Skip to main content

Neuroprotection Strategies During Cardiopulmonary Bypass

  • Reference work entry
  • First Online:

Abstract

The conduct of operative procedures for repair of congenital cardiac defects has evolved over time. Initially, intracardiac operations were performed with the aid of profound hypothermia and circulatory arrest. Over time, bypass and surgical techniques improved, obviating the need for deep hypothermic circulatory arrest for all but the most complex surgical procedures. Since the beginning, congenital cardiac diseases and the surgical intervention for these defects have been associated with neurologic dysfunction. The perioperative period has often been associated with the complication of neurologic injury, although it has become quite clear that the perioperative period is only one small point in time in which neurologic injury can occur. However, several important variables and techniques used for the management of congenital cardiac defects may help prevent neurologic injury. This chapter overviews some of the strategies utilized for neuroprotection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Robertson CM, Joffe AR, Sauve RS et al (2004) Outcomes from an interprovincial program of newborn open heart surgery. J Pediatr 144:86–92

    Article  PubMed  Google Scholar 

  2. Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38(Suppl 2):724–730

    Article  PubMed  Google Scholar 

  3. Wernovsky G, Shillingford AJ, Gaynor JW (2005) Central nervous system outcomes in children with complex congenital heart disease. Curr Opin Cardiol 20:94–99

    Article  PubMed  Google Scholar 

  4. Licht DJ, Shera DM, Clancy RR et al (2009) Brain maturation is delayed in infants with complexcongenital heart defects. J Thorac Cardiovasc Surg 137:529–537

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mahle WT, Tavani F, Zimmerman RA et al (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:I109–I114

    PubMed  Google Scholar 

  6. Dent CL, Spaeth JP, Jones BV et al (2005) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 130:1523–1530

    Article  PubMed  Google Scholar 

  7. Galli KK, Zimmerman RA, Jarvik GP et al (2004) Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 127:692–704

    Article  PubMed  Google Scholar 

  8. Miller SP, McQuillen PS, Hamrick S et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938

    Article  CAS  PubMed  Google Scholar 

  9. Glauser TA, Rorke LB, Weinberg PM et al (1990) Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics 85:984–990

    CAS  PubMed  Google Scholar 

  10. Jones M (1991) Anomalies of the brain and congenital heart disease: a study of 52 necropsy cases. Pediatr Pathol 11:721–736

    Article  CAS  PubMed  Google Scholar 

  11. Formigari R, Michielon G, Digilio MC et al (2009) Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg 35:606–614

    Article  PubMed  Google Scholar 

  12. Simsic JM, Coleman K, Maher KO et al (2009) Do neonates with genetic abnormalities have an increased morbidity and mortality following cardiac surgery? Congenit Heart Dis 4:160–165

    Article  PubMed  Google Scholar 

  13. Fudge JC Jr, Li S, Jaggers J, O’Brien SM et al (2010) Congenital heart surgery outcomes in Down syndrome: analysis of a national clinical database. Pediatrics 126:315–322

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burnham N, Ittenbach RF, Stallings VA et al (2010) Genetic factors are important determinants of impaired growth after infant cardiac surgery. J Thorac Cardiovasc Surg 140:144–149

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fuller S, Nord AS, Gerdes M et al (2009) Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery. Eur J Cardiothorac Surg 36:40–47

    Article  PubMed  Google Scholar 

  16. Gaynor JW, Gerdes M, Zackai EH et al (2003) Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 126:1736–1745

    Article  CAS  PubMed  Google Scholar 

  17. Langley SM, Chai PJ, Jaggers JJ et al (2000) Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 17:279–286

    Article  CAS  PubMed  Google Scholar 

  18. Langley SM, Chai PJ, Tsui SS et al (2000) The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 119:1262–1269

    Article  CAS  PubMed  Google Scholar 

  19. Langley SM, Chai PJ, Jaggers JJ et al (1999) Platelet-activating factor receptor antagonism improves cerebral recovery after circulatory arrest. Ann Thorac Surg 68:1578–1585

    Article  CAS  PubMed  Google Scholar 

  20. Hickey E, Karamlou T, You J et al (2007) The use of a miniaturized circuit and bloodless prime to avoid cerebral no-reflow following neonatal cardiopulmonary bypass. Ann Thorac Surg 83:895–901

