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Chapter 2

Fundamental Principles of Intel® TXT

The first step to more secure computing is improved hardware. So before we discuss how to use the technology, 
let’s define what constitutes an Intel® TXT–capable platform and the underlying principles behind the technology. 
We will take a look at the unique components, how they work together, and what they do to produce a more secure 
environment.

What You Need: Definition of an Intel® TXT–Capable System 
Intel TXT relies on a set of enhanced hardware, software, and firmware components designed to protect sensitive 
information from software-based attacks. These components are illustrated in Figure 2-1 and Figure 2-2.
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Figure 2-1.  Intel® TXT–capable system
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As illustrated in Figure 2-1, it takes more than just an Intel TXT–capable platform. An Intel TXT–capable platform 
provides the foundation; however, to get the full value from this technology one needs to install an Intel TXT–capable 
operating system. (Intel TXT–capable platform systems will be discussed shortly.) In addition, provisioning tools and 
other management software may be needed to tune Intel TXT operation to meet datacenter policy, as well as enable 
service clients to benefit from it. For now, let’s focus on the platform and answer the question: What makes Intel  
TXT different and why?

Intel® TXT–Capable Platform
The platform components are illustrated in Figure 2-2, but don’t worry, it is the platform manufacturer who is 
responsible for integrating and testing these components. This means that by the time a platform reaches the 
datacenter, it is Intel TXT–capable (or it is not). Intel TXT–ready server platforms did not start shipping until early 
2010, so older platforms are not Intel TXT–capable. As of 2012, most major manufacturers offer Intel TXT–capable 
server platforms. It should be pointed out that some manufacturers have designed server platforms that can be 
upgraded to being Intel TXT–capable via a BIOS upgrade and/or a plug-in module. So check with your platform 
vendor to find out if existing platforms are Intel TXT–capable.

As we review the various components of Intel TXT, these topics may seem disjointed or incomplete,  
but as the chapter progresses, it will become apparent just how they all work together.

Intel TXT Platform Components
The recipe for a platform that is able to support Intel TXT includes the following ingredients specifically designed  
for Intel TXT.

Processor 
All Intel IA32 server processors, beginning with the Intel® Xeon® 5600 series, (codenamed Westmere1) support  
Intel TXT. This support includes a new security instruction (GETSEC, part of the Safer Mode Extensions known  
as SMX). This new instruction performs multiple security functions (referred to as leaves). Two of the leaf functions 
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Figure 2-2.  Intel TXT platform components

1Released in the first quarter of 2010.
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(GETSEC[ENTERACCS] and GETSEC[SENTER]) provide the ability to securely validate authenticated code modules 
(ACMs) and (if valid) invoke that authenticated code using a very secure area within the processor that is protected 
from external influence (see the “Authenticated Code Modules” section). All processors that support Intel TXT also 
support Intel® Virtualization Technology (i.e., VMX instructions and an enhanced architecture for increased isolation 
and protection). There is no limit on the number of processors, thus Intel TXT is found on UP, DP, and MP platforms. 
Actually, the number of processor cores is limited to a 32-bit value (4,294,967,295 maximum value), but for all 
practical purposes, this is not a limiting factor.

Chipset 
Intel chipsets designed to work with Intel Xeon 5600 series and later processors include:

special TXT registers •	

an enhanced architecture•	

controlled access to the Trusted Platform Module (TPM) •	

It is the chipset that enforces TPM locality (defined later) and enforces different access rights to the TXT registers, 
depending on the security level of the entity attempting to access the TXT registers. Other chipset manufactures can 
also build chipsets that implement Intel TXT (they would provide their own ACMs). Unless otherwise noted, we will 
be discussing Intel chipsets and ACMs.

Trusted Platform Module (TPM)
Intel TXT makes extensive use of the Trusted Platform Module (TPM), a component defined by the Trusted 
Computing Group2 (TCG). The TPM provides a number of security features (more on this in the section titled  
“The Role of the Trusted Platform Module (TPM).” In particular, the TPM provides a secure repository for 
measurements and the mechanisms to make use of those measurements. A system makes use of the measurements 
for both reporting and evaluating the current platform configuration and for providing long-term protection of 
sensitive information.

BIOS
The platform BIOS is specially designed to configure the platform for secure mode operation. BIOS plays a significant 
role, whose duties include:

Supplying the ACMs. ACMs are created by the chipset vendor and provided to the BIOS •	
developer to be included as part of the BIOS image.

Configuring the platform for Intel TXT operation. •	

Performing a security check and registering with the ACM.•	

Locking the platform’s configuration using the processor’s GETSEC security instruction. •	

Once locked, BIOS and other firmware can no longer modify the configuration. BIOS performs this locking before 
executing any third-party code such as option ROMS on add-in cards.

2The Trusted Computing Group (TCG) is a not-for-profit organization dedicated to advancing computer security whose goals  
are to develop, define, and promote open industry standards for trusted computing building blocks and software interfaces  
(www.TrustedComputingGroup.org).

http://www.trustedcomputinggroup.org/
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Authenticated Code Module (ACM)
An authenticated code module is a piece of code provided by the chipset manufacturer. This module is signed by 
the manufacturer and executes at one of the highest security levels within a special secure memory internal to the 
processor. Most Intel-based platforms use Intel chipsets, thus the ACMs for those platforms are created by and  
signed by Intel.

Each ACM is designed to work with a specific chipset, and thus is matched to the chipset. ACMs are invoked 
using the processor GETSEC instruction. There are two types of ACMs: BIOS ACM and SINIT ACM. The BIOS ACM 
measures the BIOS and performs a number of BIOS-based security functions. The SINIT ACM is used to perform  
a secure launch of the system software (operating system). SINIT is an acronym for Secure Initialization because  
it initializes the platform so the OS can enter the secure mode of operation.

The BIOS image contains both the BIOS ACM and the SINIT ACM; however, the OS may choose to supply a more 
recent version of the SINIT ACM when it does a secure launch.

As we will see later, the ACM is the core root of trusted measurements, and as such, it operates at the highest 
security level and must be protected against all forms of attack. Because of this, the following extra precautions are 
taken to verify and protect the ACM.

The processor’s microcode performs a number of security checks on the ACM before allowing •	
the ACM to execute:

ACM must match the chipset––

ACM version must not have been revoked––

ACM must be signed––

Signature must be valid––

Before the processor makes these checks, it copies the ACM into protected memory inside the •	
processor, so that the ACM code cannot be modified after it is validated.

