
65

Chapter 4

Attestation: Proving
Trustability

In the last few chapters we have looked at the first stages in a process toward establishing
trust between systems. First, the establishment of roots of trust and the measured boot
components; and second, the collection of evidence throughout the measurement
process. We reviewed the different roots of trust in a compute platform—namely, the
RTM, RTS, and RTR—and how the measured boot process (S-RTM and D-RTM) uses
the RTM to measure and store the evidence in the RTS. The next stage in this process
is the presentation of this evidence through attestation protocols and appraisal of the
evidence that asserts the integrity of a platform. This stage is referred to as attestation and
verification in this book, and it is our objective for this chapter.

We introduce the concept of attestation in this chapter, along with an attestation
framework that defines a logical view of the assertion layers leading to attestation of specific
target entities or components. The attestation provides evidence of trust and can include
any device or target system participating in the trust chain. Additionally, the chapter covers
one commercial implementation of the attestation solution authored by Intel and security
management independent software vendors, code-named Mt. Wilson. We provide details
about the solution architecture, attestation application programming interfaces (APIs),
integration of these APIs into a security management function, and workload orchestration
tools for decision making. We hope application developers and security specialists will gain
a solid understanding of the inner workings of attestation solutions to the level of being able
to carry out integration projects and even extend the paradigm.

Attestation
Attestation is a critical component for trusted computing environments, providing an
essential proof of trustability and the means for conducting audits for target computing
devices. That is, attestation allows a program or platform to authenticate itself. Remote
attestation is a means for a system to make reliable statements about the pre-launch and
launch components in a distributed system. A remote party can then make authorization
decisions based on that information. The concept of attestation is still evolving, and
hence the research community has not reached a common understanding of what it

CHAPTER 4 ■ Attestation: Proving Trustability

66

means. However, here is a practical definition for the purpose of working with trusted
clouds. The Trusted Computing Group (TCG) defines attestation as:

The process of vouching for the accuracy of information. External entities
can attest to shielded locations, protected capabilities, and Roots of
Trust. A platform can attest to its description of platform characteristics
that affect the integrity (trustworthiness) of a platform. Both forms of
attestation require reliable evidence of the attesting entity.

There are two properties that have to be addressed to assert this trust.

1.	 Measurement properties. Includes the degree of completeness
for measuring the launch and running state of the targeted
device or system, and the freshness of the measurements—
that is, how recent the measurements are.

2.	 Attestation properties. Includes the authenticity of the
evidence to the decision process, and a measure of semantic
explicitness describing the appropriateness of the evidence to
the decision-making process.

These two properties help us classify the remote attestation techniques. Most of the
existing remote attestation techniques can be categorized into one of the two types.

•	 Static remote attestation techniques rely on the signatures or
hashes of the firmware and binaries for determining the integrity
of the platform state. Static remote attestation can’t be extended
to measure the behavior of a platform. Furthermore, even if the
hash of the boot state (static state) does not reveal any tampering,
it does not follow that the run-time behavior of the application
will be trustworthy.

•	 Dynamic remote attestation techniques use monitoring instead
of measuring the application binary. Dynamic remote attestation
techniques are relatively difficult to integrate into existing
operating systems and software applications, because there is
no unequivocal reference point; that is, there is no commonly
agreed upon definition of what constitutes trustworthy behavior
in an operating system, virtual machine monitor, or application.
Benchmarks for trustworthy behavior, defined in existing remote
attestation techniques, are either vague or incomplete, with only
a portion of the activities performed by an application during
its execution monitored. The benchmarks don’t apply to virtual
machine monitors because the benchmark requirements are not
yet well understood.

Both static and dynamic remote attestation are relevant to virtualization and cloud
computing. As described in the previous chapters, the trusted compute pool uses models
that begin with the boot integrity of the platform, asserted with the static attestation
techniques. Meanwhile, asserting run-time integrity needs dynamic attestation
techniques. Static attestation techniques are beginning to be adopted in practical cloud

CHAPTER 4 ■ Attestation: Proving Trustability

67

computing deployments. The static techniques provide a good foundation toward
reaching a trusted infrastructure. Dynamic remote attestation is complementary and
brings significant value by enforcing security; hence, we can expect a strong drive for
adoption. However, in order to achieve the vision and goals of a trusted infrastructure,
it is an imperative to have a dynamic remote attestation facility in working order.

For context, we provide a brief overview in this chapter of remote attestation
techniques discussed in the research community, including reference implementations
where available. Please note that, other than Integrity Measurement Architecture, none
of the schemes has seen wide adoption, if any at all.

Integrity Measurement Architecture
Integrity Measurement Architecture (IMA) is a classic static remote attestation model
developed by IBM1 for measurement and reporting of the integrity of Linux-based
systems. It takes a hash of the binaries of the software code that run on any system, and
compares them against known-good hashes to assert that the system is high integrity.
IMA extends the trusted boot process of the TCG beyond the bootstrapping of the
Linux loader, to the chain of trust from the TPM, to applications running on the system.
Through extensions to the kernel of the Linux system, IMA measures the code that’s
loaded into memory for execution by taking a SHA-1 hash of the code prior to that
execution. A measurement archive is maintained for measurements previously taken.

Integrity Measurement Architecture was the first practical implementation of a
TCG-based remote attestation technique. It allows a challenger to verify a platform
status by measuring the executables running on that platform. IMA forms the basis for
many remote attestation techniques that followed the original implementation. The
requirement for using IMA is to download a kernel patch from IBM. The prototype of
IMA was implemented as a Linux Security Module on RedHat 9.0 Linux distribution and
kernel version 2.6.5.

Policy Reduced Integrity Measurement Architecture
Policy Reduced Integrity Measurement Architecture (PRIMA) is a variation of IMA.
According to the authors of this architecture,2 the static code and load-time measurement
cannot be used to assess the run-time behavior. This architecture introduces the concept
of measured security context or label of the subject, in addition to static code. The code/
data digest also includes a role field so that additional identification of subjects and
objects can be done. This approach allows remote attestation to be made on the basis of
secure information-flow models. The approach is rather low level and cannot be used
for distributed services in an organization or the information flows that occur within the
organization and in outside world. There are no known implementations in a commonly
available operating system environment.

1See http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_
usenix_security_2004_slides.pdf
2Trent Jaeger et al., “PRIMA: PolicyReduced Integrity Measurement Architecture, SACMAT2006,
June 7–9, 2006, Lake Tahoe, California. ACM 1595933549/06/0006.

http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_usenix_security_2004_slides.pdf
http://researcher.watson.ibm.com/researcher/files/us-msteiner/ima.sailer_usenix_security_2004_slides.pdf

CHAPTER 4 ■ Attestation: Proving Trustability

68

Semantic Remote Attestation
Semantic Remote Attestation is an attempt at creating a platform-independent remote
attestation technique.3 The core idea is that of a trusted virtual machine (TVM) capable
of enforcing the requirements for those applications running within this virtual
machine. The model establishes trust on the TVM and uses this trust to enforce security
requirements. It attempts to measure the behavior of the code running inside a trusted
virtual machine. The architecture is an incremental improvement over the original
remote attestation techniques and is more flexible compared with binary attestation
techniques with regard to expressiveness. This model of attestation has not been
implemented, or at least published, owing to the complexity of defining and analyzing the
notion of trust.

The Attestation Process
Given the discussion in the above section about the state and maturity of attestation
techniques, let’s look at the details of the static attestation protocol and the overall
integrity measurement flow.

The integrity measurement flow describes the steps required to measure the
platform integrity measurements. It includes:

A means of generating and collecting the measurements through •	
an RTM.

A means of storing the measurements that is either tamper •	
resistant or tamper evident, with a TPM for RTS and RTR.

A means of conveying the measurements to a challenger via the •	
attestation agents, as described in the attestation protocol below.

A means of analyzing the measured result, and a means of •	
asserting the trustability of the machine based on the results of
that determination through a trust assessment authority or trust
attestation authority (TAA).

Remote Attestation Protocol
Figure 4-1 illustrates the attestation protocol providing the means for conveying
measurements to the challenger. The endpoint attesting device must have a means of
measuring the BIOS firmware, low-level device drivers, operating system, virtual machine
monitor components, and be able to forward those measurements to the attestation
authority. The attesting device must do this while protecting the integrity, authenticity,
nonrepudiation, and some cases, the confidentiality of those measurements.

3Vivek Haldar et al., Semantic Remote Attestation: a Virtual Machine Directed Approach to Trusted
Computing, VM2004 Proceedings of the 3rd conference on Virtual Machine Research and Technology
Symposium, vol. 3 (Berkeley, CA: USENIX Association).

CHAPTER 4 ■ Attestation: Proving Trustability

69

TPM

OS

Attestation
Agent Challenger

Verifier

1. 160 bit Nonce, NC
2.

 T
PM

Qu
ot

e
Re

qu
es

t
 (N

C,
 P

CR
 li

st
)

3.
 T

PM
 Q

uo
te

 R
es

po
ns

e

Si
g

(P
CR

, N
C)

AI
K

4. { Sig (PCR, NC), SML, AIKcert }
AIK

5.
 In

te
gr

ity
Ve

rif
ic

at
io

n

a. Ver (Sig (PCR, NC), AIK) = true / false
AIK pub

b. , c. Compare (PCR, SML == Golden Measurements)

Figure 4-1.  Remote attestation protocol

Let’s walk through the steps of the remote attestation protocol:

1.	 The challenger, at the request of a requester, creates a
nonpredictable nonce (NC) and sends it to the attestation
agent on the attesting node, along with the selected list of
platform configuration registers (PCRs).

2.	 The attestation agent sends that request to the TPM as a
TPMQuote request with the nonce, and the PCR list.

3.	 In reponse to the TPMQuote request, the TPM loads the
attestation identity key from protected storage in the TPM
by using the storage root key (SRK), performs a TPM Quote
command, which is used to sign the selected PCRs and
the provided nonce (NC) with the private key, AIKpriv.
Additionally, the attesting agent retrieves the stored
measurement log (SML).

4.	 Called the integrity response, the attesting agent sends the
response consisting of the signed quote, signed nonce (NC),
and the SML to the challenger. The attesting agent also
delivers the AIK credential, which consists of the AIKpub that
was signed by a privacy CA.

5.	 The challenger validates if the AIK credential was signed by
a trusted privacy CA thus belonging to a genuine TPM. The
challenger also verifies whether AIKpub is still valid by checking
the certificate revocation list of the trusted issuing party.

CHAPTER 4 ■ Attestation: Proving Trustability

70

6.	 The challenger verifies the signature of the quote and checks
the freshness of the quote.

7.	 Based on the received stored measurement log and the PCR
values, the challenger processes the SML, compares the
individual module hashes that are extended to the PCRs
against the known-good or golden values, and recomputes
the received PCR values. If the individual values match the
golden values, and if the computed values match the signed
aggregate, the remote node is asserted to be in a trusted state.

This protocol is highly resistant to replay attacks, tampering, and masquerading.
How does this remote attestation protocol get implemented and manifested in an IT

environment? Figure 4-2 illustrates a sample IT architecture supporting the generation,
forwarding, and analysis of platform boot integrity measurements, as well as assertion of the
trustability of the attestation at each decision point via a trust assertion authority, or TAA. These
solutions come from a set of compatible components available from a variety of suppliers.

Policy Enforcement
Engine

Whitelist
Repository

Appraiser/Verifier

Trust Dashboard

Golden Measurements/
Good known/whitelists OEM Supplied

OS/VMM
Vendor Supplied

User-generated
(Secure Enclave)

ISV Service

Trust Agent

Collection
AgentRequester

Host/EndPoint Device

Whitelist Sources

Trust Attestation
Authority (TAA)

Figure 4-2.  Trust attestation authority

CHAPTER 4 ■ Attestation: Proving Trustability

71

Flow for Integrity Measurement
In assessing the measurements, the TAA references a set of properties. These properties
represent attributes and measurements for the BIOS and the operating system and virtual
machine monitors. These measurements are referred to as golden measurements or
whitelists, and are:

Provided and verified and validated through certificates by the •	
original equipment manufacturer (OEM))

Provided and vouched for by an ISV Service•	

Collected by an authenticated administrator on first boot in an •	
isolated or enclave type of environment

The process for carrying out the integrity measurement and verification is as follows:

1.	 When a new instance of a BIOS or an operating system or
virtual machine monitor is made available, an initial set of
trusted measurements (golden measurements) is taken on the
image. These measurements are provided either through third
parties such as an OEM, operating system, virtual machine
monitor supplier, or through a trusted whitelist service
provider to the trust authority, It may also be generated at
initial provisioning by system administrators.

2.	 An RTM such as Intel TXT is used to take the measurement of
the software components during server or device boot.

3.	 The measurements are stored in the TPM. A log from which
the measurements can be reconstructed is stored in memory
for transmission to the verifier to allow reconstruction of the
measurements.

4.	 The TAA generates an authenticated request for
measurements from the server/device, in response to an
action by any requester, or the endpoint device requesting a
service. This action follows the attestation protocol previously
described. The trust agent receives this request and passes
it to the TPM to obtain a TPMQuote for the requested PCR
measurments. TPMQuote, along with the measurement log,
are packaged as an integrity report, using the TCG Integrity
Reporting Schema.

CHAPTER 4 ■ Attestation: Proving Trustability

72

5.	 The trust agent transmits the data to the TAA’s verifier. The
TAA verifies the signature over the hashes by inspecting both
the public key used to sign them and the signature itself,
which will ensure that the nonce sent to the trust agent is the
same one as the one used in the TPMQuote. It then compares
those signed measurements with the golden measurements
obtained earlier. There is more than a simple comparison.
Depending upon the sophistication of the verifier, it can
use the system measurement log (SML) to re-compute the
aggregate measurements from the individual measurements,
and then verify them against the golden measurements.

6.	 The results of the comparison, collated with other such
comparisons from other machines and digitally signed, may
be displayed via a user interface, such as a management
console or dashboard, to the administrator or it can be
provided through an API to an automated enforcement, policy
engines, and orchestrators. Solutions use the results to apply,
manage, enforce, and report on the trust level of the systems.

A First Commercial Attestation Implementation:
The Intel Trust Attestation Platform
To provide a path toward broad use of trusted compute pools and to exemplify the vision
of trusted infrastructure and cloud computing, Intel developed a remote attestation
solution capable of working across a broad range of hardware and operating system and
virtual machine monitor platforms: the Intel Trust Attestation Platform (TAP). The goals
of the Intel Trust Attestation Platform are threefold:

Provide a production-quality implementation of remote •	
attestation and a trust assessment authority capable of providing
verification and assessment across a broad range of devices. The
Intel Trust Attestation Platform features high availability and
security of the attestation platform and its interfaces.

Provide stable and simplistic northbound and southbound •	
application programming interfaces (APIs) for attestation
information requesters, and for interfacing with different sources
of integrity measurements. These are trust APIs, designed to
encourage multiple interoperable attestation solutions from a
variety of security-management independent software vendors.
The interoperability and diversity minimize the occurrence of
vendor lock-in.

CHAPTER 4 ■ Attestation: Proving Trustability

73

Develop the attestation platform as a true extensible and •	
pluggable framework providing fertile ground for the deployment
of innovative third-party attestation techniques and models.
Initially, the solution supports a TPM-based static attestation
model, and is already being extended to support dynamic
attestation techniques for asserting the boot integrity of virtual
machines, as well as the run-time integrity of operating systems
and hypervisors.

Figure 4-3 captures the high-level architecture of the Intel Trust Attestation Platform.
Consistent with the cloud approach, the Intel Trust Attestation Platform features a loosely
coupled architecture with a flexible software backplane and fabric with core capabilities
and services, including a set of slots to plug in various attestation blades for different
types of attestation provided by Intel and third-party independent software vendors. Here
are the key aspects of the architecture:

Sehedulers/
Orchestrators

Query

Authentication

BIOS/VMM
Attestation

TPM/Trust
Agents

GLC
Agents/API

TBD
Agents/API

TBD
Agents/API

Run Time
Integrity

Asset Tag/
(1.5)

Trusted VMs
(2.0)

Attestation
Cache

Access
Control

Credential
Mgt

Provisioning Reporting Mgt

Se
cu

rit
y

Au
to

m
at

io
n

System Mgt
Tools

APIs

Common Services

Attestation Engines

Attestation Sources

Security
Tools

Compliance
Tools

Portals/
Admin

Figure 4-3.  Intel Trust Attestation Platform

An •	 API layer acting as primary interface for:

•	 Endpoint devices needing to carry out an attestation before a
request for services

•	 Entities requesting integrity verification for policy
enforcement and visibility into the trust of the infrastructure

•	 Access to compliance and security monitoring tools

CHAPTER 4 ■ Attestation: Proving Trustability

74

A •	 common services layer for the attestation service and platform
to enable authentication, authorization, and access control (AAA)
for the API calls, and a flexible and extensible data model for the
attestation platform repository accessible via APIs.

An •	 attestation blade supporting a variety of attestation types
implemented as plug-ins. The attestation blade is an element
of a set of pluggable components integrated into the attestation
platform taking advantage of the fabric and core functionality of
the platform, including interfaces, security, and common services.
As shown in Figure 4-3, each blade has two distinct components:

•	 A measurement and attestation agent capable of collecting
measurements from an endpoint device or server.

•	 A verification module that uses the attestation platform
services, and provides custom verification logic for an
attestation capability instance, using the northbound APIs
of the attestation platform, thereby exposing an assertion
function and making it available to policy enforcers and
other requesting entities.

Mt. Wilson Platform
Mt. Wilson is the code name for the Intel Trust Attestation platform that has the TPM-
based boot attestation functionality. It is the first attestation blade that was released as
part of the attestation platform. Mt. Wilson provides a secure mechanism for customers
and data center operators to attest the integrity of Intel-based systems enabled with
Intel’s Trusted Execution Technology (TXT) for RTM, along with third-party trusted
platform modules (TPMs). The TPM stores and reports the platform measurements,
including BIOS firmware and hypervisor software on servers. The architecture of the
blade, described in more detail later in this chapter, is applicable to any TPM-based
integrity measurement and reporting architecture.

We have assembled proof of existence working prototypes of a boot integrity
attestation blade with Microsoft Windows 8, and corresponding TPM using a BIOS boot
block as the RTM. We also have constructed a proof point with Citrix XenClient XT using
Intel TXT on the client. A subset of the Mt. Wilson functionality has been shared with the
open-source community under the name Open Attestation (OAT).

Mt. Wilson is a fast-evolving platform with new features and capabilities developed
and released as the community gains experience with the technology. Here is a snapshot
of key capabilities in the current Mt. Wilson solution.

CHAPTER 4 ■ Attestation: Proving Trustability

75

Table 4-1.  Mt. Wilson Key Capabilities

Attestation Support PCR and module-based attestation and verification for
VMware ESXi 5.1 and above, and for Xen, KVM with
RHEL, SuSE, and Ubuntu Linux

APIs REST interfaces for query, reporting, management, and
provisioning functions;

REST interfaces for whitelist definition and management

Security Digest-style API authentication and validation using RSA
keys (<signed http authorization header >)

SAML-based API responses with signed SAML assertions

SSL communication and mutual authentication of
communication endpoints

Auditability Secure logging of requests, responses, transactions
for auditability, forensics including logging APIs, and
support for CEF format for consumption into SIEM tools

Deployability Automated installation of host trust agents and all
Mt.Wilson components

Solution validation with Hewlett Packard, Dell, Cisco
hardware, etc.

Availability Deployed as Xen/KVM/VMW, virtual machines
including high availability and fault tolerance for key
components for VMware

Automation and Productivity
Tools

API client: utility wrapper code for API invocation and
response processing

Reference integration with OpenStack extensions to
flavors, dashboard, scheduler

Reference trust dashboard with API integration with
Mt. Wilson

The rest of this chapter will provide a comprehensive view of this attestation blade,
starting with the architecture and design components to support server operating
systems and virtual machine monitors, followed by the core attestation related API
definitions and security considerations. Sample source code examples are provided in the
last section of this chapter to show how to:

Register the servers with Mt. Wilson•	

Request the trust assertions (using the trust APIs)•	

Whitelist the golden measurements that are used in the appraisal •	
and verification

CHAPTER 4 ■ Attestation: Proving Trustability

76

Mt. Wilson Architecture
Mt. Wilson, as shown in Figure 4-4, has two main components: the trust agent (TA) and
the trust attestation authority (TAA.)

Mt. Wilson

ESXi

ESXi

ESXi

VMware
vCenter

Xen

Linux/
KVM

Trust
Agent

Trust
Agent

R
E
S
T

Gather platform
status (TCG,XML)

Client
Devices

Trust
Agent R

E
S
T

Provide platform trust status
for trusted pools,
Compliance, etc

• Software Hashes for Modules
• “Known Good” PCR Values
• Control Policies Etc.
• Trust Definition for MLE

Privacy CAAttestation
Server

Attestation
Cache

MLE + White List
Management

Provisioning +
Automation

-Mt. Wilson

Key
Management

Trust Challengers (Portals, Orchestrators, Policy
Engines, Compliance Tools, SIEMs, etc.)

Figure 4-4.  Mt. Wilson architecture

The trust agent runs on the device or host that is attesting with the trust attestation
authority. The trust agent is the collector, and securely uploads the integrity measurements
(fetched using the TPMQuote command) and the integrity event log from the TPM. The
trust agent is not required in a VMWare environment, since vCenter provides specific APIs
(called TrustAttestationReport) and capabilities that provide the functionality. More
specifically, vCenter Agent and VMWare vCenter Server enable the necessary handshake,
verification of the platform certificates, and invocation of the TPM commands, in response
to any entity invoking the TrustAttestationReport web services API.

CHAPTER 4 ■ Attestation: Proving Trustability

77

The trust attestation authority is the core attestation and assessor with a number of
key services:

•	 Attestation Server: This is the primary service providing the
APIs for the trust attestation authority. It has the function of
interfacing with the attesting hosts, requesting the specific host
for its measurements following the remote attestation protocol,
and verifying certificates, signatures, and logs requests and
responses for tracking and auditability. A key role of the attesation
server is to appraise the measurements from the device/host,
which involves comparing these measurements against golden
measurements, whitelists, and known-good values. The whitelists
are the final TPM PCR extensions for each of the PCRs of the TPM
and granular SHA-1 hashes of the various loadable modules of
the measured launch environment (MLE). The appraisal includes
verifying the individual module hashes from the SML (event log)
against the whitelists of the module hashes and recomputing the
PCR values from the event log entries. The recomputed PCR value
has to match the value sent from the device (which shows that the
log is not compromised) and match the whitelist/known-good. In
today’s implementation across hypervisor and operating system
vendors, there are variations in approaches to measuring the
TCB. For instance, VMware has made great strides in measuring
a high percentage of their TCB. Open-source operating system
and hypervisor providers have, for the most part, reused the Intel
reference tboot implementation, and consequently measure a
small part of the TCB, mostly the kernels. As the need for trust
increases in the cloud data centers, vendors have been expressing
a willingness to broaden the amount of measured TCB.

•	 Whitelist Management: This service provides APIs to define the
various MLEs in the environment, their attributes, policy-driven
trust definition, and the whitelists for the modules or PCRs.
Whitelist measurements are usually retrieved from hosts built and
configured in an isolated environment/enclave, or provided by
the OEM and VMV/OS vendors. The MLEs and the corresponding
whitelist measurements need to be configured to specific versions
of BIOS and hypervisor.

•	 Host Management: This service provides APIs to register the
hosts to be attested with the system. For successful attestation, the
whitelists for the BIOS and hypervisor running on the host need
to be preconfigured in the Mt. Wilson system, prior to registration
of the host that would attest.

CHAPTER 4 ■ Attestation: Proving Trustability

78

•	 Privacy CA: Provides the attestation certificate for the open-
source hypervisor hosts and validation of the same. The certificate
authority needs to support the OCSP protocol for certificate
validation. This capability is subsumed by VMware vCenter Server
in the VMWare environment. Management of Citrix XenServer
does not need privacy CA since it supports direct anonymous
attestation (DAA).

In the next section, we drill into the attestation server and understand the functions
and the attestation process flows.

The Mt. Wilson Attestation Process
Figure 4-5 illustrates the attestation architecture in Mt. Wilson, with a drilldown of the
attestation server component described in the previous session and depicted in Figure 4-4.
The Mt. Wilson attestation process comprises three flows:

Whitelist/good
known

Trust Attestation Server

Trust Agent

Sealed SSL Cert
Signed by AIK

TPM Quote
Signed by AIK

Expected PCR/module
Values
For the host

Registered
Hosts

AIK Certificate
For the host

SAML Assertion
Signed by Attestation
Service
(IP Addr, AIK, SSL Cert,
attributes)

TPM

PCR Quote
Signed by AIK

Verify Quote
Signature

Compare
PCRs/modules to
Expected Values

Re
qu

es
te

r

REST APIs

Verify SSL
Signature

Host

PCA & EK Signer

Host
Registration AIK Cert,

TA SSL Cert

2

1

1

2

2

1 AIK Provisioning & Registration

Attestation2

2

API Client
AuthenticationRe

qu
es

te
r

Figure 4-5.  The Mt. Wilson attestation architecture

1.	 Provisioning the attestation identity keys (AIKs) and ensuring
successful validation of the host

2.	 Registration of the host with Mt. Wilson

3.	 Actual attestation request and response

CHAPTER 4 ■ Attestation: Proving Trustability

79

Attestation Identity Key Provisioning
The attestation identity key provisioning process is done in four steps.

1.	 TPM on the host is validated. According to the TCG
specifications, compliant systems should contain an
endorsement credential and a platform credential. These two
credentials are installed by the OEM to certify that the TPM’s
endorsement key and the entire TCG subsystem are genuine.
However, in practice these credentials are often missing. As a
workaround, system administrators may inspect a system and
generate equivalent credentials locally after being satisfied
that the system is genuine. The trust agent software provides
a password-protected mechanism in conjunction with the
privacy CA service for the system administrator to easily
generate and install the equivalent credentials. Additional
credentials, known as the conformance credential and
validation credential, are also possible but are seen even less
in practice, and are not covered during the attestation identity
key provisioning and host registration.

2.	 The AIK is created by the platform and certified by the privacy CA.
This transforms the platform verification problem into an RSA
encryption problem. It is critical for the system administrator
to conduct an adequate inspection to ensure that the TPM is
genuine and that Intel TXT is properly enabled on platforms
that are missing the endorsement credential and the platform
credential because, once the AIK is certified by the privacy CA,
remote attestation services will trust TPM quotes signed with the
corresponding AIK private key. The AIK certificate is imported
into Mt. Wilson when the host is registered.

3.	 An RSA key pair and transport layer security (TLS) certificate
are generated. These are for the trust agent to use for
incoming attestation requests. Mt. Wilson provides a
mechanism to import the trust agent TLS certificate on a
per-host basis and verifies all attestation connections to that
host using the same certificate.

4.	 A second RSA key pair and TLS certificate are generated on
the platform. The private key bound to the TPM and the
TLS certificate indicates the specifics of the TPM binding.
This key pair facilitates applications of the trusted compute
pool relying on attestation of the platform to authorize
certain actions by providing a mechanism assure a third
party that, when it connects to the attested platform, it is the
same platform in the same trusted state as was attested. Mt.
Wilson provides a mechanism to import the bound or sealed
TLS certificate after a host is registered and to provide that
certificate to its clients.

CHAPTER 4 ■ Attestation: Proving Trustability

80

Host Registration and Attestation Identity Key Certificate
Provisioning
Figure 4-6 depicts the sequence diagram showing the steps for host registration and the
management of attestation identity key certificates. As mentioned earlier, these steps are
applicable only for hosts running on Xen or KVM.

Attestation
Server

Trust Agent Privacy CA

Host
Registration
Utility/Mgt
Software

AddHost

Generate Identity

Create new AIK
Encrypt EC & AIK w/ PCA AIk Signing Key (pub)

Generate Identity
Decrypt for EC & AIK
Verify EC with MTW EK

Signing Key (prv)
Generate AIK Cert; signed with

PCA AIK Signing Key
Encrypt with EC

Encrypted AIK Cert

Decrypt AIK Cert

AIK Certificate over SSL

Register Host and
AIK Certificate in DB

Status

Figure 4-6.  Flow of authority identity key certificate provisioning

The host registration process begins with an API request to •	
the attestation server. This request may come from a system
administrator using a management portal, or from an automated
system in charge of managing hosts in the data center.

The attestation server sends an attestation identity key •	
provisioning request to the trust agent on the host using a TLS
connection secured by the trust agent TLS certificate.

The trust agent uses the TPM to create a new AIK private and •	
public key pair. It sends the AIK public key and the endorsement
credential to the privacy CA, encrypted using the privacy CA’s
public key to ensure privacy.

The privacy CA decrypts the AIK public key and endorsement •	
credential using its private key. It then generates a random
challenge and encrypts it using the public key certified by the
endorsement credential. It sends this challenge to the host.

The host decrypts the challenge using the endorsement key, •	
a private key corresponding to the endorsement credential. It
re-encrypts the challenge using the privacy CA’s public key for
privacy and sends the re-encrypted challenge to the privacy CA.

CHAPTER 4 ■ Attestation: Proving Trustability

81

The privacy CA decrypts the challenge to verify it is correct, then •	
certifies the host’s AIK public key. The privacy CA sends the AIK
certificate to the host, encrypted using the public key in the host’s
endorsement credential.

The host decrypts the AIK certificate using its endorsement key.•	

The host sends the AIK certificate to the attestation server over •	
the trust agent TLS connection.

The attestation server registers the host and stores the AIK •	
certificate in the database.

The attestation server responds to the system administrator •	
or automated system, indicating the success or failure of the
registration process.

Requesting Platform Trust
This is the invocation of the trust APIs by an entity requesting trust information. The
API request is authenticated and the input parameters are validated and then handed
to the appraiser component of the attestation server. The appraiser follows the remote
attestation protocol to challenge the platform for the integrity measurements. Once
the verification is done, Mt. Wilson summarizes all these steps by generating a SAML
assertion of the platform compliance with its trust policy. Details of the SAML assertion
and the security and integrity of the exchange are covered later in this chapter.

Security of Mt. Wilson
Security is integral to the Mt. Wilson platform. The ultimate objective of an adversary of
Mt. Wilson would be to subvert and control the outcome of the attestation by:

Spoofing the trust agent to attain a fake TPM quote•	

Compromising the Mt. Wilson attestation server to subvert signed •	
content

Spoofing the Mt. Wilson attestation server to fake a signed content•	

Hacking the whitelists•	

Compromising the data on the network and repositories•	

Figure 4-7 shows the threat model considered during the design of Mt. Wilson,
with articulation of the consequences when the adversary accomplishes the attack and
possible mitigations implemented. We summarize the mitigating actions against the
threats listed above.

CHAPTER 4 ■ Attestation: Proving Trustability

82

Figure 4-7.  Mt. Wilson threat analysis

Registered API client calls (signed with their private key) •	
can be verified by the Mt. Wilson attestation server using the
corresponding public key. These keys get generated and stored
by the API client during the registration process. Users are
encouraged to secure their private keys using a password-based
mechanism, at minimum. The Mt. Wilson Java API Client Library
includes convenient functions for this purpose, using the Java Key
store format to secure the private keys.

CHAPTER 4 ■ Attestation: Proving Trustability

83

The communication channels between the hosts and the users •	
are encrypted using SSL. When a new user registers with Mt.
Wilson, the Mt. Wilson SSL TLS certificate is verified and stored by
the user to secure subsequent communication between the user
and Mt. Wilson. The trust agent stores its SSL TLS certificate with
Mt. Wilson upon registration of a new host to secure all future
communication between Mt. Wilson and the trust agent.

Trust agents store their TLS private keys in a password-protected •	
Java Keystore file.

Users are allowed to call into APIs based on their existing roles. •	
Users request roles during registration with Mt. Wilson and these
are approved by the Mt. Wilson administrator.

The attestation status of the hosts is returned as signed SAML •	
assertions that can be verified by the end consumer. The
Mt. Wilson SAML certificate is stored by users when they register
with Mt. Wilson in order to later verify SAML assertions.

A public and private key pair is the preferred authentication •	
mechanism for management of the whitelist and host trust
policies.

Mt. Wilson Trust, Whitelisting, and
Management APIs
Mt. Wilson provides a rich set of APIs for all interactions with it. In fact, the primary
communication with the Mt. Wilson attestation authority is via authenticated APIs. There
are five categories of APIs:

1.	 Provisioning APIs, for registering hosts and requesting AIKs.

2.	 Query APIs, the trust APIs that requesting entities (requesters/
API clients) invoke to get a trust assertion.

3.	 Reporting APIs, providing details about hosts registered with
Mt. Wilson, including the current measurements and the
whitelists.

4.	 Automation APIs, allowing an administrator to easily register
all hosts within a VMware cluster or create an MLE using a
known-good host in a trusted environment.

5.	 Management APIs, enabling registering users, managing
their authorized roles, and downloading various certificates
managed by Mt. Wilson.

Calls to the API must be sent over SSL TLS. All APIs are REST-based. Mt. Wilson APIs
use a client-server model without third-party intervention to provide authentication. The
authentication model is very similar to OAuth 1.0 and HTTP Digest, and it provides a

CHAPTER 4 ■ Attestation: Proving Trustability

84

stateless scheme for use with clusters and load balancers. However, it does not work with
URL-rewriting proxies because the URL is covered by the client’s signature. Every API
client—that is, any entity invoking the APIs, such as portals, schedulers, other subsystems
or policy engines—needs two RSA keys, as follows:

•	 API signing key. The public portion of the API signing key is stored
in the Mt. Wilson keystore. The API client retains the private
portion of this key in an encrypted and secure keystore

•	 SAML assertion validation key. This is the public portion of the
Mt. Wilson SAML signing key and is stored with the API client

An API client registers with Mt.Wilson via a credential •	
management server to acquire the RSA keys. A Mt.Wilson
instance can register a number of API clients.

Mt. Wilson APIs
Figures 4-8 and 4-9 show the core APIs for the Mt. Wilson provisioning and trust query
API and the management and whitelisting API.

Figure 4-8.  Provisioning and trust query API

CHAPTER 4 ■ Attestation: Proving Trustability

85

To facilitate interoperability, consistency, and seamless integration, we expect the
industry to converge toward a standardized set of APIs related to attestation. We offer
these as a starting point for the industry to help drive interoperability across different
attestation solution implementations.

The API Request Specification
All API calls are http requests with one required header: “Authorization: X509
<authentication-info>”. Any unauthorized request is challenged with a standard
header: “WWW-Authenticate: X509 <challenge-info>”.

Each API request includes the following parameters:

Fingerprint (base64-encoded SHA-256 digest of the client API •	
certificate)

Signature method (RSA-SHA256)•	

Time stamp from standard http Date header (RFC 822 date •	
format)

Client nonce (base64-encoded) in http X-Nonce header•	

http request method•	

Signature over the above and also:•	

Figure 4-9.  Management and whitelisting API

CHAPTER 4 ■ Attestation: Proving Trustability

86

•	 Original request URL including query string

•	 http message body (required, use empty string if not
applicable)

•	 Any other custom headers specified besides Date and
X-Nonce in the “headers” field of the Authorization line, in
the order specified

•	 Signature created using client’s RSA private key, and it is
base64-encoded

Strongest method is RSA-SHA256•	

Figure 4-10 is an example of a sample API request using authentication.

WWW-Authenticate: X509 realm="Attestation"

GET /reports/trust?hostname=example
Host: attestationservice.example.com
Authorization: X509

realm="Attestation",
algorithm="SHA256withRSA",
fingerprint="0685bd9184jfhq2bafweK...",
headers="Date,X-Nonce"
signature="wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D"

X-Nonce: 0123456789abcdef
Date: Sun, 06 Nov 1994 08:49:37 GMT

Figure 4-10.  API request including authentication

API Response
Mt. Wilson asserts all API responses. Responses are signed SAML assertions. Assertions
are signed with the Mt.Wilson RSA SAML signing key. There is one SAML signing key for
each installation of Mt.Wilson. An API client validates the signature with the SAML public
key and uses the trust information. Here is an example of an API invocation with a SAML
assertion. This Java example uses the Apache HttpClient library to obtain the SAML
assertion for “192.168.1.121” by sending a GET request to Mt. Wilson:
 
ApiClient api = KeystoreUtil.clientForUserInDirectory(directory, username,
password, server);
String samlForHost = api.getSamlForHost(new Hostname("192.168.1.121"));
 

Here’s how to interpret the SAML response:
 
TrustAssertion trustAssertion = api.verifyTrustAssertion(samlForHost);
if(trustAssertion.isValid())
 for(String attr : trustAssertion.getAttributeNames())
 System.out.println("Attr: "+attr+":"+trustAssertion.
getStringAttribute(attr));
 

CHAPTER 4 ■ Attestation: Proving Trustability

87

Attributes for subject’s trust status in the SAML response are:

•	 Trusted: True if both Trusted_BIOS and Trusted_VMM are true.

•	 Trusted_BIOS: True if the BIOS measurements on the subject
match the whitelist (known-good values)

•	 Trusted_VMM: True if the VMM measurements on the subject
match the whitelist (known-good values)

Attributes for subject’s measured launch environment in the SAML response are:
 
BIOS_Name, BIOS_Version, BIOS_OEM, VMM_Name, VMM_Version, VMM_OSName, VMM_OSVersion 

Mt. Wilson API Usage
There are two options for the requesters of attestation information to call into
Mt. Wilson APIs. A direct invocation of the REST APIs is the most basic approach to
use and integrate with Mt. Wilson. The user is required to implement the complete API
request specifications. This would mean pre-processing the creation and handling of keys
and authentication, and post-processing of information for a successful API invocation,
and the correct processing of the responses. An API toolkit (called API Client Library) is
available to simplify the invocation of the APIs, with bindings for different languages like
Java, C#, and Python. This toolkit encapsulates multiple API calls, creation and handling
of RSA keys and certificates, and authentication and processing of API responses (which
are SAML signed assertions). Using this toolkit, the users can make Java (or C# or Python)
function calls to communicate with the system. The sample code and examples that are
used in this chapter use the Java binding of the API toolkit.

There are three different options for the .jar file:

1.	 Zip file containing the api-client .jar and related dependencies

2.	 Single .jar with dependencies

3.	 Single .jar with dependencies shaded to prevent conflicts with
other libraries

Deploying Mt. Wilson
There are multiple models for deploying attestation components in a data center. Ideally,
attestation is transparent to applications, carrying its function quietly in the background.
In practice, it’s far from that. How unobtrusive attestation technology is depends upon
the deployment method. Some of the possible models include:

Dedicated virtual appliances•	

Dedicated physical appliances•	

Integrated as a function in security application software•	

CHAPTER 4 ■ Attestation: Proving Trustability

88

Integrated in cloud and virtualization management software•	

Offered as a component of a cloud service•	

Integrated as a attestation of a service•	

Mt. Wilson is delivered today as a virtual appliance, and it is being integrated
into security software applications such as HyTrust’s Cloud Control, as well as cloud
management software such as Virtustream’s xStream. An initial approach for adoption
is to package and deliver Mt. Wilson software as a separate appliance with cloud
management and security management independent software vendor offerings. As the
usage and experiences increase with increased design and development of attestation-
based solutions, other models with tighter integration will become possible.

As attestation APIs become standardized and integral to the interactions and
operations of a trusted cloud infrastructure, there is opportunity for providing value-
added services on top of the core attestation APIs. This could lead security management
and cloud service providers to offer attestation as a service, with granular control to the
usage and evolution of the APIs.

Mt. Wilson Programming Examples
In this section, we look at how to invoke the attestation APIs to get trust information
about a server in a data center. Figure 4-11 shows the high-level steps involved in setting
up the system and configuring it for use.

Figure 4-11.  Mt. Wilson high-level programming steps

CHAPTER 4 ■ Attestation: Proving Trustability

89

After the installation of the Mt.Wilson server and trust agent on the hosts, required
only for Xen or KVM hosts, users need to include the .jar file provided as part of the API
toolkit in their project and import the following packages:
 
import com.intel.mtwilson.*;
import com.intel.mtwilson.crypto.*;
import com.intel.mtwilson.datatypes.*;
import java.io.File;
import java.net.URL; 

API Client Registration Process
Before the user can make any API calls into the system, the user has to register and the
access has to be approved. Below are steps for how to register with Mt. Wilson and how
to make API calls after the registration has been accepted. The following code creates a
keystore “test1.jks” in the home directory. The keystore contains an RSA keypair that is used
to authenticate the API calls to the system. The keystore would also contain the Mt. Wilson
SSL certificate and SAML signing certificate, which are downloaded from the server.
 
File directory = new File(System.getProperty("user.home", "."));
String username = "test1"; // you choose a username
String password = "changeit"; // you choose a password
URL server = new URL("https://mtwilson.example.com:8181"); // attestation server
String[] roles = new String[] { "Attestation", "Whitelist" };
KeystoreUtil.createUserInDirectory(directory, username, password, server,
roles);
 

After the request is created, the user has to contact the system administrator to
approve the access request (offline step). After the request is approved, based upon the
roles the user has, appropriate APIs can be executed, such as maintaining a whitelist,
adding hosts, and obtaining a trust assertion on one or more hosts.

To use the API, the user needs first to create an ApiClient object configured with
the credentials and the attestation server. Notice that the variables directory, username,
password, and servers are the same as what was used during registration.
 
File directory = new File(System.getProperty("user.home", "."));
String username = "test1"; // username created during registration
String password = "changeit"; // password created during registration
URL server = new URL("https://mtwilson.example.com:8181");
ApiClient apiClientObj = KeystoreUtil.clientForUserInDirectory(directory,
username, password, server);
 

Once an APIClient object is created, the user can use that to configure whitelists and
also to register the hosts with Mt. Wilson so that they attest when challenged.

https://mtwilson.example.com:8181/
https://mtwilson.example.com:8181/

CHAPTER 4 ■ Attestation: Proving Trustability

90

Whitelisting and Host Registration
Here’s some sample code for how to create a whitelist and register the host with Mt.
Wilson—for VMware ESXi hosts:
 
TxtHostRecord gkvHostObj = new TxtHostRecord();
gkvHostObj.HostName = "hostname-in-vcenter";
gkvHostObj.AddOn_Connection_String =
"vmware:https://vcenter.example.com:443/sdk;Username;Password";
boolean configureWhiteList = apiClientObj.configureWhiteList(gkvHostObj);
 
boolean registerHost = apiClientObj.registerHost(gkvHostObj); 

Verify Trust: Trust Attestation
Once hosts are registered with Mt Wilson, it is now possible to request a trust assertion in
SAML format using getSamlForHost. You can verify the signature on the assertion and get
easy access to the details using verifyTrustAssertion.

Note■■  I f you are directly calling into the REST APIs, you have to implement the
verification of the SAML assertion using the SAML certificate that needs to be downloaded
explicity. The API toolkit downloads this certificate as part of the registration itself. 

String samlForHost = apiClientObj.getSamlForHost(new Hostname("hostname-in-
vcenter"));
TrustAssertion trustAssertion = apiClientObj.verifyTrustAssertion(samlForHost);
if(trustAssertion.isValid()) {
for(String attr : trustAssertion.getAttributeNames())
 System.out.println("Attr:"+attr+":"+trustAssertion.
getStringAttribute(attr));
}
 

As shown in this above example, using the API Client Library is a very simple way of
using the Mt. Wilson attestation mechanism. The Mt. Wilson software is being licensed
by many ISV and CSPs to integrate trust into the software and service offerings. More and
more organizations are moving to clouds, and they are asking for assurance of trust of the
platform on which their workloads are running; they are also asking the CSPs to provide
proof of a chain of trust. The attestation solution is fast becoming a critical security
component in the security toolset. For developers favoring a DIY approach, the open-
source OpenAttestation (OAT) is a good starting point for attestation.

https://vcenter.example.com/sdk;Username;Password

CHAPTER 4 ■ Attestation: Proving Trustability

91

Note■■  O AT is the open-source version of Mt. Wilson code, and is provided and maintained
by Intel Corporation. You can download the documentation, code, and installation/deployment
scripts from the OAT website.

Summary
In this chapter we covered attestation as a foundational function of trusted computing
environments that provides proof of trustability and auditability of trust for various
computing devices. We covered the TCG remote attestation protocol, and we described
the vision and architecture of Intel’s Trust Attestation Platform, followed by a detailed
look one of the first attestation solutions, called Mt. Wilson. The chapter reviewed
the security architecture and the attestation APIs, and explained how requesters of
trust and attestation information can invoke these APIs and process the assertions for
decision making. There are many usages in data centers that would utilize the attestation
information. As shown in the previous chapter, attestation is used in the creation of
trusted compute pools and the attestation-based policy enforcement in these pools.
Thus, attestation can be used to provide granular trust-based access control to consumer
and BYOD devices, and the kind of services they can access within the cloud data centers.
Attestation as a security management component will become an integral component of
virtualization and cloud management, and it’s becoming a critical requirement in cloud
data centers to assert the integrity and compliance of platforms and systems. ISVs and
security management vendors may also start offering it as a SaaS offering. We believe that,
over time, value-added capabilities will emerge around the attestation function and will
enable monetization possibilities.

Chapter 5 will introduce a new concept and control, called hardware-assisted asset tag,
which can be used to provide isolation, segregation, placement, and migration control of
workload execution in multi-tenant cloud environments. Additionally, as a specialization
of asset tags, geolocation/geo-tagging can be enabled to definitively provide increased
visibility to the physical geolocation of the server, which may enable many controls
that require hardware-based roots of trust to assert the location of workloads and
data. These attributes and the associated controls are dependent on the boot integrity
assertion of the platform; hence, they become a great adjacency to trusted compute
pools and boot integrity.

	Chapter 4: Attestation: Proving Trustability
	Attestation
	Integrity Measurement Architecture
	Policy Reduced Integrity Measurement Architecture
	Semantic Remote Attestation

	The Attestation Process
	Remote Attestation Protocol
	Flow for Integrity Measurement

	A First Commercial Attestation Implementation: The Intel Trust Attestation Platform
	Mt. Wilson Platform
	Mt. Wilson Architecture
	The Mt. Wilson Attestation Process
	Attestation Identity Key Provisioning
	Host Registration and Attestation Identity Key Certificate Provisioning
	Requesting Platform Trust

	Security of Mt. Wilson
	Mt. Wilson Trust, Whitelisting, and Management APIs
	Mt. Wilson APIs
	The API Request Specification
	API Response
	Mt. Wilson API Usage
	Deploying Mt. Wilson
	Mt. Wilson Programming Examples
	API Client Registration Process
	Whitelisting and Host Registration
	Verify Trust: Trust Attestation

	Summary

