Skip to main content

Evolutionary Optimization of ECG Feature Extraction Methods: Applications to the Monitoring of Adult Myocardial Ischemia and Neonatal Apnea Bradycardia Events

  • Chapter
  • First Online:
Book cover ECG Signal Processing, Classification and Interpretation

Abstract

Although a significant bibliography exists on the application of signal processing methods to ECG signals, the optimal configuration of these methods so as to maximize their performance on clinical data is a complex problem that is seldom covered in the literature. This is particularly the case for the signal processing chains proposed for the detection and segmentation of individual beats, which are often characterized by a significant number or parameters (filter cut-off frequencies, thresholds, etc.). In this chapter we propose an automated method, based on evolutionary computing, to optimize these parameters in a joint fashion. A brief state of the art on current ECG segmentation methods is presented and a complete signal processing chain, adapted to the detection and segmentation of ECG signals is proposed. The evolutionary optimization method is described and applied to two different monitoring applications: the detection of myocardial ischemia episodes on adult patients and the characterization of apnea-bradycardia events on preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altuve, M., Carrault, G., Cruz, J., Beuchée, A., Pladys, P., Hernández, A.: Analysis of the QRS complex for apnea-bradycardia characterization in preterm infants. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 946–949. IEEE, Minneapolis (2009)

    Google Scholar 

  • Back, T., Schutz, M.: Intelligent mutation rate control in canonical genetic algorithms: foundations of intelligent systems. In: Ras, Z., Michalewicz, M. (eds.) Proceedings of the International Symposium on Methodologies for Intelligent Systems, Lect. Notes Comput. Sci. 1079, 158–167. National Technical Information Service, Springer Berlin/Heidelberg (1996)

    Google Scholar 

  • Bahoura, M., Hassani, M., Hubin, M.: Dsp implementation of wavelet transform for real time ecg wave forms detection and heart analysis. Comput. Meth. Programs Biomed. 52, 35–44 (1997)

    Article  Google Scholar 

  • Beuchée, A.: Intérêt de l’analyse de la variabilité du rythme cardiaque en néonatalogie. comportement des systèmes de régulation cardiovasculaire dans le syndrome apnée/bradycardie du nouveau-né, vol. 1, PhD. thesis, Université de Rennes (2005)

    Google Scholar 

  • Castro, N., Gomis, P., Wagner, G.: Assessment of myocardial ischemia through high frequency energy estimation over the time-frequency plane using wavelets. Comput. Cardiol. 30, 517–520 (2004)

    Google Scholar 

  • Clavier, L., Boucher, J.: Segmentation of electrocardiograms using a hidden Markov model. In: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol. 4, pp. 1409–1410. IEEE, Piscataway (1996)

    Google Scholar 

  • Coast, D.: Segmentation of high-resolution ECGs using hidden Markov models. Acoustic. Speech Signal Process. ICASSP-93 1, 67–70 (1993)

    Google Scholar 

  • Coast, D., Stern, R., Cano, G., Briller, S.: An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. 37(9), 826–836 (1990)

    Article  Google Scholar 

  • CSE: Recommandations for measurement standards in quantitative electrocardiography. Eur. Heart J.: The CSE Working Party 6 815–825 (1985)

    Google Scholar 

  • Doerschuck, P.: A Markov Chain Approach to Electrocardiogram Modeling and Analysis. PhD. thesis, Massachusetts Institute of Technology, Boston, Massachussetts, USA (1985)

    Google Scholar 

  • Dumont, J., Carrault, G., Gomis, P., Wagner, G., Hernandez, A.: Detection of myocardial ischemia with hidden Semi-Markovian models. In: Computers in Cardiology, 2009, pp. 121–124. IEEE, Park City (2010a)

    Google Scholar 

  • Dumont, J., Hernández, A.I., Carrault, G.: Improving ecg beats delineation with an evolutionary optimization process., IEEE Trans. Biomed. Eng. 57(3), 607–15 (2010b)

    Google Scholar 

  • Eichler West, R., de Schutter, E., Wilcox, G.: Using evolutionary algorithms to search for control parameters in a nonlinear partial differential equation. Ima Vol. Math. Appl. 111, 33–64 (1999)

    Article  Google Scholar 

  • Einthoven, W.: Galvanometrische registratie van het menschilijk electrocardiogram. In: Herinneringsbundel Professor SS Rosenstein, pp. 101–107. Eduard Ijdo, Leiden (1902)

    Google Scholar 

  • Garcia, J., Wagner, G., Sörnmo, L., Olmos, S., Lander, P., Laguna, P.: Temporal evolution of traditional versus transformed ECG-Based indexes in patients with induced myocardial ischemia. J. Electrocardiol. 33, 37–47 (2000)

    Article  Google Scholar 

  • Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  • Graja, S., Boucher, J.: Multiscale hidden Markov model applied to ECG segmentation, In: IEEE International Symposium on Intelligent Signal Processing, 2003, pp. 105–109. IEEE Computer Society, Tokyo (2003)

    Google Scholar 

  • Graja, S., Boucher, S.: Hidden markov tree model applied to ECG delineation. IEEE Trans. Instrum. Meas. 54, 2163–2168 (2005)

    Article  Google Scholar 

  • Hernández, A.I., Carrault, G., Mora, F., Bardou, A.: Model-based interpretation of cardiac beats by evolutionary algorithms: signal and model interaction. Artif. Intell. Med. 26(3), 211–235 (2002)

    Article  Google Scholar 

  • Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)

    Article  Google Scholar 

  • Houck, C., Joines, J., Kay, M.: A genetic algorithm for function optimization: A Matlab implementation, NCSU-IE TR 95-09 (1995)

    Google Scholar 

  • Hughes, N., Tarassenko, L., Roberts, S.: Markov models for automated ECG interval analysis. In: Proceedings NIPS, vol. 16, pp. 611–618. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  • Islam, S., Jidin, R., Ali, M.: Performance study of adaptive filtering algorithms for noise cancellation of ECG signal. In: 7th International Conference on Information, Communications and Signal Processing, 2009. ICICS 2009, pp. 1–5. IEEE, Macau (2010)

    Google Scholar 

  • Jane, R., Laguna, P., Thakor, N., Caminal, P.: Adaptive baseline wander removal in the ECG: comparative analysis with cubic spline technique. Comput. Cardiol. 18, 143–146 (1992)

    Article  Google Scholar 

  • Jane, R., Blasi, A., Garcia, J., Laguna, P.: Evaluation of an automatic threshold based detector of waveform limits in Holter ECG with the QT database. In: Computers in Cardiology, pp. 295–298. IEEE Computer Society, Long Beach (1997)

    Google Scholar 

  • Janikow, C., Michalewicz, Z.: An experimental comparison of binary and floating point representations in genetic algorithms. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 31–36. Morgan Kaufmann Publishers, San Mateo (1991)

    Google Scholar 

  • Kohler, B., Hennig, C., Orglmeister, R.: The principles of software QRS detection, IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  • Koski, A.: Modelling ECG signals with hidden Markov models. Artif. Intell. Med. 8(5), 453–471 (1996)

    Article  Google Scholar 

  • Laguna, P., Jane, R., Caminal, R.: Automatic detection of wave boundaries in multi-lead ecg signals: validation with the cse data-base. Comput. Biomed. Res. 27 45–60 (1994)

    Article  Google Scholar 

  • Langer, A., Armstrong, P.: ST segment monitoring in patients with acute ischemic syndromes: Past and future revue. J. Thromb. Thrombolysis 5, S119–S123 (1998)

    Article  Google Scholar 

  • Lepage, R., Boucher, J., Blanc, J., Cornilly, J.: ECG segmentation and P-wave feature extraction: application to patients prone to atrial fibrillation. In: Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, vol. 1, pp. 298–301 Istanbul (2001)

    Google Scholar 

  • Leski, J., Henzel, N.: ECG baseline wander and powerline interference reduction using nonlinear filter bank. Signal Process. 85(4), (2005) 781–793

    Article  MATH  Google Scholar 

  • Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Ivaylo, C., Dotsinsky, I.: Removal of power-line interference from the ECG: a review of the subtraction procedure. Biomed. Eng. Online 4, 50 (2005)

    Article  Google Scholar 

  • Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  • Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P.: A wavelet-based ecg delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51, 570–581 (2004)

    Article  Google Scholar 

  • Martinez, J., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE Trans. Biomed. Eng. 53, 701–11 (2006)

    Article  Google Scholar 

  • McGinn, A., Rosamond, W., Goff, D., et al.: Trends in prehospital delay time and use of emergency medical services for acute myocardial infarction: experience in 4 US communities from 1987–2000. Am. Heart J. 150(3), 392–400 (2005)

    Article  Google Scholar 

  • Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Berlin/Heidelberg (1996)

    MATH  Google Scholar 

  • Mneimneh, M., Yaz, E., Johnson, M., Povinelli, R.: An adaptive Kalman filter for removing baseline wandering in ECG signals. In: Computers in Cardiology, 2006, pp. 253–256. IEEE, Valencia (2008)

    Google Scholar 

  • Pan, J., Tompkins, W.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32 230–236 (1985)

    Article  Google Scholar 

  • Penzel, T., Nottrott, M., Canisius, S., Greulich, T., Becker, H.F., Vogelmeier, C. P428 ecg morphology changes improves detection of obstructive sleep apnea. Sleep Med. 7(Suppl 2), S101–S102 (2006)

    Article  Google Scholar 

  • Pettersson, J., Pahlm, O., Carro, E., Edenbrandt, L., Ringborn, M., Sörnmo, L., Warren, S.G., Wagner, G.S.: Changes in high-frequency QRS components are more sensitive than ST-segment deviation for detecting acute coronary artery occlusion. J. Am. Coll. Cardiol. 36, 1827–1834 (2000)

    Article  Google Scholar 

  • Poets, C.F., Stebbens, V.A., Samuels, M.P., Southall, D.P.: The relationship between bradycardia, apnea, and hypoxemia in preterm infants. Pediatr. Res. 34(2), 144–147 (1993)

    Article  Google Scholar 

  • Portet, F., Hernandez, A., Carrault, G., Evaluation of real-time QRS detection algorithms in variable contexts. Med. Biol. Eng. Comput. 43(3), 379–385 (2005)

    Article  Google Scholar 

  • Pueyo, E., Sörnmo, L., Laguna, P.: QRS slopes for detection and characterization of myocardial ischemia. IEEE Trans. Biomed. Eng. 55, 468–477 (2008)

    Article  Google Scholar 

  • Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Academic Press, Amsterdam/Boston (2005)

    Google Scholar 

  • Sebag, M., Schoenauer, M., Ravise, C.: Toward civilized evolution: developing inhibitions. In: Bäck, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 291–298. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  • Senhadji, L., Carrault, G., Bellanger, J., Passariello, G.: Comparing wavelet transforms for recognizing cardiac patterns. Eng. Med. Biol. Mag. IEEE 14(2), 167–173 (2002)

    Article  Google Scholar 

  • Shusterman, V., Shah, S.I., Beigel, A., Anderson, K.P.: Enhancing the precision of ECG baseline correction: selective filtering and removal of residual error. Comput. Biomed. Res. 33(2), 144–160 (2000)

    Article  Google Scholar 

  • Smrdel, A., Jager, F.: Automated detection of transient ST-segment episodes in 24h electrocardiograms. Med. Biol. Eng. Comput. 42(3), 303–311 (2004)

    Article  Google Scholar 

  • Soria-Olivas, E., Martínez-Sober, M., Calpe-Maravilla, J., Guerrero-Martínez, J.F., Chorro-Gascó, J., Espí-López, J.: Application of adaptive signal processing for determining the limits of P and T waves in an ECG. IEEE Trans. Biomed. Eng. 45(8), 1077–1080 (1998)

    Article  Google Scholar 

  • Thakor, N., Zhu, Y.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (2002)

    Article  Google Scholar 

  • Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, pp. 980–985. Barcelona (2002)

    Google Scholar 

  • Thoraval, L.: Analyse statistique de signaux électrocardiographiques par modèles de markov cachés. PhD. thesis, Université de Rennes (1995)

    Google Scholar 

  • Touzé, E., Varenne, O., Chatellier, G., Peyrard, S., Rothwell, P., Mas, J.-L.: Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke: a systematic review and meta-analysis. Stroke 36, 2748 (2005)

    Article  Google Scholar 

  • van Ravenswaaij-Arts, C., Kollee, L., Hopman, J., Stoelinga, G., van Geijn, H.: Heart rate variability. Ann. Intern. Med. 118(6), 436 (1993)

    Google Scholar 

  • Vullings, H., Verhaegen, M., Verbruggen, H.: Automated ECG segmentation with dynamic time warping. In: Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, vol. 1, pp. 163–166. IEEE Service Center, Picatway (1998)

    Google Scholar 

  • Yang, L., Zhang, S., Li, X., Yang, Y.: Removal of pulse waveform baseline drift using cubic spline interpolation. In: 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 2010, pp. 1–3. IEEE, Shenzhen (2010)

    Google Scholar 

  • Ziarani, A.K., Konrad, A.: A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Trans. Biomed. Eng. 49(6), 540–547 (2002)

    Article  Google Scholar 

  • Zifan, A., Saberi, S., Moradi, M.H., Towhidkhah, F.: Automated ECG segmentation using piecewise derivative dynamic time warping. Int. J. Biomed. Sci. 1(3), 181–185 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hernández, A.I., Dumont, J., Altuve, M., Beuchée, A., Carrault, G. (2012). Evolutionary Optimization of ECG Feature Extraction Methods: Applications to the Monitoring of Adult Myocardial Ischemia and Neonatal Apnea Bradycardia Events. In: Gacek, A., Pedrycz, W. (eds) ECG Signal Processing, Classification and Interpretation. Springer, London. https://doi.org/10.1007/978-0-85729-868-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-868-3_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-867-6

  • Online ISBN: 978-0-85729-868-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics