
97

Chapter 8

TPM Entities

A TPM 2.0 entity is an item in the TPM that can be directly referenced with a handle.
The term encompasses more than objects because the specification uses the word object
to identify a very specific subset of entities. This can be confusing, so this chapter briefly
describes all of the entity types: permanent entities (hierarchies, the dictionary attack
lockout mechanism, and PCRs); nonvolatile entities (NVRAM indexes), which are similar to
permanent entities; objects (keys and data); and volatile entities (sessions of various types).

After this introduction, the following chapters discuss each entity and its uses in
more detail. In particular, the next chapter delves into hierarchies, a collection of entities
that are related and managed as a group.

Permanent Entities
A permanent entity is one whose handle is defined by the TPM specification and can’t be
created or deleted. In TPM 1.2, PCRs and the owner were the only permanent entities; the
storage root key (SRK) did have a fixed handle but wasn’t a permanent entity. In TPM 2.0,
there are more: three persistent hierarchies, the ephemeral hierarchy, the dictionary attack
lockout reset, PCRs, reserved handles, the plaintext password authorization session, and
the platform hierarchy NV enable. The following sections discuss each in turn.

Persistent Hierarchies
TPM 2.0 has three persistent hierarchies (platform, storage, and endorsement), each
referenced by a permanent handle: TPM_RH_PLATFORM (0x4000000C), TPM_RH_OWNER
(0x40000001), and TPM_RH_ENDORSEMENT (x4000000B). Permission to use these hierarchies
is granted through authorizations, so each has both an authorization value and a
policy. Either can be changed at the will of the hierarchy’s administrator (defined as
anyone who can authorize such a change). The authorization value or policy value may
change, but whenever we refer to, for example, the platform authorization, we mean
the same entity. Persistent hierarchies can never be deleted, but they may be disabled
by the administrator of the platform or the administrator of the hierarchy. These three
hierarchies may have associated chains of keys and data, which can be wiped by clearing
the hierarchy.

Chapter 8 ■ TPM Entities

98

The next chapter describes the hierarchies in detail, including each hierarchy’s
management and use cases. At this point, it’s sufficient to understand that the persistent
hierarchies are permanent entities. They can’t be created or deleted.

Other permanent entities similar to the hierarchies listed here are the ephemeral
hierarchy and the dictionary attack lockout reset mechanism.

Ephemeral Hierarchy
TPM 2.0 has an ephemeral hierarchy called the NULL hierarchy, which is also referenced
by a permanent handle: TPM_RH_NULL (0x40000007). This hierarchy is utilized when
the TPM is being used as a cryptographic coprocessor, as described in Chapter 9. Its
authorization value and policy are both always NULL.

Similar to the persistent hierarchies, the ephemeral hierarchy is permanent. It can’t
be deleted. However, unlike the persistent hierarchies, it’s automatically cleared every
time the TPM goes through a power cycle. See Chapter 9 for details.

Dictionary Attack Lockout Reset
Similar to the hierarchies is the dictionary attack lockout mechanism, which has the
handle TPM_RH_LOCKOUT (0x4000000A). It also has both an authorization and a policy.
Like the three persistent hierarchies, these authorizations can be changed at the will
of the administrator of this hierarchy. It has no key or object hierarchy. Instead, this
mechanism is used to reset the dictionary attack lockout mechanism if it has triggered,
or to clear the TPM_RH_OWNER hierarchy. It generally represents the IT administrator of the
TPM storage hierarchy.

EXAMPLE: FAILURE COUNT RESET

A TPM is configured to lock out a user for 24 hours after 5 password entry failures.
Lock out means the user can’t successfully authorize any entity that is subject to
this dictionary attack protection. The user convinces an IT administrator this this
wasn’t an attack but rather was just a mistake. The administrator, using lockout
authorization, resets the failure count so the user doesn’t have to wait for the
24-hour lockout period to expire.

