Skip to main content

Image-Guided Radiation Therapy for Lung Cancer

  • Reference work entry
  • First Online:
Book cover Image-Guided Cancer Therapy

Abstract

Lung cancer is a major global health problem. Image-guided radiation therapy (IGRT), including stereotactic body radiation therapy and adaptive radiation therapy, is emerging as an important technique to try and deliver precise high-dose radiation to the tumor volume while minimizing dose to the normal structures. This chapter intends to highlight some of the features of IGRT including simulation for treatment planning, immobilization devices, target delineation for IGRT, setup and image verification, treatment delivery, radiobiology and physics considerations, clinical outcomes, and ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Global cancer facts and figures. Atlanta: American Cancer Society; 2007.

    Google Scholar 

  3. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  4. Le Chevalier T, Arriagada R, Quoix E, et al. Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non-small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst. 1991;83:417–23.

    Article  PubMed  Google Scholar 

  5. Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:318–28.

    Article  PubMed  Google Scholar 

  6. Rosenzweig KE, Fox JL, Yorke E, et al. Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer. 2005;103:2118–27.

    Article  PubMed  Google Scholar 

  7. Hayman JA, Martel MK, Ten Haken RK, et al. Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol. 2001;19:127–36.

    Article  CAS  PubMed  Google Scholar 

  8. Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65:1075–86.

    Article  PubMed  Google Scholar 

  9. Sura S, Gupta V, Yorke E, et al. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol. 2008;87:17–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liao ZX, Komaki RR, Thames Jr HD, et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;76(3):775–81.

    Article  PubMed  Google Scholar 

  11. Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.

    Article  CAS  PubMed  Google Scholar 

  12. Toloza EM, Harpole L, Detterbeck F, et al. Invasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:157S–66.

    Article  PubMed  Google Scholar 

  13. Gould MK, Kuschner WG, Rydzak CE, et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med. 2003;139:879–92.

    Article  PubMed  Google Scholar 

  14. Reed CE, Harpole DH, Posther KE, et al. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126:1943–51.

    Article  PubMed  Google Scholar 

  15. Bentel GC, Marks LB, Krishnamurthy R. Impact of cradle immobilization on setup reproducibility during external beam radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys. 1997;38:527–31.

    Article  CAS  PubMed  Google Scholar 

  16. Baba F, Shibamoto Y, Tomita N, et al. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol. 2009;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fox T, Elder E, Crocker I. Image registration and fusion techniques. In: Paulino AC, Teh BS, editors. PET-CT in radiotherapy treatment planning. Philadelphia: Saunders/Elsevier; 2008.

    Google Scholar 

  18. Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.

    Article  PubMed  Google Scholar 

  19. Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med. 2005;46:1342–8.

    PubMed  Google Scholar 

  20. Liu BJ, Dong JC, Xu CQ, et al. Accuracy of 18F-FDG PET/CT for lymph node staging in non-small-cell lung cancers. Chin Med J (Engl). 2009;122:1749–54.

    Google Scholar 

  21. Munley MT, Marks LB, Scarfone C, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer. 1999;23:105–14.

    Article  CAS  PubMed  Google Scholar 

  22. Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.

    Article  PubMed  Google Scholar 

  23. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  24. Bradley JD, Bae K, Choi N, et al. A phase II comparative study of Gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non–small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys. 2009;75:S2.

    Article  Google Scholar 

  25. Jin JY, Ajlouni M, Chen Q, et al. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother Oncol. 2006;78:177–84.

    Article  PubMed  Google Scholar 

  26. Underberg RW, Lagerwaard FJ, Cuijpers JP, et al. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60:1283–90.

    Article  PubMed  Google Scholar 

  27. Underberg RW, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:253–60.

    Article  PubMed  Google Scholar 

  28. Droege RT, Bjarngard BE. Influence of metal screens on contrast in megavoltage x-ray imaging. Med Phys. 1979;6:487–93.

    Article  CAS  PubMed  Google Scholar 

  29. Droege RT, Bjarngard BE. Metal screen-film detector MTF at megavoltage x-ray energies. Med Phys. 1979;6:515–8.

    Article  CAS  PubMed  Google Scholar 

  30. Antonuk LE, El-Mohri Y, Huang W, et al. Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging. Int J Radiat Oncol Biol Phys. 1998;42:437–54.

    Article  CAS  PubMed  Google Scholar 

  31. Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31:30–9.

    Article  PubMed  Google Scholar 

  32. Kuriyama K, Onishi H, Sano N, et al. A new irradiation unit constructed of self-moving gantry-CT and linac. Int J Radiat Oncol Biol Phys. 2003;55:428–35.

    Article  PubMed  Google Scholar 

  33. Feldkamp IA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1:612–9.

    Article  Google Scholar 

  34. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:1337–49.

    Article  PubMed  Google Scholar 

  35. Morin O, Gillis A, Chen J, et al. Megavoltage cone-beam CT: system description and clinical applications. Med Dosim. 2006;31:51–61.

    Article  PubMed  Google Scholar 

  36. Khan FM. The physics of radiation therapy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  37. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys. 1993;20:1709–19.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, Uhl B, Dewitt K, et al. Image-guided stereotactic body radiotherapy for lung tumors using bodyloc with tomotherapy: clinical implementation and set-up accuracy. Med Dosim. 2010;35(1):12–8. doi: 10.1016/j.meddos.2008.12.003. Epub 2009 Jan 30.

    Article  CAS  PubMed  Google Scholar 

  39. Jin JY, Yin FF, Tenn SE, et al. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim. 2008;33:124–34.

    Article  PubMed  Google Scholar 

  40. Chang Z, Wang Z, Wu QJ, et al. Dosimetric characteristics of novalis Tx system with high definition multileaf collimator. Med Phys. 2008;35:4460–3.

    Article  PubMed  Google Scholar 

  41. Walls NM, Nurushev T, Jin JY, et al. Assessment of 2D X-ray and volumetric-based localization imaging for patients treated with SRS and SBRT. Int J Radiat Oncol Biol Phys. 2009;75:S-682.

    Article  Google Scholar 

  42. Adler Jr JR, Chang SD, Murphy MJ, et al. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69:124–8.

    Article  PubMed  Google Scholar 

  43. Fu D, Kuduvalli G. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys. 2008;35:2180–94.

    Article  PubMed  Google Scholar 

  44. Fu D, Kuduvalli G. Enhancing skeletal features in digitally reconstructed radiographs. In: Reinhardt JM, Pluim JP, editors. Medical imaging 2006: image processing. Vol 6144. San Diego: The International Society for Optical Engineering; 2006. p. Abstract 61442 M.

    Google Scholar 

  45. Fu D, Kuduvalli G, Maurer CJ, et al. 3D target localization using 2D local displacements of skeletal structures in orthogonal x-ray images for image-guided spinal radiosurgery. Int J CARS. 2006;1:198–200.

    Google Scholar 

  46. Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60:ONS147–56. discussion ONS156.

    PubMed  Google Scholar 

  47. Mu Z, Fu D, Kuduvally G. Multiple fiducial identification using the hidden Markov model in image guided radiosurgery. In: Proceedings of the conference on computer vision and pattern recognition workshop: IEEE. New York, June 17–22, 2006; pp. 0-7695-2646-7692/7606.

    Google Scholar 

  48. Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29:334–44.

    Article  PubMed  Google Scholar 

  49. Chuang CF, Larson DA, Zytkovicz A, et al. Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding. Med Phys. 2008;35:1494–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kothary N, Heit JJ, Louie JD, et al. Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol. 2009;20:235–9.

    Article  PubMed  Google Scholar 

  51. Kothary N, Dieterich S, Louie JD, et al. Percutaneous implantation of fiducial markers for imaging-guided radiation therapy. AJR Am J Roentgenol. 2009;192:1090–6.

    Article  PubMed  Google Scholar 

  52. West JB, Fitzpatrick JM, Toms SA, et al. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48:810–6. discussion 816–817.

    CAS  PubMed  Google Scholar 

  53. Mitchell H, Newton I. Medical photogrammetric measurement: overview and prospects. ISPRS J Photogramm. 2002;56:286–94.

    Article  Google Scholar 

  54. Yan D, Vicini F, Wong J, et al. Adaptive radiation therapy. Phys Med Biol. 1997;42:123–32.

    Article  CAS  PubMed  Google Scholar 

  55. Yan D, Wong J, Vicini F, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int J Radiat Oncol Biol Phys. 1997;38:197–206.

    Article  CAS  PubMed  Google Scholar 

  56. Kupelian PA, Ramsey C, Meeks SL, et al. Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys. 2005;63:1024–8.

    Article  PubMed  Google Scholar 

  57. Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 2006;64:1237–44.

    Article  PubMed  Google Scholar 

  58. Bissonnette JP, Purdie TG, Higgins JA, et al. Cone-beam computed tomographic image guidance for lung cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2009;73:927–34.

    Article  PubMed  Google Scholar 

  59. Onishi H, Araki T, Shirato H, et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004;101:1623–31.

    Article  PubMed  Google Scholar 

  60. Guckenberger M, Wulf J, Mueller G, et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009;74:47–54.

    Article  PubMed  Google Scholar 

  61. Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3.

    Article  PubMed  Google Scholar 

  62. Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8:89–91.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.

    Article  CAS  PubMed  Google Scholar 

  64. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18:234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Milano MT, Constine LS, Okunieff P. Normal tissue toxicity after small field hypofractionated stereotactic body radiation. Radiat Oncol. 2008;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Park C, Papiez L, Zhang S, et al. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.

    Article  PubMed  Google Scholar 

  67. Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68:531–40.

    Article  PubMed  Google Scholar 

  68. Leong J. Implementation of random positioning error in computerised radiation treatment planning systems as a result of fractionation. Phys Med Biol. 1987;32:327–34.

    Article  CAS  PubMed  Google Scholar 

  69. Beckham WA, Keall PJ, Siebers JV. A fluence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error. Phys Med Biol. 2002;47:3465–73.

    Article  CAS  PubMed  Google Scholar 

  70. Chetty IJ, Rosu M, McShan DL, et al. Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung. Med Phys. 2004;31:925–32.

    Article  PubMed  Google Scholar 

  71. Keall PJ, Joshi S, Vedam SS, et al. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys. 2005;32:942–51.

    Article  PubMed  Google Scholar 

  72. Rosu M, Balter JM, Chetty IJ, et al. How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy? Med Phys. 2007;34:233–45.

    Article  PubMed  Google Scholar 

  73. Wolthaus JW, Schneider C, Sonke JJ, et al. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65:1560–71.

    Article  PubMed  Google Scholar 

  74. Das IJ, Ding GX, Ahnesjo A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35:206–15.

    Article  PubMed  Google Scholar 

  75. Reynaert N, van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem. 2007;76:643–86.

    Article  CAS  Google Scholar 

  76. Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34:4818–53.

    Article  Google Scholar 

  77. Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV x rays. Med Phys. 1985;12:188–96.

    Article  CAS  PubMed  Google Scholar 

  78. Timmerman RD, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for medically inoperable early-stage lung cancer patients: analysis of RTOG 0236. Int J Radiat Oncol Biol Phys. 2009;75:S3.

    Article  Google Scholar 

  79. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24:4833–9.

    Article  PubMed  Google Scholar 

  80. Patel AH, Ajlouni M, Jin J, et al. Is stereotactic body radiotherapy (SBRT) safe for central non-small cell lung cancer (NSCLC) lesions? Int J Radiat Oncol Biol Phys. 2008;72:S434–5.

    Article  Google Scholar 

  81. Hiraoka M, Ishikura S. A Japan clinical oncology group trial for stereotactic body radiation therapy of non-small cell lung cancer. J Thorac Oncol. 2007;2:S115–7.

    Article  PubMed  Google Scholar 

  82. Hurkmans CW, Cuijpers JP, Lagerwaard FJ, et al. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the quality assurance working party of the randomised phase III ROSEL study. Radiat Oncol. 2009;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Harsolia A, Hugo GD, Kestin LL, et al. Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70:582–9.

    Article  PubMed  Google Scholar 

  84. van Zwienen M, van Beek S, Belderbos J, et al. Anatomical changes during radiotherapy of lung cancer patients. Int J Radiat Oncol Biol Phys. 2008;72:S111.

    Article  Google Scholar 

  85. Britton KR, Starkschall G, Liu H, et al. Consequences of anatomic changes and respiratory motion on radiation dose distributions in conformal radiotherapy for locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73:94–102.

    Article  PubMed  Google Scholar 

  86. Kong FM, Frey KA, Quint LE, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25:3116–23.

    Article  PubMed  Google Scholar 

  87. Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys. 2008;71:1402–7.

    Article  CAS  PubMed  Google Scholar 

  88. Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phy. 2006;33:187–97.

    Article  CAS  Google Scholar 

  89. Godfrey DJ, Ren L, Yan H, et al. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS). Med Phys. 2007;34:3374–84.

    Article  PubMed  Google Scholar 

  90. Ren L, Godfrey DJ, Yan H, et al. Automatic registration between reference and on-board digital tomosynthesis images for positioning verification. Med Phys. 2008;35:664–72.

    Article  PubMed  Google Scholar 

  91. Wijesooriya K, Weiss E, Dill V, et al. Quantifying the accuracy of automated structure segmentation in 4D CT images using a deformable image registration algorithm. Med Phys. 2008;35:1251–60.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhong H, Kim J, Chetty IJ. Analysis of deformable image registration accuracy using computational modeling. Med Phys. 2009;37:970–9.

    Article  Google Scholar 

  93. Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy. Med Phys. 2006;33:434–45.

    Article  PubMed  Google Scholar 

  94. Rosu M, Chetty IJ, Balter JM, et al. Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications. Med Phys. 2005;32:2487–95.

    Article  PubMed  Google Scholar 

  95. Siebers JV, Zhong H. An energy transfer method for 4D Monte Carlo dose calculation. Med Phys. 2008;35:4096–105.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kong FM, Ten Haken RK, Schipper MJ, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63:324–33.

    Article  PubMed  Google Scholar 

  97. Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer. 1998;82:1062–70.

    Article  CAS  PubMed  Google Scholar 

  98. Nyman J, Johansson KA, Hulten U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer–mature results for medically inoperable patients. Lung Cancer. 2006;51:97–103.

    Article  PubMed  Google Scholar 

  99. Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63:1427–31.

    Article  PubMed  Google Scholar 

  100. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007;2:S94–100.

    Article  PubMed  Google Scholar 

  101. Videtic GM, Stephans K, Reddy C, et al. Intensity-modulated radiotherapy-based stereotactic body radiotherapy for medically inoperable early-stage lung cancer: excellent local control. Int J Radiat Oncol Biol Phys. 2010;77(2):344–9. doi: 10.1016/j.ijrobp.2009.05.004. Epub 2009 Sep 18.

    Article  PubMed  Google Scholar 

  102. Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75:677–82.

    Article  PubMed  Google Scholar 

  103. Baumann P, Nyman J, Lax I, et al. Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol. 2006;45:787–95.

    Article  PubMed  Google Scholar 

  104. Lagerwaard FJ, Haasbeek CJ, Smit EF, et al. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;70:685–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzan Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Siddiqui, F., Chetty, I.J., Ajlouni, M., Movsas, B. (2013). Image-Guided Radiation Therapy for Lung Cancer. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_42

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics