For example, the nonzero 
quaternion a + bi + cj + dk has a multiplicative inverse, namely, 

a b. c d 
---z--j--k 
N N N N 

where N = a2 + b2 + c2 + d2 . Indeed, a short calculation shows that the 
product of a quaternion a + bi + cj + dk and its conjugate a - bi - cj - dk 
does equal its norm a2 + b2 + c2 + d2 . The conjugate of a quaternion q is 
written q, and its norm is written N q. 

The nineteenth century saw quite a bit of algebra. It was proved that 
there is no general algebraic solution for fifth-degree equations. Matrix 
algebra was developed. Hamilton's quaternions, however, were the first in­
stance of the otherworldly abstraction that characterises modern algebra 
and which was its hallmark in the twentieth century. 

Exercises 34 

1. If q and q' are quaternions, then qq' = q(ji. 

2. If q is a quaternion, then Nq = N q. 

3. If q and q' are quaternions, then N(qq') = (Nq)(Nq'). 

4. Show that quaternion multiplication is associative. 

5. Find all the quaternions whose square is -1. 
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6. Show that Euler's 'Lemma A' in Chapter 32 is an instance of the 
quaternion theorem (Nq)(Nq') = N(qq'). 

7. Solve the following problem posed by Hamilton. Find a route along 
the edges of a dodecahedron that passes exactly once through each 
vertex. 

Essay Question 

1. What is abstraction in mathematics? Is a more abstract piece of 
mathematics necessarily more general? Is a more abstract piece of 
mathematics necessarily better? 
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Nineteenth-Century Analysis 

A lack of mathematical rigour has to do with significant gaps in argu­
ments. Either the mathematician is being careless or is relying on intu­
itions that cannot be easily translated into deductive reasoning. Prior to 
the nineteenth century, many arguments in calculus lacked rigour. Words 
like 'small', 'infinity', 'approaches', and 'limit' were used without ever be­
ing precisely defined. Infinite series were treated by methods analogous to 
those used for finite series, and no justification for doing this was offered. 

Two of the mathematicians responsible for finally putting calculus on a 
rigorous basis were Cauchy and Weierstrass. Their work, with its emphasis 
on rigour, is typical of nineteenth-century work in analysis. 

Cauchy 

Augustin-Louis Cauchy (1789-1857) was born in Paris the year of the 
French Revolution. His career as a mathematician was well underway when, 
in 1818, he married Aloise de Bure. He wrote her a poem that ends: 

I shall love you, my tender friend, 
Until the end of my days; 
And since there is another life 
Your Louis will love you always. 

The noble Christian sentiment expressed in this poem was typical of 
Cauchy's life. He was a determined idealist. He supported the ancient line 
of French kings, consistently refusing to support the new French rulers. He 
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supported the unpopular Jesuits. He supported a project to help the poor 
in Ireland and another project to set up Christian schools in the Middle 
East. People did not appreciate Cauchy's determined idealism, and he lost 
several jobs and job opportunities on account of it. For example, in 1843, 
it was Guglielmo Libri (1803-1869), not Cauchy, who was given the chair 
of mathematics at the College de France - not because anyone thought 
Libri was a better mathematician, but because Libri attacked the Jesuits, 
whereas Cauchy defended them. (It was this same Libri who later fled 
France when it was discovered that he was stealing library books.) 

Rigour was one of Cauchy's mathematical ideals, and Cauchy had to 
suffer for this ideal too. His students hated rigour. For them, it meant 
extra lectures and longer hours of study. One year Cauchy started his cal­
culus course with thirty students and all but one dropped out. Cauchy was 
painfully aware of his bad reputation with the students, but he nonetheless 
clung to the ideal of giving complete and careful proofs of each and every 
theorem. 

Cauchy made enormous contributions to analysis. A few of them are 
(1) the first rigorous definition of continuity, 
(2) the Cauchy criterion for sequence convergence, 
(3) the extended mean value theorem, and 
(4) the Cauchy residue theorem of complex analysis. 

Weierstrass 

A second great analyst and proponent of rig our was Karl Weierstrass (1815-
1897). He studied at the University of Bonn, Germany, but spent most of 
his time drinking and fencing and had to leave without his degree. At age 
26, he got a job as a high school teacher. He did mathematics at night, 
but it was not until he was about 40 that one of his articles brought him a 
university position. 

In 1861, Weierstrass gave his famous example of a continuous, nowhere 
differentiable function, something that had been thought impossible. In 
1874, he gave proofs of basic calculus theorems, using even more rigour 
than Cauchy had. Weierstrass's students included famous mathematicians 
such as Georg Cantor, Sonya Kovalevsky, and David Hilbert. 

Calculus students know Weierstrass as the mathematician who noticed 
that the substitution t = tan(x/2) converts any rational function of sin x 
and cos x to an ordinary rational function (which can then be integrated 
using partial fractions). We have 

. 2t d 
SlllX = 1 +t2 an 

1- t2 
cos x = 1 + t2 
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1. Prove the following result of Cauchy: if 

then the series 
al + a2 + a3 + ... 

converges if and only if the series 

converges. 

2. Use the previous result to show that 

111 
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2(1n 2)p + 3(1n 3)p + 4(ln 4)p + ... 

converges if and only if p > 1. 

Challenge for Experts 

1. Use the Weierstrass substitution to find 

J 1 d 
3 sin x - 4 cos x x 

Essay Question 

1. Define 'rigour' in mathematics and give some examples. 
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Nineteenth-Century Geometry 

The nineteenth century saw so many advances in geometry that a full 
volume would not do them justice. The most startling discovery was that 
of the (relative) consistency of non-Euclidean geometry, for this challenged 
the idea that there is only one self-evidently true way to view space. 

The Golden Age of Euclidean Geometry 

At age 18, when he was trying to decide whether he should be a mathemati­
cian or a philologist, Carl Friedrich Gauss (1777-1855) discovered a ruler 
and compass construction for a regular 17 -gon. This had been overlooked 
by the Greeks, and Gauss was so excited about his discovery that there 
was no longer any question about his becoming a mathematician. Other 
mathematicians were excited too, and many were led to ask if there were 
not other theorems in Euclidean geometry, unknown in antiquity, but now 
ripe for the harvest. There were. 

In 1809, Louis Poinsot (1777-1859) discovered the great dodecahedron. 
This is the polyhedron whose 60 faces are congruent 36 - 36 -108° triangles, 
meeting in 3's at the 108° vertex, and meeting in 10's at the 36° vertex. It is 
like a regular icosahedron but with an indentation in each of the 20 faces. 
Centred on the 12 non-indented vertices, there are 12 three-dimensional 
Pythagorean stars. It has to be built to be believed. Plato would have 
drooled. 

In 1820, Charles-Julien Brianchon (1783-1864) and Jean Victor Poncelet 
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(1788-1867) published the first proof of the fact that, in any triangle, the 
3 midpoints of the sides, the 3 feet of the altitudes, and the 3 midpoints of 
the segments connecting the vertices to the orthocentre all lie on a single 
'9 point' circle. 

In 1822, Pierre Germinal Dandelin (1794-1847) showed that if you cut 
a cone with a plane, forming an ellipse, and if you wedge a sphere in the 
cone so that it just touches that plane, then it will touch it at a focus of 
the ellipse. If the sphere is inserted between the vertex of the cone and the 
plane, it touches one focus; if it is inserted on the other side of the ellipse, 
so that it is now a larger sphere, it touches the other focus. 

Also in 1822, Karl Wilhelm Feuerbach (1800-1834) published the mono­
graph in which he proved that the centre of the 9 point circle lies on the 
Euler line, midway between the orthocentre and the circumcentre. He also 
showed that the 9 point circle is tangent to the incircle of the given triangle. 
Unfortunately, these beautiful revelations did not prevent Feuerbach from 
becoming insane. 

In 1837, Pierre Wantzel (1814-1848) showed that one cannot duplicate 
the cube or trisect an angle of 600 using only straight-edge and compass. 
Wantzel also proved that a regular n-gon with a prime number of sides is 
constructible with straight-edge and compass if and only if that prime has 
the form 2m + 1. With m = 4, we obtain the fact that the regular hep­
tadecagon is constructible - the discovery that launched the young Gauss 
on his mathematical career. Wantzel died young on account of drinking too 
much coffee and smoking too much opium. 

Hyperbolic Geometry 

The parallel postulate seems less natural than Euclid's other assumptions 
- whose conjunction we shall call 'A'. A includes the first four postulates, 
along with the tacit betweenness and continuity assumptions made by Eu­
clid. Noteworthy attempts to derive the parallel postulate from A were 
made by Proclus (410-485) and Gerolamo Saccheri (1667-1733). Gauss 
may have been the first person to suspect the truth. In a letter to Franz 
Taurinus, written in 1824, Gauss says he is sure that the parallel postulate 
cannot be proved (from A). Let P be the parallel postulate, and Hits 
negation. What Gauss believed is that A&H is consistent. 

The geometry based on A&H is called hyperbolic geometry. Nikolai Ivano­
vitch Lobachevsky (1793-1856) published some results in hyperbolic ge­
ometry in 1829. The same year, the same results were discovered inde­
pendently by Janos Bolyai (1802-1860). Neither Lobachevsky nor Bolyai 
received much acclaim for their pains. The world was not interested in the 
new geometry. Lobachevsky carried on with his mathematical career only 
to die in poverty, while Bolyai gave the whole thing up in disgust. Aban­
doning mathematics, Bolyai set up house with his mistress, Rosalie von 



Elliptic Geometry 205 

Orban, in 1834, and had three children. 
The reason the world rejected hyperbolic geometry is that it is so weird. 

Its squares do not have 4 right angles. The theorem of Pythagoras and the 
analytic geometry distance formula are false. Two triangles are congruent if 
their corresponding angles are equal. Not every triangle has a circumcircle. 
There is a circle larger in area than any triangle. And, of course, a straight 
line can get nearer and nearer to another straight line without ever meeting 
it. 