Platform Configuration Registers (PCRs)
The TPM has a number of PCRs, which are accessed using their index. Depending on
the platform-specific specification, they can have one or more algorithms. They also
have an authentication value and a policy, chosen by the specification (generally NULL),
which may be used to change the value stored in the PCR via a PCR extend. Reading the
value stored in a PCR doesn’t require authentication. The PC Client platform specifies
a minimum of 24 PCRs. Only one bank (a set of PCRs with the same hash algorithm) is
mandatory, programmable to either SHA-1 or SHA-256 at boot time.

Chapter 8 ■ TPM Entities

99

Because it’s a permanent entity, there is no command to create or delete a PCR; you
can only change its attributes or the PCR value. Chapter 12 discusses these permanent
entities in detail.

Reserved Handles
Vendor-specific reserved handles may be present in a TPM if a platform-specific
specification decides to use them. Such handles are meant to be used by a vendor in
the case of a catastrophic security failure of the firmware in the TPM, allowing the TPM
to testify to the hash of the software stored in the TPM. At the date of this writing, no
reserved handles are specified by any platform specification.

Password Authorization Session
There is one session that is permanent as well, called a password authorization session
at handle TPM_RS_PW (0x40000009). A caller uses this handle for plaintext password
(as opposed to HMAC) authorization.

Platform NV Enable
The TPM_RH_PLATFORM_NV handle (0x4000000D) controls the platform hierarchy NV enable.
When it’s clear (disabled), access to any NV index in the platform hierarchy is denied.

NV indexes can belong to either the platform or the storage hierarchy. The storage
hierarchy enable controls NV indexes in the storage hierarchy. However, the platform
enable doesn’t control platform hierarchy NV indexes. That uses is a separate control:
platform NV enable. Having two controls permits independent control of the platform
hierarchy (for example, keys) and these platform NV indexes.

USE CASE: STORING BOOT PARAMETERS

Platform firmware can use the TPM as a convenient NV space for boot parameters.
This space must remain readable even if the TPM platform hierarchy is disabled.

Next let’s examine some entities that are similar to permanent entities: nonvolatile
indexes, which are nonvolatile but not architecturally defined.

Nonvolatile Indexes
An NVRAM index in a TPM is a nonvolatile entity. There is a certain amount of
nonvolatile space in a TPM that a user can configure for storage. When configured, it’s
given an index and a set of attributes, chosen by the user.

Chapter 8 ■ TPM Entities

100

NVRAM indexes aren’t considered objects by the TPM specification, because
they have more attributes than a standard object. Reading and writing them can be
individually controlled. They can be configured as entities that look like PCRs, counters,
or bit fields. They can be made into “write once” entities as well. Chapter 11 explains their
properties and use cases.

NVRAM indexes have both an associated authorization value and an authorization
policy. The authorization value can be changed at the will of the owner of the index, but
the policy can’t be changed once it’s set at the creation of the NVRAM index. NVRAM
indexes are associated with a hierarchy when they’re created. Hence, when the hierarchy
is cleared, the NVRAM indexes associated with that hierarchy are deleted.

Objects are similar to NVRAM in that they belong to a hierarchy and have data and
authorization mechanisms, but they have fewer attributes.

Objects
A TPM object is either a key or data. It has a public part and perhaps a private part such
as an asymmetric private key, a symmetric key, or encrypted data. Objects belong to
a hierarchy. All objects have both associated authorization data and an authorization
policy. As with NV indexes, an object’s policy can’t be changed after it’s created.

When an object is used in a command, some commands are considered
administrative and others are considered user commands. At object creation, the user
decides which of these commands can be performed with the authorization data and
which can exclusively be done with a policy. This comes with a caveat: certain commands
can only be done with a policy no matter how the attributes are set at key creation.

Like NVRAM indexes, all objects belong to one of the four hierarchies: platform,
storage, endorsement, or NULL. When a hierarchy is cleared, all objects belonging to that
hierarchy are also cleared.

Typically, most objects are keys. They’re described in detail in the Chapter 10.
Using keys or other objects requires the use of a TPM non-persistent entity: the session.

Nonpersistent Entities
A nonpersistent entity never persists through power cycles.1 Although a nonpersistent
entity can be saved (see TPM2_ContextSave), a TPM cryptographic mechanism prevents
the saved context from being loaded after a power cycle, thus enforcing volatility.
This type of entity has several classes.