A checksum of the public signing key is hardcoded in the chipset and used to verify that the •	
ACM was signed with the proper signing key. Each chipset generation uses a different signing 
key. Thus, only someone who has the private key can create an ACM. The private keys are very 
well guarded and only a few very trusted Intel people have access to the private keys.

The signature uses cryptography to validate that the ACM has not been altered.•	

Thus the GETSEC instruction will only execute the ACM if the ACM was signed with the correct key, matches the 
chipset, and has not been modified.

The Role of the Trusted Platform Module (TPM)
It is hard to talk about Intel TXT without referring to the TPM. The TPM is an important component specified by 
the Trusted Computing Group (www.trustedcomputinggroup.org) expressly for improving security. We really 
applaud the TCG for defining such an ingenious device. The TPM specification is in three volumes (four, if you count 
the compliance volume) and there are books just on the TPM. Luckily for us, we don’t have to go into great detail. 
However, an understanding of the key features will provide a better appreciation of how Intel TXT provides secure 
measurements.

Currently, platforms incorporate TPMs adhering to version 1.2 of the TCG TPM specification. Version 2.0, which 
is expected to be released late 2013. It provides the same functionality plus includes enhanced features, capabilities, 
and capacities.

The primary security functions provided by the TPM are illustrated in Figure 2-3.

http://www.trustedcomputinggroup.org/
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TPM Interface
The TPM interface is simple, making it easier to defend. The TPM connects to the chipset by the Low Pin Count  
(LPC) bus3 and is only accessed via memory mapped I/O (MMIO) registers protected by the chipset. This means  
that I/O devices cannot access the TPM at all and the OS can easily control which processes have access to the TPM. 
In addition, the TPM enforces additional protections and access rights.

Localities
The TPM has different privileged levels called localities. Each locality is accessed by a different 4K page allowing 
both hardware and software to control access to each locality. The chipset controls which localities are active (that is, 
whether a read or write to that page will be ignored) and system software can control which processes have access to 
those pages via normal memory management and paging functions. There are five localities (0 through 4) and Intel 
TXT uses the localities as shown in Table 2-1.

Note that these localities are not hierarchical. Thus, locality 4 is not a super-user and does not automatically have 
access to keys, data, and resources available to other localities. Later, we will look at the use of localities for protection 
of keys and data.

Figure 2-3.  Trusted Platform Module

Table 2-1.  TPM Locality

Locality Access

0 Always open for general use.

1 Operating system (not used as part of TXT).

2 System software (OS) in secure mode. Only after the OS has successfully performed a secure launch. 
The OS may close this access at any time.

3 ACMs. Only an ACM that has been invoked by the GETSEC instruction has access to locality 3.

4 Hardware. Only the processor executing its microcode has Locality 4 access.

3Future TPMs may use the Serial Peripheral Interface (SPI) bus, but the principles are the same.
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Control Protocol
The interface to the TPM is message based. That is, an entity creates a request message and sends it to the TPM  
(via a locality page) and then reads the response message (via the locality page). The protocol allows the entity  
(using messages) to set up a secure session. Sessions allow the user to encrypt the message content, but more 
importantly, the means to authenticate authorization.

Messages that require authorization contain one or more authorization fields, called HMAC keys. HMAC stands 
for Hash Method of Authentication. The HMAC key is calculated as the hash of the message, a nonce (number used 
once), and the authorization value. The nonce and authorization values are not part of the message, and thus must  
be known by both parties.

The HMAC in a request demonstrates that the caller knows the authorization value and is therefore authorized  
to issue the TPM command. In the response, the HMAC value authenticates that the response came from the TPM 
and has not been modified during transport.

The protocol is as follows. Each message in a session uses a different set of random numbers (nonces) to generate 
the HMAC key(s). The requester provides the odd nonce that the TPM uses to calculate the HMAC value in its reply 
and the reply contains the even nonce that the requester uses to calculate the HMAC value in its next request. This 
prevents replay attacks and man-in-the-middle attacks because the HMAC value changes for any change in the 
message. Even the exact same command will have a different HMAC value each time it is issued (because the nonce  
is different).

Let’s look at an example.

	 1.	 The caller sets up a session by sending a start session command to the TPM and the TPM 
responds with a session handle and the TPM’s nonce. 

	 2.	 The caller creates a command that requires authorization (that is, requires that the caller 
prove that the caller knows the password associated with the object of the command).  
To do this, the caller creates a cryptographic hash of the command, plus the nonce 
provided by the TPM, plus the password. 

	 3.	 The caller sends the command, the caller’s nonce, and the hash digest to the TPM. Note 
that the password is not sent. 

	 4.	 The TPM then performs the same hash except using the real password of the object. If that 
hash digest matches the digest in the command message, then the TPM concludes that the 
caller knows the password, and that the command has not been altered in transport. 

	 5.	 In the response, the TPM provides a new TPM-nonce that the caller uses in the next 
command. The response also contains the hash digest of the response parameters, plus 
the odd nonce from the request message, plus the password.

Note that the caller could have also set up a session so that the command parameters and response parameters 
were encrypted.

The bottom line is that the TPM is a very hardened device that protects its resources and requires specific access 
authorization that is protected from tampering.

Random Number Generator (RNG)
Random numbers are used in safeguarding communication between a requesting entity and the TPM, especially 
when that entity is remote to the platform. Unlike a pseudo RNG that software applications use, the TPM’s random 
number generator is a true RNG and can provide entropy for other purposes. Thus, in addition to using random 
numbers to protect TPM transport, an entity can request a random number from the TPM for other purposes,  
such as encryption and securing external channels.
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SHA-1 Engine
The TPM hashing algorithm is SHA-1 (pronounced Shah-one), which is a cryptographic hash function designed by 
the United States National Security Agency as a US Federal Information Processing Standard. SHA stands for secure 
hash algorithm. This hashing produces a 20-byte (160-bit) digest. The hash is used for various authorization and 
authentication processes. The TPM’s SHA-1 engine is used internally to do the following:

Authenticate request messages •	

Authorize response messages•	

Calculate the hash digest of code and data•	

Extend PCR values•	

Authenticate/authorize keys•	

For more information on SHA-1, see the “Cryptographic Hash Functions” section.

RSA Engine and Key Generation
The TPM uses the RSA asymmetric algorithm for digital signatures and for encryption. RSA stands for Ron Rivest,  
Adi Shamir, and Leonard Adleman, who published the algorithm for public-key cryptography in 1978. The key 
generator uses that algorithm to generate asymmetric keys (a public key and a private key). The private key is kept 
internal4 to the TPM (thus only known to the TPM). The public key) is used by an entity to encrypt data that can 
only be decrypted by someone with the private key (the TPM). The RSA engine uses the keys to encrypt and decode 
messages and data.

The “Cryptography” section provides details on how keys are generated and used.

Platform Configuration Registers (PCRs)
Pay attention. There will be a quiz later. Just joking, but PCRs are one of the two TPM features that are accessed as 
objects and the basis of attestation, as well as used in launch control policy. Thus, they play a key role.

The TPM provides special protected registers to store measurements. These registers are known as Platform 
Configuration Registers (PCRs). Each PCR has an inherent property of a cryptographic hash. That is, each PCR holds 
a 20-byte hash digest. Entities never write directly to a PCR, rather they “extend” a PCR’s content. For the extend 
operation, the TPM takes the current value of the PCR, appends the value to be extended, performs SHA-1 hash on the 
combined value, and the resulting hash digest becomes the new PCR value. Therefore, each PCR holds a composite 
hash of all of the elements that have been measured to it. This means that PCRs cannot be spoofed—the only way 
for a PCR to have a specific value is if the exact same measurements are extended to it in the exact same order. Any 
variation results in a PCR value that is very different. This is a key concept that provides secure generation and 
protection of measurements.

Intel TXT uses TPMs that have 24 PCRs. Some PCRs are static, which means that their values are only reset when 
the system first powers on by the power-up-reset signal. Thus, measurements stored in those PCRs persist until the 
platform powers down and are used to hold the static chain of trust measurements. Other PCRs are dynamic, which 
means their value can be reset to their default values, but only via certain localities (as specified by the TCG). These 
are used for the dynamic chain of trust measurements. The PCRs that hold the dynamic chain of trust measurements 
can only be reset by the ACM.

4Because the TPM has limited internal storage, the key might be encrypted and stored external to the TPM as a blob. But the value of 
the key is not known externally.
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Nonvolatile Storage 
TPMs provide nonvolatile storage, that is, memory that is persistent across power cycles and has more security 
features than system memory. This nonvolatile random access memory (NVRAM) is the other TPM feature that is 
exposed externally as objects and plays an important role in creating and protecting the launch control policy set by 
the datacenter manager.

Compared to system memory, TPM NVRAM is very small, on the order of 2000 bytes, so it is a precious resource. 
NVRAM is allocated in small chunks and the entity that allocates a chunk of NVRAM specifies access rights for that 
data. To give you an idea of how flexible and powerful TPM NVRAM is, let’s look at what needs to be specified to 
allocate TPM NVRAM:

An index (an ID that identifies that chunk).•	

The size of that chunk.•	

Read access rights.•	

Specifies which localities are allowed to read the data.––

Specifies if any PCRs must contain specific values in order to read the data. Data ––
cannot be read if any of the selected PCRs do not contain their expected value.

Write access rights.•	

Specifies which localities are allowed to write the data.––

Specifies if any PCRs must contain specific values in order to write the data. Data ––
cannot be written if any of the selected PCRs do not contain their expected value. The 
set of selected PCRs can be different than those selected for read access. Also, the 
expected PCR values can be different.

Attributes/permissions. Can specify any of the following:•	

Read

Temporal read lock. The value can be read until locked by a read of zero length; ––
unlocked at the next power cycle.

What authorization is required to read; may specify:––

None.––

A specific authorization value (like a password) is required.––

If physical presence assertion is required. Physical assertion typically means ––
BIOS is performing the access.

Write

Persistent Lock. The value can be locked for write access (by a write of zero length) ––
and once locked can never be altered.

Temporal Write Lock. The value can be locked for write access (by a write of zero ––
length), and once locked, cannot be altered until the next power cycle.

Write Once. The value can only be written once per power cycle/ unlocked at the next ––
power cycle.

Whether partial writes are allowed.––
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What authorization is required to write; may specify:––

None (when PCRs or locality restrict write access).––

A specific authorization value (like a password) is required.––

If physical presence assertion is required.––

As you can see, NVRAM capabilities are very flexible. To give an example, ACMs makes use of these capabilities 
to allocate a chunk of NVRAM that they use to save state and pass data between ACMs. The protection comes from 
specifying that only localities 3 and 4 can write to that index (since only the ACM and microcode can access the TPM 
using locality 3 or 4). We will see later that this allows the ACM to store the BIOS measurement and detect if BIOS 
code has changed from one boot to the next. Other indexes are used for setting launch control policy and they specify 
different attributes and access rights. The bottom line is that even though hardware and system software control who 
can access the TPM, it is the entity that allocates the chunk of NVRAM that determines under what conditions the data 
can be read and written, as well establishes if a password is required, and then specifies the password.

Attestation Identity Key (AIK)
The Attestation Identity Key (AIK) is a concept that allows a TPM to certify that keys and data originated from the 
TPM without revealing any platform-specific identity information. An entity (like a certification authority) can create 
an AIK. This causes the TPM to create an asymmetric key pair that it uses to sign keys created by the TPM or sign 
data reported by the TPM (such as PCR values). The root of the certificate can be traced back to the TPM vendor and 
verified that it is, in fact, a compliant TPM.

TPM Ownership and Access Enforcement 
One last point to cover is the TPM enforcement. A TPM arrives at the platform manufacturer in an unlocked state 
to make it easy for the manufacturer to create NVRAM indexes. At this stage, the TPM does not enforce any access 
controls. The manufacturer provisions the TPM creating the indexes required by Intel TXT and then performs an  
OEM lock. The OEM lock protects those indexes so that their access policy cannot be changed. It also prevents  
anyone from creating an NVRAM index that falls in range of indexes reserved for the platform manufacturer.

When the platform arrives at the customer’s datacenter, the TPM is disabled and inactivated to prevent rogue 
software from taking ownership and mounting a “Denial of Service” attack. Taking ownership is a process where  
an entity reads the TPMs Endorsement Key (EK) and uses it to encrypt a TPM Owner Authorization value  
(think of this authorization as the TPM owner’s password) and then sends the encrypted password to the TPM  
in a “Take Ownership” command.

The TPM Owner Authorization value is typically a SHA-1 hash of a password or pass phrase and it is used  
to prove to the TPM that certain commands (such as allocating NVRAM) are authorized by the platform owner.