In was not until 1868 that it was proved that this weird geometry is con­
sistent. In that year, Eugenio Beltrami (1835-1900) gave a Euclidean model 
for hyperbolic geometry. This showed that if hyperbolic geometry contained 
any logical contradiction, then that contradiction could be translated into 
a contradiction in Euclidean geometry. Since, presumably, there is no in­
consistency in Euclidean geometry, there is none in hyperbolic geometry 
either. (Lobachevsky had previously shown the converse: any contradiction 
in Euclidean geometry can be translated into a contradiction in hyperbolic 
geometry. Hence if there is no contradiction in hyperbolic geometry there 
is none in Euclidean geometry either.) 

In 1882, in the first article ever published in Acta Mathematica, Henri 
Poincare (1854-1912) gave a sketch of a second Euclidean model for hy­
perbolic geometry. To show that this really is a Euclidean model, one uses 
the inversion transformation of Apollonius. The reader can find the details 
in volume 1 of A Survey of Geometry by Howard Eves. (Note that one can 
drop the logarithms in Eves's treatment without affecting its validity.) 

Elliptic Geometry 

In elliptic geometry, developed by Bernhard Riemann (1826-1866) in 1854, 
the straight lines are finite, and there are no parallels. A 'point' is like a 
pair of points opposite each other on a sphere, and a 'line' is like a great 
circle on a sphere. 

The mathematician Richard Dedekind describes Riemann's death from 
tuberculosis as follows: 

On the day before his death he lay beneath a fig tree, filled 
with joy at the glorious landscape [in Selasca, Italy], writing 
his last work, unfortunately left incomplete. His end came gen­
tly, without struggle or death agony; it seemed as though he 
followed with interest the parting of the soul from the body; his 
wife had to give him bread and wine, he asked her to convey 
his love to those at home, saying "Kiss our child." She said the 
Lord's prayer with him, he could no longer speak; at the words 
"Forgive us our trespasses" he raised his eyes devoutly, she felt 
his hand in hers becoming colder. 
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Which Geometry is Thue? 

In contemporary mathematics, one can vary the postulates of Euclid at 
will, constructing as many geometries as one wishes. In the nineteenth 
century, this was a radical idea. People thought of Euclid's axioms as self­
evident and necessary truths about space, truths that underlie the whole 
of astronomy and physics. 

If Euclidean and hyperbolic geometry are both consistent, how should 
one respond to the question, 'which is true?' 

A Formalist Response 
Although certain interpretations of either geometry may be true, the ge­
ometries themselves are neither true nor false. They are just games in which 
one manipulates mathematical symbols. 
A Pragmatist Response 
A set of statements is true if it is useful for us humans to believe they are 
true. If we can base the simplest, most accurate theory of space-time on 
Euclidean geometry, then we have a reason to take Euclidean geometry as 
true. Otherwise we should take it that some other geometry is true. 
An Intuitionist Response 
We cannot say of two paintings that one is true and the other false. We talk 
instead about their coherence, energy, or beauty. Geometries are free-will 
creations, and it is not logical to ask whether they are true. Just as there 
are many art forms, so there are many ways to perceive space and time. 
A Platonist Response 
As we consider a Cartesian grid, we are turning our mind's eye on an inde­
pendently existing abstract reality. What we see there is a lot of squares, 
each with four right angles. This grid is thus not the hyperbolic plane, but 
the Euclidean plane. So Euclidean geometry is, in this way, 'seen' to be 
true. On the other hand, hyperbolic geometry is false, since we know what 
straightness is, and we know that straight lines cannot forever get closer 
and closer without actually meeting. 

Exercises 36 

1. Build a model of a great dodecahedron. 

2. Prove that the 9 points of the 9 point circle really do lie on a single 
circle. 
Hint: Suppose triangle ABO has medians AA', BB', 00', and al­
titudes AD, BE, OF. Let H be the orthocentre, and K, L, M the 
midpoints of AH, BH, OH, respectively. Then B'O'LM is a rectan­
gle. So is A' B' K L. Hence A' K, B'L, and 0' M are 3 diameters of a 
circle. Since LA'DK is right, this circle passes through D. 
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3. Prove Dandelin's theorem. 

Challenges for Experts 

1. If A' is the midpoint of BC in triangle ABC, and A" is the point in 
BC such that LBAA" = LCAA' , then AA" is a symmedian of the 
triangle. In 1873, E. M. H. Lemoine (1840-1912) proved that the 3 
symmedians are concurrent. Do the same. 

2. In 1893, James Joseph Sylvester (1814-1897) posed the following 
problem. Let S be a finite set of points in the Euclidean plane. Let 
T be the set of all lines AB such that A and B are distinct points 
in S. Assume that T contains more than one line, and prove that T 
contains a line containing only two points in S. 

Essay Questions 

1. 'The true geometry is the simplest and most beautiful'. Comment. 

2. 'The possibility of hyperbolic geometry undermines absolute truth: 
there is no absolute truth whatsoever'. Comment, giving, if possible, 
examples of absolute truths outside mathematics. 



37 
Nineteenth-Century Number 
Theory 

Gauss and Cauchy 

Pierre de Fermat (1601-1665) had conjectured that every positive integer 
is a sum of 3 triangular numbers, 4 square numbers, 5 pentagonal numbers, 
and so on. If m is a positive integer and t a nonnegative integer, an (m + 
2)-gonal number is a number of the form 

The first few 3-gonal, or triangular, numbers are 0, 1, 3, 6, 10, 15, .... The 
first few 4-gonal, or square, numbers are 0, 1,4,9, .... The first few 5-gonal, 
or pentagonal, numbers are 0, 1, 5, 12, 22, .... What Fermat conjectured 
is that every positive integer is a sum of m + 2 (m + 2)-gonal numbers. 
As an example of this conjecture, 

19 = 1 + 3 + 15 = 1 + 1 + 1 + 16 = 0 + 1 + 1 + 5 + 12 

One of the major achievements of nineteenth-century number theory was 
a proof of this conjecture. Lagrange had proved it in the case m = 2, but 
it was left for Gauss to prove it for triangular numbers and for Cauchy 
to prove it in general. The proof for m = 1 was given in 1801, in Gauss' 
Disquisitiones Arithmeticae, while a general proof, based on Gauss' result, 
was given by Cauchy in a series of three memoirs from 1813 to 1815. 
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Dirichlet 

In 1837, Peter Dirichlet (1805-1859), a student of Gauss, used analysis 
to prove that if a and b are relatively prime positive integers, then the 
arithmetic progression 

a, a + b, a + 2b, a + 3b, ... 

contains infinitely many primes. Dirichlet's brain is preserved in the De­
partment of Physiology at Gottingen University in Germany. 

Sylvester 

James Joseph Sylvester (1814-1897) was a model of perseverance. In 1842 
he lost his job at the University of Virginia (over a row with a student), and 
he had to do actuarial and legal work for thirteen years until, finally, he ob­
tained another professorship, at the Royal Military Academy at Woolwich. 
In 1870 he lost his job at the Royal Military Academy (because of their 
early retirement policy), and he had to wait another six years before he 
obtained another professorship, this time at Johns Hopkins University in 
Baltimore. In 1878 he founded the American Journal of Mathematics and, 
in 1884 (at age seventy), he was given a prestigious job at Oxford Univer­
sity. It was while he was at Oxford University that he gave his proof of the 
fact that every fraction can be expressed as a sum of unit, or Egyptian, 
fractions (see Chapter 1). Sylvester once asked: 

May not Music be described as the Mathematic of Sense, Math­
ematic as Music of the reason? the soul of each the same! 
Thus the musician feels Mathematic, the mathematician thinks 
Music. 

One of Sylvester's students was Florence Nightingale, the reformer of hos­
pital nursing. 

Hadamard and de la Vallee-Poussin 

Using analysis, Jacques Hadamard (1865-1963) and Charles-Jean de la 
ValIee-Poussin (1866--1962), working independently, each proved the prime 
number theorem in 1896: if f(n) is the number of primes::; n then 

lim f(n) = 1 
n--+oo n/loge n 

This had been conjectured by Gauss. For example, when n = 106 , we 
have f(n) = 78,498 and n/loge n = 72,382.4; the fraction is 1.08. When 
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n = 109 , we have f(n) = 50,847,478, while n/ loge n = 48,254,942.4; the 
fraction is 1.05. 

Lucas 

Another important nineteenth-century number theorist was Edouard Lucas 
(1842-1891). In 1875, Lucas challenged the readers of the Nouvelles Annales 
de Mathematiques to prove that 

A square pyramid of cannon-balls contains a square number of 
cannon-balls only when it has 24 cannon-balls along its base. 

The choice of cannon-balls was not fortuitous. Lucas was French, and 
France had just lost Alsace-Lorraine to the Germans in 1871. In an 1885 
High School Prize Day Speech, Lucas quoted 'la Marseillaise des petits 
soldats' by Victor de Laprade. The closing stanza says of France that 

She has suffered a great insult 
But God wants her to get up again 
Our schoolchildren will avenge her 
By their minds, and by their swords 

It is interesting that Lucas' square pyramid problem was not solved until 
1918, the year in which France won World War I against the Germans. A 
simple elementary proof of the assertion was first given in 1990 by W. S. 
Anglin (1949- ). 

Exercises 37 

1. Express 42 as a sum of 3 triangular numbers in 4 different ways. 

2. Find a number that cannot be expressed as a sum of fewer than 4 
squares and prove that this is, indeed, the case. 

3. List the first 6 hexagonal numbers. 

4. Prove that all hexagonal numbers are triangular numbers. 

5. List the first 6 primes of the form 7n + 3. 

6. Express 14/15 as a sum of unit fractions. 
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7. How many primes are there less than 100, and what is 100/ loge 100? 
What is the fraction relevant to the prime number theorem? 

8. How many cannonballs are in Lucas's pyramid? 

9. What is the smallest number that has 2 distinct expressions as a sum 
of 5 pentagonal numbers? 

10. For which m is 100 an (m + 2)-gonal number? 

Essay Questions 

1. There was no point in keeping Dirichlet's brain, since it was his soul 
that did the work. Comment on this. 

2. Do you agree with Sylvester's thoughts about music. Why or why not? 

3. How might Lucas have expressed his problem if he had been a pacifist? 



38 
Cantor 

Empiricist philosophers, such as Hobbes, Locke, and Hume, had convinced 
some mathematicians, such as Gauss, that there is no infinite in mathemat­
ics. Thanks to Georg Cantor (1845-1918), however, almost every mathe­
matician now accepts the infinite. Georg Cantor single-handedly produced 
a clear and complete theory of the infinite that answers all the objections 
previously raised by anti-infinity philosophers, and which has become the 
basis of contemporary mathematics. Thanks to Cantor, we have a new 
and deeper understanding of real numbers and of the many branches of 
mathematics such as calculus, which presuppose them. 

Because of the anti-infinity attitude of L. Kronecker and others, Cantor 
never obtained a position at a good university. In his own day many people 
rejected his theory, and, in 1884, he had a mental breakdown from which 
he never fully recovered, dying in a psychiatric clinic in Halle, Germany. 

History, however, has judged Cantor to be one of the most original and 
important mathematicians of all time. The opening sentence in Michael 
Hallett's Cantorian Set Theory and Limitation of Size is not exaggeration: 

Cantor was the founder of the mathematical theory of the in­
finite, and so one might with justice call him the founder of 
modern mathematics. 

Cantor believed in an infinite God and in infinite sets of numbers. For 
Cantor, the latter belief was justified by the former. Cantor wrote: 

Since God is of the highest perfection one can conclude that it 
is possible for Him to create a transfinitum ordinatum [realm 
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of the infinite]. Therefore, in virtue of His pure goodness and 
majesty we can conclude that there actually is a created trans­
finitum. 

Here Cantor invoked Augustine's principle of plenitude, which states that 
God creates every possible good thing. 

Cantor's belief in God led him to the correct belief that not every collec­
tion of abstract objects is itself eligible as a member of a collection. Cantor 
believed this because he believed that the collection consisting of every­
thing is divine, and divine in such a way that it is overqualified to be a 
member in what would be a higher collection. Some of the early workers in 
set theory, such as atheist Bertrand Russell (1872-1970), originally thought 
no such restriction was necessary. They espoused what is now called the 
'naive' view that any collection is eligible for membership in any collec­
tion. A collection could even be a member of itself. This led them into a 
contradiction, discovered by Russell, called the Russell paradox: 

Let C be the collection such that, for any collection X, 
X is a member of C just in case X is not a member of X. 
Then C is a member of C just in case C is not a member of C. 

A similar thing happened in the case of the well ordering principle, an 
axiom equivalent to the axiom of choice. Cantor adopted it because he 
believed there is a God who can arrange the elements of any set so that 
they are well-ordered. As it was discovered later, the well ordering principle 
plays a key role in many branches of mathematics. Cantor's faith in God 
guided him in the right direction. 

One of Cantor's striking results is that there is an infinite hierarchy of 
distinct infinites, each infinitely greater than those below it. The medievals 
had noted that the number of points in a large circle is the same as that in a 
small concentric circle, in the sense that each radius of the large circle passes 
through exactly one point of each circle. Similar observations led Bernhard 
Bolzano (1781-1848) and others to the conclusion that any two infinite sets 
are 'equal' because they can be linked by a one-to-one correspondence. In 
1873 Cantor discovered that this is wrong. One of his proofs goes as follows. 

Let A be an infinite set (that is, one containing infinitely many members). 
Let peA) be the set of subsets of A. Suppose that A and peA) are linked 
by a one-to-one correspondence f : A ----> peA). Let S be the set of members 
x of A such that x is not a member of f(x). Then S is in peA), and there 
is some y in A such that S = fey). 

If y € S = fey) then, by the defining property of S, y is not a member 
of fey). However, if y is not a member of fey) = S, then, by the definition 
of S, it is a member of S. Contradiction. Hence A and peA) are not linked 
by a one-to-one correspondence. 

Since, for every member x of A, peA) has {x} as a member, there is a 
'copy' of A that is a subset of peA). Hence A is smaller than peA), and 
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we can write A < P(A). Similarly, P(A) < P(P(A)). Indeed, we have an 
infinite hierarchy of infinite sets, each more infinite than the previous ones: 

A < P(A) < P(P(A)) < P(P(P(A))) < P(P(P(P(A)))) < ... 

Results like this incurred the scorn of Kronecker. 
Cantor raised the following question. If A is the set of positive integers, 

we know that A < P(A), but is there some set B such that A < Band B < 
P(A)? Cantor conjectured that the answer is 'no', and it is this conjecture 
that is called the continuum hypothesis. It has been proved, by Kurt G6del 
and Paul Cohen, that neither the continuum hypothesis nor its negation 
follows from the 'basic' axioms of set theory, and no one has yet been able 
to produce a not-so-basic axiom that would yield a convincing answer to 
Cantor's question. The continuum hypothesis is the parallel postulate of 
set theory. 

Cantor was a Christian. In a letter to C. Hermite, Cantor writes about 
his failure to get a decent job: 

I thank God, the all-wise and all-good, that He always denied 
me the fulfillment of this wish [for a good position], for He 
thereby constrained me, through a deeper penetration into the­
ology, to serve Him and His Holy Roman Catholic Church bet­
ter than I have been able with my exclusive preoccupation with 
mathematics (p. 147 of Dauben's Georg Cantor). 

One of Cantor's last compositions was a love poem to his wife, Vally 
Guttmann. After forty years of marriage, Cantor talks about 

The love you gave me my good wife, 
You cared for me so well. 

Exercises 38 

1. Show that there is a one-to-one correspondence between the positive 
integers and all the integers. 

2. Show that there is a one-to-one correspondence between the positive 
integers and the set of ordered triples of integers. 

3. By viewing them as base 11 integers, show that there are, in a sense, 
no more fractions than integers. 

4. Suppose the set of reals can be linked by a one-to-one correspondence 
with the positive integers, so that they can be listed as rl, r2, r3, .... 
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For each n, rn is contained in the interval 

1 1 
[rn - 2n ' rn + 2n I 

Thus all the reals are contained in intervals the sum of whose lengths 
is 2. Explain this last sentence, and then draw a conclusion. 

5. Show, as Cantor did, that the points inside a square are linked by a 
one-to-one correspondence to the points in one side of that square. 

6. Show that there are more functions with domain the set of reals and 
codomain the set {O, I} than there are reals. Hint: such functions 
determine subsets of reals. 
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Foundations 

In the twentieth century, there was a great deal of concrete, practical mathe­
matics. Statistics flourished, the computer proved the Four Colour theorem, 
and number theorists factored 100 digit integers. On the other hand, much 
twentieth century mathematics was characterised by a degree of abstrac­
tion never seen before. It was not the Euclidean plane that was studied, 
but the vector spaces and topological spaces which are abstractions of it. 
It was not particular groups that were studied so much as the whole 'cat­
egory' of groups. Much twentieth century mathematics can be classified 
as philosophical. Set theorists attempted to find the ultimate basis for all 
mathematics. Set theorists also probed the infinite. Workers in foundations 
examined the limits of human reason itself, with Kurt G6del (1906-1978) 
showing that some mathematical statements are subject neither to proof 
nor to counterexample. Various logics were put forward in an attempt to 
elucidate the nature of valid, human thought. 

Twentieth century workers in foundations showed that real numbers can 
be defined in terms of rationals, rationals in terms of natural numbers, and 
natural numbers in terms of sets. But what are sets? Are they God-given? 
Are they products of human minds, subject to some 'free creation'? In 
response to these questions, foundation workers divided into at least three 
schools: Platonism, formalism, and intuitionism. 
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Platonism 

Platonists, such as Kurt G6del, hold that numbers are abstract, necessarily 
existing objects, independent of the human mind. Because numbers have an 
independent, objective existence, any statement p about numbers is either 
true or false - because it either correctly describes these abstract entities, 
or it does not. 

It is as if the infinite totality of numbers are somehow 'there' to be 
inspected by a God who thinks infinitely quickly. This God simply checks 
each number to see how a statement p fares in connection with it. After 
a complete inspection, God can then either report, 'yes, p' - or else, 'no, 
not p'. For example, if p is 'every even natural number greater than 2 is a 
sum of two primes' then God, having checked through all the evens greater 
than 2, will know if p is true or not, and thus p will have One of the two 
truth values 'true' or 'false'. 

Because of his philosophy, a Platonist is quite ready to accept the Axiom 
of Choice, that is, the assumption that, for every infinite class of pairwise 
disjoint sets, there is a class containing exactly One member from each of 
these sets, for, on a Platonist view, the sets are all 'there', and One can 
imagine a God going through them and choosing one element from each. 

There are various objections to Platonism: (1) Platonism does not mean 
very much unless abstract objects can have an effect on minds, but it is 
not easy to see how this might happen; (2) Platonism presupposes that we 
(or God) can identify abstract objects, recognising such and such a line 
segment or set as, say, the number two, and, again, it is not clear how this 
might work. To these objections, the Platonist can reply: (1) the fact that 
we do not understand how physical objects affect minds does not prevent 
us from believing in physical objects, and (2) the fact that our concepts 
often relate to physical objects in a loose and open-ended way does not 
mean that we cannot identify physical objects. 

Formalism 

Formalists, such as David Hilbert (1862-1943), hold that mathematics is 
nO more or less than mathematical language. It is simply a series of games 
played with strings of linguistic signs, such as the letters of the English 
alphabet. The number two is just a collection of physical marks, such as 2, 
II, or 880. It is true that we sometimes read meaning into mathematical 
terms, but, really, mathematical terms do not have any exterior meaning 
or reference. 

There are various objections to formalism: (1) formalism understands 
mathematical objects, such as circles, in terms of concrete, material signs, 
but circles, precisely, are not contingent, physical objects; (2) formalism 
offers no guarantee that the games of mathematics are consistent. To these 
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objections the formalist can reply: (1) circles, like everything else, are mate­
rial objects, and (2) although some of the games of mathematics are indeed 
inconsistent, and hence trivial, others are not. 

Intuitionism 

Intuitionists, such as L. E. J. Brouwer (1882-1966), hold that mathematics 
is a creation of the human mind. Numbers, like fairy tale characters, are 
merely mental entities, which would not exist if there were never any human 
minds to think about them. 

Intuitionism is a philosophy in the tradition of Kantian subjectivism 
where, at least for all practical purposes, there are no externally existing 
objects at all: everything, including mathematics, is just in our minds. 
Since, in this tradition, a statement p does not acquire its truth or falsity 
from a correspondence or noncorrespondence with an objective reality, it 
may fail to be 'true or false'. Thus intuitionists can, and do, deny that, for 
any mathematical statement p, it is a logical truth that 'either p or not p'. 

Since intuitionists reject objective existence in mathematics, they are not 
necessarily convinced by reasoning of the form: 

If there is no mathematical object A, then there is a contradic­
tion; hence there is an A. 

If the details of the reasoning provide a way of imagining or conceiving an 
A, in a way open to ordinary human beings (by, say, calculating it in a finite 
number of steps), then the intuitionist will agree that there is, indeed, an A. 
However, if the details of the reasoning do not provide this, the intuitionist 
will remain skeptical. For a Platonist, it is of interest that there is an A 
even if it is only God who can conceive it. For an intuitionist, however, a 
mathematical object is meaningless unless it can be somehow 'constructed' 
and 'intuited' by a human being. 

For the intuitionist, the human mind is basically finite, and Cantor's 
hierarchy of infinites is just so much fantasy. Intuitionists thus reject any 
mathematics which is based on it, including most of calculus and most of 
topology. 

There are various objections to intuitionism: (1) intuitionism cannot ac­
count for the feeling that mathematical objects are noncontingent, that, 
even if there were no human beings, 2 and 2 would still make 4; (2) in­
tuitionist mathematicians are so badly crippled by their rejection of the 
logical law 'either p or not p', and by their rejection of the infinite, that 
they only have a small fraction of contemporary mathematics. To these 
objections, the intuitionist can reply: (1) it does not make sense for human 
minds to try to conceive a world without human minds, and (2) it is better 
to have a small amount of mathematics all of which is solid and reliable 
than to have a large amount of mathematics, most of which is nonsense. 
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Exercises 39 

Essay Questions 

1. Unless he or she thinks that mathematics is beneath God's notice, 
a believer in God has to be a Platonist about mathematics. Comment. 

2. Intuitionism is a negative doctrine, rejecting large parts of mathe­
matics and refusing to accept a reality external to human beings. It 
is a doctrine for people who want to deify humanity by pretending 
there is nothing outside it. Comment. 
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Twentieth-Century Number Theory 

Much of what went under the name 'number theory' in the twentieth cen­
tury had little to do with the natural numbers. There was an obsession with 
results concerning abstract structures used to prove results concerning ab­
stract structures. It was as if carpenters were using their tools to make new 
tools to make new tools - without ever using any of these tools to build a 
house. Happily, there were exceptions. A few number theorists escaped the 
obsession with abstraction and produced the meaningful concrete results 
listed below. 

The Bachet Equation 

The Bachet equation is the Diophantine equation x 2 + k = y3, where k is a 
given nonzero integer. It is named after Claude-Gaspar Bachet (1581-1638), 
who studied it in the seventeenth century, but it goes back to Diophantus 
himself (see Problem 17 of Book VI of the Arithmetica). Many special 
cases of the Bachet equation had been solved before, but it was only in 
1968 that Alan Baker, a Cambridge mathematician, found a completely 
general solution, working for any given k. At first, Baker's solution was 
merely an enormous bound M (k) on the sizes of x and y. However, soon 
after, Baker and other mathematicians, such as H. Davenport, transformed 
Baker's insights into a practical method for actually obtaining a solution 
set for any given k. W. J. Ellison used Baker's ideas to show, for the first 
time, that when k = 28, the Bachet equation has only three solutions in 
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positive integers (with x = 6, 22, and 225). Ray P. Steiner used a version 
of Baker's result, due to M. Waldschmidt, to show, again for the first time, 
that when k = 999, the Bachet equation has only 6 solutions in positive 
integers (with x = 1, 27, 251, 1782, 2295, and 3,370,501). In his Algebraic 
Numbers and Diophantine Approximation, K. B. Stolarsky had claimed 
that x 2 + 999 = y3 could not be solved by 'a thousand wise men'. Alan 
Baker was wise man a thousand and one. 

Hilbert '8 Tenth Problem 

At the second International Congress of Mathematicians (in Paris, 1900), 
David Hilbert (1862-1943) presented a list of problems he hoped would be 
settled in the twentieth century. Some of these problems were the following: 
(1) prove or disprove the continuum hypothesis; 
(2) show that arithmetic is consistent; 
(8) show that all the nontrivial zeros of the Riemann zeta function lie on 
the line x = ~; 
(10) find an algorithm (computer program) that will tell you whether or 
not a given polynomial Diophantine equation (with known integer coeffi­
cients and known exponents) has a solution. 

Today we know that several of Hilbert's problems cannot be solved in 
the way he intended. It was proved, for example, that, from the usual ax­
ioms of set theory (assuming they are consistent), there is no proof of the 
continuum hypothesis, and no proof of its negation. Hilbert's tenth prob­
lem falls into this category. In 1970, Yuri V. Matijasevich showed that the 
desired computer program cannot exist. This is because, as Matijasevich 
proved, almost any mathematical problem can be translated into a problem 
about solving a Diophantine equation. The procedure Hilbert was looking 
for would have been so powerful that it could have solved problems that 
cannot be settled in any way whatsoever, using only our present axioms 
(assuming they are consistent). Matijasevich based his proof on work done 
by a woman mathematician, Julia Robinson. In a 1992 Mathematical Intel­
ligencer article, Matijasevich reveals some of the personal history behind 
his solution of Hilbert's tenth problem. 

Incidentally, Hilbert's eighth problem is still unresolved and is considered 
to be the most important outstanding problem in contemporary number 
theory. 
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Computational Advances 

Thanks to the computer, twentieth-century number theorists succeeded in 
finding twenty new perfect numbers and hundreds of new amicable pairs. 
They also produced programs capable of factoring 100 digit integers in just 
a few hours. 

Particularly noteworthy was the computer solution of Archimedes's cat­
tle problem (200 B.C.), which is equivalent to the Diophantine equation 

x 2 - (8 x 2471 x 957 x 46572 )y2 = 1 

This was achieved, for the first time, in 1965, by H. C. Williams, R. A. 
German, and C. R. Zarnke. 

Congruent Numbers 

In 1983, using the 'theory of modular forms of weight 3/2', J. B. TUnnell 
advanced the knowledge of congruent numbers by showing that if n is a 
square-free odd congruent number then the number of ways of writing n in 
the form 

2X2 + y2 + 8z2 

with x, y, and z integers and z odd, equals the number of ways of writing n 
in the same form, but with z even. For example, with z odd, 11 has exactly 
8 decompositions into the above form, namely, 

If z is even, 11 has exactly 4 such decompositions: 

Since 8 i=- 4, it follows that 11 is not congruent. 
TUnnell conjectured that the converse of this theorem is also true, but 

that remains to be proved. 

Fermat's Last Theorem 

About 1637, Fermat had conjectured that the equation 

has no solution in positive integers. This conjecture, known as 'Fermat's 
last theorem', was studied by G. Frey, K. Ribet, and J.-P. Serre. Finally, 
in 1994, it was proved by A. Wiles, with help from R. Taylor. 
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Angles in Pythagorean Triangles 

Elementary, recreational number theory was still going strong. In his 1988 
American Mathematical Monthly article, W. S. Anglin proved the following. 
Let B be any angle in degrees, with 0 < B < 90. Let E be any real number 
such that 0 < E < 1, and E < B, and E < 90 - B. Let 

x = tan(B - E) + sec(B - E) 

Y tan(B + E) + sec(B + E) 

Suppose u and v are relatively prime positive integers such that 

u 
X<-<Y 

v 

Then the Pythagorean triangle with sides 2uv, u2 - v2 , and u2 + v2 has an 
angle of A degrees (the one opposite the side u2 -v2 ) such that IA-BI < E. 

Partitions 

A 'partition' of a positive integer is a way of writing it as a sum of nonin­
creasing positive integers. For example, 5 has 7 partitions, namely, 

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 

The number p(n) is the number of partitions n has. For example, p(5) = 7. 
In 1918, Ramanujan (1887-1920) and Godfrey Harold Hardy (1877-1947) 
gave the first known fast way of calculating p(n) for any n, and in 1937, 
Hans Rademacher refined their work into the first known formula for p(n). 
It is 

p(n) - - ""' Ak (n) Vk -
1 00 d (sinh (i J(2/3)(n - 1/24)) ) 

- 7rV2 6 dn In - 1/24 

where 

""' ( 27rnh ) Ak(n) = ~ 2cos 7r s(h,k) - -k-
O~h~[k/2J, gcd(h,k)=l 

with the 'Dedekind sum' s(h, k) defined as 

k-l 

s(h, k) = L(r/k)(hr/k - [hr/k]- 1/2) 
r=l 

(Note that s(O, 1) is taken to equal 0.) 
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Hardy and Rademacher made substantial contributions to the discov­
ery of this formula, but the spark of insight came from Ramanujan, an 
extraordinary genius born near Madras, India. Perhaps the greatest num­
ber theorist of the twentieth century, Ramanujan sometimes credited his 
discoveries to providence. He once said: 

An equation for me has no meaning unless it expresses a thought 
of God. 1 

Exercises 40 

1. Show that 3,370,501 is one of the values of x solving x 2 + 999 = y3. 

2. It is a corollary of Matijasevich's work that if x and yare positive 
integers and 

then z > 0 iff z is a Fibonacci number. Find a Fibonacci number> 1 
expressed in the above form. 