Authorization sessions, including HMAC and policy sessions, are perhaps the
most widely used, permitting entity authorization, command and response parameter
encryption, and command audit. Chapter 13 is devoted to their use.

1To be precise, it doesn’t persist through what the specification refers to as a TPM Reset (a reboot).
It does persist through a TPM Restart (resume from hibernate) or TPM Resume (resume from sleep).

Chapter 8 ■ TPM Entities

101

Hash and HMAC event sequence entities hold the intermediate results of the typical
crypto library “start, update, complete” design pattern. They permit the hashing or HMAC
of data blocks that are larger than the TPM command buffer. Chapter 9 describes their
application.

In contrast to a nonpersistent entity, a persistent entity persists through power cycles.

Persistent Entities
A persistent entity is an object that the owner of a hierarchy has asked to remain resident
in the TPM through power cycles. It differs from a permanent entity (which can never be
deleted) in that the owner of the hierarchy to which a permanent entity belongs can evict
it. A TPM has a limited amount of persistent memory, so you should be sparing in your
use of persistent entities. There are, however, some valuable use cases.

USE CASE: VPN KEY ACCESS

A signing key is needed for VPN access early in a boot cycle. At that time, the disk
isn’t available. The application transfers the key to TPM persistent storage, where it’s
immediately available for use in early boot cryptographic operations.

USE CASE: PRIMARY KEY OPTIMIZATION

A primary storage key (the equivalent to a TPM 1.2 SRK) is routinely used as the root
of a key hierarchy. Key generation is often the most time-consuming cryptographic
calculation. After creation, the key is moved to persistent storage to avoid the
performance penalty of recalculating the key on every boot cycle.

USE CASE: IDENTITY KEY PROVISIONING

An enterprise provisions a motherboard with a restricted signing key that is fixed
to the TPM. The enterprise uses this key to identify the platform. If the motherboard
fails and the TPM is thus replaced, this existing key can no longer be loaded. The IT
department wishes to provision spare motherboards with new signing keys. Because
a motherboard has no disk, the IT department generates the key and moves it to
TPM persistent storage. The signing key now travels with the motherboard when it
replaces a failed one in a platform.

Usually, primary storage keys (such as an SRK), primary restricted signing keys
(such as an attestation identity key [AIK]), and possibly endorsement keys (EK) are the only
entities that remain persistent in a TPM. These are discussed in more detail in Chapter 10.

Chapter 8 ■ TPM Entities

102

Entity Names
The Name of an entity is a TPM 2.0 concept, invented to solve a problem noticed with the
TPM 1.2 specification. A paranoid security analyst (and all security analysts are paranoid)
noticed that it might be possible for an attacker to intercept data as it was being sent to
the TPM. The TPM design had protections against such an attack changing most data
that was sent to the TPM. However, the TPM has very few resources, so it allowed a key
manager to load and unload keys into the TPM as necessary. After keys were loaded, they
were referred to by a handle, a shorthand for the location in memory where the key was
loaded. Because the software might not realize that a key manager had been relocating
keys in the TPM to free up space, the handle itself wasn’t protected against manipulation,
and middleware would patch the data that was sent to the TPM to point to the correct
handle location.

Normally this wouldn’t be a problem. But if someone decided to give the same
password to more than one key, then it would be possible for one of those keys to be
substituted for another by an attacker, and the attacker could then authorize the wrong
key to be used in a command. You might think such an attack would be unlikely, but the
people who wrote the TPM specification also tend to be paranoid and decided this was
unacceptable behavior. Instead of just warning everyone not to use the same password
for multiple keys, they decided to give every entity a unique Name, and that Name is used
in the HMAC authorization calculation sent when executing a command that uses that
entity. The handle may change, but the name doesn’t.

The command parameter stream that is hashed and then HMACed implicitly includes
the Name of each entity referred to by handle, even though the command parameters
may not include the Name. An attacker can change the handle but can’t change the
corresponding Name value after it’s authorized through the HMAC calculation.

The Name is the entity’s unique identifier. Permanent entities (PCRs and hierarchy
handles) have handles that never change, so their Name is simply their handle. Other
entities (NV indexes and loaded objects) have a calculated name that is essentially a hash
of the entity’s public data. Both the TPM and caller independently calculate the Name
value for use during authorization.

For security, it’s extremely important that the Name is calculated and stored when
the entity is created. A naïve implementation might offer to help by providing a “handle
to Name” function that reads the TPM handle and uses the resulting public area to
generate the Name. This would defeat the entire purpose of using the Name in the HMAC
calculation, because the result is the Name of the entity currently at the handle, not the
Name the authorizer expected.

Following are some examples of how the Name is used.

Chapter 8 ■ TPM Entities

103

EXAMPLE: ATTACKER CLEARING A BIT-FIELD NV INDEX

A key owner uses an NV bit-field index in the key’s policy, with a set bit 3 revoking
the key for a key user. The revoked user / attacker deletes the NV index and re-creates
it with the same policy. When the key owner wants to set bit 5, they use the
handle-to-Name function to calculate the Name. The key owner uses the result for
authorization, and sets bit 5. However, bit 3 is now clear because the TPM initializes
bit fields to all bits clear.

If the key owner had properly stored the Name and used it for authorization, the
authorization would fail. This would happen because, when the attacker re-created
the index, the “written” bit in the public area attributes would go from set to clear,
changing the Name on the TPM.

The Name of an NV index is a digest of its public area. An attacker can delete and
redefine an index, but unless the public area (the index value, its attributes, and its
policy) is the same, the Name will change and the authorization will not verify.

EXAMPLE: ATTACKER READING A SECRET

The user defines an ordinary index intended to hold a secret. The index policy is
such that only the user can read the secret. Before the secret is written, an attacker
deletes the index and redefines it with a different policy, such that the attacker can
also read the secret. The attack fails because the policy change causes the Name to
change. When the user tries to write the secret, the authorization fails because the
original name was used to calculate the command parameter hash.

The Name of a transient or persistent entity is also a digest of its public area.
The public area varies with the type of entity.

USE CASE: PERMITTING A RESOURCE MANAGER TO SECURELY
MANAGE TPM KEYS

The user loads a key and receives back a handle for the loaded key. The user
authorizes the key with an HMAC of the command parameters, which implicitly
includes the Name. Unknown to the user, a resource manager had unloaded the key,
and now loads it. Keep in mind, however, that the handle changes. The resource
manager replaces the user’s handle with the new handle value. The authorization
still verifies, because the calculation didn’t include the handle (which changed), only
the Name (which didn’t).

Chapter 8 ■ TPM Entities

104

USE CASE: ATTACKER REPLACING A KEY AT THE SAME HANDLE

The user loads a key and receives a handle. The user authorizes that key with an
HMAC. However, an attacker replaces the key on the TPM with their own key, and
the attacker’s key has the same handle. The attack fails because the attacker’s key
has a different Name, so the HMAC authorization fails.

Summary
The TPM has several types of entities: items that can be referred to by a handle.
Permanent entities have a handle that is fixed by the TPM specification. The handle
value can’t change; nor can such an entity be created or deleted. Its data can be either
persistent or volatile. Nonvolatile indexes can be created or deleted at a user-specified
handle, and they persist through TPM power cycles. Objects — entities that are attached
to a hierarchy — may have a private area and can be volatile or made persistent. When
the object is made persistent, it’s called a persistent entity.

An entity’s Name is its unique identifier. It’s used in authorization calculations rather
than the entity’s handle because the handle may change over time as a resource manager
loads and flushes entities.

This chapter has summarized the entity types and provides a road map to the
chapters that follow. The details come next, with chapters on hierarchies (permanent
entities), keys (objects), NV indexes (persistent entities), PCRs (permanent entities),
and sessions (nonpersistent entities).

	Chapter 8: TPM Entities
	Permanent Entities
	Persistent Hierarchies
	Ephemeral Hierarchy
	Dictionary Attack Lockout Reset
	Platform Configuration Registers (PCR s)
	Reserved Handles
	Password Authorization Session
	Platform NV Enable

	Nonvolatile Indexes
	Objects
	Nonpersistent Entities
	Persistent Entities
	Entity Names
	Summary

