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Chapter 2

Image Pre-Processing

“I entered, and found Captain Nemo deep in algebraical calculations of 
x and other quantities.”

—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including 
interest point and feature extraction. Some of these methods are also useful for global 
and local feature description, particularly the metrics derived from transforms and basis 
spaces. The focus is on image pre-processing for computer vision, so we do not cover 
the entire range of image processing topics applied to areas such as computational 
photography and photo enhancements, so we refer the interested reader to various 
other standard resources in Digital Image Processing and Signal Processing as we go 
along [4,9,325,326], and we also point out interesting research papers that will enhance 
understanding of the topics.

Note■■   Readers with a strong background in image processing may benefit from a light 
reading of this chapter.

Perspectives on Image Processing
Image processing is a vast field that cannot be covered in a single chapter. So why do we 
discuss image pre-processing in a book about computer vision? The reason is to advance 
the science of local and global feature description, as image pre-processing is typically 
ignored in discussions of feature description. Some general image processing topics are 
covered here in light of feature description, intended to illustrate rather than to proscribe, 
as applications and image data will guide the image pre-processing stage.

Some will argue that image pre-processing is not a good idea, since it distorts or 
changes the true nature of the raw data. However, intelligent use of image pre-processing 
can provide benefits and solve problems that ultimately lead to better local and global 
feature detection. We survey common methods for image enhancements and corrections 
that will affect feature analysis downstream in the vision pipeline in both favorable and 
unfavorable ways, depending on how the methods are employed.
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Image pre-processing may have dramatic positive effects on the quality of feature 
extraction and the results of image analysis. Image pre-processing is analogous to the 
mathematical normalization of a data set, which is a common step in many feature 
descriptor methods. Or to make a musical analogy, think of image pre-processing as 
a sound system with a range of controls, such as raw sound with no volume controls; 
volume control with a simple tone knob; volume control plus treble, bass, and mid; or 
volume control plus a full graphics equalizer, effects processing, and great speakers in an 
acoustically superior room. In that way, this chapter promotes image pre-processing by 
describing a combination of corrections and enhancements that are an essential part of a 
computer vision pipeline.

Problems to Solve During Image Pre-Processing
In this section we suggest opportunities for image pre-processing that are guided 
according to the feature descriptor method you’ve chosen. Raw image data direct from 
a camera may have a variety of problems, as discussed in Chapter 1, and therefore it is 
not likely to produce the best computer vision results. This is why careful consideration 
of image pre-processing is fundamental. For example, a local binary descriptor using 
gray scale data will require different pre-processing than will a color SIFT algorithm; 
additionally, some exploratory work is required to fine-tune the image pre-processing 
stage for best results. We explore image pre-processing by following the vision pipelines 
of four fundamental families of feature description methods, with some examples, as 
follows:

1.	 Local Binary Descriptors (LBP, ORB, FREAK, others)

2.	 Spectra Descriptors (SIFT, SURF, others)

3.	 Basis Space Descriptors (FFT, wavelets, others)

4.	 Polygon Shape Descriptors (blob object area, perimeter, centroid)

These families of feature description metrics are developed into a taxonomy in 
Chapter 5. Before that, though, Chapter 4 discusses the feature descriptor building 
concepts, while Chapter 3 covers global feature description and then Chapter 6 surveys 
local feature description. The image pre-processing methods and applications introduced 
here are samples, but a more developed set of examples, following various vision 
pipelines, is developed in Chapter 8, including application-specific discussions of the 
pre-processing stage.

Vision Pipelines and Image Pre-Processing
Table 2-1 lists common image pre-processing operations, with examples from each of 
the four descriptor families, illustrating both differences and commonality among these 
image pre-processing steps, which can be applied prior to feature description. Our intent 
here is to illustrate rather than proscribe or limit the methods chosen.
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Local binary features deal with the pixel intensity comparisons of point-pairs. This 
makes the comparisons relatively insensitive to illumination, brightness, and contrast, so 
there may not be much need for image pre-processing to achieve good results. Current 
local binary pattern methods as described in the literature do not typically call for much 
image pre-processing; they rely on a simple comparison threshold that can be adjusted to 
account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF 
(which uses HAAR-like features with integrated pixel values over local regions), offer 
diverse pre-processing opportunities. Methods that use image pyramids often perform 
some image pre-processing on the image pyramid to create a scale space representation 
of the data using Gaussian filtering to smooth the higher levels of the pyramid. Basic 
illumination corrections and filtering may be useful to enhance the image prior to 
computing gradients—for example, to enhance the contrast within a band of intensities 
that likely contain gradient-edge information for the features. But in general, the literature 
does not report good or bad results for any specific methods used to pre-process the 
image data prior to feature extraction, and therein resides the opportunity.

Table 2-1.  Possible Image Pre-Processing Enhancements and Corrections as Applied to 
Different Vision Pipelines

Image  
Pre-Processing

Local Binary
(LBP, ORB)

Spectra
(SIFT, SURF)

Basis Space
(FFT, Code books)

Polygon Shape
(Blob Metrics)

Illumination  
corrections

x x x x

Blur and focus 
corrections

x x x x

Filtering and noise 
removal

x x x x

Thresholding x

Edge enhancements x x

Morphology x

Segmentation x

Region processing  
and filters

x x x

Point processing x x

Math and statistical 
processing

x x

Color space 
conversions

x x x



Chapter 2 ■ Image Pre-Processing

42

Basis space features are usually global or regional, spanning a regular shaped 
polygon—for example, a Fourier transform computed over the entire image or block. 
However, basis space features may be part of the local features, such as the Fourier spectrum 
of the LBP histogram, which can be computed over histogram bin values of a local descriptor 
to provide rotational invariance. Another example is the Fourier descriptor used to compute 
polygon factors for radial line segment lengths showing the roundness of a feature to provide 
rotational invariance. See Chapter 3, especially Figure 3-19.

The most complex descriptor family is the polygon shape based descriptors, which 
potentially require several image pre-processing steps to isolate the polygon structure and 
shapes in the image for measurement. Polygon shape description pipelines may involve 
everything from image enhancements to structural morphology and segmentation 
techniques. Setting up the pre-processing for polygon feature shape extraction typically 
involves more work than any other method, since thresholds and segmentation require 
fine-tuning to achieve good results. Also note that polygon shape descriptors are not local 
patterns but, rather, larger regional structures with features spanning many tens and even 
hundreds of pixels, so the processing can be more intensive as well.

In some cases, image pre-processing is required to correct problems that would 
otherwise adversely affect feature description; we look at this next.

Corrections
During image pre-processing, there may be artifacts in the images that should be 
corrected prior to feature measurement and analysis. Here are various candidates for 
correction.

•	 Sensor corrections. Discussed in Chapter 1, these include dead 
pixel correction, geometric lens distortion, and vignetting.

•	 Lighting corrections. Lighting can introduce deep shadows that 
obscure local texture and structure; also, uneven lighting across 
the scene might skew results. Candidate correction methods 
include rank filtering, histogram equalization, and LUT remap.

•	 Noise. This comes in many forms, and may need special image 
pre-processing. There are many methods to choose from, some of 
which are surveyed in this chapter.

•	 Geometric corrections. If the entire scene is rotated or taken 
from the wrong perspective, it may be valuable to correct the 
geometry prior to feature description. Some features are more 
robust to geometric variation than others, as discussed in 
Chapters 4, 5, and 6.

•	 Color corrections. It can be helpful to redistribute color 
saturation or correct for illumination artifacts in the intensity 
channel. Typically color hue is one of the more difficult attributes 
to correct, and it may not be possible to correct using simple 
gamma curves and the sRGB color space. We cover more accurate 
colorimetry methods later in this chapter.
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Enhancements
Enhancements are used to optimize for specific feature measurement methods, rather 
than fix problems. Familiar image processing enhancements include sharpening and 
color balancing. Here are some general examples of image enhancement with their 
potential benefits to feature description.

•	 Scale-space pyramids. When a pyramid is constructed using an 
octave scale and pixel decimation to sub-sample images to create 
the pyramid, sub-sampling artifacts and jagged pixel transitions 
are introduced. Part of the scale-space pyramid building process 
involves applying a Gaussian blur filter to the sub-sampled 
images, which removes the jagged artifacts.

•	 Illumination. In general, illumination can always be 
enhanced. Global illumination can be enhanced using simple 
LUT remapping and pixel point operations and histogram 
equalizations, and pixel remapping. Local illumination can be 
enhanced using gradient filters, local histogram equalization, and 
rank filters.

•	 Blur and focus enhancements. Many well-known filtering 
methods for sharpening and blurring may be employed at the 
pre-processing stage. For example, to compensate for pixel 
aliasing artifacts introduced by rotation that may manifest as 
blurred pixels which obscure fine detail, sharpen filters can be 
used to enhance the edge features prior to gradient computations. 
Or, conversely, the rotation artifacts may be too strong and can be 
removed by blurring.