3. Use TUnnell's theorem to show that 417 is not congruent. 

4. Find a Pythagorean triangle that has an angle within 0.001 of 12°. 

5. In 1971, R. Finkelstein and H. London published a paper showing 
that x 3 + 5 = 117y 3 has no integer solutions. Prove this using the 
fact that 9 divides 117. 

Essay Question 

1. Because they must 'publish or perish', second-rate mathematicians 
fill the journals with useless abstractions, calling their work 'number 
theory' when it is merely jejune generalisation. Can you suggest some 
replacement for the 'publish or perish' system that is currently clut­
tering our libraries with junk? 

lR. Kanigel, The Man who Knew Infinity (New York: Charles Scribner's Sons, 
1990), pages 7 and 282. 
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Appendix A 
Sample Assignments and Tests 

Assignment 1 

This assignment is based on Chapters 1 to 17. Do exactly 4 of the following 
questions, attempting each part of the 4 questions you choose. 

l. 
(a) Multiply 201 by 3330 Egyptian style. 
(b) What is the height of a frustum of volume 100, base side 5, and top 
side 2? 
(c) Express 2/89 as a sum of four distinct unit fractions in two different 
ways. 
(d) Find an arithmetical progression with 5 terms, sum 10, and common 
difference 1/2. 
(e) Using the formula for the volume of a pyramid, derive the Moscow Pa­
pyrus formula for the volume of a frustum. 
2. 
(a) An archeologist has found an old Egyptian brick measuring 1 cubit by 
1 cubit by 1 cubit. 'This stone dates from 4000 B.C.,' he says, 'and the sum 
of the distance between the opposite corners and the side diagonal is 3.15 
cubits. This proves the Egyptians of 4000 B.C. used the value of 3.15 for 
Jr.' Show that the archeologist's math is correct but that his reasoning is 
wrong. Convince him that he has lost his wits. 
(b) Does the British Museum have a moral obligation to give, or sell, the 
Rhind Papyrus back to the Egyptians? Why or why not? 



230 Appendix A. Sample Assignments and Tests 

3. 
(a) In row 14 of Plimpton 322, we find the numbers 1771 and 3229? What 
is the other side of the right triangle in question? 
(b) For row 14, what are the u and v (the generating numbers for the tri­
angle)? 
(c) What triangle is generated by u = 27 and v = 1O? 
(d) Use the Babylonian method to find an approximation to V7, using 4 
terms of the relevant sequence. (Start with al = 3.) 
(e) Solve the simultaneous equations x 8 +x6y2 = 32000002 and xy = 1200. 
4. 
(a) Is it possible that the author of Plimpton 322 was a woman? Why or 
why not? 
(b) Write a short essay on life in Mesopotamia 4000 years ago. 
5. 
(a) Show that 33,550,336 is perfect. 
(b) Show that 30,240 is superfluous. 
(c) Prove that every even perfect number ends in 6 or 8. 
(d) 10,744 is amicable. Who is its friend? 
(e) Show that 223 - 1 is not a Mersenne prime. 
6. 
(a) Who was Augustine, what did he say about perfect numbers, and was 
he right? 
(b) What did Pythagoras mean when he said, 'all is number'? Was he 
right? Why or why not? 
7. 
(a) Make and hand in an octahedron, constructed out of, say, cardboard. 
(b) Make and hand in a dodecahedron, constructed out of, say, cardboard. 
(c) What is the volume of an octahedron of side I? 
( d) What is the surface area of an octahedron of side I? 
(e) What is the radius of a sphere passing through the vertices of an octa­
hedron of side I? 
8. 
(a) What did the ancient Greeks think about the infinite? In your answer, 
refer especially to Anaximander, Zeno, and Aristotle. 
(b) What were Zeno's paradoxes? What did they prove? 
9. 
( a) Prove that v'5 is irrational. 
(b) Prove that v'2 + V3 is irrational. 
(c) Using Euclid's algorithm, find an integer solution of 119x - 32y = l. 
(d) Using Euclid's algorithm, find a positive integer solution of x 2 - 87y2 = 
l. 
(e) Use your answer in (d) to give an approximation to V87. 
10. 
(a) What was Plato's philosophy of mathematics? Do you agree with it? 
Why or why not? 
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(b) How did Aristotle's philosophy of mathematics differ from that of Plato? 
How might one decide which of them was right? 
11. 
(a) Give a construction for a line of length 2V5 + 1. 
(b) Is there a straightedge and compass construction for a regular polygon 
with 771 sides? Why? 
(c) Prove III 36. 
(d) Prove VI 5. 
(e) Prove VI 8. 
12. 
(a) Who was the last great ancient Greek mathematician and why? 
(b) Discuss possible reasons for the death of Hypatia. 
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Assignment 2 

This assignment is based on Chapters 18 to 27. Do exactly 4 of the follow­
ing questions, attempting each part of the 4 questions you choose. 

1. 
(a) Divide by 7 the remainder is 4; divide by 13 the remainder is 6; what 
is the number? 
(b) Show that 17,296 is one of an amicable pair. 
(c) Does Thabit's formula give amicable numbers when n = 5? 
(d) Give a complete solution of 17x - 13y = 1. 
(e) Give the smallest positive integer solution of x2 - 96y2 = 1. 
2. 
(a) What was Baghdad like in the days of Thabit? 
(b) In what ways did Islam encourage people to do mathematics? 
3. Problems from Lilavati 
(a) Pretty girl with tremulous eyes, ... tell me, what is the number, which 
multiplied by 3, [and then multiplied by 7/4]' and [then] divided by 7, and 
[then multiplied by 2/3]' and then multiplied into itself, and having 52 sub­
tracted from the product, and the square root of the remainder extracted, 
and 8 added, and the sum divided by 10, yields 2 ? 
(b) Say, mathematician, how many are the combinations in one compo­
sition, with ingredients of six different tastes, sweet, pungent, astringent, 
sour, salt and bitter, taking them by ... threes. 
(c) In a certain lake swarming with ruddy geese and cranes, the tip of a 
bud of lotus was seen half a cubit above the surface of the water. Forced 
by the wind, it gradually advanced, and was submerged at the distance of 
two cubits [from the point where it originally broke through the surface of 
the water]. Compute quickly, mathematician, the depth of water. 
(d) Intelligent friend, if thou know well the spotless Lilavati, say what is 
the area of a circle, the diameter of which is measured by 7 ? 
(e) Tell the quantity of the excavation in a [frustum-shaped] well, of which 
the length and breadth are equal to twelve and ten cubits at its mouth, 
and half as much at the bottom, and of which the depth, friend, is seven 
cubits. 
4. 
(a) Write a short essay about the life of Bhaskara and his daughter. 
(b) What does Bhaskara's theological explanation of the fact that 00 ± x = 
00 imply about his conception of God and the universe? 
5. 
(a) What is the 20-th Fibonacci number? 
(b) Why are two adjacent Fibonacci numbers always relatively prime? 
(c) Show that a triangle with sides 65, 72, and 97 is right. 
(d) Does this triangle tell us that some number is congruent? Which num­
ber? Why? 



(e) What is ~ + ~ + ~ + l~ + ... ? 
6. 
(a) D. E. Smith writes: 
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In the same years and in the same region in which Leonardo was 
bringing new light into the science of mathematics, St. Francis, 
humblest of the followers of Christ, was bringing new light into 
the souls of men. 

Was this really a 'new' light, or rather an old light, brought back from 
ancient Greek times? 
(b) How did their belief in God help Medieval mathematicians? Give an 
example. 
7. 
(a) Solve x 3 - 2X2 - 14x - 5 = 0 by factoring and using the quadratic 
formula. 
(b) In 1535 Antonio Maria Fior challenged Tartaglia to solve the following. 
A man sells a sapphire for 500 ducats, making a profit of the cube root of 
his capital. How much is this profit? (No calculators allowed!) 
(c) One of the problems in the Ars Magna is the following. 

x 3 = 6x2 + 72x + 729 

Use Cardano's method to solve it. 
(d) Zuanne da Coi claimed the following could not be solved. 

60x = x4 + 6x2 + 36 

Solve it, using the method of Ferrari. (No calculator approximations!) 
(e) Solve x6 + 20x3 + 1 = O. 
8. 
(a) Give a summary of the life of Cardano. 
(b) Did Cardano act rightly in publishing the secret of the cubic? Why or 
why not? 
9. 
(a) Evaluate loglO 1.25 + loglO 80. 
(b) Simplify In 10 + ~ In 9. ('In' means log to the base e.) 
(c) Graph y = log2 x. 
(d) Solve In(x + 6) + In(x - 3) = In5 + In2. 
(e) Solve 23x = 5. 
10. 
(a) Summarise the life of Napier. 
(b) Why was the creation of log tables an important step forward in science? 
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Assignment 3 

This assignment is based on Chapters 28 to 40. Do exactly 4 of the follow­
ing questions, attempting each part of the 4 questions you choose. 

1. 
(a) Graph y = x 2 - 2x - 1 + 2/x. 
(b) What kind of curve represents the equation x 2 + 7 xy - 3y2 + X + y = 2? 
Why? 
(c) Without using calculus, find the equation of the tangents through 
(5, -6) to the parabola y = x 2 . 

