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Chapter 5

Xeon Phi Cache and Memory 
Subsystem

The preceding chapter showed how the Intel Xeon Phi coprocessor uses a two-dimensional tiled architecture 
approach to designing manycore coprocessors. In this architecture, the cores are replicated on die and connected 
through on-die wire interconnects. The network connecting the various functional units is a critical piece that may 
become a bottleneck as more cores and devices are added to the network in a chip multiprocessor (CMP) design such 
as Intel Xeon Phi uses. The interconnect design choices are primarily determined by the number of cores, expected 
interconnect performance, chip area limitation, power limit, process technology, and manufacturing efficiencies. 
The manycore interconnect technology—although it has benefited from existing research on other interconnect 
topologies in multiprocessor systems and the close interaction among cores, cache subsystem, memory, and external 
bus—makes interconnect design for coprocessors especially challenging.1

The Interconnect Topologies for Manycore Processors 
Various topologies can be used to connect the cores in a multicore chip. The most common interconnect topologies in 
current use are described in the following sections.

Bidirectional Ring Topology
The simplest interconnect topology is bidirectional ring topology, where the cores connect with one another through 
one or multiple hops in both directions (Figure 5-1). The low complexity of the implementation is attractive for a low 
number of cores. The average number of hops is N/4, where N is the number of cores.

1Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. “Interconnections in Multi-core Architectures: Understanding Mechanisms, 
Overheads and Scaling.” Proc. Intl. Symp. on Computer Architecture (ISCA), 2005, pp. 408–419; and D. N. Jayasimha, Bilal Zafar, 
and Yatin Hoskote. “On-Chip Interconnection Networks: Why They Are Different and How to Compare Them.” Technical Report, 
Intel Corp., 2006.



Chapter 5 ■ Xeon Phi Cache and Memory Subsystem

66

This ring design’s simplicity is offset by latency, bottleneck, and fault-tolerance issues:

As the number of cores N increases, the number of hops and hence the latency increases. •	

A single bidirectional path to move data from one core to another can easily become a •	
bottleneck as the data transfer load increases. 

Any link failure will cause the chip to become nonfunctional.•	

Two-Dimensional Mesh Topology 
Two-dimensional (2D) mesh topology (Figure 5-2) is a popular solution for interconnecting cores in a multicore design 
thanks to being more scalable than a ring network and a more simplified layout in 2D tiled architecture. The routing 
protocol plays a significant role in the performance of such a network.

core-2

core-1

core-0 core-n

Figure 5-1.  Bidirectional ring topology

Core 0

Core n

Figure 5-2.  2D mesh network
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2D mesh topology has the following drawbacks:

The power efficiency of a 2D mesh network is relatively low compared to that of a  •	
ring network. 

The 2D mesh topology is nonuniform, because the cores at the edges and corners have fewer •	
communication channels and hence less bandwidth available to them.

Two-Dimensional Torus Topology
Two-dimensional torus topology improves on 2D mesh by adding wrap-around wires to the mesh network, as shown 
in Figure 5-3. This topology removes the nonuniformity of the edge nodes in a 2D mesh, reduces the maximum and 
average hop counts, and doubles the bisection bandwidth. The downside is the extra wiring that spans the length of 
the die. Folded torus topology can be used, however, to reduce the wire length to two tiles.

Core 0

Core n

Figure 5-3.  2D torus topology

Other Topologies
Other networks—such as 3D mesh, 3D torus, fat tree, and hierarchical ring networks—have their respective 
technological merits, but their wiring density and power requirements are impractical for on-chip interconnects at 
the current level of technology.

The Ring Interconnect Architecture in Intel Xeon Phi
The Xeon Phi coprocessor implemented bidirectional high performance on the chip ring carrying data and 
instructions to various agents, such as core, GDDR controllers, and tag directory (TD).2 These agents are connected 
to the ring through ringstops, as shown in Figure 5-1. Ringstops handle all traffic coming on and off the ring for the 
attached agents. 