In any case, the pre-processing enhancements or corrections are dependent on the 
descriptor using the images, and the application.

Preparing Images for Feature Extraction
Each family of feature description methods has different goals for the pre-processing 
stage of the pipeline. Let’s look at a few examples from each family here, and examine 
possible image pre-processing methods for each.

Local Binary Family Pre-Processing
The local binary descriptor family is primarily concerned with point-pair intensity value 
comparisons, and several point-pair patterns are illustrated in Chapter 4 for common 
methods such as FREAK, BRISK, BRIEF, and ORB. As illustrated in Figure 2-4, the 
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comparative difference (<, >, =) between points is all that matters, so hardly any image 
pre-processing seems needed. Based on this discussion, here are two approaches for 
image pre-processing:

1.	 Preserve pixels as is. Do nothing except use a pixel value-
difference compare threshold, such as done in the Census 
transform and other methods, since the threshold takes care 
of filtering noise and other artifacts.

 
if(|point1–point2|>threshold)

 
2.	 Use filtering. In addition to using the compare threshold, 

apply a suitable filter to remove local noise, such as a 
smoothing or rank filter. Or, take the opposite approach and 
use a sharpen filter to amplify small differences, perhaps 
followed by a smoothing filter. Either method may prove to 
work, depending on the data and application.

Figure 2-1 uses center-neighbor point-pair comparisons in a 3x3 local region to 
illustrate the difference between local threshold and a pre-processing operation for the 
local binary pattern LBP, as follows:

Left image: Original unprocessed local 3x3 region data; compare •	
threshold = 5, dark pixels > 5 from center pixel.

Left center image: Compare threshold = 10; note pattern shape is •	
different simply by changing the threshold.

Right center image: After a Laplacian sharpening filter is applied •	
to 3x3 region, note that the center pixel value is changed from 52 
to 49, so with the compare threshold set to 5 the pattern is now 
different from original on the left.

Right image: Threshold on Laplacian filtered data set to 10; note •	
different resulting binary pattern.

Figure 2-1.  How the LBP can be affected by pre-processing, showing the compare threshold 
value effects. (Left) Compare threshold = 5. (Center left) Compare threshold = 10. (Center 
right) Original data after Laplacian fitler applied. (Right) Compare threshold = 5 on 
Laplacian filtered data
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Spectra Family Pre-Processing
Due to the wide range of methods in the spectra category, it is difficult to generalize the 
potential pre-processing methods that may be useful. For example, SIFT is concerned 
with gradient information computed at each pixel. SURF is concerned with combinations 
of HAAR wavelets or local rectangular regions of integrated pixel values, which reduces 
the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and 
Viola Jones, here are a few hypothetical pre-processing options.

1.	 Do nothing. HAAR features are computed from integral 
images simply by summing local region pixel values; no fine 
structure in the local pixels is preserved in the sum, so one 
option is to do nothing for image pre-processing.

2.	 Noise removal. This does not seem to be needed in the HAAR 
pre-processing stage, since the integral image summing in 
local regions has a tendency to filter out noise.

3.	 Illumination problems. This may require pre-processing;for 
example, contrast enhancement may be a good idea if the 
illumination of the training data is different from the current 
frame. One pre-processing approach in this situation is to 
compute a global contrast metric for the images in the training 
set, and then compute the same global contrast metric in each 
frame and adjust the image contrast if the contrast diverges 
beyond a threshold to get closer to the desired global contrast 
metric. Methods for contrast enhancement include LUT 
remapping, global histogram equalization, and local adaptive 
histogram equalization.

4.	 Blur. If blur is a problem in the current frame, it may 
manifest similar to a local contrast problem, so local contrast 
enhancement may be needed, such as a sharpen filter. 
Computing a global statistical metric such as an SDM as  part 
of the ground truth data to measure local or global contrast 
may be useful; if the current image diverges too much in 
contrast, a suitable contrast enhancement may be applied as a 
pre-processing step.

Note in Figure 2-2 that increasing the local-region contrast results in larger gradients 
and more apparent edges. A feature descriptor that relies on local gradient information is 
affected by the local contrast.
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For the SIFT-type descriptors that use local area gradients, pre-processing may 
be helpful to enhance the local gradients prior to computation, so as to affect certain 
features:

1.	 Blur. This will inhibit gradient magnitude computation and 
may make it difficult to determine gradient direction, so 
perhaps a local rank filter, high-pass filter, or sharpen filter 
should be employed.

2.	 Noise. This will exacerbate local gradient computations and 
make them unreliable, so perhaps applying one of several 
existing noise-removal algorithms can help.

3.	 Contrast. If local contrast is not high enough, gradient 
computations are difficult and unreliable. Perhaps a local 
histogram equalization, LUT remap, rank filter, or even a 
sharpen filter can be applied to improve results.

Basis Space Family Pre-Processing
It is not possible to generalize image pre-processing for basis space methods, since 
they are quite diverse, according to the taxonomy we are following in this work. As 
discussed in Chapters 4, 5, and 6, basis space methods include Fourier, wavelets, visual 
vocabularies, KTL, and others. However, here we provide a few general observations on 
pre-processing.

1.	 Fourier Methods, wavelets, Slant transform, Walsh 
Hadamard, KLT. These methods transform the data into 
another domain for analysis, and it is hard to suggest any 
pre-processing without knowing the intended application. 
For example, computing the Fourier spectrum produces 
magnitude and phase, and phase is shown to be useful in 
feature description to provide invariance to blur, as reported 
in the LPQ linear phase quantization method described in 
Chapter 6, so a blurry image may not be a problem in this case.

Figure 2-2.  The effects of local contrast on gradients and edge detection: (Left) Original 
image and Sobel edges. (Right) Contrasted adjusted image to amplify local region details 
and resulting Sobel edges
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2.	 Sparse coding and visual vocabularies. These methods rely 
on local feature descriptors, which could be SURF, SIFT, LBP, 
or any other desired feature, derived from pixels in the spatial 
domain. Therefore, the method for feature description will 
determine the best approach for pre-processing. For example, 
methods that use correlation and raw pixel patches as sparse 
codes may not require any pre-processing. Or perhaps some 
minimal pre-processing can be used, such as illumination 
normalization to balance contrast, local histogram 
equalization or a LUT contrast remap.

In Figure 2-3, the contrast adjustment does not have much affect on Fourier methods, 
since there is no dominant structure in the image. Fourier spectrums typically reveal that 
the dominant structure and power is limited to lower frequencies that are in the center of 
the quadrant-shifted 2D plot. For images with dominant structures, such as lines and other 
shapes, the Fourier power spectrum will show the structure and perhaps pre-processing 
may be more valuable. Also, the Fourier power spectrum display is scaled to a logarithmic 
value and does not show all the details linearly, so a linear spectrum rendering might show 
the lower frequencies scaled and magnified better for erase of viewing.

Figure 2-3.  In this example, no benefit is gained from pre-processing as shown in the Fourier 
spectrum; (Left) Before. (Right) After contrast adjusting the input image

Polygon Shape Family Pre-Processing
Polygon shapes are potentially the most demanding features when considering image 
pre-processing steps, since as shown in Table 2-1, the range of potential pre-processing 
methods is quite large and the choice of methods to employ is very data-dependent. 
Possibly because of the challenges and intended use-cases for polygon shape 
measurements, they are used only in various niche applications, such as cell biology.

One of the most common methods employed for image preparation prior to 
polygon shape measurements is to physically correct the lighting and select the  subject 
background. For example, in automated microscopy applications, slides containing cells 
are prepared with florescent dye to highlight features in the cells, then the illumination 
angle and position are carefully adjusted under magnification to provide a uniform 
background under each cell feature to be measured; the resulting images are then much 
easier to segment.
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As illustrated in Figures 2-4 and 2-5, if the pre-processing is wrong, the resulting 
shape feature descriptors are not very useful. Here are some of the more salient options 
for pre-processing prior to shape based feature extraction, then we’ll survey a range of 
other methods later in this chapter.

Figure 2-4.  Use of thresholding to solve problems during image pre-processing to prepare 
images for polygon shape measurement: (Left) Original image. (Center) Thresholded red 
channel image. (Right) Perimeter tracing above a threshold

Figure 2-5.  Another sequence of morphological pre-processing steps preceding polygon 
shape measurement: (Left) Original image. (Center) Range thresholded and dilated red 
color channel. (Right) Morphological perimeter shapes taken above a threshold

1.	 Illumination corrections. Typically critical for defining 
the shape and outline of binary features. For example, if 
perimeter tracking or boundary segmentation is based on 
edges or thresholds, uneven illumination will cause problems, 
since the boundary definition becomes indistinct. If the 
illumination cannot be corrected, then other segmentation 
methods not based on thresholds are available, such as 
texture-based segmentation.

2.	 Blur and focus corrections. Perhaps not as critical as 
illumination for polygon shape detection, since the segmentation 
of object boundary and shape is less sensitive to blur.

3.	 Filtering and noise removal. Shape detection is somewhat 
tolerant of noise, depending on the type of noise. Shot 
noise or spot noise may not present a problem, and is easily 
removed using various noise-cleaning methods.
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4.	 Thresholding. This is critical for polygon shape detection 
methods. Many thresholding methods are employed, 
ranging from the simple binary thresholding to local adaptive 
thresholding methods discussed later in this chapter. 
Thresholding is a problematic operation and requires 
algorithm parameter fine-tuning in addition to careful control 
of the light source position and direction to deal with shadows.

5.	 Edge enhancements. May be useful for perimeter contour 
definition.

6.	 Morphology. One of the most common methods employed 
to prepare polygon shapes for measurement, covered later in 
this chapter in some detail. Morphology is used to alter the 
shapes, presumably for the better, mostly by combinations 
or pipelines of erosion and dilation operations, as shown 
in Figure 2-5. Morphological examples include object area 
boundary cleanup, spur removal, and general line and 
perimeter cleanup and smoothing.

7.	 Segmentation. These methods use structure or texture in 
the image, rather than threshold, as a basis for dividing an 
image into connected regions or polygons. A few common 
segmentation methods are surveyed later in this chapter.

8.	 Area/Region processing. Convolution filter masks such as 
sharpen or blur, as well as statistical filters such as rank filters 
or media filters, are potentially useful prior to segmentation.

9.	 Point processing. Arithmetic scaling of image data point by 
point, such as multiplying each pixel by a given value followed 
by a clipping operation, as well as LUT processing, often is 
useful prior to segmentation.

10.	 Color space conversions. Critical for dealing accurately with 
color features, covered later in this chapter.

As shown In Figure 2-4, a range thresholding method uses the red color channel, 
since the table background has a lot of red color and can be thresholded easily in red to 
remove the table top. The image is thresholded by clipping values outside an intensity 
band; note that the bottom right USB stick is gone after thresholding, since it is red and 
below the threshold. Also note that the bottom center white USB stick is also mostly 
gone, since it is white (max RGB values) and above the threshold. The right image shows 
an attempt to trace a perimeter above a threshold; it’s still not very good, as more pre-
processing steps are needed.
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The Taxonomy of Image Processing Methods
Before we survey image pre-processing methods, it is useful to have a simple taxonomy 
to frame the discussion. The taxonomy suggested is a set of operations, including point, 
line, area, algorithmic, and data conversions, as illustrated in Figure 2-6. The basic 
categories of image pre-processing operations introduced in Figure 2-1 fit into this simple 
taxonomy. Note that each stage of the vision pipeline, depending on intended use, may 
have predominant tasks and corresponding pre-processing operations.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Matching, Classification

Augment, Render, Control 

Vision Pipeline Stage Operation

Point

Line

Area

Algorithmic

Data conversion

Figure 2-6.  Simplified, typical image processing taxonomy, as applied across the  
vision pipeline

We provide a brief introduction to the taxonomy here, followed by a more detailed 
discussion in Chapter 5. Note that the taxonomy follows memory layout and memory access 
patterns for the image data. Memory layout particularly affects performance and power.

Point
Point operations deal with one pixel at a time, with no consideration of neighboring 
pixels. For example, point processing operations can be divided into math, Boolean, 
and pixel value compare substitution sections, as shown in Table 2-2 in the section later 
on “Point Filtering.” Other point processing examples include color conversions and 
numeric data conversions.

Line
Line operations deal with discrete lines of pixels or data, with no regard to prior or 
subsequent lines. Examples include the FFT, which is a separable transform, where  
pixel lines and columns can be independently processed in parallel as 1D FFT line 
operations. If an algorithm requires lines of data, then optimizations for image  
pre-processing memory layout, pipelined read/write, and parallel processing can be 
made. Optimizations are covered in Chapter 8.
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Area
Area operations typically require local blocks of pixels—for example, spatial filtering via 
kernel masks, convolution, morphology, and many other operations. Area operations 
generate specific types of memory traffic, and can be parallelized using fine-grained 
methods such as common shaders in graphics processors and coarse-grained thread 
methods.

Algorithmic
Some image pre-processing methods are purely serial or algorithmic code. It is difficult 
or even impossible to parallelize these blocks of code. In some cases, algorithmic blocks 
can be split into a few separate threads for coarse-grained parallelism or else pipelined, 
as discussed in Chapter 8.

Data Conversions
While the tasks are mundane and obvious, significant time can be spent doing simple 
data conversions. For example, integer sensor data may be converted to floating point for 
geometric computations or color space conversions.  Data conversions are a significant 
part of image pre-processing in many cases. Example conversions include:

Integer bit-depth conversions (8/16/32/64)•	

Floating point conversions (single precision to double precision)•	

Fixed point to integer or float•	

Any combination of float to integer and vice versa•	

Color conversions to and from various color spaces•	

Conversion for basis space compute, such as integer to and from •	
float for FFT

Design attention to data conversions and performance are in order and can provide 
a good return on investment, as discussed in Chapter 8.

Colorimetry
In this section, we provide a brief overview of color science to guide feature description, 
with attention to color accuracy, color spaces, and color conversions. If a feature 
descriptor is using color, then the color representation and processing should be carefully 
designed, accurate, and suited to the application. For example, in some applications it 
is possible to recognize an object using color alone, perhaps recognizing an automobile 
using its paint color, assuming that the vendor has chosen a unique paint color each 
year for each model. By combining color with another simple feature, such as shape, an 
effective descriptor can be devised.
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Color Science is a well-understood field defined by international standards and 
amply described in the literature [249,250,251]. We list only a few resources here.

The Rochester Institute of Technology’s Munsel Color Science •	
Laboratory is among the leading research institutions in the 
area or color science and imaging. It provides a wide range of 
resources and has strong ties to industry imaging giants such as 
Kodak, Xerox, and others.

The International Commission on Illumination (CIE) provides •	
standard illuminant data for a range of light sources as it pertains 
to color science, as well as standards for the well-known color 
spaces CIE XYZ, CIE Lab, and CIE Luv.

The ICC International Color Consortium provides the ICC •	
standard color profiles for imaging devices, as well as many other 
industry standards, including the sRGB color space for color 
displays.

Proprietary color management systems, developed by industry •	
leaders, include the Adobe CMM and Adobe RGB, Apple 
ColorSync, and HP ColorSmart; perhaps the most advanced is 
Microsoft’s Windows Color System, which is based on Canon’s 
earlier Kyuanos system using on CIECAM02.

Overview of Color Management Systems
A full-blown color management system may not be needed for a computer vision 
application, but the methods of color management are critical to understand when you 
are dealing with color. As illustrated in Figure 2-7, a color management system converts 
colors between the device color spaces, such as RGB or sRGB, to and from a colorimetric 
color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform color gamut mapping. 
Since each device can reproduce color only within a specific gamut or color range, 
gamut mapping is required to convert the colors to the closest possible match, using the 
mathematical models of each color device.
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Illuminants, White Point, Black Point, and Neutral Axis
An illuminant is a light source such as natural light or a fluorescent light, defined as the 
white point color by its spectral components and spectral power or color temperature. 
The white point color value in real systems is never perfectly white and is a measured 
quantity. The white point value and the oppositinal black point value together define 
the endpoints of the neutral axis (gray scale intensity) of the color space, which is not a 
perfectly straight color vector.

Color management relies on accurate information and measurements of the light 
source, or the illuminant. Color cannot be represented without accurate information 
about the light source under which the color is measured, since color appears different 
under florescent light versus natural light, and so on. The CIE standards define several 
values for standard illuminants, such as D65, shown in Figure 2-8.

Figure 2-7.  Color management system with an RGB camera device model, sRGB display 
device model, CMYK printer device model, gamut mapping module, and an illuminant model
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Device Color Models
Real devices like printers, displays, and cameras conventionally reproduce colors as 
compared against standard color patches that have been measured using calibrated 
light sources and spectrographic equipment—for example, the widely used Munsel 
color patches that define color in terms hue, value, and chroma (HVC) against standard 
illuminants. In order to effectively manage colors for a given device, a mathematical 
model or device color model must be created for each device, defining the anomalies in 
the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally 
characterized and modeled in a laboratory to create a mathematical device model, 
mapping the color gamut of each device against standard illumination models. The 
device model is used in the gamut transforms between color spaces.

Devices typically represent color using the primary and secondary colors RGB 
and CYMK. RGB is a primary, additive color space; starting with black, the RGB 
color primaries red, green, and blue are added to create colors. CYMK is a secondary 
color space, since the color components cyan, yellow, and magenta, are secondary 
combinations of the RGB primary colors; cyan = green plus blue, magenta = red plus blue, 
and yellow = red plus green. CYMK is also a subtractive color space, since the colors are 
subtracted from a white background to create specific colors.

Figure 2-8.  (Left) Representation of a color space in three dimensions, neutral axis for 
the amount of white, hue angle for the primary color, and saturation for amount of color 
present. (Right) CIE XYZ chromaticity diagram showing values of the standard illuminant 
D65 OE as the white point, and the color primaries for R,G and B
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Color Spaces and Color Perception
Colorimetric spaces represent color in abstract terms such as lightness, hue or color, 
and color saturation. Each color space is designed for a different reason, and each color 
space is useful for different types of analysis and processing. Example simple color spaces 
include HSV (hue, saturation, value) and HVC (hue, value, chroma). In the case of the CIE 
color spaces, the RGB color components are replaced by the standardized value CIE XYZ 
components as a basis for defining the CIE Luv and CIE Lab color spaces.

At the very high end of color science, we have the more recent CIECAM02 
color models and color spaces such as Jch and Jab. CIECAM02 goes beyond just 
the colorimetry of the light source and the color patch itself to offer advanced color 
appearance modeling considerations that include the surroundings under which colors 
are measured [254,249].

While CIECAM02 may be overkill for most applications, it is worth some study. Color 
perception varies widely based on the surrounding against which the colors are viewed, 
the spectrum and angles of combined direct and ambient lighting, and the human visual 
system itself, since people do not all perceive color in the same way.

Gamut Mapping and Rendering Intent
Gamut mapping is the art and science of converting color between two color spaces and 
getting the best fit. Since the color gamuts of each device are different, gamut mapping 
is a challenge, and there are many different algorithms in use, with no clear winner. 
Depending on the intent of the rendering, different methods are useful—for example, 
gamut mapping from camera color space to a printer color space is different from 
mapping to an LCD display for viewing.

The CAM02 system provides a detailed model for guidance. For example, a color 
imaging device may capture the color blue very weakly, while a display may be able 
to display blue very well. Should the color gamut fitting method use color clipping or 
stretching? How should the difference between color gamuts be computed? Which 
color space? For an excellent survey of over 90 gamut mapping methods, see the work of 
Morovic [252].

In Figure 2-9 (left image), the sRGB color space is shown as fitting inside the Adobe 
RGB color space, illustrating that sRGB does not cover a gamut as wide as Adobe RGB. 
Each color gamut reproduces color differently, and each color space may be linear or 
warped internally. The right image in Figure 2-9 illustrates one gamut mapping method 
to determine the nearest color common to both color gamuts, using Euclidean distance 
and clipping; however, there are many other gamut mapping distance methods as well. 
Depending on the surrounding light and environment, color perception changes further 
complicating gamut mapping.



Chapter 2 ■ Image Pre-Processing

56

In gamut mapping there is a source gamut and a destination gamut. For example, the 
source could be a camera and the destination could be an LCD display. Depending on 
the rendering intent of the gamut conversion, different algorithms have been developed 
to convert color from source to destination gamuts. Using the perceptual intent, color 
saturation is mapped and kept within the boundaries of the destination gamut in an 
effort to preserve relative color strength; and out-of-gamut colors from the source are 
compressed into the destination gamut, which allows for a more reversible gamut map 
translation. Using the colorimetric intent, colors may be mapped straight across from 
source to destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied 
to the intensity channel to help the human eye better visualize the data, since the gamma 
curve brightens up the dark regions and compresses the light regions of the image, similar 
to the way the human visual system deals with light and dark regions. However, gamut 
correction bears no relationship to the true sensor data, so a calibrated, colorimetrically 
sound approach is recommended instead.

Practical Considerations for Color Enhancements
For image pre-processing, the color intensity is usually the only color information that 
should be enhanced, since the color intensity alone carries a lot of information and is 
commonly used. In addition, color processing cannot be easily done in RGB space while 
preserving relative color. For example, enhancing the RGB channels independently with 
a sharpen filter will lead to Moiré fringe artifacts when the RGB channels are recombined 
into a single rendering. So to sharpen the image, first forward-convert RGB to a color 

Figure 2-9.  The central problem of gamut mapping: (Left) Color sRGB and Adobe RGB 
color gamuts created using Gamutvision software. (Right) Gamut mapping details
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space such as HSV or YIQ, then sharpen the V or Y component, and then inverse-convert 
back to RGB. For example, to correct illumination in color, standard image processing 
methods such as LUT remap or histogram equalization will work, provided they are 
performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a 
few methods. (1) The G color channel is a good proxy for gray scale information, since as 
shown in the sensor discussion in Chapter 1, the RB wavelengths in the spectrum overlap 
heavily into the G wavelengths. (2) Simple conversion from RGB into gray scale intensity I 
can be done by taking I = R+G+B / 3. (3) The YIQ color space, used in the NTSC television 
broadcast standards, provides a simple forward/backward method of color conversion 
between RGB and a gray scale component Y, as follows:
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Color Accuracy and Precision
If color accuracy is important, 8 bits per RGB color channel may not be enough. It is 
necessary to study the image sensor vendor’s data sheets to understand how good the 
sensor really is. At the time of this writing, common image sensors are producing 10 to 
14 bits of color information per RGB channel. Each color channel may have a different 
spectral response, as discussed in Chapter 1.

Typically, green is a good and fairly accurate color channel on most devices; red is 
usually good as well and may also have near infrared sensitivity if the IR filter is removed 
from the sensor; and blue is always a challenge since the blue wavelength can be hardest 
to capture in smaller silicon wells, which are close to the size of the blue wavelength, so  
the sensor vendor needs to pay special attention to blue ssnsing details.

Spatial Filtering
Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering, 
in contrast to filtering in the frequency domain using Fourier methods. Spatial filters are 
alternatives to frequency domain methods, and versatile processing methods are possible 
in the spatial domain.
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Convolutional Filtering and Detection
Convolution is a fundamental signal processing operation easily computed as a discrete 
spatial processing operation, which is practical for 1D, 2D, and 3D processing. The basic 
idea is to combine, or convolve, two signals together, changing the source signal to be 
more like the filter signal. The source signal is the array of pixels in the image; the filter 
signal is a weighted kernel mask, such as a gradient peak shape and oriented edge shape 
or an otherwise weighted shape. For several examples of filter kernel mask shapes, see 
the section later in the chapter that discusses Sobel, Scharr, Prewitt, Roberts, Kirsch, 
Robinson, and Frei-Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass, 
and high-pass filters, but many filter shapes are possible to detect features, such as edge 
detection kernels tuned sensitive to edge orientation, or even point, corner, and contour 
detectors. Convolution is used as a detector in the method of convolution networks [85], 
as discussed in Chapter 4.

The  sharpen kernel mask in Figure 2-10 (center image) is intended to amplify the 
center pixel in relation to the neighboring pixels. Each pixel is multiplied by its kernel 
position, and the result (right image) shows the center pixel as the sum of the convolution, 
which has been increased or amplified in relation to the neighboring pixels.

-(35 + 43 + 49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67
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Figure 2-10.  Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen 
filter, and resulting image data

A convolution operation is typically followed up with a set of postprocessing point 
operations to clean up the data. Following are some useful postprocessing steps; many 
more are suggested in the “Point Filters” section that follows later in the chapter.
 
switch (post_processor)
{
case RESULT_ASIS:
        break;
case RESULT_PLUS_VALUE:
        sum += value;
        break;
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case RESULT_MINUS_VALUE:
        sum -= value;
        break;
case RESULT_PLUS_ORIGINAL_TIMES_VALUE:
        sum = sum + (result * value);
        break;
case RESULT_MINUS_ORIGINAL_TIMES_VALUE:
        sum = sum - (result * value);
        break;
case ORIGINAL_PLUS_RESULT_TIMES_VALUE:
        sum = result + (sum * value);
        break;
case ORIGINAL_MINUS_RESULT_TIMES_VALUE:
        sum = result - (sum * value);
        break;
case ORIGINAL_LOW_CLIP:
        sum = (result < value ? value : result);
        break;
case ORIGINAL_HIGH_CLIP:
        sum = (result > value ? value : result);
        break;
}
 
switch (post_processing_sign)
{
case ABSOLUTE_VALUE:
        if (sum < 0) sum = -sum;
        if (sum > limit) sum = limit;
        break;
case POSITIVE_ONLY:
        if (sum < 0) sum = 0;
        if (sum > limit) sum = limit;
        break;
case NEGATIVE_ONLY:
        if (sum > 0) sum = 0;
        if (-sum > limit) sum = -limit;
        break;
case SIGNED:
        if (sum > limit) sum = limit;
        if (-sum > limit) sum = -limit;
        break;
}
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Convolution is used to implement a variety of common filters including:

•	 Gradient or sharpen filters, which amplify and detect maxima 
and minima pixels. Examples include Laplacian.

•	 Edge or line detectors, where lines are connected gradients 
that reveal line segments or contours. Edge or line detectors 
can be steerable to a specific orientation, like vertical, diagonal, 
horizontal, or omni-directional; steerable filters as basis sets are 
discussed in Chapter 3.

•	 Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection
Besides convolutional methods, kernels can be devised to capture regions of pixels 
generically for statistical filtering operations, where the pixels in the region are sorted into 
a list from low to high value. For example, assuming a 3x3 kernel region, we can devise 
the following statistical filters:
 
sort(&kernel, &image, &coordinates, &sorted_list);
         
switch (filter_type)
case RANK_FILTER:
        // Pick highest pixel in the list, rank = 8 for a 3x3 kernel 0..8
        // Could also pick the lowest, middle, or other rank
        image[center_pixel] = sorted_list[rank];
        break;
case MEDIAN_FILTER:
        // Median value is kernel size / 2, (3x3=9)/2=4 in this case
        image[center_pixel] = sorted_list[median];
        break;
case MAJORITY_FILTER:
        // Find the pixel value that occurs most often, count sorted pixel values
        count(&sorted_list, &counted_list);
        image[center_pixel] = counted_list[0];
        break;
}
 

The rank filter is a simple and powerful method that sorts each pixel in the region 
and substitutes a pixel of desired rank for the center pixel, such as substitution of the 
highest pixel in the region for the center pixel, or the median value or the majority value.
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Shape Selection or Forming Kernels
Any regional operation can benefit from shape selection kernels to select pixels from 
the region and exclude others. Shape selection, or forming, can be applied as a pre-
processing step to any image pre-processing algorithm or to any feature extraction 
method. Shape selection kernels can be binary truth kernels to select which pixels from 
the source image are used as a group, or to mark pixels that should receive individual 
processing. Shape selection kernels, as shown in Figure 2-11, can be applied to local 
feature descriptors and detectors also; similar but sometimes more complex local region 
pixel selection methods are often used with local binary descriptor methods, as discussed 
in Chapter 4.

F T

FT

F

T

T F T

Figure 2-11.  Truth and shape kernels: (Left) A shape kernel gray kernel position indicating 
a pixel to process or use—for example, a pixel to convolve prior to a local binary pattern 
point-pair comparison detector.(Right) A truth shape kernel specifying pixels to use for 
region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering
Individual pixel processing is typically overlooked when experimenting with image 
pre-processing. Point processing is amenable to many optimization methods, as will 
be discussed in Chapter 8. Convolution, as discussed above, is typically followed by 
point postprocessing steps. Table 2-2 illustrates several common pixel point processing 
methods in the areas of math operations, Boolean operations, and compare and 
substitution operations, which seem obvious but can be quite valuable for exploring 
image enhancement methods to enhance feature extraction.
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Table 2-2.  Possible Point Operations

// Math ops // Compare & Substitution ops

NAMES math_ops[] = {

"src + value -> dst",

"src - value -> dst",

"src * value -> dst",

"src / value -> dst",

"(src + dst) * value -> dst",

"(src - dst) * value -> dst",

"(src * dst) * value -> dst",

"(src / dst) * value -> dst",

"sqroot(src) + value -> dst",

"src * src + value -> dst",

"exp(src) + value -> dst",

"log(src) + value -> dst",

"log10(src) + value -> dst",

"pow(src ^ value) -> dst",

"sin(src) + value -> dst",

"cos(src) + value -> dst",

"tan(src) + value -> dst",

"(value / max(all_src)) * src -> dst",

"src - mean(all_src) -> dst",

"absval(src) + value -> dst",

};

// Boolean ops
NAMES bool_ops[] = {

"src AND value -> dst",

"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",

"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",

"LO_CLIP(src, dst) -> dst",

"HI_CLIP(src, value) -> dst",

"HI_CLIP(src, dst) -> dst",

};

NAMES change_ops[] = {

"if (src = thresh) value -> dst",

"if (src = dst) value -> dst",

"if (src != thresh) value -> dst",

"if (src != thresh) src -> dst",

"if (src != dst) value -> dst",

"if (src != dst) src -> dst",

"if (src >=thresh) value -> dst",

"if (src >=thresh) src -> dst",

"if (src >=dst) value -> dst",

"if (src >=dst) src -> dst",

"if (src <= thresh) value -> dst",

"if (src <= thresh) src -> dst",

"if (src <= dst) value -> dst",

"if (src <= dst) src -> dst",

"if (lo <= src <= hi) value -> dst",

"if (lo <= src <= hi) src -> dst",

};
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Noise and Artifact Filtering
Noise is usually an artifact of the image sensor, but not always. There are several 
additional artifacts that may be present in an image as well. The goal of noise removal is 
to remove the noise without distorting the underlying image, and the goal of removing 
artifacts is similar. Depending on the type of noise or artifact, different methods may be 
employed for pre-processing. The first step is to classify the noise or artifact, and then to 
devise the right image pre-processing strategy.

•	 Speckle, random noise. This type of noise is apparently random, 
and can be removed using a rank filter or median filter.

•	 Transient frequency spike. This can be determined using a 
Fourier spectrum and can be removed using a notch filter over 
the spike; the frequency spike will likely be in an outlier region of 
the spectrum, and may manifest as a bright spot in the image.

•	 Jitter and judder line noise. This is an artifact particular to video 
streams, usually due to telecine artifacts, motion of the camera 
or the image scene, and is complex to correct. It is primarily line 
oriented rather than just single-pixel oriented.

•	 Motion blur. This can be caused by uniform or nonuniform 
motion and  is a complex problem; several methods exist for 
removal; see reference[305].

Standard approaches to noise removal are discussed by Gonzalez[4]. The most basic 
approach is to remove outliers, and various approaches are taken, including thresholding 
and local region based statistical filters such as the rank filter and median filter. Weighted 
image averaging is also sometime used for removing noise from video streams; assuming 
the camera and subjects are not moving, it can work well. Although deblurring or 
Gaussian smoothing convolution kernels are sometimes used to remove noise, such 
methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are 
provided by Buades et al.[511]. This source includes a description of the author’s 
NL-means method, which uses nonlocal pixel value statistics in addition to Euclidean 
distance metrics between similar weighted pixel values over larger image regions to 
identify and remove noise.

Integral Images and Box Filters
Integral images are used to quickly find the average value of a rectangular group of 
pixels. An integral image is also known as a summed area table, where each pixel in the 
integral image is the integral sum of all pixels to the left and above the current pixel. The 
integral image can be calculated quickly in a single pass over the image. Each value in 
the summed area table is calculated using the current pixel value from the image i(n,m) 
combined with previous entries s(n,m) made into the summed area table, as follows:

s(x,y) = i(x,y) + s(x-1,y) + s(x,y-1) - s(x-1,y-1)
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As shown in Figure 2-12, to find a HAAR rectangle feature value from the integral 
image, only four points in the integral image table A,B,C,D are used, rather than tens or 
hundreds of points from the image.  The integral image sum of a rectangle region can 
then be divided by the size of the rectangle region to yield the average value, which is also 
known as a box filter.

Figure 2-12.  (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box 
filter value is computed from four points in the integral image: sum = s(A) + s(D) – s(B) – s(C)

Integral images and box filters are used in many computer vision methods, such as 
HAAR filters and feature descriptors. Integral images are also used as a fast alternative to 
a Gaussian filter of a small region, as a way to lower compute costs. In fact, descriptors 
with a lot of overlapping region processing, such as BRISK [131], make effective use 
of integral images for descriptor building and use integral images as a proxy for a fast 
Gaussian blur or convolution.

Edge Detectors
The goal of an edge detector is to enhance the connected gradients in an image, which 
may take the form of an edge, contour, line, or some connected set of edges. Many edge 
detectors are simply implemented as kernel operations, or convolutions, and we survey 
the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,  
Robinson, and Frei-Chen
The Sobel operator detects gradient magnitude and direction for edge detection.  
The basic method is shown here.
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1.	 Perform two directional Sobel filters (x and y axis) using basic 
derivative kernel approximations such as 3x3 kernels, using 
values as follows:
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4.	 Calculate the gradient direction as theta = ATAN (S
y
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x
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5.	 Calculate gradient magnitude Gm = +Sy Sx2 2  

Variations exist in the area size and shape of the kernels used for Sobel edge 
detection. In addition to the Sobel kernels shown above, other similar kernel sets are used 
in practice, so long as the kernel values cancel and add up to zero, such as those kernels 
proposed by Scharr, Prewitt, Roberts, Robinson, and Frei-Chen, as well as Laplacian 
approximation kernels. The Frei-Chen kernels are designed to be used together at a set, 
so the edge is the weighted sum of all the kernels. See reference[4] for more information 
on edge detection masks. Some kernels have compass orientations, such as those 
developed by Kirsch, Robinson, and others. See Figure 2-13.
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Canny Detector
The Canny method [154] is similar to the Sobel-style gradient magnitude and direction 
method, but it adds postprocessing to clean up the edges.

1.	 Perform a Gaussian blur over the image using a selected 
convolution kernel (7x7, 5,5, etc.), depending on the level of 
low-pass filtering desired.

2.	 Perform two directional Sobel filters (x & y axis).

Figure 2-13.  Several edge detection kernel masks
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3.	 Perform nonmaximal value suppression in the direction of 
the gradient to set to zero (0) pixels not on an edge (minima 
values).

4.	 Perform hysteresis thresholding within a band (high,low) of 
values along the gradient direction to eliminate edge aliasing 
and outlier artifacts and to create better connected edges.

Transform Filtering, Fourier, and Others
This section deals with basis spaces and image transforms in the context of image 
filtering, the most common and widely used being the Fourier transform. A more 
comprehensive treatment of basis spaces and transforms in the context of feature 
description is provided in Chapter 3. A good reference for transform filtering in the 
context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image pre-processing easier 
or more effective, or to perform feature description and matching more efficiently. In 
some cases, there is no better way to enhance an image or describe a feature than by 
transforming it to another domain—for example, for removing noise and other structural 
artifacts as outlier frequency components of a Fourier spectrum, or to compact describe 
and encode image features using HAAR basis features.

Fourier Transform Family
The Fourier transform is very well known and covered in the standard reference by 
Bracewell [227], and it forms the basis for a family of related transforms. Several methods 
for performing fast Fourier transform (FFT) are common in image and signal processing 
libraries. Fourier analysis has touched nearly every area of world affairs, through 
science, finance, medicine, and industry, and has been hailed as “the most important 
numerical algorithm of our lifetime” [290]. Here, we discuss the fundamentals of Fourier 
analysis, and a few branches of the Fourier transform family with image pre-processing 
applications.

The Fourier transform can be computed using optics, at the speed of light [516]. 
However, we are interested in methods applicable to digital computers.

Fundamentals
The basic idea of Fourier analysis [227,4,9] is concerned with decomposing periodic 
functions into a series of sine and cosine waves (Figure 2-14). The Fourier transform is 
bi-directional, between a periodic wave and a corresponding series of harmonic basis 
functions in the frequency domain, where each basis function is a sine or cosine function, 
spaced at whole harmonic multiples from the base frequency. The result of the forward 
FFT is a complex number composed of magnitude and phase data for each sine and 
cosine component in the series, also referred to as real data and imaginary data.
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Figure 2-14.  (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine 
and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of 
Fourier basis functions, and periodic functions can be decomposed using the Fourier 
transform into the basic functions as a Fourier series. The Fourier transform is invertible 
between the time domain of discrete pixels and the frequency domain, where both 
magnitude and phase of each basis function are available for filtering and analysis, 
magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform 
is a separable transform and so can be implemented as a set of parallel 1D FFT line 
transforms (Figure 2-15). So, for 2D images and 3D volumes, each dimension, such as 
the x, y, z dimension, can be computed in place, in parallel as independent x lines, then 
the next dimension or y columns can be computed in place as parallel lines, then the z 
dimension can be computed as parallel lines in place, and the final results are scaled 
according to the transform. Any good 1D FFT algorithm can be set up to process 2D 
images or 3D volumes using parallelization.

Figure 2-15.  Fourier series and Fourier transform concepts showing a square wave 
approximated from a series of Fourier harmonics
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For accuracy of the inverse transform to go from frequency space back to pixels, 
the FFT computations will require two double precision 64-bit floating point buffers to 
hold the magnitude and phase data, since transcendental functions such as sine and 
cosine require high floating point precision for accuracy; using 64-bit double precision 
floating point numbers for the image data allows a forward transform of an image to be 
computed, followed by an inverse transform, with no loss of precision compared to the 
original image—of course, very large images will need more than double precision.

Since 64-bit floating point is typically slower and of higher power, owing to the 
increased compute requirements and silicon real estate in the ALU, as well as the heavier 
memory bandwidth load, methods for FFT optimization have been developed using integer 
transforms, and in some cases fixed point, and these are good choices for many applications.

Note in Figure 2-16 that the low-pass filter (center right) is applied to preserve 
primarily low-frequency information toward the center of the plot and it reduces  
high-frequency components toward the edges, resulting in the filtered image at the far right.

Figure 2-16.  Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center 
right) Low-pass filter shape used to multiply against Fourier magnitude. (Right) Inverse 
transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-
transformed into magnitude and phase; the magnitude component is shown as a Fourier 
power spectrum of the magnitude data, which reveals structure in the image as straight 
lines and blocks, or outlier structures or spots that are typically noise. The magnitude can 
be filtered by various filter shapes, such as high-pass, low-pass, band pass, and spot filters 
to remove spot noise, to affect any part of the spectrum.

In Figure 2-16, a circular symmetric low-pass filter shape is shown with a smooth 
distribution of filter coefficients from 1 to 0, with high multiplicands in the center at the 
low frequencies, ramping down to zero toward the high frequencies at the edge. The 
filter shape is multiplied in the frequency domain against the magnitude data to filter 
out the higher frequency components, which are toward the outside of the spectrum 
plot, followed by an inverse FFT to provide the filtered image. The low-frequency 
components are toward the center; typically these are most interesting and so most of 
the image power is contained in the low-frequency components. Any other filter shape 
can be used, such as a spot filter, to remove noise or any of the structure at a specific 
location of the spectrum.
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Fourier Family of Transforms
The Fourier transform is the basis for a family of transforms [4], some of which are:

1.	 DFT, FFT. The discrete version of the Fourier transform, often 
implemented as a fast version, or FFT, commonly used for 
image processing. There are many methods of implementing 
the FFT [227].

2.	 Sine transform. Fourier formulation composed of only sine 
terms.

3.	 Cosine transform. Fourier formulation composed of only 
cosine terms.

4.	 DCT, DST, MDCT. The discrete Fourier transform is 
implemented in several formulations: discrete sine transform 
(DST), discrete cosine transform (DCT), and the modified 
discrete cosine transform (MDCT). These related methods 
operate on a macroblock, such as 16x16 or 8x8 pixel region, 
and can therefore be highly optimized for compute use 
with integers rather than floating point. Typically the DCT 
is implemented in hardware for video encode and decode 
applications for motion estimation of the macro blocks 
from frame to frame. The MDCT operates on overlapping 
macroblock regions for compute efficiency.

5.	 Fast Hartley transform, DHT. This was developed as an 
alternative formulation of the Fourier transform for telephone 
transmission analysis about 1925, forgotten for many years, 
then rediscovered and promoted again by Bracewell[227] as an 
alternative to the Fourier transform. The Hartley transform is a 
symmetrical formulation of the Fourier transform, decomposing 
a signal into two sets of sinusoidal functions taken together 
as a cosine-and-sine or cas( ) function, where cas(vx) ∫ cos(vx) 
+ sin(vx). This includes positive and negative frequency 
components and operates entirely on real numbers for input 
and output. The Hartley formulation avoids complex numbers as 
used in the Fourier complex exponential exp ( j w x ). The Hartley 
tansform has been developed into optimized versions called the 
DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms
Several other transforms may be used for image filtering, including wavelets, steerable filter 
banks, and others that will be described in Chapter 3, in the context of feature description. 
Note that transforms often have many common uses and applications that overlap, such as 
image description, image coding, image compression, and feature description.
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Morphology and Segmentation
For simplicity, we define the goal of morphology as shape and boundary definition, and 
the goal of segmentation is to define regions with internal similarity, such as textural or 
statistical similarity. Morphology is used to identify features as polygon shaped regions that 
can be described with shape metrics, as will be discussed in Chapters 3 and 6, distinct from 
local interest point and feature descriptors using other methods. An image is segmented 
into regions to allow independent processing and analysis of each region according to 
some policy or processing goal. Regions cover an area smaller than the global image but 
usually larger than local interest point features, so an application might make use of global, 
regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by 
Haralick and Shapiro[321]. In practice, segmentation and morphology are not easy: 
results are often less useful than expected, trial and error is required, too many methods 
are available to provide any strict guidance, and each image is different. So here we only 
survey the various methods to introduce the topic and illustrate the complexity. An 
overview of region segmentation methods is shown in Table 2-3.

Table 2-3.  Segmentation Methods

Method Description

Morphological segmentation The region is defined based on thresholding and 
morphology operators.

Texture-based segmentation The texture of a region is used to group like textures 
into connected regions.

Transform-based 
segmentation

Basis space features are used to segment the image.

Edge boundary segmentation Gradients or edges alone are used to define the 
boundaries of the region with edge linking in some 
cases to form boundaries.

Color segmentation Color information is used to define regions.

Super-Pixel Segmentation Kernels and distance transforms are used to group 
pixels and change their values to a common value.

Gray scale / luminance 
segmentation

Gray scale thresholds or bands are used to define the 
regions.

Depth segmentation Depth maps and distance from viewer is used to 
segment the image into foreground, background, or 
other gradations of inter-scene features.
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Binary Morphology
Binary morphology operates on binary images, which are created from other scalar 
intensity channel images. Morphology [9] is used to morph a feature shape into a 
new shape for analysis by removing shape noise or outliers, and by strengthening 
predominant feature characteristics. For example, isolated pixels may be removed using 
morphology, thin features can be fattened, and the predominant shape is still preserved. 
Note that morphology all by itself is quite a large field of study, with applications to 
general object recognition, cell biology, medicine, particle analysis, and automated 
microscopy. We introduce the fundamental concepts of morphology here for binary 
images, and then follow this section with applications to gray scale and color data.

Binary morphology starts with binarizing images, so typically thresholding is first 
done to create images with binary-valued pixels composed of 8-bit black and white 
values, 0-value = black and 255-value = white. Thresholding methods are surveyed later in 
this chapter, and thresholding is critical prior to morphology.

Binary morphology is a neighborhood operation, and can use a forming kernel with 
truth values, as shown in Figure 2-17. The forming kernel guides the morphology process 
by defining which surrounding pixels contribute to the morphology. Figure 2-17 shows 
two forming kernels: kernel a, where all pixels touching the current pixel are considered, 
and kernel b, where only orthogonally adjacent pixels are considered.

Figure 2-17.  3x3 forming kernels and binary erosion and dilation using the kernels;  
other kernel sizes and data values may be useful in a given application. (Image used by 
permission, © Intel Press, from Building Intelligent Systems)
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The basic operations of morphology include Boolean AND, OR, NOT. The notation 
used for the fundamental morphological operations is   for dilation and   for erosion. In 
binary morphology, dilation is a Boolean OR operator, while erosion is a Boolean AND 
operator. In the example provided in Figure 2-17, only kernel elements with a “1” are used 
in the morphology calculation, allowing for neighborhood contribution variations. For 
erosion, the pixels under all true forming kernel elements are AND’d together; the result is 1 
if all are true and the pixel feature remains, otherwise the pixel feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel. 
Erosion attempts to reduce sparse features until only strong features are left. Dilation 
attempts to inflate sparse features to make them fatter, only 1 pixel under the forming 
kernel elements must be true for dilation of the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are 
derived as shown here, where  = dilation and   = erosion.

 
Erode                                  G(f) = f   b
Dilate                                 G(f) = f   b

Opening                        G(f) = (f   b)  b

Closing                        G(f) = (f   b)   b

Morphological Gradient           G(f) = f   b or G(f) = f  b – f  b

Morphological Internal gradient G i(f) = f  -  f  b

Morphological External gradient        G e(f) = f  b -  f      

Gray Scale and Color Morphology
Gray scale morphology is useful to synthesize and combine pixels into homogeneous 
intensity bands or regions with similar intensity values. Gray scale morphology can 
be used on individual color components to provide color morphology affecting hue, 
saturation, and color intensity in various color spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX, 
and MINMAX, where pixels above the MIN are changed to the same value and pixels below 
the MAX are changed to the same value, while pixels within the MINMAX range are changed 
to the same value. MIN and MAX are a form of thresholding, while MINMAX allows bands of 
pixel values to be coalesced into  equal values forming a homogenous region.

Morphology Optimizations and Refinements
Besides simple morphology [9], there are other methods of morphological segmentation 
using adaptive methods [254,255,256]. The simple morphology methods rely on using 
a fixed kernel across the entire image at each pixel and assume the threshold is already 
applied to the image; while the adaptive methods combine the morphology operations 
with variable kernels and variable thresholds based on the local pixel intensity statistics. 
This allows the morphology to adapt to the local region intensity and, in some cases, 
produce better results. Auto-thresholding and adaptive thresholding methods are 
discussed later in this chapter and are illustrated in Figures 2-24 and 2-26.
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Super-Pixel Segmentation
A super-pixel segmentation method [257,258,259,260,261] attempts to collapse similar 
pixels in a local region into a larger super-pixel region of equal pixel value, so similar values 
are subsumed into the larger super-pixel. Super-pixel methods are commonly used for 
digital photography applications to create a scaled or watercolor special effect. Super-pixel 
methods treat each pixel as a node in a graph, and edges between regions are determined 
based on the similarity of neighboring pixels and graph distance. See Figure 2-19.

Euclidean Distance Maps
The distance map, or Euclidean distance map (EDM), converts each pixel in a binary 
image into the distance from each pixel to the nearest background pixel, so the EDM 
requires a binary image for input. The EDM is useful for segmentation, as shown in 
Figure 2-18, where the EDM image is thresholded based on the EDM values—in this case, 
similar to the ERODE operator.

Figure 2-18.  Pre-processing sequence: (Left) Image after thresholding and erosion. 
(Center) EDM showing gray levels corresponding to distance of pixel to black background. 
(Right) Simple binary thresholded EDM image

Figure 2-19.  Comparison of various super-pixel segmentation methods  
(Image © Dr. Radhakrishna Achanta, used by permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value 
histograms, shape factors of each polygon shaped super-pixel, and spatial relationships of 
neighboring super-pixel values. Apparently little work has been done on super-pixel based 
descriptors; however, the potential for several degrees of robustness and invariance seems 
good. We survey a range of super-pixel segmentation methods next.
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Graph-based Super-Pixel Methods
Graph-based methods structure pixels into trees based on the distance of the pixel 
from a centroid feature or edge feature for a region of like-valued pixels. The compute 
complexity varies depending on the method.

•	 SLIC Method [258] Simple Linear Iterative Clusting (SLIC) creates 
super-pixels based on a 5D space, including the CIE Lab color 
primaries and the XY pixel coordinates. The SLIC algorithm takes 
as input the desired number of super-pixels to generate and adapt 
well to both gray scale and RGB color images. The clustering 
distance function is related to the size of the desired number of 
super-pixels and uses a Euclidean distance function for grouping 
pixels into super-pixels.

•	 Normalized Cuts [262,263]  Uses a recursive region partitioning 
method based on local texture and region contours to create 
super-pixel regions.

•	 GS-FH Method [264]  The graph-based Felzenszwalb and 
Huttenlocher method attempts to segment image regions using 
edges based on perceptual or psychological cues. This method 
uses the minimum length between pixels in the graph tree 
structure to create the super-pixel regions. The computational 
complexity is O(n Log n), which is relatively fast.

•	 SL Method [265]  The Super-Pixel Lattice (SL) method finds 
region boundaries within tiled image regions or strips of pixels 
using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods
Gradient ascent methods iteratively refine the super-pixel clusters to optimize the 
segmentation until convergence criteria are reached. These methods use a tree graph 
structure to associate pixels together according to some criteria, which in this case may 
be the RGB values or Cartesian coordinates of the pixels, and then a distance function 
or other function is applied to create regions. Since these are iterative methods, the 
performance can be slow.

•	 Mean-Shift [266]  Works by registering off of the region centroid 
based on a kernel-based mean smoothing approach to create 
regions of like pixels.

•	 Quick-Shift [267] Similar to the mean-shift method but does 
not use a mean blur kernel and instead uses a distance function 
calculated from the graph structure based on RGB values and XY 
pixel coordinates.
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•	 Watershed [268] Starts from local region pixel value minima 
points to find pixel value-based contour lines defining 
watersheds, or basin contours inside which similar pixel values 
can be substituted to create a homogeneous pixel value region.

•	 Turbopixels [269] Uses small circular seed points placed in 
a uniform grid across the image around which super-pixels 
are collected into assigned regions, and then the super-pixel 
boundaries are gradually expanded into the unassigned region, 
using a geometric flow method to expand the boundaries using 
controlled boundary value expansion criteria, so as to gather 
more pixels together into regions with fairly smooth and uniform 
geometric shape and size.

Depth Segmentation
Depth information, such as a depth map as shown in Figure 2-20, is ideal for segmenting 
objects based on distance. Depth maps can be computed from a wide variety of depth 
sensors and methods, including a single camera, as discussed in Chapter 1. Depth 
cameras, such as the Microsoft Kinect camera, are becoming more common. A depth 
map is a 2D image or array, where each pixel value is the distance or Z value.

Figure 2-20.  Depth images from Middlebury Data set: (Left) Original image. (Right) 
Corresponding depth image. Data courtesy of Daniel Scharstein and used by permission

Many uncertainties in computer vision arise out of the problems in locating three-
dimensional objects in a two-dimensional image array, so adding a depth map to the 
vision pipeline is a great asset. Using depth maps, images can be easily segmented 
into the foreground and background, as well as be able to segment specific features or 
objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method, 
so image pre-processing may be required. However, there is no perfect filtering method 
for depth map cleanup. Many practitioners prefer the bi-lateral filter [302] and variants, 
since it preserves local structure and does a better job of handling the edge transitions.
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Color Segmentation
Sometime color alone can be used to segment and threshold. Using the right color 
component can easily filter out features from an image. For example, in Figure 2-6, we 
started from a red channel image from an RGB set, and the goal was to segment out the 
USB sticks from the table background. Since the table is brown and contains a lot of red, 
the red channel provides useful contrast with the USB sticks allowing segmentation via 
red. It may be necessary to color-correct the image to get the best results, such as gamut 
corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding
The goal of thresholding is to segment the image at certain intensity levels to reveal 
features such as foreground, background, and specific objects. A variety of methods 
exist for thresholding, ranging from global to locally adaptive. In practice, thresholding 
is very difficult and often not satisfactory by itself, and must be tuned for the dataset and 
combined with other pre-processing methods in the vision pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications 
that require thresholding, like cell biology and microscopy, pay special attention to cell 
preparation, specimen spacing, and light placement.  Since many images do not respond 
well to global thresholding involving simple methods, local methods are often required, 
which use the local pixel structure and statistical relationships to create effective 
thresholds. Both global and local adaptive methods for thresholding are discussed here.  
A threshold can take several forms:

•	 Floor Lowest pixel intensity allowed

•	 Ceiling Highest pixel intensity allowed

•	 Ramp Shape of the pixel ramp between floor and ceiling, such as 
linear or log

•	 Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding
Thresholding entire images at a globally determined thresholding level is sometimes a 
good place to start to explore the image data, but typically local features will suffer and 
be unintelligible as a result. Thresholding can be improved using statistical methods to 
determine the best threshold levels. Lookup tables (LUT) can be constructed, guided by 
statistical moments to create the floor, ceiling, and ramps and the functions to perform 
rapid LUT processing on images, or false-color the images for visualization.
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Histogram Peaks and Valleys, and Hysteresis Thresholds
Again we turn to the old stand-by, the image histogram. Peaks and valleys in the 
histogram may indicate thresholds useful for segmentation and thresholding [319].  
A hysteresis region marks pixels with similar values, and is easy to spot in the histogram, 
as shown in Figure 2-21. Also, many image processing programs have interactive sliders 
to allow the threshold point and even regions to be set with the pointer device.1 Take 
some time and get to know the image data via the histogram and become familiar with 
using interactive thresholding methods.

Figure 2-21.  Histogram annotated with arrows showing peaks and valleys, and dotted 
lines showing regions of similar intensities defined using hysteresis thresholds

If there are no clear valleys between the histogram peaks, then establishing two 
thresholds, one on each side of the valley, is a way to define a region of hysteresis. Pixel 
values within the hysteresis region are considered inside the object. Further, the pixels 
can be classified together as a region using the hysteresis range and morphology to 
ensure region connectivity.

LUT Transforms, Contrast Remapping
Simple lookup tables (LUTs) are very effective for contrast remapping and global 
thresholding, and interactive tools can be used to create the LUTs. Once the interactive 
experimentation has been used to find the best floor, ceiling, and ramp function, the LUTs 
can be generated into table data structures and used to set the thresholds in fast code. 
False-coloring the image using pseudo-color LUTs is common and quite valuable for 
understanding the thresholds in the data. Various LUT shapes and ramps can be devised. 
See Figure 2-22 for an example using a linear ramp function.

1See the open-source package ImageJ2, and menu item Image ➤ Adjust-Brightness/Contrast for 
interactive thresholding.
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Figure 2-22.  Contrast corrections: (Left) Original image shows palm frond detail 
compressed into a narrow intensity range obscuring details. (Center) Global histogram 
equalization restores some detail. (Right) LUT remap function spreads the intensity values 
to a narrower range to reveal details of the palm fronds. The section of the histogram 
under the diagonal line is stretched to cover the full intensity range in the right image; 
other intensity regions are clipped. The contrast corrected image will yield more gradient 
information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification
Histogram equalization spreads pixel values between a floor and ceiling using a contrast 
remapping function, with the goal of creating a histogram with approximately equal bin 
counts approaching a straight-line distribution. See Figure 2-23. While this method works 
well for gray scale images, color images should be equalized in the intensity channel of 
a chosen color space, such as HSV V. Equalizing each RGB component separately and 
rerendering will produce color moiré artifacts. Histogram equalization uses a fixed region 
and a fixed remapping for all pixels in the region; however, adaptive local histogram 
equalization methods are available [314].

Figure 2-23.  (Left) Original image and histogram. (Right) Histogram equalized image 
and histogram
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It is possible to create a desired histogram shape or value distribution, referred to 
as histogram specification, and then remap all pixel values from the source image to 
conform to the specified histogram shape. The shape may be created directly, or else the 
histogram shape from a second image may be used to remap the source image to match 
the second image.  With some image processing packages, the histogram specification 
may be interactive, and points on a curve may be placed and adjusted to create the 
desired histogram shape.

Global Auto Thresholding
Various methods  have been devised to automatically find global thresholds based 
on statistical properties of the image histogram [320,513,514,515] and in most cases 
the results are not very good unless some image pre-processing precedes the auto 
thresholding. Table 2-4 provides a brief survey of auto thresholding methods, while 
Figure 2-24 displays renderings of each method.

Table 2-4.  Selected Few Global Auto-Thresholding Methods Derived from Basic Histogram 
Features [303]

Method Description

Default A variation of the IsoData method, also knowm as iterative intermeans.

Huang Huang’s method of using fuzzy thresholding.

Intermodes Iterative histogram smoothing.

IsoData Iterative pixel averaging of values above and below a threshold to derive 
a new threshold above the composite average.

Li Iterative cross-entropy thresholding.

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm.

Mean Uses mean gray level as the threshold.

MinError Iterative method from Kittler and Illingworth to converge on a 
minimum error threshold.

Minimum Iterative histogram smoothing, assuming a bimodal histogram.

Moments Tsai’s thresholding algorithm intending to threshold and preserve the 
original image moments.

Otsu Otsu clustering algorithms to set local thresholds by minimizing 
variance.

Percentile Adapts the threshold based on pre-set allocations for foreground and 
background pixels.

RenyiEntropy Another entropy-based method.

Shanbhag Uses fuzzy set metrics to set the threshold.

Triangle Uses image histogram peak, assumes peak is not centered, sets 
threshold in largest region on either side of peak.
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Figure 2-24.  Renderings of selected auto-thresholding methods (Images generated using 
ImageJ auto threshold plug-ins [303])

Local Thresholding
Local thresholding methods take input from the local pixel region and threshold each 
pixel separately. Here are some common and useful methods.

Local Histogram Equalization
Local histogram equalization divides the image into small blocks, such as 32x32 pixels, 
and computes a histogram for each block, then rerenders each block using histogram 
equalization. However, the contrast results may contain block artifacts corresponding 
to the chosen histogram block size. There are several variations for local histogram 
equalization, including Contrast Limited Adaptive Local Histogram Equalization 
(CLAHE) [304].

Integral Image Contrast Filters
A histogram-related method uses integral images to compute local region statistics 
without the need to compute a histogram, then pixels are remapped accordingly, which is 
faster and achieves a similar effect (Figure 2-25).
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2See the open-source package Imagej2, menu item Image ➤ Adjust ➤ Auto Local Threshold | Auto 
Threshold.

Figure 2-25.  Integral image filter from ImageJ to remap contrast in local regions, similar to 
histogram equalization: (Left) Original. (Center) 20x20 regions. (Right) 40x40 regions

Local Auto Threshold Methods
Local thresholding adapts the threshold based on the immediate area surrounding each 
target pixel in the image, so local thresholding is more like a standard area operation or 
filter [513,514,515]. Local auto thresholding methods are available in standard software 
packages.2 Figure 2-26 provides some example adaptive local thresholding methods, 
summarized in Table 2-5.

Figure 2-26.  Renderings of a selected few local auto and local thresholding methods using 
ImageJ plug-ins [303]
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Summary
In this chapter, we surveyed image processing as a pre-processing step that can improve 
image analysis and feature extraction. We developed a taxonomy of image processing 
methods to frame the discussion, and applied the taxonomy to examples in the four 
fundamental vision pipelines, as will be developed in the taxonomy of Chapter 5, 
including (1) local binary descriptors such as LBP, ORB, FREAK; (2) spectra descriptors 
such as SIFT, SURF; (3) basis space descriptors such as FFT, wavelets; and (4) polygon 
shape descriptors such as blob object area, perimeter, and centroid. Common problems 
and opportunities for image pre-processing were discussed. Starting with illumination, 
noise, and artifact removal, we covered a range of topics including segmentation 
variations such as depth segmentation and super-pixel methods, binary, gray scale and 
color morphology, spatial filtering for convolutions and statistical area filters, and basis 
space filtering.

Table 2-5.  Selected Few Local Auto-thresholding Methods [303]

Method Description

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and 
local midgray values

Mean Uses the local gray level mean as the threshold

Median Uses the local gray level mean as the threshold

MidGrey Uses the local area gray level mean - C (where C is a constant)

Niblack Niblack’s algorithm is:
p = (p > mean + k * standard_deviation - c) ? object : background

Sauvola Sauvola’s variation of Niblack:
p = (p > mean * (1 + k *( standard_deviation / r - 1))) ? object : background
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