(d) What is the smallest positive integer that quadruples when its final 
digit is shifted to the front? 
(e) State Fermat's last theorem and say why it is so named. 
2. 
(a) Explain Pascal's wager. Do you think it is a good argument? Why? 
(b) Write a short essay on Pascal, discussing especially his interest in both 
mathematics and religion. 
3. 
(a) Evaluate 

1~ sin300 x dx 

(b) According to Newton's generalised binomial theorem, what is (1+x)-3? 
Give the first few terms and the nth term of the expansion. 
(c) If R is a positive constant and R < x < 5R, find the max and min 
values of y = (4R3 + x3)/x2 (using calculus). 
(d) Suppose two stars are 1015 metres apart and have the same mass m. If 
they are attracted by each other with a gravitational force of 6.67 x 1019 

newtons, what is m? 
(e) Prove Newton's theorem about the oxen and the grass. 
4. 
(a) What was Leibniz's philosophy of the infinite? 
(b) What was Leibniz's philosophy of religion? In particular, what was he 
thinking about when he said that the divine nature needs only a possibility 
in order to exist? 
5. 
(a) Suppose that three tickets will be given prizes in a lottery having 40,000 
tickets. What is the chance of winning at least one prize if you buy 8000 of 
those tickets? 
(b) Use de Moivre's formula to find (5 + 5v'3A)68. 
(c) What is the equation of the Euler line for the triangle with vertices 
(0,0), (12,0), and (16, 12)? 
(d) How would you express 45 as a sum of four squares? 
(e) Find the least positive integer solution of x 2 - 13y2 = 1. 
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6. 
(a) Who was William Hamilton, and what did he do? 
(b) Modern algebra is characterised by 'free creation' and 'abstraction'. 
What might this statement mean, and how is it illustrated in the work of 
Hamilton? 
7. 
(a) Construct a great dodecahedron (out of, say, cardboard). 
(b) Suppose a triangle has vertices (0,0), (12,0), and (8,6). What are the 
coordinates of its three midpoints? 
(c) What are the coordinates of the three feet of the altitudes of the above 
triangle? 
(d) What are the coordinates of the 3 midpoints ofthe segments connecting 
the orthocentre to the vertices in the above triangle? 
(e) What is the equation of the 9 point circle of the above triangle? 
8. 
(a) What is non-Euclidean geometry and how does it threaten the truth of 
mathematics? 
(b) How might different philosophical schools respond to the question 'which 
geometry is true?' 
9. 
(a) Is 160 a triangular number? Why? 
(b) Find three ways in which 100 is a polygonal number. 
(c) Prove that all hexagonal numbers are triangular numbers. 
(d) What is the smallest number that has two essentially distinct expres­
sions as a sum of 4 squares? 
(e) What was Hilbert's tenth problem and who solved it? 
10. 
(a) Describe Cantor's views on the infinite. 
(b) What are the positions of the different contemporary schools in the 
philosophy of mathematics? 
11. 
(a) What is a one-to-one correspondence? 
(b) Show that the set of fractions can be placed in one-to-one correspon­
dence with the set of positive integers. 
(c) Show that the set of positive integers and its power set (set of sets of 
positive integers) cannot be placed in one-to-one correspondence. 
(d) Show that the points in the real line can be placed in one-to-one cor­
respondence with the points in a semicircle of radius 1. 
( e) State the Russell paradox. 
12. 
(a) Define 'concrete' and 'abstract' and illustrate your definitions in terms 

of twentieth-century work in mathematics. 
(b) Some mathematics say that certain pieces of mathematics are 'elegant'. 
What does this mean? Illustrate your answer with examples of elegant and 
inelegant mathematics. 
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History of Math Midterm 1 

Do exactly 2 of the following questions, attempting each part of the 2 ques­
tions you choose. 

1. 
(a) Multiply 567 by 330 Egyptian style. 
(b) What is the height of a frustum of volume 100, base side 5, and top 
side 2? 
(c) Express 67/120 as a sum of distinct unit fractions. 
(d) Find an arithmetical progression with 5 terms, sum 11, and common 
difference 1/2. 
(e) How old is the Rhind Papyrus? Who discovered it? When? Where is it 
now? 

2. 
(a) On Plimpton 322, we find the numbers 65 and 97? What is the other 
side of the right triangle in question? 
(b) For this row, what are the u and v (the generating numbers for the 
triangle)? 
(c) What triangle is generated by u = 16 and v = 9? 
(d) Use the Babylonian method to find an approximation to y'I3, using 3 
terms of the relevant sequence. 
(e) Solve the simultaneous equations x8 +X6y2 = 32000002 and xy = 1200. 

3. 
(a) Is it possible that the author of Plimpton 322 was a woman? Why or 
why not? 
(b) Write a short essay on life in Mesopotamia 4000 years ago. 

4. 
(a) Show that 8128 is perfect. 
(b) Is 1000 diminished or superfluous? 
(c) Show that 153 is triangular. 
(d) 5564 is amicable. Who is its friend? 
(e) Show that 2lO - 1 is not a Mersenne prime. 
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5. 
(a) Who was Augustine, what did he say about perfect numbers, and was 
he right? 
(b) What did Pythagoras mean when he said, 'all is number'? Was he 
right? Why or why not? 

6. 
(a) Show that the ratio of side to base in one of the points of the Pythagorean 
star is the golden ratio ¢ = 1+2V5. 
(b) What is the height of a tetrahedron of side I? 
(c) What is the volume of an octahedron of side I? 
(d) What is the surface area of an octahedron of side I? 
(e) What is the radius of a sphere passing through the vertices of a cube 
of side I? 

7. 
(a) What did the ancient Greeks think about the infinite? In your answer, 
refer especially to Anaximander, Zeno, and Aristotle. 
(b) What were Zeno's paradoxes? What did they prove? 

8. 
( a) Prove that v!f5 is irrational. 
(b) Prove that ~ is irrational. 
(c) Using Euclid's algorithm, find an integer solution of 13x + 7y = 79. 
(d) Using Euclid's algorithm, find a positive integer solution of x 2 -84y 2 = 
l. 
(e) Use your answer in (d) to give a good approximation to V84. 

9. 
Express each of the following syllogisms in the P-S notation. Then say 
whether it is valid or not. 
(a) All people called 'A' are deans; all deans die; therefore all people called 
'A'die. 
(b) No insects are birds; no birds are mammals; therefore no insects are 
mammals. 
(c) All Nazis are cowards; all cowards are damned; therefore there are some 
damned Nazis. 
(d) No swans are black; some black things are dogs; therefore no swans are 
dogs. 
(e) Some pizza-eaters are fat; no fat person is healthy; therefore some pizza­
eaters are unhealthy. 
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10. 
( a) Give a ruler and compass construction for a segment of length 2V5 + 1. 
(b) Construct an equilateral triangle, giving a detailed description of what 
you are doing. 
(c) Is a regular polygon with 771 sides constructible? Why or why not? 
(d) Construct a Pythagorean star, using ruler and compass only, and de­
scribing in detail what you are doing. 
(e) Is an angle of 510 constructible or not? Why? 

11. 
(a) Give Euclid's proof of the theorem of Pythagoras, including the dia­
gram and all the reasoning. 
(b) Give Euclid's proof of the converse of this theorem, including the dia­
gram and all the reasoning. 

12. 
(a) What was the main difference between Babylonian and Greek mathe­
matics? Illustrate your answer with some examples. 
(b) In what sense of 'mathematics' did 'mathematics start with the Greeks'? 
Or did it? 
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History of Math Midterm 2 

Do exactly 2 of the following questions, attempting each part of the 2 ques­
tions you choose. 

1. 
(a) Divide by 3 the remainder is 1; divide by 29 the remainder is 6; what 
is the number? 
(b) State Thabit's rule for finding amicable pairs. 
(c) 1210 is amicable. Who is its friend? 
(d) Give a complete solution of 5x + 7y = 1. 
(e) Give the smallest positive integer solution of x 2 - 96y2 = 1. 

2. 
(a) Who were Thabit and al-Khwarizmi? Which of them was the greater 
mathematician, and why? 
(b) What was Baghdad like in the days of Thabit? 

3. 
(a) What is the area of a cyclic quadrilateral with sides 52, 25, 39, and 60? 
(b) What is the area of a triangle with sides 6, 8 and 10 ? 
(c) What is the radius of the circumcircle of a triangle with sides 8, 15, and 
17 ? 
(d) What is the area of a triangle with sides 12, 14, and 16? 
(e) Who first worked out the formula for the area of a cyclic quadrilateral? 
When and where did he live? 

4. 
(a) Write a short essay on the life of Bhaskara and his daughter. 
(b) What was Bhaskara's theological explanation of the fact that 00 ± 5 = 
oo? In what sense was it a Hindu explanation? 

5. 
(a) Write the first 10 terms of the Fibonacci sequence. 
(b) What is the formula for the nth Fibonacci number? 
(c) Show that 5 is congruent by showing that it is the area of a right tri­
angle whose sides are rational lengths. 
(d) Write (a2 + b2)(C2 + d2) as a sum of two squares. 
(e) Let Fn be the nth Fibonacci number. Show that gcd(F12, F15 ) = Fgcd (12,15). 

6. 
(a) Give a summary of the life of Cardano. 
(b) Did Cardano act rightly in publishing the secret of the cubic? Why or 
why not? 
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7. 
(a) Solve Omar's problem 2x3 - 20x2 + 27x + 10 = O. 
(b) Find an exact algebraic expression for a real number solution of y3 + 
Y - 500 = O. 
(c) Use Cardano's method to solve x 3 = 6x2 + 72x + 729. 
(d) Find the exact solutions of X4 + 3 = 12x. 
(e) Find the exact solutions of x 3 + 6x2 + 12x = 22. 

8. 
(a) Summarise the life of Napier. 
(b) Why was the creation of log tables an important step forward in sci­
ence? 