2Tags are numbers used to uniquely identify the cache lines. The tag directory is a structure in the cache design that holds  
information about the cache lines residing in the processor cache.
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L2 Cache
The L2 cache is the secondary cache for the core. The L2 cache is inclusive of L1 cache. It is okay to have a cache line 
in L2 only, but L1 cache lines must have a copy in L2. TD, used for cache coherency, only tracks L2 entries. L2 has 
ECC, which implements single error correction and double error detections. With 32 GB (35 bits) of address range, 
each L2 cache associated with a core has 512 kB size divided into 1024 sets and 8-way associativity per set with  
64 bytes/1 cache line per way. The cache is divided into two logical banks. There are 32 read buffers of one cache  
line each. There is a 16-entry write-out/snoop-out buffer of one cache line each, so that a minimum of four of these 
buffers is guaranteed to be available to snoop for outgoing data.

L2 latency is 11 cycles. If there is an L1 miss but an L2 hit, the latency is 17 cycles if the requesting thread is 
waiting for the data and 21 cycles if the thread is put to sleep. L2 cache uses pseudo-LRU implementation as a 
replacement algorithm.

Tag Directory
The Xeon Phi coprocessor implements a physically distributed TD for data coherency among the cores on the ring.  
It filters and forwards requests to appropriate receiving agents on the ring. It is also responsible for sending the snoop 
requests to various cores on behalf of the requesting core and returns global L2 line state to the requesting core. It also 
initiates the communication with the main memory via on-die memory controllers.

The TD is physically attached to each core and gets an equal portion of the whole address space to provide 
balanced load on the address ring. The TD that is referenced on a L2 miss is not necessarily collocated on the same core 
that generated the miss but is collocated based on the address. Every physical address is uniquely mapped through a 
reversible one-to-one mapping hash function. L2 caches are kept coherent through TDs and referenced on an L2 miss.  
A TD tag contains the address, state, and an ID for the owner of the cache line needed to perform the coherency functions.

64 Byte Data
Ring

Address

Acknowledgment

Figure 5-4.  Intel Xeon Phi bidirectional bus

In the Xeon Phi architecture, there are three pairs of independent rings traveling in two opposite directions 
(bidirectional), as shown in Figure 5-4. The three pairs carry data, addresses, and acknowledgments. The data ring 
is 64 bytes wide to feed the high data bandwidth required by a large number of cores. Messages placed on the ring 
are deterministically delivered to the destination or may remain (bounce) on the ring until they are captured by the 
destination. The address ring carries address and read/write commands and the acknowledgment ring carries flow 
control and coherence messages.
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Data Transactions
On an L2 cache miss by an executing instruction, the core sends the address to TDs through the address ring. If the 
data are found in another core’s L2, a forwarding request is sent to that core’s L2 over the address link and the data are 
returned through the data ring. If the requested data are not found in any of the core’s cache, a request is sent to the 
memory controller from the TD.

The memory controllers are distributed evenly on the ring and the address has all-to-all mapping between 
the TD and memory controllers. The addresses are evenly distributed among the memory controllers to reduce 
bottlenecks and to provide optimal bandwidth.

Once a memory controller retrieves the requested 64-byte size cache line, it is returned over the data ring to the 
requesting core.

The Cache Coherency Protocol
The Xeon Phi coprocessor uses a modified MESI protocol for cache coherency control between distributed cores 
using a TD-based globally owned, locally shared (GOLS) protocol. To start with, let’s review what an unmodified MESI 
protocol looks like. The standard MESI state diagram and policies are shown in Table 5-1.

Table 5-1.  Standard MESI Protocol

L2 Cache State State Definition

M Modified: Cache line is modified relative to memory. Only one core can have a given line in  
M state at a time.

E Exclusive: Cache line is consistent with memory. Only one core can have a cache line in E state  
at a time.

S Shared: Cache line is shared and consistent with other cores, but may not be consistent with 
memory. Multiple cores can have a given cache line in S state at a time.

I Invalid: Cache line is not present in the cores L1 or L2.

Initially all cache lines are in the invalid (I) state. If the data are loaded for writing, the corresponding cache 
line changes to the modified (M) state. If the data are loaded for read and hits the cache in another core, it is marked 
shared (S) state; otherwise it is marked exclusive (E) state. If a modified cache line is read or written from the same 
core, it stays in the M state. If a second core reads this modified cache line, the data are sent to the second core and the 
GDDR memory update can be delayed due to the global coherency GOLS protocol with the help of TD. If a modified 
cache line has to be evicted due to a local capacity miss, or if a remote core tries to update the same cache line by a 
read for ownership (RFO),3 the cache line is written back to GDDR memory and goes to the I state. If an eviction is 
caused by the remote core’s write request, the corresponding cache line in the remote core gets to the E state first and 
then to the M state after the store retires. If a cache line in the E state is locally written to, it changes to the M state. If a 
cache line in the S state is requested by another core for write, the state changes to the I state and the cache line is sent 
directly to the requesting core. The state machine representing MESI policies implemented in a local L1/L2 cache is 
shown in Figure 5-5.

3The RFO is the process common to many cache-based processor architectures of reading a cache line from the memory into the 
cache before it can be written to.
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Table 5-2.  GOLS Protocol

TD State State Definition

GOLS Globally owned locally shared: Cache line is present in one or more cores but inconsistent with  
memory (GDDR).

GS Globally shared: Cache line is present in one or more cores and consistent with memory.

GE/GM Globally exclusive/modified: Cache line is owned by one and only one core and may or may not be 
consistent with the memory. The TD does not know whether the core has modified the cache line or not.

GI Globally invalid: Cache line is not present in any core.

Exclusive

Invalid Modified

Shared

Local RD No
Hit

RD Hit

Local WR

Local Evict with WB /Other
Core RFO with WB Local RD

/WR

Other 
Core  RFO

Other core 
RD with WB 
to GDDR

Other 
Core RDOther core

RD

Other 
Core  RFO

RFO

Local
WR

Local 
RD

Figure 5-5.  Standard MESI cache coherency policies. RD = read; WR = write; WB = writeback to GDDR; RFO = read for 
ownership

In order to remove the potential performance bottleneck resulting from its lack of the owner (O) state that is a 
component of the MOESI protocol, the Xeon Phi coprocessor has implemented TD to manage the global state so the 
modified cache lines can be shared between the cores without writing back to GDDR memory, thus reducing shared 
cache-line access between cores. The TD implements the GOLS protocol. By complementing the MESI protocol with 
the GOLS protocol, it is possible to emulate the O state. Table 5-2 and Figures 5-6a and 5-6b show the augmented 
MESI and GOLS protocols.
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Figure 5-6a.  Intel Xeon Phi augmented MESI with GOLS protocol in the core. RD = read; WR = write; WB = writeback 
to GDDR; RFO = read for ownership; TD = tag directory
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Figure 5-6b.  Intel Xeon Phi augmented MESI with GOLS protocol in the TD. RD = read; WR = write; WB = writeback to 
GDDR; RFO = read for ownership; TD = tag directory; C2C = cache to cache
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The augmented MESI with GOLS protocol is depicted in Figure 5-6 and works as follows. Initially, all the cache 
lines in the cores and TD state are invalid (I state for L1/L2 and GI state for TD). If one of the cores is read or RFO’d 
(to be written in the future), that core’s cache line state becomes E state and the TD state becomes GE/GM. If the first 
core’s data are in the shared state and a second core reads the data, the TD state becomes GS state (globally shared) 
and gets the data directly from the first core marked as C2C transfer, as shown in Figure 5-6b. However, if the first core 
modified the data (acquired through RFO), the modified data are sent to the requesting core and individual core’s 
cache-line states become S state. The TD state becomes GOLS, indicating the cache lines are shared between the 
cores and may be inconsistent with the GDDR memory.

If the cache line that is in the S state is evicted and there are other copies of the line in another core’s cache, the 
TD state remains GOLS and the evicted cache-line state becomes I state. However, if the evicted cache line is the only 
cache line and TD state is marked as GOLS, the cache line is written back to GDDR memory and the TD state becomes 
GI state.

Hardware Prefetcher
The Intel Xeon Phi coprocessor implements a second-level cache hardware prefetcher that is part of the uncore and 
responsible for fetching cache lines into the L2 cache. It selectively prefetches code, read, and read for ownership data 
into L2. It has 16 stream entries and allocates a stream on a demand miss to a new 4-kB page. Subsequent requests 
that hit and miss the same page within a certain address range train the stream entry. Once a stream direction is 
detected, forward or backward, the prefetcher issues up to four multiple prefetch requests.

Code streams are always prefetched forward. When a stream is at the end of the prefetch 4-kB page boundary,  
it kick-starts an extra prefetch for the new page, assuming new page allocation of the existing stream.

The Memory Controllers
The Intel Xeon Phi coprocessor comes with eight memory controllers with two channels, each communicating with 
GDDR5 memory at 5.5 GT/s. The memory controllers are connected to a ring bus using ringstops on one end and 
GDDR5 on the other end. This provides approximately 352 GB/s of memory bandwidth. Memory access requests are 
directed to appropriate memory controllers to access data from corresponding GDDR5 memory modules. The cores 
support two types of memory: un-cacheable (UC) and write-back (WB).

The memory controllers interface with the ring bus at full speed and receive a physical address with each request. 
They translate the read/write requests from core to GDDR5 protocols and submit the commands to the memory 
devices. The memory controllers are also responsible for scheduling GDDR5 requests to optimize the memory 
bandwidth available from GDDR memory and for guaranteeing bounded latency for special requests from the system 
interface unit providing data over the PCI express bus.

Note■■   Sample Calculation of the Theoretical Memory Bandwidth of an Intel Xeon Phi Coprocessor

Given eight memory controllers with two GDDR5 channels running at 5.5 GT/s

Aggregate Memory Bandwidth 	� = 8 memory controllers × 2 channels × 5.5 GT/s × 4 bytes/transfer  
= 352 GB/s

The memory addresses are interleaved between the GDDR5 devices to enable better memory bandwidth and 
ring bus utilization. The memory requests are 4-kB lines at a time and are interleaved between memory modules. This 
means consecutive memory locations are distributed among the memory modules and there is no way to place the 
memory close to a core for optimal memory bandwidth.
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Memory Transactions Flow
A good understanding of how memory requests are handled by the memory controller may help in root-causing 
application performance issues running on the Xeon Phi coprocessor. This section will look at the details of how memory 
transactions are generated and handled by various servers and consumers of the data inside the Xeon Phi coprocessor. 

Cacheable Memory Read Transaction
The memory address ranges can be divided into two broad categories: the cacheable and uncacheable memory 
ranges. Memory marked as uncacheable is not saved into cache for later access and directly delivered to the requester. 
For performance reasons, most memory transactions of interest to developers of applications running on Xeon 
Phi are cacheable. The memory transactions for address ranges that are cacheable in the core L1 and L2 caches are 
described below and shown in Figure 5-7.

Core

Load

Load data
Update L1

Update L2

Duplicate L2

Remote L2 hit
L1 hit

L2 hit

L1 miss L2 miss

TD miss

GDDR read

L1 L2 TD/Ring Remote
L2

GDDR

Update TD

Figure 5-7.  Core/VPU load operation

	 1.	 A read transaction request for data is generated from a core or vector unit.

	 2.	 If the data are found in L1 cache, the data are returned to the core, or else a local L2 lookup 
happens. 

	 3.	 On a local L2 miss, a lookup to the TD happens. The TD contains all of the L2 occupancy 
information. The TD entry looked up might not be local to the core suffering the cache 
miss and sent through ring interconnect. 

	 4.	 If the data are found in the L2 cache, the data are returned to the requesting core through 
an L1 update.

	 5.	 If not found in the L2 cache, the data have to be fetched from the GDDR memory to the 
L2 cache. The TD converts the address into a physical address and submits the physical 
addresses to the memory controller. 



Chapter 5 ■ Xeon Phi Cache and Memory Subsystem

74

	 6.	 The memory controller converts the physical address to the appropriate memory access 
information channel/bank/row/column needed by the hardware.

	 7.	 There is a read queue for each memory channel and an entry is allocated when a read 
request is made to the memory controller. It uses a credit-based mechanism to prevent 
overflow of the read buffers. 

	 8.	 The memory controller sends the read operation to GDDR memory, which returns the 
data to the read buffer.

	 9.	 The returned data update the TD, update the L2 cache with the appropriate cache, evict if 
needed, and return the data to the requesting core by appropriate cache level updates to 
L2 and L1. 

Figure 5-7 shows the control and data flow for a memory read operation.

Managing Cache Hierarchy in Software
Because Intel Xeon Phi is a cache-based machine, any software trying to extract performance out of this machine 
must strive hard to make data available in the cache when the computation needs it. When optimizing code for this or 
any cache-based architecture, it is of the utmost importance to manage the cache hierarchy properly—through loop 
reorganization, data structure modifications, code and data affinity, and so on—to make sure the data are available in 
the cache as soon as needed.

To work with memory hierarchy complexity, the Intel Xeon Phi coprocessor includes various instructions and 
constructs such as prefetch, gather prefetch, clevict instructions, and nontemporal hints. These instructions allow one 
to pull in data to the appropriate cache level to hide memory access latency. The cache line eviction instructions—
‘clevict’—are also useful when you want to remove unnecessary data from the cache to make space for new data or 
to keep useful data in the cache by managing the LRU state of cache lines. When the cache controller needs to select 
a cache line for eviction, the LRU state is used to select the victim cache line. These instructions are often useful 
when the hardware prefetcher fails due to irregularly spaced data access patterns. The vprefetch* instructions are 
implemented for performing cache line prefetches that the hardware might not be able to issue automatically. Xeon 
Phi also implements gather prefetch instructions—vgatherpf*. Prefetch instructions can be used to fetch data to L1 or 
L2 cache lines. Since this hardware implements an inclusive cache mechanism, L1 data prefetched is also present in 
L2 cache-but not vice versa.

For prefetch instructions, if the line selected is already present in the cache hierarchy at a level closer to the 
processor, no data movement occurs. Prefetch instructions can specify invalid addresses without causing a general 
protection (GP) fault because of their speculative nature.

The Intel compiler provides –opt-prefetch switch to tell the code generator to insert prefetch instructions in 
the code and the -opt-prefetch-distance switch to globally define the L1 and L2 prefetch distances. You can also 
tell the compiler not to generate prefetch instructions by setting the –no-opt-prefetch compiler switch or setting 
–opt-prefetch=0.

Let’s look at how the compiler uses these flags to add instructions to your generated code. Code Listing 5-1 shows 
a small loop that runs on a single thread and performs memory access on an array of structures.

Code Listing 5-1.  Compiler Prefetch Example

 34 #include <stdio.h>
 35 #include <stdlib.h>
 36
 37 #define SIZE  1000000
 38 #define ITER       20
 39
 40
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 41 typedef struct pointVal {
 42               double x, y, z;
 43               double value;
 44 }POINT;
 45
 46 __declspec(align(256)) static POINT  a[SIZE];
 47
 48 extern double elapsedTime (void);
 49
 50 int main()
 51 {
 52         double startTime, duration, tmp[SIZE];
 53         int i, j;
 54 //initialize
 55           for( j=0; j<SIZE;j++){
 56               a[j].x=0.1;
 57            }
 58
 59        startTime = elapsedTime();
 60
 61         for(i=0; i<ITER;i++) {
 62            for( j=0; j<SIZE;j++){
 63              tmp[j]+=a[j].x;
 64            }
 65         }
 66         duration = elapsedTime()-startTime;
 67
 68         double MB = SIZE*sizeof(double)/1e+6;
 69         double MBps = ITER*MB/duration;
 70         printf("DP ArraySize =  %lf MB, MB/s = %lf\n", MB, MBps);
 71
 72   return 0;
 73 }
 74
 

In order to turn off the prefetch instructions being generated by the compiler, I first compiled the code with the 
–no-opt-prefetch option and send the output gather.out code to the mic card using “scp gather.out mic0:/tmp” as 
follows:
 
Command_prompt-host >icpc  -mcmodel=medium -O3 -no-opt-prefetch -mmic   -vec-report3  gather.cpp 
gettime.cpp -o gather.out
 

If I run the code on the mic card, I see that the code is able to achieve ~381 MB/s on the single-threaded run of 
this code.
 
command_prompt-mic0 >./gather.out
DP ArraySize =  8.000000 MB, MB/s = 381.794093
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Now, I recompile the same code by removing the –no-opt-prefetch compiler option and upload the file to the 
mic card, as described above. The same run with the –no-opt-prefetch restriction removed will generate prefetch 
instructions and will cause substantial improvement in memory access performance, as shown below. The 
performance has gone up from 381 to 481 MB/s.
 
command_prompt-mic0 >./gather.out
DP ArraySize =  8.000000 MB, MB/s = 484.896942
command_prompt-mic0 >
 

You can generate the assembly file corresponding to Code Listing 5-1 by using –S switch as shown below. A 
fragment of the generated assembly code is shown in Code Listing 5-2. I also added the –unroll0 compiler switch to 
turn off code unrolling optimization so that the generated assembly is easier to read. Although I am not going to walk 
through the assembly listing here, I would like to point out some of the prefetch instructions highlighted in Lines 170 
and 172 of the assembly in Code Listing 5-2, where it is prefetching the array a to Cache Level 1. You may also use the 
compiler option –opt-report-phase=hlo when building the code, so that the compiler will provide you diagnostics 
on where it generated the software prefetch instructions, if any:
 
Command_prompt-host >icc -mmic -vec-report3 -O3 -c -S –unroll0 –opt-report-phase=hlo gather.cpp
 

If you look at the kernel loop in Code Listing 5-1, you will notice that the code accesses nonconsecutive data 
elements: in this case, coordinate x in a[ ].
 
 62            for( j=0; j<SIZE;j++){
 63              tmp[j]+=a[j].x;
 64            }
 

This requires the compiler to use gather instructions as shown in Lines 180 and 183 of Code Listing 5-2. The 
Intel Xeon Phi ISA supports gather/scatter instructions to help sparsely placed data to move in/out of a vector 
register. These instructions simplify vector code generation for complex data structures and allow further hardware 
optimization of the instructions in future coprocessors. There are also prefetch instructions available corresponding 
to vector gather/scatter instructions. These are vgatherpf0dps for L1 and vgatherpf1dps for L2 prefetch.

Code Listing 5-2.  Compiler Generated Prefetch Instruction

170         vprefetch0 a(%rip)                                      #63.22 c17
171 ..LN46:
172         vprefetch0 256+a(%rip)                                  #63.22 c21
173         .align    16,0x90
174 ..LN47:
....
177 ..LN48:
178         kmov      %k1, %k2                                      #63.22 c1
179 ..LN49:
180         vprefetche1 512(%rsp,%rcx,8)                            #63.14 c1
181 ..L13:                                                          #63.22
182 ..LN50:
183         vgatherdpd a(%rdx,%zmm1), %zmm3{%k2}                    #63.22
184 ..LN51:
185         jkzd      ..L12, %k2    # Prob 50%                      #63.22
186 ..LN52:
187         vgatherdpd a(%rdx,%zmm1), %zmm3{%k2}                    #63.22
188 ..LN53:
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189         jknzd     ..L13, %k2    # Prob 50%                      #63.22
190 ..L12:                                                          #
191 ..LN54:
192         vaddpd    (%rsp,%rcx,8), %zmm3, %zmm4
194         vprefetch0 256(%rsp,%rcx,8)
196         vprefetch1 2048+a(%rdx)
197 ..LN57:
 

If vgatherpf0dps misses both L1 and L2, the resulting prefetch in L1 is nontemporal, but the prefetch into L2 is a 
normal prefetch.

The gather instruction ‘vgatherd’ is able to access up to 16 32-bit elements. The actual number of elements 
accessed is determined by the number of bits set in the vector mask provided as the source. In Intel Xeon Phi, 
vgatherd can load multiple elements with a single 64-byte memory access if all the elements fall in the same 64-byte 
cache line.

The gather instruction guarantees at least one element to be gathered for each call. In Lines 185 and 187 of Code 
Listing 5-2, the compiler uses a mask register, k2 to determine whether all the required elements are gathered or not.

Probing the Memory Subsystem
This section investigates the GDDR memory characteristics of the Xeon Phi coprocessor. 

Measuring the Memory Bandwidth on Intel Xeon Phi
One key performance metric related to the cache subsystem is the GDDR memory bandwidth, seen by a 
computational code. To measure the GDDR memory bandwidth, we write and examine the small benchmark in  
Code Listing 5-3. 

Code Listing 5-3.  Measuring GDDR Memory BW as Seen by Cores

 34 #include <stdio.h>
 35 #include <stdlib.h>
 36 #include <omp.h>
 37
 38
 39 #define SIZE    (180*1024*1000)
 40 #define ITER       20
 41
 42 __declspec(align(256)) static double  a[SIZE],  b[SIZE],   c[SIZE];
 43
 44
 45 extern double elapsedTime (void);
 46
 47 int main()
 48 {
 49         double startTime,  duration;
 50         int i, j;
 51
 52         //initialize arrays
 53         #pragma omp parallel for
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 54         for (i=0; i<SIZE;i++)
 55         {
 56                 c[i]=0.0f;
 57                 b[i]=a[i]=(double)1.0f;
 58         }
 59
 60         //measure c = a*b+c performance
 61         startTime = elapsedTime();
 62         for(i=0; i<ITER;i++) {
 63         #pragma omp parallel for
 64            for( j=0; j<SIZE;j++){
 65               c[j]=a[j]*b[j]+c[j];
 66            }
 67         }
 68         duration = elapsedTime() - startTime;
 69
 70         double GB = SIZE*sizeof(double)/1e+9;
 71         double GBps = 4*ITER*GB/duration;
 72         printf("Running %d openmp threads\n", omp_get_max_threads());
 73         printf("DP ArraySize =  %lf MB, GB/s = %lf\n", GB*1000, GBps);
 74
 75   return 0;
 76 }
 

The code consists of three double-precision arrays, a, b, and c. The size of arrays is set to (180*1024*1000). 
That number was chosen so that I can divide the work among 180 threads on the 60 available compute cores of the 
coprocessor. In order to create optimal code, I selected the number of elements to be 124 so that each vector access 
could be cacheline-aligned. The 1000 multiplier makes the size of the array large enough (each array ~ 1.4 GB) to go 
outside the cache. The ITER in Line 40 sets the number of times I need to run the bandwidth loop to account for run-
to-run performance variations. The benchmark uses the timing routine described in Chapter 4 for core computational 
flops measurements.

The computation is a simple c = a*b+c operation, where each of the arrays is double-precision. At each iteration, 
we read in three DP numbers—a,b,c—and write out a single DP number ‘c’. This is shown in Line 65 of Code Listing 5-3.  
Lines 53 to 58 initialize the array to some random numbers. I also make sure the arrays are aligned by declaring them 
as 256-byte align by __declrspec(align(256)) in Line 42.

In order to measure the BW, I run the inner compute loop ITER time and capture the start and end time  
during the whole run at Line 68. The amount of memory used by each array can be calculated with  
(GB = SIZE*sizeof(double)/1e+9;).

The total number of memory operations is 4 (3 reads and 1 write). Hence, the BW, as seen by this compute 
kernel, can be computed as:
 
4*GB*ITER/duration
 
where GB equals the gigabyte size of each of the arrays, ITER is the number of times the BW kernel iterates  
inside the timing count, and duration is obtained by collecting the total execution times from start to the end of the 
ITER loop.

This code is cross-compiled with the –mmic switch as follows:
 
icpc -mcmodel=medium -O3  -mmic  -openmp -vec-report3  bw.cpp gettime.cpp -o bw.out
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Since the code uses three large arrays ~1.75GB each, we needed to use the switch -mcmodel=medium, which tells 
the compiler to expect the data size to be above 2GB and handle that accordingly, as it is for this case. This compile 
command will generate a bw.out binary that can run on the Intel Xeon Phi coprocessor.

Once the binary is generated, follow the commands in Chapter 4 to copy the binary over to the Intel Xeon Phi 
card native virtual drive using:
 
command-prompt-host>scp bw.out mic0:/tmp
 

Also, upload the necessary openmp file from the compiler to the card using the following command:
 
command-prompt-host>scp /opt/intel/composerxe/lib/mic/libiomp5.so mic0:/tmp
 

Once the binary and the corresponding files are on the card’s virtual drive, you can execute the code by logging in 
to the card by ssh:
 
Command-prompt-host > ssh mic0
 

Inside the Intel Xeon Phi card, export LD_LIBRARY_PATH to point to the appropriate folder with openmp 
runtime library:
 
Command-prompt-mic0 > export $LD_LIBRARY_PATH=/tmp:$LD_LIBRARY_PATH;
 

Now set the number of openmp threads to 180 by “export OMP_NUM_THREADS=180” and execute the 
command ./bw.out as follows:
 
Command_prompt-mic0> export OMP_NUM_THREADS=180
Command_prompt-mic0>./bw.out
 

This should output the following on the terminal window:
 
Command_prompt-mic0> ./bw.out
Running 180 openmp threads
DP ArraySize = 1475.56 MB and GBs = 159.005
Command_promot-mic0 >
 

The output (Figure 5-8) shows that the code ran with 180 threads and was able to measure ~ 159 GB/s overall BW 
for memory access on this kernel.

Figure 5-8.  Output of BW benchmark run
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Summary
This chapter covered the memory subsystem of the Xeon Phi coprocessor. You learned about the interconnect ring 
that connects various components of Xeon Phi, such as cores and memory controllers. You looked at various cache 
levels and how the cache coherency protocol MESI with GOLS extension is used to maintain data consistency 
among the caches associated with different cores. You saw how to measure the memory bandwidth on a Xeon Phi 
coprocessor.

The next chapter will explain the PCIe bus and power management support on the Xeon Phi coprocessor.
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