Skip to main content

The Search for Genes Which Influence Prostate Cancer Metastasis: A Moving Target?

  • Chapter
Metastasis of Prostate Cancer

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 10))

Abstract

The process of cancer and prostate cancer metastasis is complex and requires fundamental changes to the behaviour of the parent cell. While the stage at which essential mutations for prostate cancer metastasis occur remains controversial, it is likely, based on current evidence, that an accumulation of genetic damage is required. However, the study of cancer metastasis is clearly dependent on the availability of suitable in vitro and in vivo models. Not every model represents the full in vivo situation in man, but a combination of these models is now becoming available in prostate cancer and should allow a more detailed assessment of the specific genes involved in metastasis and the preferential adhesion in bone. Identification of specific genes associated with particular pathology has also taken tremendous steps forward in the last few years. Differential expression analysis, of both the RNA and also protein levels are providing new targets for therapy, specifically directed against metastatic disease. However, for longer term prospects the ability to detect metastasis in a simple blood sample would offer the most hope of permanent treatment or indeed cure. Based on serum profiling, such methods should soon be available to the oncologist in the clinic. On-line catalogues of genes whose expression is perturbed in metastatic processes offer the first clues to the key events in this complex biological process. It is perhaps from these catalogues improved animal models and indeed the more global analysis of patient samples from bio-banks that the key events and a genetic basis will be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maitland NJ, Stanbridge LJ, Dussupt V. Targeting gene therapy for prostate cancer. Curr Pharm Des 2004, 10:531–55.

    PubMed  CAS  Google Scholar 

  2. Fidler IJ. Critical determinants of cancer metastasis; rationale for therapy. Cancer Chemother Pharmacol 1991, 43:S3–S10.

    Google Scholar 

  3. Bernards R, Weinberg RA. A progession puzzle. Nature 2002, 418:823.

    PubMed  CAS  Google Scholar 

  4. Greaves M. Cancer: the Evolutionary Legacy. Oxford, New York: Oxford Univ Press, 2000, pp. 57–61.

    Google Scholar 

  5. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 1:99–101.

    Google Scholar 

  6. Mundy GR. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002, 2:584–93.

    PubMed  CAS  Google Scholar 

  7. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002, 29:15–18.

    PubMed  CAS  Google Scholar 

  8. Ng H-H, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev 1999, 9:158–63.

    PubMed  CAS  Google Scholar 

  9. Maitland NJ, Macintosh CA, Hall J, Sharrard M, Quinn G, Lang S. In vitro models to study cellular differentiation and function in human prostate cancers. Radiat Res 2001, 155:133–42.

    PubMed  CAS  Google Scholar 

  10. Van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. Prostate 2000, 43:263–71.

    PubMed  Google Scholar 

  11. Hukku B, Mally M, Cher ML, Peehl DM, Kung HF, Rhim JS. Stepwise genetic changes associated with progression of nontumorigenic HPV-18 immortalized human prostate cancer-derived cell line to a malignant phenotype. Cancer Genet Cytogenet 2000, 120:117–26.

    PubMed  CAS  Google Scholar 

  12. Harris H, Miller OJ, Klein G, Worst P, Tachebana T. Suppression of malignancy by cell fusion. Nature 1969, 223:363–8.

    PubMed  CAS  Google Scholar 

  13. Sidebottom E, Clark SR. Cell fusion regulated progressive growth from metastasis. Br J Cancer 1983, 47:399–406.

    PubMed  CAS  Google Scholar 

  14. Anderson MJ, Stanbridge EJ. Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J 1993, 7:826–33.

    PubMed  CAS  Google Scholar 

  15. Mashimo T, Watabe M, Cuthbert AP, Newbold RF, Rinker-Schaeffer CW, Helfer E, Watabe K. Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Res 1998, 58:4572–6.

    PubMed  CAS  Google Scholar 

  16. Lang SH, Stower M, Maitland NJ. In vitro modelling of epithelial and stromal interactions in non-malignant and malignant prostates. Br J Cancer 2000, 82:990–7.

    PubMed  CAS  Google Scholar 

  17. Mohler JL, Partin AW, Isaacs JT, Coffey DS. Metastatic potential prediction by a visual grading system of cell motility: Prospective validation in the dunning R-3327 prostatic adenocarcinoma model. Cancer Res 1988, 48:4312–17.

    PubMed  CAS  Google Scholar 

  18. Partin AW, Isaacs JT, Treiger B, Coffey DS. Early cell motility changes associated with an increase in metastatic ability in rat prostatic cancer cells transfected with the v-harvey-ras oncogene. Cancer Res 1988, 48:6050–3.

    PubMed  CAS  Google Scholar 

  19. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for rhoc. Nature 2000, 406:532–5.

    PubMed  CAS  Google Scholar 

  20. Khan J, Saal LH, Bittner ML, Chen YD, Trent JM, Meltzer PS. Expression profiling in cancer using cDNA microarrays. Electrophoresis 1999, 20:223–9.

    PubMed  CAS  Google Scholar 

  21. Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984, 44:3522–9.

    PubMed  CAS  Google Scholar 

  22. Chen YH, Lu Q, Schneeberger EE, Goodenough DA. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed madin-darby canine kidney cells. Mol Biol Cell 2000, 11:849–62.

    PubMed  CAS  Google Scholar 

  23. Bao LR, Loda M, Janmey PA, Stewart R, Anand-Apte B, Zetter BR. Thymosin (15: A novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 1996, 2:1322–8.

    PubMed  CAS  Google Scholar 

  24. Hall A. Rho gtpase and the actin cytoskeleton. Science 1998, 279:509–14.

    PubMed  CAS  Google Scholar 

  25. Sahai E, Marshall CJ. RHO-gtpases and cancer. Nat Rev Cancer 2002, 2:133–42.

    PubMed  Google Scholar 

  26. Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 2000, 269:652–9.

    PubMed  CAS  Google Scholar 

  27. Ichikawa T, Ichikawa Y, Isaacs JT. Genetic factors and suppression of metastatic ability of prostatic cancer. Cancer Res 1991, 51:3788–92.

    PubMed  CAS  Google Scholar 

  28. Cunha GR. Epithelio-mesenchymal interaction in primodial gland structures will become responsive to androgenic stimulation. Anat Rec 1973, 172:179–96.

    Google Scholar 

  29. Thompson TC, Kadmon D, Timme TL, Merz VW, Egawa S, Krebs T et al. Experimental oncogene induced prostate cancer. Cancer Surv 1991, 11:55–71.

    PubMed  CAS  Google Scholar 

  30. Thompson TC, Park SH, Timme TL, Ren C, Eastham JA, Donehower LA et al. Loss of P53 function leads to metastasis n ras+ myc-initiated mouse prostate cancer. Oncogene 1995, 10:869–79.

    PubMed  CAS  Google Scholar 

  31. Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC. P53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 1993, 53:3369–73.

    PubMed  CAS  Google Scholar 

  32. Thompson TC, Timme TL, Park SH, Yang G, Ren CZ. Mouse prostate reconstitution model system: A series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate 2000, 43:248–54.

    PubMed  CAS  Google Scholar 

  33. Bangma CH, Nasu Y, Ren CZ, Thompson TC. Metastasis-related genes in prostate cancer. Semin Oncol 1999, 26:422–7.

    PubMed  CAS  Google Scholar 

  34. Yang G, Truong LD, Wheeler TM, Thompson TC. Caveolin-l expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Res 1999, 59:5719–23.

    PubMed  CAS  Google Scholar 

  35. Abate-Shen C, Shen MM. Mouse models of prostate carcinogenesis. Trends Genet 2002,S1–5.

    Google Scholar 

  36. Sharma P, Schreiber-Agus N. Mouse models of prostate cancer. Oncogene 1999, 18:5349–55.

    PubMed  CAS  Google Scholar 

  37. Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res 1996, 56:4096–102.

    PubMed  CAS  Google Scholar 

  38. Voeks DJ, Martiniello-Wilks R, Russell PJ. Derivation of MPR and TRAMP models of prostate cancer and prostate cancer metastasis for evaluation of therapeutic strategies. Urol Oncol 2002, 7:111–18.

    PubMed  CAS  Google Scholar 

  39. Yang D, Holt GE, Velders MP, Kwon ED, Kast WM. Murine six membrane epithelial antigen of the prostate, prostate stem cell antigen and prostate-specific membrane antigen: Prostate-specific cell surface antigens highly expressed in prostate cancer of transgenic adenocarcinoma mouse prostate mice. Cancer Res 2001, 61:5857–60.

    PubMed  CAS  Google Scholar 

  40. Shah AH, Tabayoyong WB, Kundu SD, Kim SJ, Van Parijs L, Liu VC et al. Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res 2002, 62:7135–8.

    PubMed  CAS  Google Scholar 

  41. Abraham S, Zhang W, Greenberg N, Zhang M. Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol 2003, 169:1157–61.

    PubMed  CAS  Google Scholar 

  42. Maroulakou IG, Anver M, Garrett L, Green JE. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc.Natl.Acad.Sci.USA 1994, 91:11236–40.

    PubMed  CAS  Google Scholar 

  43. Garabedian EM, Humphrey PA, Gordon JI. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc. Natl. Acad. Sci. USA 1998, 95:15382–7.

    PubMed  CAS  Google Scholar 

  44. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al. Roles for NKX3.1 In prostate development and cancer. Genes Dev 1999, 13: 966–77.

    PubMed  CAS  Google Scholar 

  45. Podsypanina K, Ellenson LH, Nemes A, Gu JG, Tamura M, Yamada KM et al. Mutation of Pten/MMAC1 in mice causes neoplasia in multiple organ systems. Proc.Natl.Acad.Sci.USA 1999, 96:1563–8.

    PubMed  CAS  Google Scholar 

  46. Wainstein MA, He F, Robinson D, Kung H-J, Schwartz S, Giaconia JM et al. CWR22: Androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res 1994, 54:6049–52.

    PubMed  CAS  Google Scholar 

  47. Nemeth JA, Harb JF, Barroso U Jr, Grignon DJ, Cher ML. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 1999, 59:1987–93.

    PubMed  CAS  Google Scholar 

  48. Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ, Fidler IJ. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996, 2:1627–36.

    PubMed  CAS  Google Scholar 

  49. Kocheril SV, Grignon DJ, Wang CY, Maughan RL, Montecillo EJ, Talati B et al. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model. Cancer Detect Prev 1999, 23: 408–16.

    PubMed  CAS  Google Scholar 

  50. Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang SM, Ozen M et al. LNCap progression model of human prostate cancer: Androgen-independence and osseous metastasis. Prostate 2000, 44:91–103.

    PubMed  CAS  Google Scholar 

  51. Gleave M, Hsieh J-T, Gao C, Von Eschenbach AC, Chung LWK. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991, 51:3753–61.

    PubMed  CAS  Google Scholar 

  52. Patel BJ, Pantuck AJ, Zisman A, Tsui KH, Paik SH, Caliliw R et al. CL1-GFP: An androgen independent metastatic tumor model for prostate cancer. J Urol 2000, 164:1420–5.

    PubMed  CAS  Google Scholar 

  53. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002, 8:891–897.

    PubMed  CAS  Google Scholar 

  54. Chen CT, Gan YB, Au JLS, Wientjes MG. Androgen-dependent and -independent human prostate xenograft tumors as models for drug activity evaluation. Cancer Res 1998, 58:2777–83.

    PubMed  CAS  Google Scholar 

  55. Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 2002, 62:1256–60.

    PubMed  CAS  Google Scholar 

  56. Averboukh L, Liang P, Kantoff PW, Pardee AB. Regulation of S100P expression by androgen. Prostate 1996, 29:350–5.

    PubMed  CAS  Google Scholar 

  57. Takenaga K, Nakamura Y, Sakiyama S. Expression of antisense RNA to S100A4 gene encoding an S100-related calcium-binding protein suppresses metastatic potential of high-metastatic lewis lung carcinoma cells. Oncogene 1997, 14:331–7.

    PubMed  CAS  Google Scholar 

  58. Tarabykina S, Scott DJ, Herzyk P, Hill TJ, Tame JR, Kriajevska M et al. The dimerization interface of the metastasis-associated protein S100A4 (MTS1): In vivo and in vitro studies. J Biol Chem 2001, 276:24212–22.

    PubMed  CAS  Google Scholar 

  59. Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and SMAD2 levels. Nat Cell Biol 2002, 4:487–94.

    PubMed  CAS  Google Scholar 

  60. Chu LW, Pettaway CA, Liang JC. Genetic abnormalities specifically associated with varying metastatis potential of prostate cancer cell lines as detected by comparative genomic hybridization. Cancer Genet Cytogenet 2001, 127:161–7.

    PubMed  CAS  Google Scholar 

  61. Sharrard RM, Maitland NJ. Phenotypic effects of overexpression of the MMAC1 gene in prostate epithelial cells. Br J Cancer 2000, 83:1102–9.

    PubMed  CAS  Google Scholar 

  62. Schuster N, Krieglstein K. Mechanisms of TGF-(-mediated apoptosis. Cell Tissue Res 2002, 307:1–14.

    PubMed  CAS  Google Scholar 

  63. Blanchère M, Mestayer C, Saunier E, Broshuis M, Mowszowicz I. Transforming growth factor in the human prostate: Its role in stromal-epithelial interactions in non-cancerous cell culture. Prostate 2001, 46:311–18.

    PubMed  Google Scholar 

  64. Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002, 2:442–54.

    PubMed  CAS  Google Scholar 

  65. Kononen J, Budendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998, 4:844–7.

    PubMed  CAS  Google Scholar 

  66. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001, 412:822–6.

    PubMed  CAS  Google Scholar 

  67. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC et al. Survey of gene amplifications during prostate cancer progression by high throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999, 59:803–6.

    PubMed  CAS  Google Scholar 

  68. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi O-P. Genome screening by comparative genomic hybridization. Trends Genet 1997, 13:405–9.

    PubMed  CAS  Google Scholar 

  69. Macintosh CA, Murant S, Hopwood L, Anderson M, Phillips S, Stower M, Maitland NJ. Analysis of chromosomal instability in prostatic carcinoma using fluorescent microsatellites to map preferentially altered loci. Urol Res 1994, 23:P61.

    Google Scholar 

  70. Dumur CI, Dechsukhum C, Ware JL, Cofield SS, Best AM, Wilkinson DS et al. Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics 2003, 81:260–9.

    PubMed  CAS  Google Scholar 

  71. Witte JS, Goddard KAB, Conti DV, Elston RC, Lin J, Suarez BK et al. Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 2000, 67:92–9.

    PubMed  CAS  Google Scholar 

  72. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specificcDNAprobes and libraries. Proc Natl Acad SciUSA 1996, 93:6025–30.

    CAS  Google Scholar 

  73. Xu JC, Stolk JA, Zhang XQ, Silva SJ, Houghton RL, Matsumura M et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res 2000, 60:1677–82.

    PubMed  CAS  Google Scholar 

  74. Porkka KP, Visakorpi T. Detection of differentially expressed genes in prostate cancer by combining suppression subtractive hybridization and cDNA library array. J Pathol 2001, 193:73–9.

    PubMed  CAS  Google Scholar 

  75. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 2002, 62:4427–33.

    PubMed  CAS  Google Scholar 

  76. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49–54.

    PubMed  CAS  Google Scholar 

  77. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1:203–9.

    PubMed  CAS  Google Scholar 

  78. Newton D, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW. On differerential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Comput Biol 2001, 8:37–52.

    CAS  Google Scholar 

  79. Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R. Cancer gene discovery using digital differential display. Cancer Res 2000, 60:4037–43.

    PubMed  CAS  Google Scholar 

  80. Chakrabarti R, Robles LD, Gibson J, Muroski M. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. Cancer Genet Cytogenet 2002, 139:115–25.

    CAS  Google Scholar 

  81. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995, 270:484–7.

    PubMed  CAS  Google Scholar 

  82. Waghray A, Schober M, Feroze F, Yao F, Virgin J, Chen YQ. Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res 2001, 61:4283–6.

    PubMed  CAS  Google Scholar 

  83. Untergasser G, Koch KB, Menssen A, Hermeking H. Characterization of epithelial senescence by serial analysis of gene expression: Identification of genes potentially involved in prostate cancer. Cancer Res 2002, 62:6255–62.

    PubMed  CAS  Google Scholar 

  84. Nelson PS, Han D, Rochon Y, Corthals GL, Lin BY, Monson A et al. Comprehensive analyses of prostate gene expression: Convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis 2000, 21:1823–31.

    PubMed  CAS  Google Scholar 

  85. Nelson PS, Pritchard C, Abbott D, Clegg N. The human (PEDB) and mouse (mPEDB) prostate expression databases. Nucleic Acids Res 2002, 30:218–20.

    PubMed  CAS  Google Scholar 

  86. Ahram M, Best CJM, Flaig MJ, Gillespie JW, Leiva IM, Chuaqui RF et al. Proteomic analysis of human prostate cancer. Mol Carcinog 2002, 33:9–15.

    PubMed  CAS  Google Scholar 

  87. Wellmann A, Wollscheid V, Lu H, Ma ZL, Albers P, Schutze K et al. Analysis of microdissected prostate tissue with PROTEINCHIP arrays–a way to new insights into carcinogenesis and to diagnostic tools. Int.J Mol Med 2002, 9:341–7.

    PubMed  CAS  Google Scholar 

  88. Qu Y, Adam BL, Yasui Y, Ward MD, Cazares LH, Schellhammer PF et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002, 48:1835–43.

    PubMed  CAS  Google Scholar 

  89. Ball G, Mian S, Holding F, Allibone RO, Lowe J, Ali S et al. An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumor and rapid identification of potential biomarkers. Bioinformatics 2002, 18:395–404.

    PubMed  CAS  Google Scholar 

  90. Liu AY. Differential expression of cell surface molecules in prostate cancer cells. Cancer Res 2000, 60:3429–34.

    PubMed  CAS  Google Scholar 

  91. Bok RA, Small EJ. Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2002, 2:918–26.

    PubMed  CAS  Google Scholar 

  92. Kontturi M. Is acid phosphatase (PAP) still justified in the management of prostatic cancer. Acta Oncol 1991, 30:169–70.

    PubMed  CAS  Google Scholar 

  93. Howanitz JH. Prostate specific antigen (PSA). Dis Markers 1993, 11:3–10.

    PubMed  CAS  Google Scholar 

  94. Corey E, Arfman EW, Oswin MM, Melchior SW, Tindall DJ, Young CYF et al. Detection of circulating prostate cells by reverse transcriptase polymerase chain reaction of human glandular kallikrein (hK2) and prostate-specific antigen (PSA) messages. Urology 1997, 50:184–8.

    PubMed  CAS  Google Scholar 

  95. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB et al. Antibody microarray profiling of human prostate cancer sera: Antibody screening and identification of potential biomarkers. Proteomics 2003, 3:56–63.

    PubMed  CAS  Google Scholar 

  96. Diamandis EP. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2003, 95:489–90.

    Article  PubMed  CAS  Google Scholar 

  97. Petricoin EFIII, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS, Hitt BA et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002, 94:1576–8.

    PubMed  CAS  Google Scholar 

  98. Issaq JH, Veenstra TD, Contads TP, Felshow D. The seldi-tof ms approach to proteomics: Protein profiling and biomarker identification. Biochem Biophys Res Commun 2002, 292:587–92.

    PubMed  CAS  Google Scholar 

  99. Wang S, Diamond DL, Hass GM, Sokoloff R, Vessella RL. Identification of prostate specific memvrane antigen (PSMA) as the target of monoclonal antibody 107-1A4 by proteinchip® array, surface-enhanced laser desorption/ionization (SELDI) technology. Int J Cancer 2001, 92:871–6.

    PubMed  CAS  Google Scholar 

  100. Huang GM, Ng WL, Farkas J, He L, Liang HA, Gordon D et al. Prostate cancer expression profiling by cDNA sequencing analysis. Genomics 1999, 59:178–86.

    PubMed  CAS  Google Scholar 

  101. Asmann YW, Kosari F, Wang K, Cheville JC, Vasmatzis G. Identification of differentially expressed genes in normal and malignant prostate by electroby electronic profiling of expressed sequence tags. Cancer Res 2002, 62:3308–14.

    PubMed  CAS  Google Scholar 

  102. Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AAG et al. Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate cancer. Prostate 2002, 52:253–63.

    PubMed  CAS  Google Scholar 

  103. Yoshimura R, Sano H, Masuda C, Kawamura M, Tsubouchi Y, Chargui J et al. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000, 89:589–96.

    PubMed  CAS  Google Scholar 

  104. Kirschenbaum A, Liu XH, Yao S, Levine AC. The role of cyclooxygenase-2 in prostate cancer. Urology 2001, 58:127–31.

    PubMed  CAS  Google Scholar 

  105. Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progression. J Urol 2001, 166:2472–83.

    PubMed  CAS  Google Scholar 

  106. Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation 2002, 70:473–85.

    PubMed  Google Scholar 

  107. Macintosh CA, Stower M, Reid N, Maitland NJ. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 1998, 58:23–8.

    PubMed  CAS  Google Scholar 

  108. Clark J, Edwards S, Feber A, Flohr P, John M, Giddings I et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 2003, 22:1247–52.