    Article  PubMed  Google Scholar 

  21. Langley SM, Chai PJ, Miller SE et al (1999) Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg 68:4–13

    Article  CAS  PubMed  Google Scholar 

  22. Fessatidis IT, Thomas VL, Shore DF et al (1993) Brain damage after profoundly hypothermic circulatory arrest: correlations between neurophysiologic and neuropathologic findings. An experimental study in vertebrates. J Thorac Cardiovasc Surg 106:32–41

    CAS  PubMed  Google Scholar 

  23. Kin H, Ishibashi K, Nitatori T et al (1999) Hippocampal neuronal death following deep hypothermic circulatory arrest in dogs: involvement of apoptosis. Cardiovasc Surg 7:558–564

    Article  CAS  PubMed  Google Scholar 

  24. Midulla PS, Gandsas A, Sadeghi AM et al (1994) Comparison of retrograde cerebral perfusion to antegrade cerebral perfusion and hypothermic circulatory arrest in a chronic porcine model. J Card Surg 9:560–575

    Article  CAS  PubMed  Google Scholar 

  25. Arroyo S, Lesser RP, Gillinov AM et al (1993) EEG and prognosis of neurologic recovery of dogs under profound hypothermic circulatory arrest. Electroencephalogr Clin Neurophysiol 87:242–249

    Article  CAS  PubMed  Google Scholar 

  26. Bellinger DC, Wypij D, duPlessis AJ et al (2003) Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1385–1396

    Article  PubMed  Google Scholar 

  27. Wypij D, Newburger JW, Rappaport LA et al (2003) The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1397–1403

    Article  PubMed  Google Scholar 

  28. Kirklin JK, Blackstone EH, Kirklin JW et al (1981) Intracardiac surgery in infants under age 3 months: predictors of postoperative in-hospital cardiac death. Am J Cardiol 48:507–512

    Article  CAS  PubMed  Google Scholar 

  29. Corno AF (2002) What are the best temperature, flow, and hematocrit levels for pediatric cardiopulmonary bypass? J Thorac Cardiovasc Surg 124:856–857

    Article  PubMed  Google Scholar 

  30. Swain JA, McDonald TJ Jr, Griffith PK et al (1991) Low-flow hypothermic cardiopulmonary bypass protects the brain. J Thorac Cardiovasc Surg 102:76–84

    CAS  PubMed  Google Scholar 

  31. Bellinger DC, Jonas RA, Rappaport LA et al (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555

    Article  CAS  PubMed  Google Scholar 

  32. Mezrow CK, Sadeghi AM, Gandsas A et al (1994) Cerebral effects of low-flow cardiopulmonary bypass and hypothermic circulatory arrest. Ann Thorac Surg 57:532–539

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz AE, Sandhu AA, Kaplon RJ et al (1995) Cerebral blood flow is determined by arterial pressure and not cardiopulmonary bypass flow rate. Ann Thorac Surg 60:165–170

    Article  CAS  PubMed  Google Scholar 

  34. Myung RJ, Petko M, Judkins AR et al (2004) Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets. J Thorac Cardiovasc Surg 127:1051–1057

    Article  PubMed  Google Scholar 

  35. Hagino I, Anttila V, Zurakowski D et al (2005) Tissue oxygenation index is a useful monitor of histologic and neurologic outcome after cardiopulmonary bypass in piglets. J Thorac Cardiovasc Surg 130:384–392

    Article  PubMed  Google Scholar 

  36. Loepke AW, Golden JA, McCann JC et al (2005) Injury pattern of the neonatal brain after hypothermic low-flow cardiopulmonary bypass in a piglet model. Anesth Analg 101:340–348

    Article  PubMed  Google Scholar 

  37. Mills NL, Ochsner JL (1980) Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management. J Thorac Cardiovasc Surg 80:708–717

    CAS  PubMed  Google Scholar 

  38. Ueda Y, Miki S, Kusuhara K et al (1990) Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino) 31:553–558

    CAS  Google Scholar 

  39. Estrera AL, Miller CC 3rd, Lee TY et al (2008) Ascending and transverse aortic arch repair: the impact of retrograde cerebral perfusion. Circulation 118(Suppl):S160–S166

    Article  PubMed  Google Scholar 

  40. Pochettino A, Cheung AT (2003) Pro: retrograde cerebral perfusion is useful for deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth 17:764–767

    Article  PubMed  Google Scholar 

  41. Reich DL, Uysal S (2003) Con: retrograde cerebral perfusion is not an optimal method of neuroprotection in thoracic aortic surgery. J Cardiothorac Vasc Anesth 17:768–769

    Article  PubMed  Google Scholar 

  42. Esmailian F, Dox H, Sadeghi A et al (1999) Retrograde cerebral perfusion as an adjunct to prolonged hypothermic circulatory arrest. Chest 116:887–891

    Article  CAS  PubMed  Google Scholar 

  43. Acikel U, Ugurlu BS, Karabay O et al (2000) Retrograde cerebral perfusion with hypothermic circulatory arrest in a child. Ann Thorac Surg 69:1243–1244

    Article  CAS  PubMed  Google Scholar 

  44. Künzli A, Zingg PO, Zünd G et al (2006) Does retrograde cerebral perfusion via superior vena cava cannulation protect the brain? Eur J Cardiothorac Surg 30:906–909

    Article  PubMed  Google Scholar 

  45. Schultz S, Antoni D, Shears G et al (2006) Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets. J Thorac Cardiovasc Surg 132:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mascio CE, Myers JA, Edmonds HL et al (2009) Near-infrared spectroscopy as a guide for an intermittent cerebral perfusion strategy during neonatal circulatory arrest. ASAIO J 55:287–290

    Article  PubMed  Google Scholar 

  47. Corno AF, von Segesser LK (1999) Is hypothermia necessary in pediatric cardiac surgery? Eur J Cardiothorac Surg 15:110–111

    Article  CAS  PubMed  Google Scholar 

  48. Durandy Y, Hulin S, Lecompte Y (2002) Normothermic cardiopulmonary bypass in pediatric surgery. J Thorac Cardiovasc Surg 123:194

    Article  PubMed  Google Scholar 

  49. Caputo M, Bays S, Rogers CA et al (2005) Randomized comparison between normothermic and hypothermic cardiopulmonary bypass in pediatric open-heart surgery. Ann Thorac Surg 80:982–988

    Article  PubMed  Google Scholar 

  50. Pouard P, Mauriat P, Ek F et al (2006) Normothermic cardiopulmonary bypass and myocardial cardioplegic protection for neonatal arterial switch operation. Eur J Cardiothorac Surg 30:695–699

    Article  PubMed  Google Scholar 

  51. Caputo M, Patel N, Angelini GD et al (2011) Effect of normothermic cardiopulmonary bypass on renal injury in pediatric cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg 142:1114–1121

    Article  PubMed  Google Scholar 

  52. Ly M, Roubertie F, Belli E et al (2011) Continuous cerebral perfusion for aortic arch repair: hypothermia versus normothermia. Ann Thorac Surg 92:942–948

    Article  PubMed  Google Scholar 

  53. Imamaki M, Nakajima N, Masuda M et al (2005) Is it safe to initiate selective cerebral perfusion with normothermia? J Card Surg 20:408–411

    Article  PubMed  Google Scholar 

  54. Anttila V, Hagino I, Zurakowski D et al (2004) Higher bypass temperature correlates with increased white cell activation in the cerebral microcirculation. J Thorac Cardiovasc Surg 127:1781–1788

    Article  PubMed  Google Scholar 

  55. du Plessis AJ, Jonas RA, Wypij D et al (1997) Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 114:991–1001

    Article  PubMed  Google Scholar 

  56. Bellinger DC, Wypij D, du Plessis AJ et al (2001) Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 121:374–383

    Article  CAS  PubMed  Google Scholar 

  57. White FN (1981) A comparative physiological approach to hypothermia. J Thorac Cardiovasc Surg 82:821–831

    CAS  PubMed  Google Scholar 

  58. Duebener LF, Hagino I, Sakamoto T et al (2002) Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat. Circulation 106:l103–I108

    Google Scholar 

  59. Jaggers J, Ungerleider RM (2000) Cardiopulmonary bypass in infants and children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 3:82–109

    Article  PubMed  Google Scholar 

  60. Govier AV, Reves JG, McKay RD et al (1984) Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg 38:592–600

    Article  CAS  PubMed  Google Scholar 

  61. Patel RL, Turtle MR, Chambers DJ et al (1996) Alpha-stat acid–base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 111:1267–1279

    Article  CAS  PubMed  Google Scholar 

  62. Patel RL, Turtle MR, Chambers DJ et al (1993) Hyperperfusion and cerebral dysfunction. Effect of differing acid–base management during cardiopulmonary bypass. Eur J Cardiothorac Surg 7:457–464

    Article  CAS  PubMed  Google Scholar 

  63. Skaryak LA, Chai PJ, Kern FH et al (1995) Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. J Thorac Cardiovasc Surg 110:1649–1657

    Article  CAS  PubMed  Google Scholar 

  64. Bashein G, Townes BD, Nessly ML et al (1990) A randomized study of carbon dioxide management during hypothermic cardiopulmonary bypass. Anesthesiology 72:7–15

    Article  CAS  PubMed  Google Scholar 

  65. Nagy ZL, Collins M, Sharpe T et al (2003) Effect of two different bypass techniques on the serum troponin-T levels in newborns and children: does pH-Stat provide better protection? Circulation 108:577–582

    Article  CAS  PubMed  Google Scholar 

  66. Sakamoto T, Zurakowski D, Duebener LF et al (2004) Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest. J Thorac Cardiovasc Surg 128:220–232

    Article  PubMed  Google Scholar 

  67. Hindman BJ, Dexter F, Cutkomp J et al (1995) pH-stat management reduces the cerebral metabolic Tate for oxygen during profound hypothermia (17 degrees C). A study during cardiopulmonary bypass in rabbits. Anesthesiology 82:983–995

    Article  CAS  PubMed  Google Scholar 

  68. Greeley WJ, Ungerleider RM, Kern FH et al (1989) Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children. Circulation 80:I209–I215

    CAS  PubMed  Google Scholar 

  69. Dahlbacka S, Heikkinen J, Kaakinen T et al (2005) pH-stat versus alpha-stat acid–base management strategy during hypothermic circulatory arrest combined with embolic brain injury. Ann Thorac Surg 79:1316–1325

    Article  PubMed  Google Scholar 

  70. Markowitz SD, Mendoza-Paredes A, Liu H et al (2007) Response of brain oxygenation and metabolism to deep hypothermic circulatory arrest in newborn piglets: comparison of pH-stat and alpha-stat strategies. Ann Thorac Surg 84:170–176

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ootaki Y, Yamaguchi M, Yoshimura N, Oka S et al (2004) Efficacy of a criterion driven transfusion protocol in pediatric cardiac surgery patients. J Thorac Cardiovasc Surg 127:953–958

    Article  PubMed  Google Scholar 

  72. Fang WC, Helm RE, Krieger KH et al (1997) Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation 96:II194–II199

    Google Scholar 

  73. Groom RC (2002) High or low hematocrits during cardiopulmonary bypass for patients undergoing coronary artery bypass graft surgery? An evidence-based approach to the question. Perfusion 17:99–102

    Article  PubMed  Google Scholar 

  74. Wabeke E, Elstrodt JM, Mook PH et al (1988) Clear prime for infant cardiopulmonary bypass: a miniaturized circuit. J Cardiovasc Surg (Torino) 29:117–122

    CAS  Google Scholar 

  75. Parry AJ, Petrossian E, McElhinney DB et al (2000) Neutrophil degranulation and complement activation during fetal cardiac bypass. Ann Thorac Surg 70:582–589

    Article  CAS  PubMed  Google Scholar 

  76. Fukumura F, Kado H, Imoto Y et al (2004) Usefulness of low-priming-volume cardiopulmonary bypass circuits and dilutional ultrafiltration in neonatal open-heart surgery. J Artif Organs 7:9–12