9. 
(a) Without using a calculator, evaluate lOglO .73 + 3 log 10 ~. 
(b) Graph y = loglO x. 
(c) Solve log x 2 = 4 log 2 + 2 log 3 . 
(d) Solve log(x - 5) + log(x + 1) = log 7 + 4 log 2. 
(e) Solve 35k = 8. 

10. 
(a) Summarise the life of Galileo, saying what, if any, were his original 
contributions to mathematics. 
(b) Summarise the life of Kepler, mentioning some of his mathematical as 
well as his astronomical discoveries. 
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History of Mathematics Final Exam 

Do at least 5 of the following questions, attempting each part of the ques­
tions you choose. 

l. 
(a) Multiply 67 by 1000 Egyptian style. 
(b) What is the volume of a frustum of height 4 + 1/7, base side 5 + 1/2, 
and top side 2? Express the answer Egyptian style. 
(c) Express 8/11 as a sum of distinct unit fractions. 
(d) Divide 

1 1 1 
"5 + 35 + 700 

by 2, expressing the answer Egyptian style. 
(e) An arithmetical progression with 6 terms and common difference 1/3 
has sum 40. What is it? Express the answer Egyptian style. 

2. 
(a) In row 3 of Plimpton 322 we find the numbers 4601 and 6649. What do 
these numbers mean? 
(b) Is the triangle with sides 65, 70, and 97 a right-angled triangle? Why? 
(c) What are the generating numbers for the right triangle with side 1771 
and hypotenuse 3229? 
(d) Use the Babylonian method to find an approximation to y'23, using 3 
terms of the relevant sequence. 
(e) A Babylonian problem reads: One leg of a right triangle is 50. [A 'leg' 
is a side that is not the hypotenuse.] A line parallel to the other leg and at 
a distance 20 from that leg cuts off a right trapezoid of area 320. Find the 
lengths of the parallel sides of the trapezoid. 

3. 
( a) Prove that VII is irrational. 
(b) Prove that v'2 + v'5 is irrational. 
(c) Find all the integer solutions of 101x - 97y = 1. 
(d) Find a positive integer solution of x 2 - 78y2 = 1. 
(e) Prove that .v2 is irrational. 

4. Find any exact algebraic solutions of the following. 
(a) x 3 + 14x2 + 49x = O. 
(b) x 6 + x 3 + 1 = o. 
(c) X4 + 50x2 + 25 = o. 
(d) x 3 + 3x = 10 (from page 99 of The Great Art). 
( e) X4 = x 3 + 1. 
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5. 
(a) What is the volume of an octahedron of side 3 ? 
(b) What is the area of a cyclic quadrilateral with sides 10, 12, 14, and 16? 
(c) What sort of curve is represented by the equation x2 + 5y2 = I? 
(d) What is the equation of the Euler line in the triangle with vertices 
(0,0), (10,0), and (10,10) ? 
(e) In hyperbolic geometry, how many lines passing through a point A are 
parallel to a given line BC (with A not on BC)? 

6. 
(a) Is 80,200 triangular? Why? 
(b) Write 20 as a sum of 3 triangular numbers. 
(c) What are the smallest 3 prime numbers that are also polygonal num­
bers? 
(d) Prove that all hexagonal numbers are triangular numbers. 
(e) What are the first 5 square triangular numbers? 

7. 
(a) Write a short essay on life in Mesopotamia 4000 years ago. 
(b) What role, if any, did women play in ancient Mesopotamian mathe­
matics? 

8. 
(a) What did the ancient Greeks think about the infinite? In your answer 
refer to Anaximander, Zeno, and Aristotle. 
(b) Write a short essay on Zeno's four paradoxes. 

9. 
(a) What was Pythagoras's philosophy of mathematics? 
(b) What did Plato say about mathematics? 

10. 
(a) Write a short essay on the infinite in Medieval mathematics. 
(b) Write a short essay on Cantor and the infinite. 

II. 
(a) Who were del Ferro, Fior, Tartaglia, Cardano, and Ferrari? 
(b) Did Cardano act rightly in publishing his book? Why? 

12. 
(a) What are Platonism, formalism, and intuitionism? 
(b) Which of these three schools is right, and why? 
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13. 
What is the area of the Pythagorean star each of whose 5 points has a side 
of length I? You get part marks for a good decimal approximation to the 
answer and full marks for the exact answer. 

14. 
(a) Give an account of the infinite in the history of mathematics, mentioning 
Anaximander, Zeno, Democritus, Aristotle, Bhaskara, Gregory of Rimini, 
Albert of Saxony, Descartes, Leibniz, Cauchy, Bolzano, Cantor, and Russell. 
(b) What do Platonism, formalism, and intuitionism have to say about the 
infinite? 
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Exercises 1 

1. Volume = i(a2ha - b2hb ) but hb/ha = b/a (by similar pyramids) and 
ha = hb+h. Hence ha = ah/(a-b) and hb = bh/(a-b) and the Volume = 
i(a3 -b3 )h/(b-a) and the result follows since a3 -b3 = (a-b)(a2 +ab+b2). 
5. Using the method of Sylvester, we round 14/13 up to 2 and subtract 1/2 
from 13/14, getting 3/7. Then we round 7/3 up to 3 and subtract 1/3 from 
3/7, getting 2/21. Then we round 21/2 up to 11 and subtract 1/11 from 
2/21, getting 1/231. Hence 

13 1 1 1 1 
14 = "2 + "3 + 11 + 231 

9. If 2/p = 1/a+1/b then (2a-p)(2b-p) = p2. Now p2 can be factored into 
distinct factors in only one way: p2 x 1. Hence if a < b we have a = (1 +p)/2 
and b = p(l + p)/2. 

Exercises 2 

1. Let x = lOs and y = lOt. Then s8 + s4(12)2 = 3202 • Let S4 = u. Then 
u2 + 144u - 3202 = O. Let u = 16v. Then 162v2 + 144(16v) - 3202 = 0 or 
v2 +9v - 400 = O. Hence (v -16)(v+25) = O. Thus v = 16, so that u = 256 
and s = 4. As a result, x = 40 and y = 30. 
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5. With one exception, the answers are on Plimpton 322. 
7. If x + y + z = 1716 and x 2 + y2 = z2 then 

x 2 + y2 = (1716 _ x _ y)2 

o = 17162 - 2(1716)x - 2(1716)y + 2xy 

(1716 - x)(1716 - y) = (17162)/2 = 2(2 x 3 x 11 X 13)2 

The various factorisations of the number on the right give various Pythagorean 
triangles with perimeter 1716. Moreover, both factors have to be less than 
1716. If x < y, this means 1716-y is one of 936, 968,1014,1089, and 1144, 
and hence y is one of 780, 748, 702, 627, 572, while x is, respectively, one 
of 143, 195, 264, 364, 429. 

None of these gives a Babylonian solution. 

Exercises 4 

1. Let A, B, C, D, E be the points of the star in counterclockwise order. 
Let x be the number of degrees in a tip angle (such as LEBD). Since 
BE is parallel to CD, LBDC = x. Similarly, LECD = x. Now triangle 
AC D consists of the two angles just mentioned together with 3 tips. Hence 
5x = 180°. 
2. With the notation of the previous answer, suppose AC meets BD at F. 

_ AC _ AF + FC _ F D + FC _ 1 ! 
r - CD - CD - CD - + r 

so that r2 - r - 1 = 0 and the quadratic formula (in effect known to the 
Babylonians) gives r = (1 + .../5)/2, which is called the 'golden ratio'. 
3. With the notation of the previous answer, what we want is AC/CD 
(since ABCDE is a regular pentagon) and this is the golden ratio. 
8. Hexagonal numbers have the form 

4 t2 - t + t = (2t - 1)2 - (2t - 1) + (2t _ 1) 
2 2 

10. The answer is 0, 1, 36. Suppose x 2 - 2y2 = 1. Then x is odd, and, by 
considerations mod 4, y is even. If x = 2t+ 1 and y = 28 then (t2 +t) /2 = 82 • 

And all triangular squares can be obtained in this way. We shall see how 
to solve x 2 - 2y2 = 1 in Chapter 7. 
11. Hint: see John 21:11. 
12. Using the notation of Answer 1, the area is the area of AF D plus three 

times the area a of a tip. Now if FC = 1 then AF = r and 

AFD 
CFD =r 
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But CFD/a = r2 so that the total area is r3a + 3a = 2(r + 2)a. And 

IV (r_l)2 1 a = - 1 - -- = -Jr + 2 
2r 2 4r 

The total is thus 
J5(r + 2) _ 2 126627 

2 -. 

Exercises 5 

1. Take m = 7 in the formula. Thanks to programs like M athematica, 
it is not hard to find the first 12 perfect numbers using only a personal 
computer. What previously took thousands of years now takes only a few 
seconds. 
4. Every even perfect number has the form 2m - 1 (2m - 1) with the latter 
factor prime. Starting with m = 2 the last digits of 2m - 1 are 

2, 4, 8, 6, 2, 4, 8, 6, 2, ... 

while the last digits of 2m - 1 are 

3, 7, 5, 1, 3, 7, 5, 1, 3, ... 

The products of the corresponding terms thus end in 6, 8, or O. The latter 
is impossible for perfect numbers since none of them is divisible by 5. 
5. By mathematical induction, 

Take t = 2(m-l)/2 and we are done. 
8. If n is a square or twice a square and p is an odd prime dividing n 
then the exponent m on p in the prime factorisation of n is even. Now 
s(pm) = 1 + p + p2 + ... + pm, which is odd if m is even. Since s(2Q) is al­
ways odd, it follows from Exercise 6 that sen) is odd. The converse follows 
in the same way. 

Exercises 6 

3. An octahedron is two pyramids. The height of either pyramid is half the 
diagonal of the square base. Thus the volume is 2 x 1/3 X 12 x (1/2)v'2. 
6. The tetrahedron can be dissected into four congruent pyramids, each 
with its top at the centre of the tetrahedron. Suppose that the height of 
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the tetrahedron is h and the height of one of these smaller pyramids is h'. 
Then, where b is the area of the base of the tetrahedron, 

~bh = 'i bh, 
3 3 

so that the centre C of the tetrahedron is 1/4 of the way up an altitude 
of the tetrahedron. Let F be the foot of an altitude and V a vertex of the 
tetrahedron. Then FV = (2/3)(y'3/2) while FC = (1/4)J2/3. Hence, by 
the theorem of Pythagoras, the required distance is 03/4. 

Exercises 7 

5. Using Euclid's algorithm, 

Xl 
67 
120 

X2 
120 
-
67 

X3 
67 

53 

X4 
53 

14 

Xs 
14 

11 

X6 
11 
-
3 

X7 
3 
-
2 

Xs 
2 
-
1 

Xg 
1 
-
0 

Noting that 9 - 2 = 7, we compute h = 24 and g7 = 43. Indeed, 

so that 

67 x 43 - 120 x 24 = 1 

67 1 24 
120 = 5160 + 43 

To solve 24x' - 43y' = 1 we again use Euclid's algorithm, starting with 
Xl = 24/43 and ending with is = 5 and gs = 9. This gives 

24 1 5 
43 = 387 + 9 



Now 5x" - 9y" = 1 has solution (2,1) so that 

5 1 1 
9 = 18 +"2 

Take that Pharaoh! 
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7. We have Xl = J3, X 2n = (1 + J3)/2, and X 2n+1 = 1 + J3. This gives 
[X2n ] = 1 and [X2n+1] = 2 and 

gl 1 

g2 = 1 

g3 3 

g4 4 

g5 11 

g6 = 15 

g7 41 

g8 = 56 

g9 153 

g10 209 

g11 571 

g12 780 

g13 2131 

g14 2911 

g15 = 7953 

g16 10864 

g17 29681 

g18 40545 

g19 = 110771 

We stop at this point since, for 10-10 accuracy, it suffices to have g2 > lO lD • 

A similar computation gives it9 = 191861, and the approximation to J3 
is 

191861 
110771 

10. The smallest possible number of maids is 292. 

Exercises 11 

1 (e) Granted Aristotle's view that PaS implies PiS, this is valid. In modern 
logic, however, it is not. 
2. (c) and (d) are contingent. 
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Exercises 12 

2. Hint: Write d: c :: b : a in terms of Eudoxus's definition, but switch the 
p and q (which will not affect the meaning of the definition). 
5. y = (4/9)X2. 

Exercises 16 

1. Suppose the circle representing the earth has equation 

x2 + y2 + Dx + Ey = F 

Since (0,0) is on it, F = O. By symmetry of the other two points on it, 
E = o. Moreover, 

(-0.1364)2 + (0.9907)2 + D( -0.1364) = 0 

or 1 = 0.1364D. Hence D = 3.66 so that the answer, also, is 3.66. 
2. Move a quarter until it just covers the full moon. Then the distance 
to the moon is to the distance between your eye and the quarter as the 
diameter of the moon is to the diameter of the quarter. 
3. x = 10.97 - 23028.41 V. 
4. AC2 = AB2 + BC2 + 2AB .BC = AB2 + BC2 + 2BW2 , and Archimedes' 

area theorem follows from the fact that the area of a semicircle is pro­
portionate to the square on the diameter. (Archimedes gave this proof in 
Proposition 4 in his Book of Lemmas.) As angles in semicircles, LAUB and 
LWU B are right and hence WU A is straight. So is WVC. Hence, as an 
angle in the semicircle on AC, LUWV is right. Thus UV is a diameter of 
the circle with diameter BW, and, of course, the two diameters are equal 
and bisect each other. To show that UV is a tangent to the semicircle on 
AB, it suffices to show that LVUB = LUAB. Now 

LVUB = LVWB = 900 - LAWB = LW AB 

5. Hint: Use mathematical induction. 
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Exercises 17 

3. The nth row ends with 2(n(n + 1)/2) - 1. The sum of the first x odds is 
x 2 , so the sum of the entries in the nth row is 

(n(n + 1)/2)2 - ((n -1)n/2)2 = n3 

Corollary: the sum of the first n cubes is the sum of the first n( n + 1) /2 
odd numbers, namely, 

Exercises 18 

1. We first solve 3x+2 = 5y+3 to get x = 5z+2 and hence 3x+2 = 15z+8. 
We then solve 15z + 8 = 7w + 2 or 7w - 15z = 6. Noting that w = 3v, we 
have 7v - 5z = 2, yielding z = 7k + 1, so that 15z + 8 = 105k + 23, which 
is the general solution. 
4. There are 201 steps in the pyramid. 
11. x = 649 and y = 180 solve the equation. 

Exercises 19 

1. x2 + (706.02/x)2 = (36.9 + x)2 so that 

738000x3 + 13616100x2 = 4984642404 

Each of the coefficients is divisible by 41 x 36 giving 

500x3 + 41 X 225x2 = 72413 

Let x = (41 x 7)/5u. Then u3 = 9u + 28 and u = 4 gives a solution. 
The other two solutions are not real. If u = 4 then x = 14.35. Hence 
y = 706.02/14.35 = 49.2, and z = 36.9 + 14.35 = 51.25. 

Exercises 20 

1. By similar triangles, AB/BB' = BG/AB and AG/GG' = BG/AG. 
5. From the given formula, you can find a diagonal of the quadrilateral, 
and thus a triangle inscribed in the circle. 
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Exercises 21 

4. If x + y = 10 and x2 + y2 + y / x = 72 then 

2x3 - 20x2 + 27x + 10 = 0 

By inspection, one solution is x = 2. 

Exercises 22 

10. Oresme's sum can be written 

1/2 + 1/4 + 1/8 + 1/16 + .. . 

+1/4 + 1/8 + 1/16 + .. . 

+1/8 + 1/16 + ... 

and so on. The first row sums to 1 (think of Zeno!), the second to 1/2, the 
third to 1/4, and so on. The grand total is thus 

1 + 1/2 + 1/4 + ... = 2 

Exercises 25 

l.Let 8 be the real number (704 + 12v'3930) 1/3 . Then the solutions are 

2 26 x 21/ 3 8 
3 38 + 3 X 21/3 

2 13 x 21/3(1 ± A) (1 =t= A)8 
- 3" + 38 - 6 X 21/ 3 

with the signs corresponding. 
2. Let 8 = (27000 + 24v'1265613)1/3. The real solution is 

4 x 21/ 3 8 

-2 + 8 + 3 X 21/ 3 

3. Let 8 = (10260 + 162v'3973)1/3. The only solution is 

21 x 21/ 3 8 

-4 + 8 + 3 X 21/ 3 

5. One pound of saffron cost 

1569 - 17y'4785 
399 



Exercises 25 253 

6. Let s = (71' - arctan2V2)/3. Then x = V3sins - coss. This is the 
distance from the centre at which one must slice a sphere of radius 1 so 
that one piece has twice the volume of the other. 
7. Let s = ((-51392 + 1584v'1351)/2)1/3. Let 

t = ./23 _ 572 + ~ 
V 3 3s 3 

Then one of the two solutions has 

x = ~ _ ! _ ~ /46 + 572 _ ~ + ~ 
2 2 2 V 3 3s 3 t 

8. Let x be the height of the top of the 20 foot ladder and y the height of 
the top of the 30 foot ladder. Then 

8 8 
-+-=1 x y 

Also y2 - x 2 = 500. Let u = l/x and v = l/y. Then u + v = 1/8 and 
(1/8)(u - v) = u2 - v2 = 500u2v2. Since 

(u - v)2 + 4uv = (u + V)2 

we have 

Let k = 400uv. Then 
k4 + 16k = 25 

Solving this we get an answer approximately equal to 16.2121 feet. More 
precisely, let 

Let 

Then 

Hence 

and the answer is 

s= 
3 6912 + 48v'676IT 

2 

. /100 _ ~ + 32 
k= V s 3 t t 

2 2 

80 
x = -::5 -:-+-v'1:2;;:;:5;=-==:=16;::;::k 

V400 - x 2 
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Exercises 26 

1. Changing to base e, we have 

In3+2lnx In4+2lnx 
In2 In3 

and we can now solve for In x and then for x. 

Exercises 26 

6. The equations Y = X 2 /4p and Y - x 2 /4p = m(X - x) meet at points 
whose X -coordinate is a solution of 

X2 - x 2 - 4pmX + 4pmx = 0 

or 
(X - x) (X - (4pm - x)) = 0 

The straight line is a tangent just in case there is only one such solution, 
that is, just in case x = 4pm - x, and hence m = x/2p. 
7. (x - a)/10 + lOma = 4x together with Fermat's little theorem leads to 
102564 as the solution. 

Exercises 29 

2. The probability of not getting double sixes in n throws of two dice is 
(35/36)n. This is less than 1/2 when 

log(1/2) 
n> log(35/36) = 24.6 

The answer is thus 25. 
4. If you do not switch, your expectation is one-third the value of the heir 

(since one-third is the probability that you have chosen the ace). If you do 
switch, your expectation is minus 300 plus two-thirds the value of the heir 
(since two-thirds is the probability that you have chosen a jack and will 
therefore choose the ace when you switch). So it is better to switch. 
5. The wheel has radius 1. It rolls up the right side of the y-axis. The point 
on the rim starts at the origin and ends up at (2,11"). 
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4. 1.6 X 10-11 newtons. 

Exercises 32 

3. 

Exercises 33 

1- 32000 x 31999 x 31998 
40000 39999 39998 

2. (2x + 7y - 1)(7x + 2y - 3). 
6. 125 + 27 + 27 + 27 + 8 + 8 + 8 + 8 + 1. 

Exercises 37 

10. For m = 2, 16, and 98. 

Exercises 38 

5. There is a one-to-one correspondence that maps 

to 

Exercises 40 

2. Let x = 2 and y = 3. 
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