    PubMed  CAS  Google Scholar 

  109. Ichikawa T, Nihei N, Kuramochi J, Kawana Y, Killary AM, Rinker-Schaeffer CW et al. Metastasis suppressor genes for prostate cancer. Prostate 1996,:31–5.

    Google Scholar 

  110. Kauffman EC, Robinson VL, Stadler WM, Sokoloff MH, Rinker-Schaeffer CW. Metastasis suppression: The evolving role of metastasis supressor genes for regulating cancer cell growth at the secondary site. J Urol 2003, 169:1122–33.

    PubMed  Google Scholar 

  111. Padalecki SS, Troyer DA, Hansen MF, Saric T, Schneider BG, O’Connell P, Leach RJ. Identification of two distinct regions of allelic imbalance on chromosome 18q in metastatic prostate cancer. Int J Cancer 2000, 85:654–8.

    PubMed  CAS  Google Scholar 

  112. Alers JC, Krijtenburg PJ, Rosenberg C, Hop WCJ, Verkerk AM, Schröder FH et al. Interphase cytogenetics of prostatic tumor progression: Specific chromosomal abnormalities are involved in metastasis to the bone. Lab Invest 1997, 77:437–48.

    PubMed  CAS  Google Scholar 

  113. Karan D, Lin MF, Johansson SL, Batra SK. Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer 2003, 103:285–93.

    PubMed  CAS  Google Scholar 

  114. Kraus J, Pantel K, Pinkel D, Albertson DG, Speicher MR. High-resolution genomic profiling of occult micrometastatic tumor cells. Genes Chromosomes. Cancer 2003, 36:159–66.

    PubMed  CAS  Google Scholar 

  115. Kasahara K, Taguchi T, Yamasaki I, Kamada M, Yuri K, Shuin T. Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 2002, 137:59–63.

    PubMed  CAS  Google Scholar 

  116. El Gedaily A, Bubendorf L, Willi N, Fu W, Richter J, Moch H et al. Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate 2001, 46:184–90.

    PubMed  CAS  Google Scholar 

  117. Zitzelsberger H, Engert D, Walch A, Kulka U, Aubele M, Höfler H et al. Chromosomal changes during development and progression of prostate adenocarcinomas. Br J Cancer 2001, 84:202–8.

    PubMed  CAS  Google Scholar 

  118. Jing C, El Ghany MA, Beesley C, Foster CS, Rudland PS, Smith P, Ke Y. Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J Natl Cancer Inst 2002, 94:482–90.

    PubMed  CAS  Google Scholar 

  119. Nelson PS, Plymate SR, Wang K, True LD, Ware JL, Gan L et al. Hevin, an antiadhesive extracellular matrix protein, is down- regulated in metastatic prostate adenocarcinoma. Cancer Res 1998, 58:232–6.

    PubMed  CAS  Google Scholar 

  120. Huang SY, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappab activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001, 20:4188–97.

    PubMed  CAS  Google Scholar 

  121. Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K, Koji T. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999, 80:309–13.

    PubMed  CAS  Google Scholar 

  122. Banyard J, Bao L, Zetter BR. Type XXIII collagen: A new transmembrane collagen identified in metastatic tumor cells. J Biol Chem 2003, 18:20989–20994.

    Google Scholar 

  123. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995, 1:944–9.

    PubMed  CAS  Google Scholar 

  124. Xia W, Unger P, Miller L, Nelson J, Gelman IH. The Src-suppressed C kinase substrate, ssecks, is a potential metastasis inhibitor in prostate cancer. Cancer Res 2001, 61:5644–51.

    PubMed  CAS  Google Scholar 

  125. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, Day ML. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 1995, 147:386–96.

    PubMed  CAS  Google Scholar 

  126. Naughton M, Picus J, Zhu XP, Catalona WJ, Vollmer RT, Humphrey PA. Scatter factor-hepatocyte growth factor elevation in the serum of patients with prostate cancer. J Urol 2001, 165:1325–8.

    PubMed  CAS  Google Scholar 

  127. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalié A et al. Expression of cat-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 2001, 276:19461–8.

    PubMed  CAS  Google Scholar 

  128. Zhau HYE, Zhou JX, Symmans WF, Chen BQ, Chang SM, Sikes RA, Chung LWK. Transfected neu oncogene induces human prostate cancer metastasis. Prostate 1996, 28:73–83.

    PubMed  CAS  Google Scholar 

  129. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G et al. Loss of NKX3.1 Expression in human prostate cancers correlates with tumor progression. Cancer Res 2000, 60:6111–15.

    PubMed  CAS  Google Scholar 

  130. Porkka K, Saramäki O, Tanner M, Visakorpi T. Amplification and overexpression of elongin C gene discovered in prostate cancer by cDNA microarrays. Lab Invest 2002, 82:629–37.

    PubMed  CAS  Google Scholar 

  131. Jing C, Beesley C, Foster CS, Rudland PS, Fujii H, Ono T et al. Identification of the messenger RNA for human cutaneous fatty acid-binding protein as a metastasis inducer. Cancer Res 2000, 60:2390–8.

    PubMed  CAS  Google Scholar 

  132. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 2001, 107:1235–44.

    Article  PubMed  CAS  Google Scholar 

  133. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000, 19:1288–96.

    PubMed  CAS  Google Scholar 

  134. Chen H, Pong RC, Wang Z, Hsieh JT. Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: Cloning and characterization. Genomics 2002, 79:573–81.

    PubMed  CAS  Google Scholar 

  135. Xin W, Rhodes DR, Ingold C, Chinnaiyan AM, Rubin MA. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol 2003, 162:255–61.

    PubMed  CAS  Google Scholar 

  136. Liu JW, Shen JJ, Tanzillo-Swarts A, Bhatia B, Maldonado CM, Person MD et al. Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene 2003, 22:1475–85.

    PubMed  CAS  Google Scholar 

  137. Iddon J, Bundred NJ, Hoyland J, Downey SE, Baird P, Salter D et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer. J Pathol 2000, 191:170–4.

    PubMed  CAS  Google Scholar 

  138. Schmidt U, Fiedler U, Pilarsky CP, Ehlers W, Füssel S, Haase M et al. Identification of a novel gene on chromosome 13 between BRCA-2 and RB-1. Prostate 2001, 47:91–101.

    PubMed  CAS  Google Scholar 

  139. Silletti S, Yao JP, Pienta KJ, Raz A. Loss of cell-contact regulation and altered responses to autocrine motility factor correlate with increased malignancy in prostate cancer cells. Int J Cancer 1995, 63:100–5.

    PubMed  CAS  Google Scholar 

  140. Yashi M, Muraishi O, Kobayashi Y, Tokue A, Nanjo H. Elevated serum progastrin-releasing peptide (31–98) in metastatic and androgen-independent prostate cancer patients. Prostate 2002, 51:84–97.

    PubMed  CAS  Google Scholar 

  141. Rondinelli RH, Tricoli JV. CLAR1, a novel gene that exhibits enhanced expression in advanced human prostate cancer. Clin Cancer Res 1999, 5:1595–602.

    PubMed  CAS  Google Scholar 

  142. Thomas BG, Hamdy FC. Bone morphogenetic protein-6: Potential mediator of osteoblastic metastases in prostate cancer. Prostate Cancer Prostatic Dis 2000, 3:283–5.

    PubMed  CAS  Google Scholar 

  143. Masuda H, Fukabori Y, Nakano K, Takezawa Y, Suzuki T, Yamanaka H. Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate 2003, 54:268–74.

    PubMed  CAS  Google Scholar 

  144. Westermarck J, Kähäri V-M. Regulation of a matrix metalloproteinase expression in tumor invasion. FASEB J 1999, 13:781–92.

    PubMed  CAS  Google Scholar 

  145. Kelsell DP, Dunlop J, Hodgins MB. Hum diseases: Clues to cracking the connexin code. Trends in Cell Biol 2001, 11:2–6.

    CAS  Google Scholar 

  146. Govindarajan R, Zhao S, Song XH, Guo RJ, Wheelock M, Johnson KR, Mehta PP. Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by alpha-catenin. J Biol Chem 2002, 277:50087–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maitland, N.J. (2008). The Search for Genes Which Influence Prostate Cancer Metastasis: A Moving Target?. In: Ablin, R.J., Mason, M.D. (eds) Metastasis of Prostate Cancer. Cancer Metastasis – Biology and Treatment, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5847-9_3

Download citation

Publish with us

Policies and ethics