    Article  PubMed  Google Scholar 

  77. Fromes Y, Gaillard D, Ponzio O et al (2002) Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg 22:527–533

    Article  PubMed  Google Scholar 

  78. Koster A, Huebler M, Boettcher W et al (2009) A new miniaturized cardiopulmonary bypass system reduces transfusion requirements during neonatal cardiac surgery: initial experience in 13 consecutive patients. J Thorac Cardiovasc Surg 137:1565–1568

    Article  PubMed  Google Scholar 

  79. Jonas RA, Wypij D, Roth SJ et al (2003) The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 126:1765–1774

    Article  PubMed  Google Scholar 

  80. Newburger JW, Jonas RA, Soul J et al (2008) Randomized trial of hematocrit 25 % versus 35 % during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg 135:347–354

    Article  PubMed  Google Scholar 

  81. Nollert G, Sperling J, Sakamoto T et al (2001) Higher hematocrit improves liver blood flow and metabolism during cardiopulmonary bypass in piglets. Thorac Cardiovasc Surg 49:226–230

    Article  CAS  PubMed  Google Scholar 

  82. Duebener LF, Sakamoto T, Hatsuoka S et al (2001) Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 104:1260–1264

    Article  Google Scholar 

  83. Sakamoto T, Nollert GD, Zurakowski D et al (2004) Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets. Ann Thorac Surg 77:1656–1663

    Article  PubMed  Google Scholar 

  84. Bronicki RA, Backer CL, Baden HP et al (2000) Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 69:1490–1495

    Article  CAS  PubMed  Google Scholar 

  85. Lodge AJ, Chai PJ, Daggett CW et al (1999) Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg 117:515–522

    Article  CAS  PubMed  Google Scholar 

  86. Checchia PA, Bronicki RA, Costello JM et al (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 6:441–444

    Article  PubMed  Google Scholar 

  87. Hill GE, Alonso A, Thiele G et al (1994) Glucocorticoids blunt neutrophil CD11b surface glycoprotein upregulation during cardiopulmonary bypass in humans. Anesth Analg 179:23–27

    Google Scholar 

  88. Cronstein BN, Kimmel SC, Levin RI et al (1992) A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 89:9991–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abdul-Khaliq H, Schubert S, Stoltenburg-Didinger G (2000) Neuroprotective effects of pre-treatment with systemic steroids in a neonatal piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 18:729–731

    Article  CAS  PubMed  Google Scholar 

  90. Schubert S, Stoltenburg-Didinger G, Wehsack A et al (2005) Large-dose pretreatment with methylprednisolone fails to attenuate neuronal injury after deep hypothermic circulatory arrest in a neonatal piglet model. Anesth Analg 101:1311–1318

    Article  CAS  PubMed  Google Scholar 

  91. Checchia PA, Bronicki RA, Costello JM (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 6:441–444

    Article  PubMed  Google Scholar 

  92. Graham EM, Atz AM, Butts RJ et al (2011) Standardized preoperative corticosteroid treatment in neonates undergoing cardiac surgery: results from a randomized trial. J Thorac Cardiovasc Surg 142:1523–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Clarizia NA, Manlhiot C, Schwartz SM et al (2011) Improved outcomes associated with intraoperative steroid use in high-risk pediatric cardiac surgery. Ann Thorac Surg 91:1222–1227

    Article  PubMed  Google Scholar 

  94. Jaquiss RD, Ghanayem NS, Zacharisen MC et al (2002) Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation 106:I90–I94

    PubMed  Google Scholar 

  95. Costello JM, Backer CL, de Hoyos A et al (2003) Aprotinin reduces operative closure time and blood product use after pediatric bypass. Ann Thorac Surg 75:1261–1266

    Article  PubMed  Google Scholar 

  96. Mojcik CF, Levy JH (2001) Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg 71:745–754

    Article  CAS  PubMed  Google Scholar 

  97. Aoki M, Jonas RA, Nomura F et al (1994) Effects of aprotinin on acute recovery of cerebral metabolism in piglets after hypothermic circulatory arrest. Ann Thorac Surg 58:146–153