Prior to establishing TPM ownership, the TPM does not accept commands that allocate TPM resources,  
like allocating TPM NVRAM and creating keys. After establishing TPM ownership, those commands require  
owner authorization (that is, knowledge of the TPM owner’s password).

Cryptography
Since not everyone is familiar with encryption standards, let’s review some fundamental concepts.

Encryption is the process of using an algorithm (called a cipher) to transform plaintext •	
information to make it unreadable to anyone except those possessing a special key. 

Decryption is the reverse process, to make encrypted information readable again (that is, •	
make it unencrypted by changing ciphertext back into plaintext).
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Encryption is used to protect data and for authentication (such as for a digital signature).•	

There are two parts to encryption. The first is key creation and the second is the  •	
encryption/decryption process. 

There are two classes of encryption algorithms (symmetric and asymmetric).•	

Symmetric Encryption
Symmetric encryption is where the same key5 used to encrypt the data is also used to decrypt it. Symmetric 
encryption is generally faster than asymmetric encryption. Its primary use is where the same entity is performing  
both the encryption and decryption of the data, such as for protecting data saved to disk. This is sometimes referred  
to as one-party encryption because the entity that encrypts the data can also decrypt the data.

Asymmetric Encryption
Asymmetric encryption is where a different key is used to decrypt the data than the key used to encrypt it. These two 
keys are referred to as the public key and the private key. It is not possible to derive the private key from the public 
key. The following are some use models:

•	 Signing. The private key is the encryption key. The signer uses it to encrypt a hash of the 
module being signed (known as the module’s signature). The pubic decryption key is 
appended to the module being signed along with the encrypted signature. Other parties can 
verify that the module comes from the signer by verifying that the public key was issued by the 
signer—usually through a certification authority (CA). The module’s integrity is then verified 
by calculating the hash of the module and comparing it to the modules signature decrypted 
with the public key. 

•	 Endorsement. The private key is the decryption key. The public key is provided to another 
party that uses it to encrypt sensitive data (such as a password) that can only be decrypted by 
the first entity. 

•	 Secure transmission. Uses two pairs of keys where the private keys are the decryption keys. 
Each end of a secure channel creates their own key pair and provides the other end of the 
channel with the public key, which is used to encrypt transmissions.

Private keys must be very guarded and are never passed in the clear. Public keys do not require protection 
because the knowledge of the public key does not reveal any secrets nor does it provide access to any privileged 
information.

Intel TXT supports PKCS6 #1.5, a public standard for encryption that allows key sizes of 1024, 2048, or 3072 bits 
and recommends a minimum key size of 2048.

Cryptographic Hash Functions
A cryptographic hash is the result of performing a specific hash algorithm on a block of data. The purpose of the hash 
function (often called hashing) is to map a large/variable size block of data to a smaller fixed-length data set, referred 
to as a hash, hash digest, or digest. The SHA-1 algorithm maps any amount of data to a 20-byte hash digest while the 
SHA-256 algorithm maps any amount of data to a 32-byte hash digest.

5Sometimes one key is derived from the other, but the concept is still the same.
6PKCS stands for Public Key Cryptography Standards, which was published by RSA Data Security Inc., now a subsidiary of EMC 
Corporation.
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Cryptographic hash functions are used for many purposes. Intel TXT uses it to detect changes in code, data, 
messages, configuration, or anything else that may be stored in memory—because any accidental or intentional 
change to what is being measured or verified will drastically change the hash value. The following are properties  
of a cryptographic hash:

The digest is easy to compute. •	

It is not reasonably possible to create a block of data that produces a given hash. We say “not •	
reasonably possible” because given enough time, anything is possible. A 20-byte value has 2160 
values. So do the math to figure out how long it would take to just generate 2160 values. Even 
using a million computers, it would take billions of billions of years.

It is not reasonably possible to modify a block of data without changing its hash digest.•	

It is not reasonably probable to find two different blocks of data with the same hash digest.•	

Therefore, it is reasonable to claim that a hash of an entity is a unique identifier of that entity and only that entity 
will have that hash value. There are many applications for cryptographic hash functions:

•	 Digital signature. The signer encrypts the hash of the module being signed. Other parties can 
verify that the module comes from the signer by verifying that the public key was issued by 
the signer, and then verify the module’s integrity by calculating the hash of the module and 
comparing it to the modules signature decrypted with the public key.

•	 Digital fingerprint. A hash of a block of data differentiates that data from any other data. One 
use is when that block of data is code. Thus the hash of the code becomes a unique identifier. 
The same applies to a data file, configuration settings, and so on. We have already discussed 
how Intel TXT measures code, configuration, and other elements to TPM PCR registers. 

•	 Message authentication. When both the sender and receiver have a secret authentication value 
(typically the hash of a password or passphrase). The sender of a message creates a hash of the 
message concatenated with the secret authentication value to produce an authentication key, 
and appends that key to the message. The recipient verifies that the sender knows the correct 
secret authentication value by performing the same hash calculation (using his copy of the 
secret authentication value) and comparing the result to the authentication key passed with 
the message. The secret authentication value is not sent in the message. If the sender used 
the wrong value or the message was modified in transit, the keys will not match, and thus the 
recipient rejects the message. Therefore, this is both authentication and authorization because 
the sender authorizes the message by using the secret authentication value and the recipient 
authenticates that the message came from an authorized source and was not modified in 
transit. This is the Hash Method of Authentication (HMAC) that we discussed as part of the 
TPM control protocol.

•	 Checksums. A hash digest of a block of data can easily be used to validate that the data has 
not been altered. An example is how Intel TXT verifies the launch control policy. Since the 
size of TPM NVRAM is limited, some of the policy is stored in flash or on disk. The hash 
measurement of the portion of the policy stored on disk is securely stored in the TPM NVRAM. 
Any change to the external policy data results in a mismatch of its hash measurement to the 
hash value stored in the TPM.
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Why It Works and What It Does
Now that we have all of the pieces, let’s put the puzzle together and discuss what Intel TXT does that is different from 
previous platform designs.

Key Concepts
Here are some of the key concepts of Intel TXT.

Intel TXT provides for the following:•	

Secure measurement––

Dynamic launch mechanisms via special instructions––

Configuration locking––

Sealing secrets––

Intel TXT helps detect and/or prevent software attacks such as:•	

Attempts to insert nontrusted VMM (rootkit hypervisor)––

Reset attacks designed to compromise secrets in memory––

BIOS and firmware update attacks––

Measurements
A measurement is a cryptographic hash of code, data, or anything that can be loaded into memory (such as policies, 
configuration, keys, and passwords). The default hashing algorithm is SHA-1, which produces a 20-byte (160-bit) 
digest with the following properties:

A single bit change in the entity being measured causes a majority of the bits in the hash digest •	
to change. Thus any change to the entity being measured can be easily detected.

The hash algorithm is not reciprocal—that is, the hash process cannot be reversed. Thus,  •	
it is impossible to reconstruct the measured entity from its hash digest. This is important when 
using the hash to authenticate passwords (that is, a password hash used to verify a password 
cannot be used to construct a valid password).

The likelihood of any two entities (that are not identical) having the same measurement are •	
astronomical (2160 is an enormously large number). 

Intel TXT also supports SHA-256 for some measurements, but SHA-1 is the default for all measurements. And 
it is the only hashing algorithm supported by the TPM 1.2 family devices. Earlier, it was noted that there was a new 
specification for the TPM 2.0 family of devices on the horizon. These new devices will be able to support additional 
hashing and encryption algorithms.
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Secure Measurements
Measuring code and configuration is not meaningful unless the measurements can be guaranteed to be authentic, 
accurate, and protected.

So what constitutes a “secure” measurement? The answer is twofold:

The measurement is hardware rooted (hardware root of trust).•	

The measurements are protected from tampering.•	

To understand root of trust, we need to define chain of trust. The chain of trust starts with a trusted component that 
measures the next component. That component then measures the next component, and so on until all components 
that need to be measured have been. The root of trust is the component that started the measurement chain.

For TXT, the root of trust is the processor. When the server boots, and before any BIOS code is permitted to 
execute, a special microcode built into the processor performs a validity check on the BIOS ACM and then measures 
the BIOS ACM before it is executed. The BIOS ACM then measures a portion of the BIOS referred to as startup BIOS. 
The startup BIOS then measures other portions of the BIOS code. This is important because the entity that starts the 
measurement chain and makes the first measurement establishes the accuracy of that measurement chain.

At this point, it should be obvious that the final value is not necessarily a single operation, but results from 
multiple measurements that need to be processed together to form a single result. This process is referred to 
as extending. It is the TPM that provides the protection from tampering. The TPM contains a set of Platform 
Configuration Registers (PCRs). These PCRs cannot be written but rather are extended. The phrase extending a PCR 
means hashing the existing PCR content with the new measurement to create the new PCR content. Thus, extending  
is the means to concatenate multiple measurements into a single result. It is the TPM itself that performs the 
extending operation, thus software only provides the measurement to be extended and identifies which PCR is to be 
extended. But not all software has access to the TPM and certain PCRs can only be extended from specific localities.

Since PCRs are extended (not written), even if malicious software was able to extend a PCR, the only impact is 
that the PCR would carry an invalid measurement—remember that one of the SHA-1 hash properties is that it is not 
possible to create a block of data that produces a given hash. Thus, it is not possible to extend a PCR to get a given 
result, except by measuring the exact same objects in the exact same order. Since one of the Intel TXT principles is not 
to execute code until it has been measured, we can conclude that the measurement already includes the malicious 
code—and thus, by definition, making the PCR value different from the expected “known good” value. Thus, 
malicious software is not able to extend the register back to the known good value.

In addition to extending measurement to a PCR, the platform maintains a log of the objects extended to that PCR. 
This allows a verifying entity to use the log to validate the PCR content. Another way to look at this is that the log that 
contains the information and the PCR value validates the log. We will see later that for some applications, it is the final 
value of the PCR that is of interest and for other applications, it is the log.

Static and Dynamic Measurements
Until now, we have looked at measurements generically, but there are multiple PCRs and thus multiple measurement 
results. Static measurements are those that are made once each time the platforms boots. There are 16 PCRs reserved 
for static measurements (PCR0–15). These PCRs are only cleared when the platform powers up or there is a hard 
reset: that is, a signal to all components (TPM, processors, and chipset) to return them to their power-on state. Static 
PCRs are used in measuring the platform configuration, as follows:

PCR0: CRTM, BIOS, and host platform extensions •	

PCR1: Host platform configuration•	

PCR2: Option ROM code•	

PCR3: Option ROM configuration and data•	

PCR4: IPL code (usually the MBR)•	
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PCR5: IPL code configuration and data (for use by the IPL code)•	

PCR6: State transition and wake events•	

PCR7: Host platform manufacturer control •	

PCR8–PCR15: Reserved for the OS; not used by TXT•	

PCR0 is the primary CRTM PCR and speaks to the integrity of PCR1–PCR7. CRTM stands for Core Root of Trust 
Measurement (see the “The Intel TXT Boot Sequence” section), which means it is measured first and starts the chain of 
measurements for the static PCRs. There is also a Dynamic Root of Trust Measurement (DRTM) for the dynamic PCRs.

Dynamic measurements are measurements made to PCRs that can be reset without resetting the platform.  
There are eight dynamic PCRs, used as follows:

PCR 16: Reserved for debug; not used by Intel TXT.•	

PCR17–PCR20: Reset upon a successful secure launch.•	

PCR17: DRTM and launch control policy––

PCR18: Trusted OS startup code––

PCR19: Trusted OS (for example OS configuration)––

PCR20: Trusted OS (for example OS kernel and other code)––

PCR20–PCR22: Can be reset by the trusted OS while in secure mode. Note that PCR20 is reset •	
at secure launch and by the trusted OS.

PCR21: Defined by the trusted OS––

PCR22: Defined by the trusted OS––

PCR23: Reserved for applications; can be reset and extended by any locality. Outside the •	
scope of Intel TXT.

To summarize, Intel TXT provides the means to securely measure and report various platform components,  
and thus detect changes in those components. Measured components include:

Platform Configuration (Static Root of Trust)•	

PCR0: BIOS code––

PCR1: BIOS settings––

PCR2: Option ROM code––

PCR3: Option ROM settings––

PCR4: Boot Sector - Master Boot Record (MBR)––

PCR5: Boot configuration––

PCR6: Platform state changes––

Operating System (Dynamic Root of Trust)•	

Operating system code (PCR18+ OS-specific PCRs)––

Operating system settings (PCRs are OS-specific)––

Other components specified by the operating system––

These components are divided into two groups because the root-of-trust for those groups is different.
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The Intel TXT Boot Sequence
By now, it should be easy to piece together what happens when the platform boots. The boot sequence that generates 
the static chain of trust measurements goes like this:

	 1.	 Processor microcode

	 a.	 Loads BIOS ACM into secure memory internal to the processor to protect it from any 
outside influence.

	 b.	 Validates that the ACM is authentic using cryptographic signature.

	 c.	 Starts the core root of trust measurement by extending the BIOS ACM measurement 
to PCR0.

	 d.	 Only if all checks pass, the microcode will

Enable ACM mode by enabling access to TPM locality 3 and opening access to TXT •	
private registers.

Execute the BIOS ACM startup code. •	

The use of internal secure memory and then validation assures the ACM is free of •	
malicious code before and during execution. 

	 2.	 BIOS ACM startup code

	 a.	 Measures critical BIOS components. 

	 b.	 Extends PCR0 with those measurements.

	 c.	 If the ACM determines that secrets might have been left in memory (i.e., a potential 
reset attack), it validates that BIOS startup code has not been modified or corrupted. 
(More about reset attacks to follow.)

	 d.	 Exits ACM mode disabling locality 3 and access to TXT private registers.

	 e.	 Jumps to the BIOS startup code. 

	 3.	 BIOS

	 a.	 Measures the remainder of the BIOS code and extends PCR0 with those 
measurements. Does not execute any code until that code has been measured  
and extended into a PCR.

	 b.	 Configures the platform.

	 c.	 Measures the BIOS configuration and extends that into PCR1.

	 d.	 Calls BIOS ACM using the GETSEC instruction to perform security checks.

Processor microcode loads the ACM into secure internal memory and performs the •	
same validation as before. It then enables ACM mode and executes the requested 
ACM function.

ACM performs its security checks, exits ACM mode, and returns to the BIOS.•	

	 e.	 Finishes platform configuration.
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	 f.	 Calls the BIOS ACM using the GETSEC instruction to lock the BIOS configuration.

Processor microcode loads ACM into secure internal memory and performs the  •	
same validation as before. It then enables ACM mode and executes the requested 
ACM function.

ACM performs configuration locking, exits ACM mode, and returns to the BIOS.•	

	 	  After locking the configuration, the BIOS may execute other firmware.

Measures any option ROM code (for I/O devices) and extends those measurements  •	
into PCR2.

Executes the option ROM code for each device.•	

	 4.	 Each option ROM

	 a.	 Measures any hidden option ROM code and extends that measurement into PCR2. 

	 b.	 Configures and enables the device.

	 c.	 Measures device configuration information and extends that measurement  
into PCR3.

	 d.	 Returns to BIOS.

	 5.	 BIOS

	 a.	 Selects a boot device. 

	 b.	 Measures the IPL (Initial Program Load) code, typically the Master Boot  
Record (MBR), and extends that measurement into PCR4.

	 c.	 Executes the IPL code.

	 6.	 IPL code

	 a.	 Measures IPL configuration and extends that measurement into PCR5. 

	 b.	 Loads the OS boot loader and executes it.

This sequence is illustrated in Figure 2-4.
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At this point, the BIOS has brought the platform to a state where it is ready to boot the operating system (IPL). 
Normal bootstrap process is followed where the OS loader gets executed. Typically, what happens for an Intel  
TXT–enabled OS, instead of loading the first kernel module, the first module loaded is a special Trusted Boot 
(TBOOT) module. The purpose of the TBOOT module is to initialize the platform for secure mode operation  
and initiate the Measured Launch Process.

Measured Launch Process (Secure Launch)
This is the part of the technology that controls how and if a host OS can enter the secure mode of execution,  
and thus becomes a trusted OS. The following are the characteristics of secure mode:

The trusted OS code has been measured and that measurement is a known good value  •	
(as established by the platform owner).

The trusted OS starts in a deterministic state.•	

All processors except the bootstrap processor are in a special idle state until the OS ––
explicitly starts them up directly in protected mode. This is different from the normal 
bootstrap process where those processors are started in real mode and have to be 
transitioned into protected mode. Thus, this removes that window of vulnerability.

System Code is protected against access by I/O devices (referred to as Direct Memory ––
Access or DMA).

Measure ACM

Measure BIOS

Measure 
components

Measure option 
ROMs

Measure 
configuration

Processor Option ROMsACM BIOS TPM

PCR 0
PCR 0
PCR 0

PCR 2

PCR 3

PCR 1

Measure hidden 
code PCR 2

Measure IPL 
code (MBR) 

Measure IPL 
configuration

PCR 4

PCR 5

Measure state 
transitions –
wake events

PCR 6

PCR 7

Boot Loader

Figure 2-4.  Typical static measurement sequence
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The OS has TPM locality 2 access and the dynamic PCRs have been reset to their default •	
values. DRTM PCRs have been extended.

PCR17 has been extended with the measurement of the SINIT ACM (that is, the Dynamic ––
Root of Trust Measurement, or DRTM) and the policy that allowed the secure launch.

PCR18 has been extended with the measurement of the trusted OS.––

What the OS has to do to enter secure mode and start the DRTM is drastically different from what BIOS does  
for the static root of trust measurements. However, the principles are the same.

Before the host OS enters secure mode, it must put the platform in a known state. The host OS then invokes the 
GETSEC instruction specifying the SENTER operation. This causes the processor microcode to do the following:

Load SINIT ACM into secure memory, internal to the processor, in order to protect it from any •	
outside influence.

Verify that the ACM matches the chipset and that the hash of its public key matches the hash •	
hardcoded into the chipset.

Validate that the ACM is authentic by verifying its measurement matches its cryptographic •	
signature. 

Again, the use of internal secure memory and then validation assures the ACM is and 
remains free of malicious code before and during execution.

Start the dynamic root of trust measurement by clearing PCR17–PCR20 and then extending •	
the SINIT ACM measurement to PCR17.

Only if all checks pass, the microcode will•	

Enable ACM mode, which enables access to TPM locality 3 and opens access to  ––
TXT private registers.

Execute the SINIT ACM code.––

The SINIT ACM now takes control and does the following:

	 1.	 Checks to see if it has been revoked—that is, if a newer version of the SINIT ACM has 
executed and set the revocation level (stored in the TPM) to indicate this SINIT ACM is an 
older version that is no longer to be used.

	 2.	 Validates that the platform was properly configured by BIOS and that the OS has properly 
conditioned the platform for a secure launch.

	 3.	 Measures the trusted OS code.

	 4.	 Executes the Launch Control Policy engine that interprets the launch control policy set by 
the datacenter to determine if the OS is to be trusted to do a secure launch.

	 5.	 If any of these checks fail, it is considered an attack and the ACM issues what is called  
a TXT reset, which prevents a secure launch until the platform has been power-cycled. 
This assures that no malicious code remains in memory.

	 6.	 If these checks pass, then the ACM

	 a.	 Extends PCR17 with the policy it used to allow the launch

	 b.	 Extends PCR18 with the trusted OS measurement

	 c.	 Enables locality 2 access

	 d.	 Exits ACM Mode and jumps to the trusted OS entry point
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The trusted OS then takes control and is now able to extend PCR17–PCR22. The trusted OS is in control of what 
gets extended, and when. For example, the OS could measure additional code into PCR19, trusted OS configuration 
into PCR20, and extend geographic location into PCR22.

Protection Against Reset Attacks
We briefly discussed how the BIOS had to be trusted to protect against reset attacks. Here is how that protection 
unfolds.

When the OS successfully performs a secure launch, it sets a special nonvolatile Secrets flag to indicate that it 
has (or will have) secrets and other privileged information in memory. When the trusted OS gracefully shuts down 
and exits the secure environment, it resets the Secrets flag. The flag can only be reset via the trusted OS invoking the 
GETSEC instruction. This is usually done as part of a graceful shutdown.

If a reset attack occurs (that is, a reset before the trusted OS clears the Secrets flag), the BIOS ACM (which is the 
first to execute after the reset) assures that the BIOS scrubs the memory. For desktop and mobile platforms with 
simpler memory architectures, the BIOS ACM actually clears the memory. However, high-end workstations and 
servers have more complex memory architectures, so the BIOS must be trusted to scrub the memory. But the ACM 
does not blindly trust the BIOS, because it could have been corrupted and thus contain malicious code. The ACM 
uses two methods to verify that the BIOS had not been corrupted: autopromotion and signed BIOS policy. Each OEM 
selects the method that works best for their platform.

Autopromotion means that the ACM remembers the BIOS measurement and if the platform passed the launch 
control policy, then that BIOS will be trusted to scrub memory in the event of a reset attack.

Signed BIOS policy allows the OEM to provide a list of known good BIOS measurements signed by the OEM.  
The signature is validated by a hash measurement of the public key stored in the TPM. Thus, if the BIOS measurement 
does not match a value in the signed list, or the list signature is not valid, or the list is signed with the wrong key,  
then BIOS is not considered trusted.

If the ACM is not able to verify that the BIOS is trusted using one of these methods, then it locks the memory 
controllers. Since this is done before BIOS executes its first instruction, the platforms boots without any memory.  
We call this a “bricked” system, because a platform without memory is about as useful as a brick. BIOS may be able to 
recover from a bricked system, if it can restore the BIOS or revert to a BIOS version that will be trusted. Otherwise, the 
only way to recover is to turn off power and remove the coin battery. This signals the ACM that a person, not malicious 
software, is in control of the platform.

One point that needs to be mentioned is the potential of a BIOS update to look like a reset attack. First, this is only 
an issue when the BIOS update is done while the trusted OS is in secure mode (OS present BIOS update) and only if 
the platform resets before the OS exits the secure environment (that is, doesn’t reset the Secrets flag). For this case, 
autopromotion will fail. There are several ways for the OEM to mitigate this problem. One is to use signed BIOS policy. 
Others are to defer the BIOS image update until the next boot or provide a failsafe BIOS image (failsafe means revert to 
the original BIOS image whose measurement is known to the ACM). There are more, so it is not fair to say signed BIOS 
policy is better, but platforms incorporating signed BIOS policy can recover from corrupted BIOS without the need to 
remove the coin battery.

Launch Control Policy
Intel TXT includes a policy engine that permits the datacenter to specify what is a known good platform configuration 
and which system software is permitted to do a secure launch. The term for this feature is launch control policy (LCP). 
In Chapter 4, we will go into detail on how to create a launch control policy and provide guidance on selecting a 
policy. For now, let’s focus on the mechanics.

There are actually two policy engines: one in the BIOS ACM that controls the policy used to validate the BIOS 
integrity when there is a reset attack and one in the SINIT ACM that enforces the launch control policy. We have 
already discussed the BIOS policy engine in the “Protection Against Reset Attacks” section.
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There are two authorities for launch control policy: the platform supplier (the OEM) and the platform owner  
(the datacenter). The platform supplier policy is sometimes referred to as the default policy because it is created by 
the OEM before the platform ships. Typically, the platform supplier’s default policy will allow any host OS to perform 
a secure launch on any platform configuration. That is not very exciting, so let’s talk about the platform owner policy, 
what it does, and how it overrides the default policy.

There are two elements to a launch control policy:

The specification of valid platform configurations (called the PCONF element). •	

The specification of OS versions that are allowed to perform a secure launch  •	
(called the Measured Launch Environment, or MLE element). 

The LCP engine analyzes these two elements independently of each other, but both must be satisfied. That is, any OS in 
the MLE element may perform a secure launch on any platform by the PCONF element. In addition, the result of omitting 
the PCONF element is that all platform configurations are allowed. Likewise, the result of omitting the MLE element means 
that any system software is allowed to perform a secure launch on a platform with a valid platform configuration.

Platform Configuration (PCONF)
So how does one specify the platform configuration? Since BIOS went through all the trouble to measure everything 
into PCRs, the PCONF policy element uses those measurements. Only the first seven PCRs convey platform 
configuration information.

PCR0: BIOS code•	

PCR1: BIOS settings•	

PCR2: Option ROM code•	

PCR3: Option ROM settings•	

PCR4: Boot sector - Master Boot Record (MBR)•	

PCR5: Boot configuration•	

PCR6: Platform state changes•	

The policy authority (for example, the datacenter manager) selects which PCRs are relevant and creates a 
composite hash from those PCR values. The Intel TXT architecture actually allows selection of any of the PCRs.  
The data structure that specifies which PCRs were selected and the composite hash is called a PCRInfo. The PCONF 
element can hold any number of PCRInfo structures (the actual limit is greater than 100 million). Typically, only  
a few PCRInfos are needed per platform.

For each PCRInfo, the policy engine will create a composite hash from the actual values of the specified PCRs 
and compare that to the composite hash in the policy. If they match, it means all of the selected PCRs have the correct 
value, and thus the platform configuration is trusted. If none of the PCRInfos produce a match, then the platform is 
not trusted and there can be no secure launch.

Trusted OS Measurements (MLE Element)
By now you are probably thinking that the MLE does the same thing but with the dynamic PCRs (PCR17–PCR22); 
however, that’s not correct. PCR0–PCR7 values are stable after IPL, but dynamic PCRs are at their default values.  
Thus, the MLE element simply contains a list of known good TBOOT measurements that are compared to the TBOOT 
hash value measured by the ACM. That hash value will only be extended into PCR18 if LCP passes. In other words,  
the policy engine will calculate the hash of the trusted OS and compare that measurement to the list of measurements 
in the MLE element. If it matches any one of them, then the OS is trusted to perform a secure launch.
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Protecting Policies
So how are the policies protected against tampering? The answer is: using the TPM NVRAM. But a policy can 
consume a large number of bytes—more than the TPM NVRAM provides. Thus, the policy is split in part into  
TPM policy data stored in the TPM NVRAM (referred to as NV policy data) and in an optional policy data structure 
(stored in a file) that holds the PCONF and MLE elements (that is, it contains the lists of allowed platform and MLE 
measurements). The policy data structure is optional, because a policy that allows any platform configuration and  
any OS does not need PCONF and MLE elements.

The platform owner creates a specific TPM NVRAM index (40000001) called the PO policy index with a property 
that only allows the platform owner to write that data (which is the small NV policy data mentioned earlier). One of 
the fields of the NV policy data is a hash value, which is the hash measurement of the optional policy data structure.

The policy engine calculates the hash of the policy data structure and compares it to the hash value stored in the 
TPM. If the policy data structure had been compromised, the hash values won’t compare, and thus the policy will fail.

Sealing
Earlier, it was stated that measurements are used for many purposes. One of those purposes is the sealing of secrets. 
Data can be sealed to one or more PCR values. Sealing is the act of having the TPM encrypt a block of data so that 
it cannot be decrypted unless the specified PCRs have the correct values. The caller specifies the PCRs and their 
composite hash when it passes the TPM the block of data. The TPM returns an encrypted “blob.”

Later, the software can ask the TPM to decrypt the blob. The TPM will only decrypt it if the current PCR values 
match what was specified at the time the data was sealed.

Let’s look an example to see how sealing could work to protect sensitive data. Upon installing an OS, that 
OS creates a symmetric encryption key, which it uses to encrypt data that it stores on disk. The OS seals that key, 
specifying its own PCR18 value, and then saves the blob to disk. Each time the OS boots up, it has the TPM unseal the 
blob, which provides the OS with the key it uses to encrypt and decrypt data going to and from disk. Because the data 
was sealed to PCR18, only that OS is able to unseal the blob—and thus only that OS is able to decrypt the data.

Any other system software will have a different PCR18 measurement, and thus could not unseal the blob. Even if an 
attacker is able to reverse assemble the OS code, it is not able to gain knowledge of the disk encryption key. Since each 
platform has a unique disk encryption key, knowledge of a key used on one platform is of no value on other platforms.

Attestation
We have seen how the PCR measurements can be used to set launch control policy, determine who can access TPM 
NVRAM, and used to seal data. Now let’s discuss the value of those measurements to applications both internal  
and external to the platform.

Because of the uniqueness property of cryptographic hashes, PCR values and their logs can be used to identify 
exactly what version of software is executing, as well as its environment.

Several key concepts come into play:

The TPM protects the measurements.•	

The combination of TXT hardware and ACMs guarantee the accuracy of the static root of trust •	
measurement and the dynamic root of trust measurement.

The combination of authentic root of trust measurement and chain of trust principle •	
(requiring any code that is able to extend a PCR to be measured prior to its execution) enforces 
the ability to detect tampering. 

The TPM provides a “TPM Quote” where the TPM signs the PCR values to assure that values •	
are not maliciously or inadvertently modified in transit. This guarantees authenticity of the 
measurements.
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This accuracy, security, and dependability mean applications can use these measurements to make their own 
trust decisions. Unfortunately, other properties of the cryptographic hash make it difficult to use the values directly. 
This is where an attestation authority comes into play. An attestation authority (similar to a certification authority)  
is a trusted third-party entity that is able to authenticate the PCR values and translate those values by comparing  
them with a database of known good values.

There are several models for attestation. One is where the application retrieves the PCR values and uses an 
attestation service to authenticate that the target platform is, in fact, what it claims to be. Another model is where 
the attestation authority retrieves the PCRs from the target platform and provides the translated results to its client 
applications.

Either way, the client application is able to determine or confirm (among other things) the type of platform,  
the OS vendor, and exact version of system software that is executing on the target platform.

Another method (known as whitelisting) is where the attestation authority maintains a list of known good  
results and simply validates if the target platform meets one of the trusted profiles.

Later, we will discuss how this information is used to enforce policies set by cloud service clients.

Summary
Intel Trusted Execution Technology is compliant with the TCG PC Client and Servers Specifications. Cryptographic 
secure hashing algorithms generate unique measurements of platform components, platform configuration, system 
software, and software configuration. Those measurements are stored in PCRs protected by the TPM. Each PCR may 
contain multiple measurements and the PCR log identifies each element that was measured to that PCR. The value  
in the PCR can be used to verify the log.

PCR0 contains the static root of trust measurement, as well as BIOS code measurements. These measurements 
cannot be spoofed because they are rooted in hardware. The validity of PCR1–PCR7 rests on the validity of PCR0.  
That is, PCR1–PCR7 can only be trusted if the PCR0 measurement is known to be good.

PCR17 contains the dynamic root of trust measurement, as well as policy measurements. These measurements 
cannot be spoofed because they are rooted in hardware. PCR18 contains the measurement of the trusted OS.  
The validity of PCR18 rests on the validity of PCR17. PCR19–PCR22 usage is OS-specific—their purpose is defined  
by the trusted OS. Therefore, their values can only be trusted and interpreted if PCR18 is a known good value.

The platform owner controls what is considered a valid platform configuration, and thus which OS is allowed to 
perform a secure launch. An OS in secure mode has demonstrated compliance with the datacenter’s launch control 
policy, and thus has TPM locality 2 access. The secure launch (more accurately referred to as a measured launch) 
means that the OS’s measurements have been extended into the dynamic PCRs, and therefore the OS is able to seal 
data to its own unique measurement.

PCRs and their logs can attest to the type, health, and state of a platform to both local and remote applications. 
Those applications are able to use that information to make their own policy decisions.
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