
CHAPTER 2

ACE INHIBITION IN HEART FAILURE
AND ISCHAEMIC HEART DISEASE

DUNCAN J. JOHN CAMPBELL
St. Vincent’s Institute of Medical Research and Department of Medicine, University of Melbourne,
Fitzroy, Victoria, Australia

1. INTRODUCTION

Angiotensin converting enzyme (dipeptidyl carboxypeptidase I, kininase II, EC
3.4.15.1, ACE) plays a major role in the metabolism of many different peptides,
including angiotensin (Ang) I, bradykinin, kallidin, and N-acetyl-seryl-aspartyl-
lysyl-proline (AcSDKP). ACE inhibitors are established therapy for heart failure
and ischaemic heart disease, and alterations of Ang II, bradykinin, kallidin, and
AcSDKP peptide levels are implicated in the mechanisms of this therapy. This
chapter briefly describes the renin angiotensin, kallikrein kinin, and AcSDKP
systems, and their role in cardiovascular physiology and disease. The role of ACE
inhibition in treatment and prevention of heart failure and ischaemic heart disease
is summarised, and the possible mechanisms of the therapeutic benefits of ACE
inhibitors are described. This is not an exhaustive review, but focuses on those
aspects most relevant to the clinical application of ACE inhibitors.

2. THE CARDIAC RENIN-ANGIOTENSIN SYSTEM (RAS)

2.1. Pathways of Ang Peptide Formation and Metabolism

Figure 1 shows an outline of the pathways of Ang peptide formation and metabolism.
In addition to the classical pathway involving renin and ACE, alternative pathways
have been proposed (Campbell 2006). There remain many questions concerning the
mechanisms of Ang peptide formation in discrete tissue compartments such as the
heart. Serine proteases, for example, may form Ang II by processes independent of
renin at sites of inflammation or coagulation, where kallikrein and/or cathepsin G
may be active.
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Figure 1. Pathways of Ang peptide formation and metabolism. Adapted from (Campbell 2006)

2.2. Renin and Angiotensinogen

Studies of nephrectomised animals show the main mechanism of Ang peptide
formation in the heart involves kidney-derived renin (Campbell et al 1993; Danser
et al 1994). Renin messenger RNA (mRNA) levels in the heart are very low
or undetectable (De Mello et al 2000). Cardiac renin expression may, however,
be induced by myocardial infarction and macrophages and myofibroblasts may
express renin at the site of repair (Sun et al 2001). All Ang peptides are derived
from angiotensinogen. Although angiotensinogen may be produced in low levels
in the heart (Dostal et al 1999; Paul et al 2006), plasma is the main source of
angiotensinogen for Ang peptide formation in the heart.

2.3. ACE

ACE is a membrane-bound zinc-containing metallopeptidase, some of which is
cleaved from membranes and released as soluble ACE found in plasma and other
fluids (Erdos 1990). ACE has two catalytic domains with differential substrate
specificities and susceptibility to ACE inhibitors (Wei et al 1991; Wei et al 1992;
Jaspard et al 1993). Table 1 lists the many substrates of ACE. Those ACE substrates
most related to cardiac function are Ang I, the bradykinin and kallidin peptides, and
AcSDKP. Both catalytic domains of ACE posses dipeptidyl carboxypeptidase and
endopeptidase activities and can cleave Ang I, bradykinin-(1-9), bradykinin-(1-7),
and substance P. However, the N-terminal catalytic domain cleaves of lutein-
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Table 1. Substrates of ACE

Angiotensin I and angiotensin-(1-7)
Bradykinin-(1-9), bradykinin-(1-8), and bradykinin-(1-7)
Lys0-bradykinin-(1-9) (kallidin), Lys0-bradykinin-(1-8), and Lys0-bradykinin-(1-7)
Substance P
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
Chemotactic peptide
Neurotensin
Luteinising hormone-releasing hormone (LH-RH)
Enkephalins
Cholecystokinin
Gastrin

Adapted from (Ehlers et al 1990; Erdos 1990; Hooper 1991; Rieger et al 1993)

ising hormone-releasing hormone (LH-RH) and AcSDKP more efficiently than the
C-terminal domain (Jaspard et al 1993; Rousseau et al 1995).

The two catalytic domains of ACE interact differently with ACE inhibitors.
Captopril, enalapril, lisinopril, and trandolapril are all highly potent inhibitors of
both domains. Whereas trandolapril, lisinopril and enalapril show preference for the
C-terminal catalytic domain, captopril shows preference for the N-terminal catalytic
domain (Wei et al 1992).

ACE has a widespread tissue distribution, including vascular endothelium and
smooth muscle cells, the brush border of proximal tubule cells of the kidney, and
the brain (Erdos 1990). ACE is expressed by the endothelium of the coronary
vasculature, and by the endocardium and epicardium, but not by the valves in the
human heart (Dostal et al 1999). ACE is also expressed by cardiac fibroblasts, and
fibroblast expression of ACE is increased in the border zone of myocardial infarction
(Dostal et al 1999; Burrell et al 2005). Cardiac ACE expression is up-regulated in
heart failure (Hirsch et al 1991; Studer et al 1994).

2.4. Ang Receptors

Many different cell types express Ang receptors in the heart. The type 1 Ang
(AT1) receptor is expressed by coronary smooth muscle and endothelial cells,
cardiomyocytes, fibroblasts, nerves, and conduction tissue (Regitz-Zagrosek et al
1998). AT2 receptors are expressed by fibroblasts and endothelial cells (Regitz-
Zagrosek et al 1998). In heart failure, cardiomyocyte AT1 receptor expression may
be down-regulated, whereas fibroblast expression of both AT1 and AT2 receptors
is increased (Ohkubo et al 1997).

The AT1 receptor mediates most of the known actions of Ang II. There is
continuing uncertainty about the role of the AT2 receptor, which may mediate
actions of Ang II in the vasculature and heart that differ from those of the AT1

receptor (Carey et al 2001; Voros et al 2006). The AT2 receptor is described further
by Danser in chapter 3 of this volume.
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2.5. Mast Cell Chymase

Human heart chymase was initially discovered in homogenates of human heart
and proposed to be the major pathway of conversion of Ang I to Ang II in the
heart (Urata et al 1990). Given that chymase is not inhibited by ACE inhibitors, it
represented a potential pathway of continued Ang II formation in patients taking
ACE inhibitor therapy (Dell’Italia et al 2002), and thereby provided a rationale for
a possible superiority of AT1 receptor blocker (ARB) therapy over ACE inhibitor
therapy. However, studies of the effects of ACE inhibition in rats, mice, and humans,
and of ACE gene knockout in mice, show ACE is the dominant pathway of Ang II
formation in the heart (Campbell et al 1994; Campbell et al 1999; Zeitz et al 2003;
Campbell et al 2004a).

2.6. ACE-related Carboxypeptidase (ACE2)

ACE-related carboxypeptidase (ACE2), like ACE, is a membrane-associated and
secreted metalloprotease expressed predominantly on endothelium (Donoghue et al
2000; Tipnis et al 2000; Hamming et al 2004). ACE2 is expressed in all human
tissues, with relatively high levels in renal and cardiovascular tissues, and also in
the gut (Harmer et al 2002). In contrast to the dipeptidyl carboxypeptidase activity
of ACE, ACE2 cleaves Ang I to Ang-(1-9) and also cleaves ANG II to Ang-(1-7).
ACE2 is not inhibited by ACE inhibitors.

Kinetic considerations make it unlikely that ACE2 contributes to Ang I
metabolism in vivo (Jaspard et al 1993; Vickers et al 2002). ACE and ACE2 have
similar Km for Ang I (16 and 6.9 μmol/L, respectively) but the Kcat for ACE (40 s−1)
is approximately 1000-fold higher than that for ACE2 (0.034 s−1), such that the
Kcat/Km ratio is approximately 500-fold higher for ACE (2.5 x 106 L/mol per s) than
for ACE2 (4.9 x 103 L/mol per s). By contrast, the Km (2 μmol/L), Kcat (3.5 s−1),
and Kcat/Km ratio (1.8 x 106 L/mol per s) of ACE2 for Ang II (Vickers et al 2002)
make it more likely to participate in Ang II metabolism.

Initial genetic studies suggested an important role for ACE2 in Ang peptide
metabolism in the heart. The ACE2 gene knockout mouse was reported to have
a cardiomyopathic phenotype associated with increased Ang II levels in plasma,
heart, and kidney. Additionally, the cardiomyopathic phenotype was ameliorated by
concomitant ACE gene knockout, suggesting that altered Ang peptide metabolism
contributed to the phenotype (Crackower et al 2002). In subsequent studies the
ACE2 gene knockout mouse had a normal cardiac phenotype, although it had an
enhanced pressor response to Ang II administration (Gurley et al 2006).

ACE2 activity is reported to be increased in the hearts of patients with heart
failure (Zisman et al 2003). However, measurement of Ang peptides in coronary
venous blood of patients with heart failure or ischaemic heart disease does not
support an important role for ACE2 in either Ang I or Ang II metabolism in the
human heart (Campbell et al 2004b). Elucidation of the role of ACE2 in Ang II
metabolism must await the development of specific ACE2 inhibitors.
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2.7. Effects of the RAS on the Heart and Vasculature

2.7.1. Actions of Ang II

Both systemic and local actions of Ang II impact on the heart. Systemic actions
of Ang II include its vasoconstrictor action to increase blood pressure and the
stimulation of aldosterone secretion. Increased aldosterone levels may produce
hypokalaemia and contribute to cardiac fibrosis (Brilla et al 1993).

Local cardiac actions of Ang II include inotropic and hypertrophic effects,
and cardiac remodelling (Paul et al 2006). AT1 receptor stimulation induces
both myocyte hypertrophy and collagen synthesis (Regitz-Zagrosek et al 1998).
Moreover, Ang II may contribute to oxidative stress, inflammation, and throm-
bosis (Dzau 2001; Duprez 2006). AT1-mediated NADPH oxidase activation leads
to generation of reactive oxygen species, widely implicated in vascular inflam-
mation and fibrosis (Li et al 2004; Mehta et al 2007). Ang II also activates gene
transcription factors involved in vascular inflammation and remodelling (Oettgen
2006). Ang II and its metabolite Ang IV may promote thrombosis by stimulating
plasminogen activator inhibitor type 1 (PAI-1) and PAI-2 production by the vascu-
lature (Van Leeuwen et al 1994; Feener et al 1995; Kerins et al 1995). Additionally,
Ang II may promote thrombosis by activation of nuclear factor �B-dependent
proinflammatory genes and accelerating vascular expression of tissue factor
(Dielis et al 2005).

Ang II stimulates endothelin release (Kohno et al 1992; Moreau et al 1997) and
endothelin blockade prevents some of the cardiovascular actions of Ang II (Webb
et al 1992; Rajagopalan et al 1997; Herizi et al 1998).

2.7.2. Actions of Ang-(1-7)

Ang-(1-7) is a biologically active peptide (Ferrario et al 1991). The main pathway
of Ang-(1-7) formation is by cleavage of Ang I by neutral endopeptidase (NEP,
endopeptidase 24.11) (Yamamoto et al 1992; Duncan et al 1999) (Fig. 1). Ang-(1-7)
may also be formed by ACE2 cleavage of Ang II, but the significance of this
pathway remains to be established.

Many actions of Ang-(1-7) are contrary to those of Ang II, and Ang-(1-7) is
proposed to function as a counter-regulatory hormone in blood pressure control,
and in other cardiovascular actions of Ang II. Ang-(1-7) reduces blood pressure
and produces endothelium-dependent vasodilatation (Benter et al 1993; Pörsti
et al 1994; Benter et al 1995; Nakamoto et al 1995; Brosnihan et al 1996;
Le Tran et al 1997), actions that may be due in part to potentiation by Ang-
(1-7) of the hypotensive effects of kinins (Paula et al 1995; Lima et al 1997)
and/or to stimulation of vascular prostaglandin production (Benter et al 1993;
Paula et al 1995). In support of a role for kinin-mediated nitric oxide production
in its vasodilator effects, Ang-(1-7) induced vasodilatation and hypotension were
attenuated by nitric oxide synthase (NOS) inhibition (Pörsti et al 1994; Gorelik
et al 1998), by the type 2 bradykinin (B2) receptor antagonist icatibant (Pörsti
et al 1994; Abbas et al 1997; Lima et al 1997; Gorelik et al 1998), and also by
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AT2 receptor antagonism (Lima et al 1997). Moreover, Ang-(1-7) stimulation of
nitric oxide release from coronary vessels was blocked by icatibant (Brosnihan et al
1996).

High concentrations of Ang-(1-7) inhibit ACE, leading to the suggestion that
Ang-(1-7) potentiates the effects of bradykinin through ACE inhibition (Li et al
1997). However, the IC50 for Ang-(1-7) inhibition of ACE was 650 nmol/L and it
is unlikely endogenous Ang-(1-7) levels would be sufficient to produce this effect.
Ang-(1-7), like other ACE inhibitors, may potentiate the actions of a B2 receptor
agonist by an indirect mechanism that is independent of bradykinin hydrolysis
(Deddish et al 1998), possibly by sensitisation of the B2 receptor (Marcic et al
1999). This mechanism of potentiation of kinin-induced hypotension by Ang-(1-7)
is unlikely to operate in vivo, however, because micromolar concentrations of Ang-
(1-7) were required to produce this effect (Deddish et al 1998).

Plasma Ang-(1-7) levels are less than Ang II levels, except during ACE inhibition
when Ang-(1-7) levels increase several-fold, in parallel with the increase in Ang I
levels (Lawrence et al 1990; Menard et al 1997). Tissue levels of Ang-(1-7) are
very low or undetectable, even with ACE inhibition (Campbell et al 1993; 1994).
There is, therefore, uncertainty whether Ang-(1-7) levels are sufficient to play a
role in cardiovascular physiology and disease states in humans.

3. THE CARDIAC KALLIKREIN KININ SYSTEM (KKS)

3.1. Pathways of Kinin Peptide Formation and Metabolism

Figure 2 shows an outline of the pathways of kinin peptide formation. A proportion
of kininogens is hydroxylated on Pro3 of the bradykinin sequence, leading to the
formation of hydroxylated kinin peptides.

3.2. Kallikreins and Kininogens

The kininogens are the sole precursors of the kinin peptides and are coded by
a single gene. Differential splicing of the initial mRNA transcript produces two
different mRNA coding for either high or low molecular weight kininogen. Each is a
glycoprotein that contains the kinin sequence in its mid portion. Tissue kallikrein and
plasma kallikrein are both serine proteases. Whereas a single gene codes for plasma
kallikrein there is a large family of tissue kallikrein genes, although KLK1 is the only
tissue kallikrein known to generate kinin peptides (Yousef et al 2001). Kininogens
and tissue kallikrein are expressed in many different tissues. Plasma kallikrein is
predominantly expressed in liver, although recent studies suggest expression of
plasma kallikrein in the brain (Takano et al 1999).

In humans, plasma kallikrein forms bradykinin from high molecular weight
kininogen, whereas tissue kallikrein forms kallidin from high or low molecular
weight kininogens (Fig. 3). By contrast, both plasma and tissue kallikrein generate
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Figure 2. An outline of the formation of kallidin and bradykinin peptides in humans. A proportion of
high molecular weight kininogen is hydroxylated on Pro3 of the bradykinin sequence, giving rise to both
hydroxylated and non-hydroxylated peptides. Adapted from (Campbell 2003)

bradykinin in rodents (Bhoola et al 1992). Bradykinin may also be generated by
aminopeptidase-mediated cleavage of kallidin.

Alternative pathways of kinin formation involving enzymes other than kallikreins
may operate in disease states. Although low molecular weight kininogen is a poor
substrate for plasma kallikrein, it will form bradykinin in the presence of neutrophil
elastase which, by cleaving a fragment from low molecular weight kininogen,
renders it much more susceptible to cleavage by plasma kallikrein (Sato et al 1988).
Moreover, the combination of mast cell tryptase and neutrophil elastase releases
bradykinin from oxidized kininogens that are resistant to cleavage by kallikreins
(Kozik et al 1998).

Kinin production in vivo is controlled in part by endogenous inhibitors of the
kallikrein enzymes. The main inhibitors of plasma kallikrein are C1 inhibitor,
�2-macroglobulin and antithrombin III (Bhoola et al 1992). An important inhibitor
of tissue kallikrein is kallistatin, although the function of kallistatin in vivo is
uncertain (Chao et al 1996).

All components of a functional KKS are expressed in the heart (Spillmann et al
2006). The heart and vasculature express tissue kallikrein (Oza et al 1990; Xiong
et al 1990; Nolly et al 1992; Nolly et al 1994). In addition, plasma kallikrein, a
member of the contact system, generates bradykinin at the endothelial surface of
blood vessels (Campbell 2003).
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Figure 3. Dose related effects of the ACE inhibitor perindopril on Ang II, Ang I, and bradykinin levels
in the cardiac ventricles of control rats and rats with myocardial infarction. *, P < 0.05 compared to
0 mg/kg per day perindopril. Data adapted from (Campbell et al 1994; Duncan et al 1996)

3.3. Kinin Receptors

Kinins act via two types of kinin receptor, the B1 and the B2 receptors. The
B2 receptor normally predominates, whereas the B1 receptor is induced by
tissue injury. The KKS generates 8 bioactive kinin peptides: bradykinin, Hyp3-
bradykinin, kallidin, and Hyp4-kallidin act on the B2 receptor, whereas their
carboxypeptidase metabolites des-Arg9-bradykinin, des-Arg9-Hyp3-bradykinin, des-
Arg10-kallidin, and des-Arg10-Hyp4-kallidin act on the B1 receptor. Hydroxylated
kinins have similar biological activity to non-hydroxylated kinins.

Of particular interest is the recent report that the human B2 receptor is activated
by both plasma and tissue kallikrein (Hecquet et al 2000). Cathepsin G and trypsin
similarly activate the B2 receptor and activation is blocked by icatibant. Thus, the B2

receptor may belong to a new group of serine-protease-activated receptors (Hecquet
et al 2000).

3.4. Kinin Metabolism

ACE is one of many enzymes that metabolise kinin peptides (Campbell 2003) and
the efficiency of metabolism is an important determinant of their levels in blood
and tissues. Consequently, inhibition of any single enzyme that contributes to kinin
metabolism causes only a modest increase in kinin levels.
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3.5. Effects of the KKS on the Heart and Vasculature

Kinin peptides have a broad spectrum of activities and both systemic and local
cardiac actions impact on the heart (Bhoola et al 1992). Kinin peptides act
through many different second messenger systems, in particular nitric oxide and
prostaglandins (Bhoola et al 1992). The B2 receptor participates in an inhibitory
interaction with endothelial NOS (eNOS) that is reversed by bradykinin (Ju et al
1998). This interaction may recruit eNOS to the B2 receptor and allow for effective
coupling of bradykinin signalling to the nitric oxide pathway. Kinins are potent
vasodilators and promote diuresis and natriuresis. Kinins in high concentration also
participate in the cardinal features of inflammation, producing vascular permeability,
neutrophil chemotaxis and pain (Bhoola et al 1992).

Cardiac bradykinin levels are increased during the acute phase of myocardial
infarction in rats (Duncan et al 1997). By contrast, we found decreased kallidin
levels in coronary sinus blood of subjects with heart failure, suggesting down-
regulation of the cardiac KKS in heart failure (Duncan et al 2000).

There is a large body of evidence demonstrating anti-hypertrophic and cardio-
protective actions of the KKS (Griol-Charhbili et al 2005; Koch et al 2006; Park
et al 2006; Spillmann et al 2006). The cardioprotective effects of bradykinin
included the reduction of arrhythmias, reduction of lactate, lactate dehydrogenase,
and creatine kinase release, and increase in myocardial contractility and myocardial
levels of glycogen, adenosine triphosphate and creatine phosphate during post-
ischaemic reperfusion of the isolated working rat heart (Linz et al 1992). Moreover,
bradykinin suppressed endothelin release from the post-ischaemic rat heart (Brunner
et al 1996). Kinins protect against ischaemia-reperfusion injury by decreasing
endothelial adherence of leukocytes, leading to attenuation of post-ischaemic
leukocyte adherence, attenuation of disruption of the microvascular barrier and
reduced tissue injury (Shigematsu et al 1999). Many of the actions of kinins
counteract those of Ang II, by causing endothelium-dependent vasodilatation through
endothelial release of nitric oxide and prostacyclin (Pelc et al 1991; Lamontagne
et al 1992; Gallagher et al 1998). Kinins also counteract the hypertrophic actions
of Ang II and reduce collagen formation (Gallagher et al 1998; Ritchie et al 1998).

Administration of kinin receptor antagonists indicates a role for endogenous
kinins in the regulation of the coronary vasculature and in the myocardial response
to myocardial infarction. Icatibant reduced flow-dependent vasodilatation of human
coronary arteries, indicating a role for kinins in the regulation of coronary vascu-
lature (Groves et al 1995). Icatibant enhanced myocardial interstitial deposition of
collagen following myocardial infarction in the rat, indicating a role for endogenous
kinins in the modulation of collagen deposition; however, icatibant did not modify
morphological and molecular markers of cardiomyocyte hypertrophy (Wollert et al
1997). Kinins participate in the process of ischaemic preconditioning, and have
also been shown to limit reperfusion injury (Baxter et al 2002). Kinins may also
protect against thrombosis by stimulating endothelial release of nitric oxide, prosta-
cyclin, and tissue plasminogen activator (Dielis et al 2005). New properties of kinin
peptides are being discovered. For example, B1 receptors may have an important
role in angiogenesis (Emanueli et al 2002).
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4. ACSDKP

4.1. AcSDKP Formation

AcSDKP is an inhibitor of pluripotent haemopoietic stem cell proliferation (Lenfant
et al 1989; Bonnet et al 1993), and is normally present in human plasma and
mononuclear cells (Pradelles et al 1990). AcSDKP is released from its precursor
thymosin-ß4 by prolyl oligopeptidase (Cavasin et al 2004) and it is cleaved to an
inactive form by the dipeptidyl carboxypeptidase activity of the N-terminal catalytic
domain of ACE (Rousseau et al 1995). AcSDKP has a 4.5 min half-life in the
circulation and is probably released continuously (Azizi et al 1997). The importance
of ACE in AcSDKP metabolism is shown by the 5-fold increase in AcSDKP plasma
levels that accompany ACE inhibition (Azizi et al 1997).

4.2. Functions of AcSDKP in the Heart

AcSDKP inhibits DNA and collagen synthesis by cardiac fibroblasts (Rhaleb et al
2001), and both prevents and reverses myocardial inflammation and fibrosis in
rats with heart failure after myocardial infarction (Yang et al 2004). AcSDKP and
thymosin-ß4 stimulate coronary vasculogenesis and angiogenesis (Wang et al 2004;
Smart et al 2007), and AcSDKP increases myocardial capillary density in rats with
myocardial infarction (Wang et al 2004).

5. ACE INHIBITION IN HEART FAILURE AND ISCHAEMIC
HEART DISEASE

Many clinical trials demonstrate the therapeutic benefit of ACE inhibition in heart
failure and ischaemic heart disease. It is of note, however, that the effects of ACE
inhibitors are dose related. Large clinical trials, by necessity, use only one dose of
any drug. The results of such trials are just as much a measure of the effect of the
dose as they are a measure of the effect of the drug. Use of a less than optimal
dose may fail to reveal a drug’s true therapeutic potential. This is of particular
concern in a head-to-head comparison of two active drugs, where the result may
be more due to choice of dose than to choice of drug. Clinicians should strive to
achieve drug doses that have proven to be of benefit in clinical trials. At present,
a large proportion of patients receiving ACE inhibitor therapy are receiving less
than optimal doses (Lenzen et al 2005). Measurement of plasma Ang peptide levels
is not feasible for the monitoring of ACE inhibitor therapy, but measurement of
plasma AcSDKP levels may assist in this regard (Struthers et al 1999).

5.1. ACE Inhibition in Heart Failure

Heart failure is associated with neurohormonal activation that includes increased
renin, Ang II, and aldosterone levels, and activation of the sympathetic nervous
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system (Francis et al 1993). Increased Ang II, aldosterone, noradrenaline, and
adrenaline levels predict increased mortality in heart failure patients (Swedberg
et al 1990). Therapies that counteract the effects of RAS and sympathetic nervous
system activation are the cornerstone of heart failure therapy (Hunt et al 2001;
Swedberg et al 2005).

Acute ACE inhibition in heart failure patients promotes arterio- and veno-
dilatation, with reduction in both afterload and preload, and an associated increase
in cardiac output, stroke volume, and stroke work index, along with a decrease
in pulmonary capillary wedge pressure, indicating improved left ventricular (LV)
function (Gavras et al 1978; Ader et al 1980). The Cooperative North Scandi-
navian Enalapril Survival Study (CONSENSUS) demonstrated reduced mortality
and improved symptoms with enalapril therapy in patients with severe heart failure
(The CONSENSUS Trial Study Group 1987). Moreover, mortality was lower with
enalapril therapy than with hydralazine-isosorbide dinitrate therapy in the second
Veterans Administration Cooperative Vasodilator-Heart Failure Trial (V-HeFT II)
(Cohn et al 1991). The Studies of Left Ventricular Dysfunction (SOLVD) confirmed
the survival benefits of enalapril therapy in patients with reduced LV ejection
fraction and heat failure (The SOLVD Investigators 1991) and also demonstrated
the prevention of heart failure in asymptomatic subjects with reduced LV ejection
fraction (The SOLVD Investigators 1992).

ACE inhibition improves survival, symptoms, and functional capacity, and
reduces hospitalisation in patients with moderate and severe heart failure and LV
systolic dysfunction (Flather et al 2000; Abdulla et al 2004). ACE inhibition is
recommended as first-line therapy in patients with a reduced LV ejection fraction
with or without symptoms, and should be up-titrated to the doses shown to be
effective in clinical trials (Hunt et al 2001; Swedberg et al 2005).

5.2. ACE Inhibition After Myocardial Infarction

Although the patients recruited to the CONSENSUS, V-HeFT II, and SOVD studies
had reduced LV ejection fraction due most often to ischaemic heart disease, they
were enrolled several months or more after a myocardial infarction. Studies in
rats demonstrated survival advantage of ACE inhibitor therapy commenced 14
days after myocardial infarction (Pfeffer et al 1985b). Additionally, ACE inhibition
reduced arterial pressure and total peripheral resistance, attenuated LV remodelling,
prevented deterioration in cardiac output and stroke volume index, and prevented
the increase in LV volume, LV chamber stiffness and LV end diastolic pressure in
rats with myocardial infarction (Pfeffer et al 1985a).

These benefits of ACE inhibition in rats with myocardial infarction were
confirmed in patients. The Survival and Ventricular Enlargement (SAVE) trial
showed reduced mortality with ACE inhibitor therapy when commenced 3-16 days
after myocardial infarction in patients with asymptomatic LV dysfunction (Pfeffer
et al 1992). In addition, ACE inhibitor therapy reduced the incidence of both fatal
and nonfatal major cardiovascular events, including the development of severe heart
failure and recurrent myocardial infarction.
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The benefits of ACE inhibitor therapy after myocardial infarction were confirmed
in the Acute Infarction Ramipril Efficacy (AIRE) and the Trandolapril Cardiac
Evaluation (TRACE) studies (The Acute Infarction Ramipril Efficacy (AIRE) Study
Investigators 1993; Kober et al 1995). The AIRE study recruited patients 2-9 days
after myocardial infarction who had shown clinical evidence of heart failure at any
time. The TRACE study recruited patients 3-7 days after myocardial infarction who
had a LV ejection fraction ≤35%. Both the AIRE and TRACE studies showed
survival advantage with ACE inhibitor therapy and the TRACE study showed
less development of severe heart failure. Other large clinical trails confirmed the
benefits of ACE inhibition after myocardial infarction (GISSI-3 Gruppo 1994;
ISIS-4 Collaborative Group 1995).

In addition to mortality benefit and reduction of severe heart failure, ACE
inhibition after myocardial infarction attenuates LV remodelling, LV enlargement and
increase in LV mass, and improves LV ejection fraction after myocardial infarction
(Pfeffer et al 1988; Sharpe et al 1991; Sogaard et al 1993; Johnson et al 1997).

By contrast, the CONSENSUS II trial found the commencement of ACE inhibitor
therapy within 24 hours of myocardial infarction did not improve survival (Swedberg
et al 1992). The failure of ACE inhibition to improve outcomes in the CONSENSUS
II trial may have been due to its protocol. ACE inhibitor treatment was started with
intravenous infusion of 1 mg enalaprilat within 24 hours after the onset of chest pain,
followed by administration of oral enalapril. Intravascular administration of ACE
inhibitor had a negative inotropic effect in several human studies (Foult et al 1988;
Haber et al 1994; Zeitz et al 2003), although not in another (Friedrich et al 1994).
Thus, the failure of ACE inhibitor therapy to produce benefit in the CONSENSUS II
trial may have been due to the negative inotropic effect of intravenously administered
enalaprilat, in addition to its administration within 24 hours of chest pain.

Current European Society of Cardiology guidelines recommend the initiation of
ACE inhibitors after the acute phase of myocardial infarction in patients with signs
or symptoms of heart failure, even if transient, to improve survival and to reduce
re-infarctions and hospitalisations for heart failure (Swedberg et al 2005).

5.3. ACE Inhibition in Stable Vascular Disease

Two large-scale clinical trials demonstrated the benefits of ACE inhibition in
patients with stable vascular disease or at high risk of vascular disease. These were
the Heart Outcomes Prevention Evaluation (HOPE) study (The Heart Outcomes
Prevention Evaluation Study Investigators 2000) and The European Trial on
Reduction of Cardiac Events with Perindopril in Stable Coronary Artery Disease
(EUROPA) study (The European Trial on Reduction of Cardiac Events with
Perindopril in Stable Coronary Artery Disease Investigators 2003).

The HOPE study was based on emerging evidence that ACE inhibition reduced
the risk of myocardial infarction in patients with low ejection fraction (Pfeffer et al
1992; Yusuf et al 1992; Lonn et al 1994). It examined the effects of addition of 10
mg ramipril to standard therapy in patients aged at least 55 years with a history of
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coronary artery disease, stroke, peripheral vascular disease, or diabetes, plus at least
one other cardiovascular risk factor (hypertension, elevated total cholesterol level, low
high-density lipoprotein cholesterol level, cigarette smoking, or microalbuminuria).
Patients were excluded if they had heart failure, were known to have a low ejection
fraction, were taking an ACE inhibitor or vitamin E, had uncontrolled hypertension
or overt nephropathy, or had had a myocardial infarction or stroke within 4 weeks
before the study began. During a mean follow-up of 5 years ramipril reduced the
primary outcome (composite of myocardial infarction, stroke, or death from cardio-
vascular causes) from 17.8% to 14.0% (relative risk 0.78, 95% confidence interval
0.70 to 0.86; P < 0.001). Treatment with ramipril reduced the rates of death from
cardiovascularcausesandall-causemortality,myocardial infarction, revascularisation
procedures, cardiac arrest, heart failure, and complications related to diabetes.

The EUROPA study examined the effects of addition of 8 mg perindopril to standard
therapy in patients with previous myocardial infarction, angiographic evidence of
coronary heart disease, coronary revascularization, or a positive stress test. Past
history of heart failure was recorded in 1.3% of subjects, but none had clinical
signs of heart failure, with 10% in New York Heart Association class I and none
in class II or higher. During a mean follow-up of 4.2 years, perindopril reduced the
primary outcome (composite of cardiovascular death, non-fatal myocardial infarction,
cardiac arrest with successful resuscitation) from 9.9% to 8.0% (relative risk 0.80,
95% confidence interval 0.71 to 0.91; P<0.001). The main contributor to this
reduction in the primary outcome was the reduction in non-fatal myocardial infarction.
Perindopril also reduced the incidence of heart failure requiring hospitalisation.

By contrast, the Prevention of Events with Angiotensin Converting Enzyme
Inhibition (PEACE) study failed to show an effect of ACE inhibition on its primary
endpoint (The PEACE Trial Investigators 2004). The PEACE study examined the
effects of addition of 4 mg trandolapril to standard therapy on cardiovascular
events in patients with stable coronary heart disease and preserved LV function.
During a median follow-up of 4.8 years, trandolapril produced non-statistically
significant reductions in the primary endpoint (composite of cardiovascular death,
myocardial infarction, and coronary revascularization) from 22.5% to 21.9%, and
in cardiovascular death and non-fatal myocardial infarction from 8.5% to 8.3%,
although trandolapril reduced hospitalisation or death due to heart failure from 3.7%
to 2.8%. Participants in the PEACE study were at lower risk of cardiovascular
events than those in the HOPE and EUROPA studies. The baseline blood pressure
of PEACE participants was less than that of patients in the HOPE and EUROPA
studies, and was similar to the level achieved with active therapy in the HOPE
and EUROPA studies. In addition, PEACE participants received more intensive
management of risk factors than did those in the HOPE and EUROPA studies, with
70% of PEACE participants receiving lipid lowering therapy (29% in HOPE, 56%
in EUROPA), and 72% had undergone coronary revascularization before enrollment
(40% in HOPE, 54% in EUROPA). Thus, PEACE participants had an event rate
similar to that of the general population (1.6% annualised rate of death), and the
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more aggressive management of their risk factors may have negated any potential
benefit from ACE inhibitor therapy.

There has been debate about the reasons for the failure of the PEACE study
to show an effect of trandolapril on the primary endpoint (Pitt 2004; Fox et al
2006a). Although the dose and type of ACE inhibitor may be implicated, the
most likely explanation is the low event rate in its relatively low risk population
(necessitating the inclusion of revascularisation as part of the primary endpoint),
such that the study did not have sufficient statistical power to achieve its aim. The
Ischemia Management with Accupril post bypass Graft via Inhibition of angiotensin
converting enzyme (IMAGINE) study similarly showed a lack of benefit from 40
mg quinapril in optimally treated low-risk patients after coronary artery bypass
grafting (Keuper et al 2005).

Pooled analysis of the HOPE, EUROPA, and PEACE trials showed ACE
inhibition reduced all cause and cardiovascular mortality, non-fatal myocardial
infarction, stroke, heart failure, and coronary artery bypass surgery, leading to the
recommendation that ACE inhibitors be considered in all patients with atheroscle-
rosis (Dagenais et al 2006). A meta-analysis of the HOPE, EUROPA, PEACE,
and other studies came to a similar conclusion (Al-Mallah et al 2006). However,
the number needed to treat for 4.4 years to prevent either one death, one non-
fatal myocardial infarction, or one coronary revascularisation procedure was 100
(Al-Mallah et al 2006). Current European Society of Cardiology guidelines state:
“ACE inhibition is well established in the treatment of heart failure or LV
dysfunction and in the treatment of diabetic patients. Thus, it is appropriate to
consider ACE inhibitors for the treatment of patients with stable angina pectoris
and co-existing hypertension, diabetes, heart failure, asymptomatic LV dysfunction
and post-myocardial infarction. In angina patients without co-existing indications
for ACE inhibitor treatment the anticipated benefit of treatment (possible absolute
risk reduction) should be weighed against costs and risks for side-effects, and
the dose and agent used of proven efficacy for this indication” (Fox et al 2006b).

6. MECHANISMS OF THE THERAPEUTIC BENEFITS
OF ACE INHIBITION IN HEART FAILURE AND ISCHAEMIC
HEART DISEASE

ACE inhibition has many different effects, both systemic and organ-specific (Unger
et al 1990). The systemic effects include the reduction of circulating Ang II and
aldosterone levels and the increase in kinin and AcSDKP levels. Decreased Ang
II and increased kinin levels contribute to the reduction of blood pressure by ACE
inhibition.

6.1. Haemodynamic and Coronary Vascular Effects of ACE Inhibition

There is ongoing debate about the extent to which the benefits of ACE inhibition are
related to blood reduction, as opposed to intrinsic benefits of ACE inhibition (Sever
et al 2006). A major contributor to the benefits of ACE inhibition in heart failure
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and ischaemic heart disease may be the reduction in systemic blood pressure, and
consequent reduction in heart work. ACE inhibition may improve cardiac function
by reducing coronary vascular resistance in patients with heart failure, thereby
augmenting cardiac blood flow (Dietz et al 1993).

6.2. Effects of ACE Inhibition on Ang II Levels

ACE inhibition reduces circulating and tissue levels of Ang II in both animals and
humans (Campbell et al 1994; Duncan et al 1996; Campbell et al 1999; Zeitz et al
2003). ACE inhibition produced a modest reduction in Ang II levels in EUROPA
participants (Ceconi et al 2007). However, the effects of ACE inhibition on Ang II
levels can be variable, and depend on the responsiveness of renin secretion (Mooser
et al 1990). In situations where renin shows little increase in response to ACE
inhibition, the levels of Ang II and its metabolites show a marked fall, with little
change in the levels of Ang I and its metabolites. By contrast, a large increase in
renin levels in response to ACE inhibition also increases the levels of Ang I and
its metabolites. The increased Ang I levels promote Ang II formation by residual
uninhibited ACE and by serine protease pathways of Ang I conversion, thereby
buffering any fall in Ang II levels during ACE inhibition (Juillerat et al 1990).

Improved survival of heart failure patients with ACE inhibitor therapy is
associated with reduction in Ang II and aldosterone levels (Swedberg et al 1990).
The role of renin in determining the response of Ang II levels to ACE inhibition is
most evident in heart failure, where many patients continue to have elevated Ang II
levels despite ACE inhibitor therapy (Roig et al 2000; Campbell et al 2001). It is of
note that maximally recommended doses of ACE inhibitor do not completely prevent
ACE mediated formation of Ang II in heart failure (Jorde et al 2000). The beneficial
therapeutic effects of concomitant ß-blocker therapy in heart failure may be
due in part to the associated reduction in renin and Ang II levels (Campbell et al
2001).

The effects of ACE inhibitors on Ang II levels are dose dependent (Fig. 3).
Studies in rats showed tissue-specific differences in the dose-related effects of ACE
inhibition on Ang II levels (Campbell 1996). Renal Ang II levels were reduced by
lower doses of ACE inhibitor than were required to reduce Ang II levels in other
tissues such as the heart (Fig. 3).

6.3. Effects of ACE Inhibition on Ang-(1-7) Levels

ACE inhibition is accompanied by increased levels of Ang-(1-7). This is due in part
to the increase in Ang I levels, with subsequent conversion to Ang-(1-7). Another
mechanism for the increase in Ang-(1-7) levels during ACE inhibition is the inhibition
of Ang-(1-7) metabolism, given that ACE is an important pathway of Ang-(1-7)
metabolism (Chappell et al 1998; Yamada et al 1998). Studies in rats led to the
proposal that increased Ang-(1-7) levels mediate in part the hypotensive effects of
ACE inhibition (Iyer et al 1998a; Iyer et al 1998b). However, there is as yet no
evidence that these mechanisms operate in patients receiving ACE inhibitor therapy.
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6.4. Effects of ACE Inhibition on Kinin Peptide Levels

There is ample evidence that kinin peptides contribute to the therapeutic effects of
ACE inhibitors (Linz et al 1995; Bönner 1997). ACE inhibitors increase circulating
and tissue levels of bradykinin in animals (Fig. 3) and humans (Campbell et al
1994; Duncan et al 1996; Zeitz et al 2003). The effect of ACE inhibition on kinin
peptide levels in any tissue compartment depends on the contribution of ACE,
relative to other kininases, to kinin peptide metabolism in that compartment. ACE
inhibitor therapy did not increase either bradykinin or kallidin peptide levels in
cardiac atria of patients with ischaemic heart disease, despite the reduction in Ang
II levels (Campbell et al 1999).

The maintenance of low levels of kinin peptides by their efficient metabolism is
relevant to the success of ACE inhibitor therapy. ACE inhibition has only a modest
effect on kinin peptide levels because of the many other kininases that contribute to
kinin metabolism. It is for this reason that ACE inhibitors are generally free of the
side effects, such as angioneurotic oedema, that one might expect from increased
kinin peptide levels (Nussberger et al 1998; Nussberger et al 2002).

Studies with kinin receptor antagonists indicate a role for kinins in the cardiovas-
cular actions of ACE inhibitors in animals and humans (Linz et al 1995). Studies
in humans indicate a role for the B2 receptor in flow-dependent vasodilatation in
normal volunteers (Hornig et al 1997) and in the hypotensive effects in patients
with hypertension (Gainer et al 1998; Squire et al 2000). A role for the B1 receptor
is indicated in the systemic haemodynamic effects of ACE inhibition in patients
with heart failure (Witherow et al 2001; Cruden et al 2004).

Cardioprotective effects of ACE inhibition that were attenuated by icatibant
included the reduction of arrhythmias, reduction of lactate, lactate dehydrogenase,
and creatine kinase release, and increase in myocardial contractility and myocardial
levels of glycogen, adenosine triphosphate and creatine phosphate during reper-
fusion of the ischaemic isolated working rat heart (Linz et al 1992). Icatibant atten-
uated the ACE inhibitor-induced increase in coronary flow and nitric oxide levels
in dogs with myocardial ischaemia (Kitakaze et al 2002). Icatibant also prevented
the potentiation of ischaemic preconditioning by ACE inhibition in human atria
(Morris et al 1997). The post-ischaemic anti-arrhythmic effect of ACE inhibition
may be mediated by kinin-induced suppression of endothelin release (Brunner et al
1996).

Icatibant prevented the reduction in myocardial infarct size and the reduction
in post-infarct remodelling by ACE inhibition in animal models (Linz et al 1992;
Hartman et al 1993; Stauss et al 1994; McDonald et al 1995; Hu et al 1998).
However, a subsequent study in an in vivo canine model of myocardial ischaemic
injury did not show an effect of ACE inhibition on infarct size (Black et al 1998).
Moreover, icatibant did not modify the antihypertrophic effect of ACE inhibition
in rats with myocardial infarction, although it partially reversed the reduction in
myocardial collagen deposition by ACE inhibitor therapy in one study (Wollert
et al 1997).
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Possible mechanisms by which kinin peptides mediate the therapeutic benefits
of ACE inhibition include the promotion of endothelial production of nitric oxide
and prostacylin, thereby contributing to the correction of endothelial dysfunction
and reduced oxidative stress (Linz et al 1995; Bönner 1997; Münzel et al 2001).
ACE inhibition induced endothelial NOS (eNOS) in vasculature of control rats, and
attenuated the induction of inducible NOS (iNOS) in rats administered bacterial
lipopolysaccharide (Bachetti et al 2001). Icatibant prevented the increase in nitric
oxide formation in the heart and reduction in myocardial oxygen consumption that
accompany ACE inhibition in dogs (Zhang et al 1997). Icatibant also prevented
the antiproliferative effect of ACE inhibition in neointima formation following
endothelial injury to the rat carotid artery (Linz et al 1992), and the increase
in capillary density induced by chronic ACE inhibitor treatment in stroke-prone
spontaneously hypertensive rats (Gohlke et al 1997). Part of the benefits of ACE
inhibition may be due to the enhancement of insulin-mediated muscle glucose
uptake, that is also attenuated by icatibant (Henriksen et al 1996; Henriksen et al
1999).

6.5. ACE Inhibitor Effects on the KKS Independent of Kinin Levels

ACE inhibition also affects the KKS by mechanisms separate from prevention of
kinin degradation. For example, chronic ACE inhibition in mice and rats induced
both renal and vascular B1 receptor expression without modification of B2 receptor
expression (Marin-Castano et al 2002). Moreover, enalaprilat and other ACE
inhibitors in nanomolar concentrations were shown to directly activate the human
B1 receptor, in the absence of ACE and B1 receptor ligands (Ignjatovic et al 2002).

Several studies show ACE inhibitors may potentiate the effects of bradykinin by
a mechanism independent of prevention of kinin metabolism, that involves direct
interaction between ACE and the B2 receptor (Fleming 2006) and attenuation of the
sequestration of the B2 receptor (Benzing et al 1999; Chen et al 2006). Additionally,
membrane ACE appears to have its own signalling cascade that is activated by
binding of ACE inhibitors (Fleming 2006).

6.6. Comparison of ACE Inhibitor and ARB Therapy

One approach to differentiation of the respective roles of the RAS and KKS in
mediating the therapeutic benefits of ACE inhibition is the comparison of ACE
and ARB therapy. Comparison of ACE inhibitor and ARB therapy after myocardial
infarction, or in patients with heart failure, did not show any difference in outcomes
(Pitt et al 2000; Dickstein et al 2002; Pfeffer et al 2003; McMurray et al 2006).
These studies suggest ACE inhibitor and ARB therapy act through blockade of the
RAS, but a role for bradykinin cannot be excluded because losartan was shown to
increase bradykinin levels in hypertensive humans (Campbell et al 2005).
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Maximally recommended doses of ACE inhibitors do not completely prevent
ACE mediated formation of Ang II in heart failure (Jorde et al 2000). Combi-
nation of ACE inhibitor and ARB therapy produces more complete blockade of the
RAS that is dependent on the dose regimens of the individual therapies (Menard
et al 1997; Azizi et al 2004). This combination therapy improves outcomes in
heart failure patients (Cohn et al 2001; McMurray et al 2003), but not following
myocardial infarction (Pfeffer et al 2003; McMurray et al 2006).

6.7. Effects of ACE Inhibition on AcSDKP Levels

ACE inhibition causes a several-fold increase in AcSDKP levels that may contribute
to decreased cardiac inflammation and fibrosis, and to increased myocardial
capillary density after myocardial infarction (Wang et al 2004; Yang et al 2004).
Elevated AcSDKP levels during ACE inhibitor therapy may also contribute to the
anaemia experienced by heart failure patients receiving ACE inhibitor therapy (van
der Meer et al 2005).

6.8. Effects of ACE Inhibition on Aldosterone Levels

Heart failure patients have increased plasma aldosterone levels consequent to stimu-
lation of aldosterone secretion by increased Ang II levels (Weber 2001). Evidence
that reduced aldosterone levels may contribute to the therapeutic benefits of ACE
inhibition is the reduced hypokalaemia in patients receiving ramipril therapy in
the HOPE study (Mann et al 2005). In addition to promotion of sodium retention
and oedema formation, aldosterone may promote cardiac fibrosis and deterioration
in cardiac function (Brilla et al 1993). The possible clinical importance of this
mechanism is shown by the benefits of aldosterone receptor antagonists in patients
with heart failure, and in patients with LV dysfunction after myocardial infarction
(Pitt et al 1999; Pitt et al 2003).

6.9. Effects of ACE Inhibition on Sympathetic Nervous System Activity

Many authors have suggested the reduction in sympathetic activity that may
accompany ACE inhibition is due to a reduction in the stimulation of sympathetic
activity by Ang II. However, although ACE inhibitor therapy leads to reduction in
sympathetic nervous system activity in heart failure, this is thought to be mainly
secondary to the improvement of cardiovascular haemodynamics, rather than the
specific consequence of reduced stimulation of the sympathetic nervous system by
Ang II (Esler et al 2001).

6.10. Effects of ACE Inhibition on Cardiac Remodelling

Cardiac hypertrophy is well recognised as a risk factor for death and cardiovascular
events (Levy et al 1990). ACE inhibitors reduce cardiac hypertrophy in hypertensive
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patients (Dahlof et al 1992) and also reduce progressive LV remodelling after
myocardial infarction (Ferrari 2006). Ventricular remodelling has a dominant role
in the pathogenesis of heart failure, and the prevention of remodelling is considered
to be an important mechanism of the benefit of ACE inhibitor therapy in heart
failure and after myocardial infarction (Cohn 1995; Abdulla et al 2007).

6.11. Effects of ACE Inhibition on Atherosclerosis

Reduction of myocardial infarction and other ischaemic events by ACE inhibition
raises the possibility that these drugs inhibit atherosclerosis. ACE inhibitors correct
endothelial dysfunction in patients with heart failure and ischaemic heart disease
(Drexler et al 1995; Mancini et al 1996; Ceconi et al 2007). These effects of ACE
inhibition may be due to the reduction of oxidative stress, vascular remodelling
and inflammation by reduced Ang II levels and increased kinin levels. However,
current evidence does not allow these data to be extrapolated to a reduction in
atherogenesis by ACE inhibition in humans. Despite the prevention of atheroscle-
rosis in animal models, ACE inhibitor therapy was not able to reduce atherogenesis
in patients. ACE inhibition with cilazapril did not prevent restenosis after angio-
plasty (MERCATOR), (MERCATOR Study Group 1992; Faxon 1995). Similarly,
Quinapril did not reduce restenosis after coronary stenting; in fact, late loss in
minimum lumen diameter was significantly higher in the quinapril group than in
controls (Meurice et al 2001). Additionally, ACE inhibition with enalapril failed to
reduce progression of coronary atherosclerosis, as assessed by intravascular ultra-
sound, in patients with coronary artery disease (Nissen et al 2004).

A meta-analysis of randomised controlled studies of the effect of antihypertensive
therapies in progression of carotid intima-media thickness showed only a weak,
non-significant reduction in progression of carotid intima-media thickness by ACE
inhibitor therapy, with significant heterogeneity between studies (Wang et al 2006).
Some studies showed a reduction in progression of intima-media thickness by ACE
inhibition and some did not. Of note, calcium channel blockers were significantly
more effective than ACE inhibitors in their reduction of progression of intima-media
thickness (Wang et al 2006).

6.12. Effects of ACE Inhibition on Thrombosis

Reduced rates of myocardial infarction with ACE inhibitor therapy may also be
due to an effect of this therapy on the mechanisms of thrombosis and fibri-
nolysis. ACE inhibition reduced plasma levels of PAI-1 antigen and activity in
normal subjects on low salt diet and in subjects following myocardial infarction
(Wright et al 1994; Moriyama et al 1997; Oshima et al 1997; Vaughan et al
1997; Brown et al 1998; Brown et al 1999), although this effect of ACE inhibition
was not confirmed in other studies of patients with previous myocardial infarction
(Zehetgruber et al 1996; Pedersen et al 1997). ACE inhibition also reduced PAI-
1 antigen, but not PAI-1 activity, in subjects with congestive cardiac failure
(Goodfield et al 1999).



40 CAMPBELL

6.13. Effects of ACE Inhibition on Incidence of Type 2 Diabetes

Diabetes is well recognised to accelerate the processes of cardiovascular disease,
and reduction of diabetes incidence may contribute to the therapeutic benefits
of ACE inhibition. Many large clinical trials, including the HOPE, PEACE, and
SOLVD studies, showed a reduced incidence of type 2 diabetes with ACE inhibitor
therapy (Abuissa et al 2005). However, the Diabetes Reduction Assessment with
Ramipril and Rosiglitazone Medication (DREAM) study found ramipril did not
reduce diabetes incidence among persons with impaired fasting glucose levels
or impaired glucose tolerance, although it significantly increased regression to
normoglycaemia (The DREAM Trial Investigators 2006). This improvement in
insulin resistance may be due in part to the enhancement of insulin-mediated muscle
glucose uptake by ACE inhibition (Henriksen et al 1996; Henriksen et al 1999).

6.14. Effects of ACE Inhibition on Arterial Stiffness

Aortic compliance is an important determinant of coronary blood flow (O’Rourke
et al 1999). A recent meta-analysis showed ACE inhibitors decrease arterial stiffness
(Mallareddy et al 2006). ACE inhibitors, by increasing aortic compliance, may
reduce central systolic blood pressure and maintain diastolic blood pressure, thereby
reducing heart work without compromising myocardial perfusion. Decrease in
arterial stiffness by ACE inhibition may be due to reduced collagen deposition,
as suggested by studies in spontaneously hypertensive rats (Benetos et al 1997).
Reduction of aortic collagen deposition by ACE inhibition was not affected by
icatibant, suggesting that this effect of ACE inhibition was not mediated by kinins
(Benetos et al 1997).

6.15. Effects of ACE Inhibition on Atrial Fibrillation

Atrial fibrillation is an important contributor to poor prognosis in heart failure
(Wang et al 2003), and prevention of atrial fibrillation by ACE inhibition may
contribute to the therapeutic benefits of this therapy (Vermes et al 2003).

6.16. Interaction Between ACE Inhibitor and Aspirin Therapy

Given that kinin peptides mediate in part the therapeutic benefits of ACE inhibition,
and that some of the actions of kinins are mediated by prostaglandins, the question
arises whether a drug that inhibits prostaglandin synthesis may attenuate the effects
of ACE inhibition. This question was addressed in a systematic review of the
interaction between aspirin and ACE inhibitor therapy (Teo et al 2002). The SOLVD
study found aspirin prevented the reduction of death by ACE inhibition, but this
interaction between aspirin and ACE inhibitor therapy was not significant in the
other trials examined. However, both SOLVD and the other trials showed aspirin
attenuated the prevention of myocardial infarction or reinfarction by ACE inhibition.
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By contrast, there was no evidence that aspirin attenuated the prevention of stroke,
hospital admission for heart failure, or revascularisation by ACE inhibitor therapy.
When the composite of major vascular events including death, myocardial infarction
or reinfarction, hospital admission for heart failure, stroke, and revascularisation
was examined, aspirin did not significantly attenuate the benefits of ACE inhibitor
therapy. This analysis shows, therefore, that aspirin does interact with ACE inhibitor
therapy, at least in the case of myocardial infarction. However, in the absence of
clear contraindications, concomitant use of aspirin and ACE inhibitors should be
considered in all patients at high risk of major vascular events (Teo et al 2002).

7. CONCLUSIONS

ACE inhibitors have a major role in the treatment and prevention of heart failure
and ischaemic heart disease. Reduction in Ang II levels, and increase in kinin and
AcSDKP levels, are implicated in the mechanisms of the therapeutic effects of
ACE inhibitors. Much of the detail of these mechanisms, however, remains to be
discovered.
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