    Article  CAS  PubMed  Google Scholar 

  98. Anttila V, Hagino I, Iwata Y et al (2006) Aprotinin improves cerebral protection: evidence from a survival porcine model. J Thorac Cardiovasc Surg 132:948–953

    Article  CAS  PubMed  Google Scholar 

  99. Schneeweiss S, Seeger JD, Landon J et al (2008) Aprotinin during coronary artery bypass grafting and risk of death. N Engl J Med 358:771–783

    Article  CAS  PubMed  Google Scholar 

  100. Shaw AD, Stafford-Smith M, White WD et al (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793

    Article  CAS  PubMed  Google Scholar 

  101. Pasquali SK, Hall M, Li JS et al (2010) Safety of aprotinin in congenital heart operations: results from a large multicenter database. Ann Thorac Surg 90:14–21

    Article  PubMed  PubMed Central  Google Scholar 

  102. Williams GD, Ramamoorthy C, Pentcheva K et al (2008) A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth 18:812–819

    Article  PubMed  Google Scholar 

  103. Backer CL, Kelle AM, Stewart RD et al (2007) Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 134:1421–1428

    Article  CAS  PubMed  Google Scholar 

  104. Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358:2319–2331

    Article  CAS  PubMed  Google Scholar 

  105. Asimakopoulos G (2002) The inflammatory response to CPB: the role of leukocyte filtration. Perfusion 17:7–10

    Article  PubMed  Google Scholar 

  106. Ohto T, Yamamoto F, Nakajima N (2000) Evaluation of leukocyte-reducing arterial line filter (LR6) for post-operative lung function, using cardiopulmonary bypass. Jpn J Thorac Cardiovasc Surg 48:295–300

    Article  CAS  PubMed  Google Scholar 

  107. Mair P, Hoermami C, Mair J et al (1999) Effects of a leucocyte depleting arterial line filter on perioperative proteolytic enzyme and oxygen free radical release in patients undergoing aortocoronary bypass surgery. Acta Anaesthesiol Scand 43:452–457

    Article  CAS  PubMed  Google Scholar 

  108. Eppinger M, Jones M, Deeb G (1995) Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 58:713–718

    Article  CAS  PubMed  Google Scholar 

  109. Naik S, Knight A, Elliott MJ (1991) A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation 84(Suppl 5):III422–III431

    CAS  PubMed  Google Scholar 

  110. Daggert C, Lodge A, Scarborough J (1988) Modified ultrafiltration: a randomized prospective study in neonatal pigs. J Thorac Cardiovasc Surg 115:336–340

    Article  Google Scholar 

  111. Skaryak LA, Kirshbom PM, DiBernardo LR et al (1995) Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest. J Thorac Cardiovasc Surg 109:744–752

    Article  CAS  PubMed  Google Scholar 

  112. Weber CF, Jámbor C, Strasser C et al (2011) Normovolemic modified ultrafiltration is associated with better preserved platelet function and less postoperative blood loss in patients undergoing complex cardiac surgery: a randomized and controlled study. J Thorac Cardiovasc Surg 141:1298–1304

    Article  PubMed  Google Scholar 

  113. Boodhwani M, Hamilton A, de Varennes B et al (2010) A multicenter randomized controlled trial to assess the feasibility of testing modified ultrafiltration as a blood conservation technology in cardiac surgery. J Thorac Cardiovasc Surg 139:701–706

    Article  PubMed  Google Scholar 

  114. Wan S, LeClerc J, Vincent JL (1997) Cytokine response to cardiopulmonary bypass: lessons learned from cardiac transplantation. Ann Thorac Surg 63:269–276

    Article  CAS  PubMed  Google Scholar 

  115. Journois D, Israel-Biet D, Pouard P (1996) High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 85:965–976

    Article  CAS  PubMed  Google Scholar 

  116. Gottlieb EA, Fraser CD Jr, Andropoulos DB et al (2006) Bilateral monitoring of cerebral oxygen saturation results in recognition of aortic cannula malposition during pediatric congenital heart surgery. Paediatr Anaesth 16:787–789

    Article  PubMed  Google Scholar 

  117. Hill SJ, Withington DE (2006) Too clever by half? Can bilateral or unilateral NIRS monitoring improve neurological outcome from pediatric cardiopulmonary bypass? Paediatr Anaesth 16:709–711

    Article  PubMed  Google Scholar 

  118. Andropoulos DB, Diaz LK, Fraser CD Jr (2004) Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth Analg 98:1267–1272

    Article  PubMed  Google Scholar 

  119. Bar-Yosef S, Sanders EG, Grocott HP (2003) Asymmetric cerebral near-infrared oximetric measurements during cardiac surgery. J Cardiothorac Vasc Anesth 17:773–774

    Article  PubMed  Google Scholar 

  120. Kurth CD, Steven JM, Nicolson SC (1995) Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology 82:74–82

    Article  CAS  PubMed  Google Scholar 

  121. Austin EH III, Edmonds HL Jr, Auden SM et al (1997) Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg 114:707–716

    Article  PubMed  Google Scholar 

  122. Phelps HM, Mahle WT, Kim D et al (2009) Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg 87:1490–1494

    Article  PubMed  Google Scholar 

  123. Johnson BA, Hoffman GM, Tweddell JS et al (2009) Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome. Ann Thorac Surg 87:571–579

    Article  PubMed  Google Scholar 

  124. Tweddell JS, Ghanayem NS, Hoffman GM (2010) Pro: NIRS is “standard of care” for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13:44–50

    Article  PubMed  Google Scholar 

  125. Hirsch JC, Charpie JR, Ohye RG et al (2010) Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13:51–54

    Article  PubMed  Google Scholar 

  126. Cariou A, Monchi M, Dhainaut JF (1998) Continuous cardiac output and mixed venous oxygen saturation monitoring. J Crit Care 13:198–213

    Article  CAS  PubMed  Google Scholar 

  127. Tweddell JS, Hoffman GM, Mussatto KA et al (2002) Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation 106:I82–I89

    PubMed  Google Scholar 

  128. Tweddell JS, Ghanayem NS, Mussatto KA et al (2007) Mixed venous oxygen saturation monitoring after stage 1 palliation for hypoplastic left heart syndrome. Ann Thorac Surg 84:1301–1311

    Article  PubMed  Google Scholar 

  129. Ranucci M, Isgrò G, De La Torre T et al (2008) Continuous monitoring of central venous oxygen saturation (Pediasat) in pediatric patients undergoing cardiac surgery: a validation study of a new technology. J Cardiothorac Vasc Anesth 22:847–852

    Article  PubMed  Google Scholar 

  130. Liakopoulos OJ, Ho JK, Yezbick A et al (2007) An experimental and clinical evaluation of a novel central venous catheter with integrated oximetry for pediatric patients undergoing cardiac surgery. Anesth Analg 105:1598–1604

    Article  PubMed  Google Scholar 

  131. Kissoon N, Spenceley N, Krahn G et al (2010) Continuous central venous oxygen saturation monitoring under varying physiological conditions in an animal model. Anaesth Intensive Care 38:883–889

    CAS  PubMed  Google Scholar 

  132. Baulig W, Spielmann N, Zaiter H et al (2010) In-vitro evaluation of the PediaSat continuous central venous oxygenation monitoring system. Eur J Anaesthesiol 27:289–294

    Article  PubMed  Google Scholar 

  133. Marimón GA, Dockery WK, Sheridan MJ et al (2011) Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J Crit Care 2011 Dec 13. [Epub ahead of print]

    Google Scholar 

  134. Hoffman GM, Ghanayem NS, Kampine JM et al (2000) Venous saturation and the anaerobic threshold in neonates after the Norwood procedure for hypoplastic left heart syndrome. Ann Thorac Surg 70:1515–1521

    Article  CAS  PubMed  Google Scholar 

  135. Crowley R, Sanchez E, Ho JK et al (2011) Prolonged central venous desaturation measured by continuous oximetry is associated with adverse outcomes in pediatric cardiac surgery. Anesthesiology 115:1033–1043

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Ootaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Ootaki, Y., Ungerleider, R.M. (2014). Neuroprotection Strategies During Cardiopulmonary Bypass. In: Da Cruz, E., Ivy, D., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4619-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4619-3_76

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4618-6

  • Online ISBN: 978-1-4471-4619-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics