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Abstract: This paper proposes a vehicular control system architecture that supports self-
configuration. The architecture is based on dynamic mapping of processes and 
services to resources to meet the challenges of future demanding use-scenarios 
in which systems must be flexible to exhibit context-aware behaviour and to 
permit customization. The architecture comprises a number of low-level 
services that will provide the required system functionalities, which include 
automatic discovery and incorporation of new devices, self-optimisation to 
best-use the processing, storage and communication resources available, and 
self-diagnostics. The benefits and challenges of dynamic configuration and the 
automatic inclusion of users' Consumer Electronic (CE) devices are briefly 
discussed and the self-management and control-theoretic technologies that will 
be used are described in outline. A number of generic use-cases have been 
identified, each with several specific use-case scenarios. To demonstrate the 
extent of the flexible reconfiguration facilitated by the architecture, some of 
these use-cases are described, each exemplifying a different aspect of dynamic 
reconfiguration. 
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1. INTRODUCTION 

DySCAS (Dynamically Self-Configuring Automotive Systems) is a 
European Commission funded project that started in June 2006. DySCAS 
targets an automotive system that emphasizes the dynamic self-configuration 
of embedded systems. Unlike the common static configurations, the main 
goal of the project is the development of next-generation technologies based 
on existing solutions, namely the development of an intelligent automotive 
networked middleware system. This platform will have properties that 
include a high degree of robustness and fault-tolerance due to its self-
adaptability at run-time. The cooperation of integrated system objects, 
primarily automotive ECU’s and connected CE devices, results in a dynamic 
system that adapts itself to its changing environment and conditions.  

2. WHY DYNAMIC RECONFIGURATION 

The current state of practice is to embed several electronic control units 
(ECU) into a vehicle. These ECUs are typically based on proprietary 
hardware and software components and usually have specialized and fixed 
functionally. A vehicle may have several different ECUs, but since each one 
has a different non-transferable function, more devices means higher 
susceptibility to failure.  

Upgrades are difficult and expensive; once a vehicle leaves the factory it 
is not easy to change its functionality, for example to apply the latest engine 
management configuration to improve fuel economy. If a serious fault 
occurs a manufacturer may have to undertake an expensive recall because 
vehicles cannot be easily upgraded in the field. 

Owners have increasingly high expectations for infotainment services on 
the move, for example navigation devices are now common, and some treat 
their car as a mobile office. Therefore there is significant benefit to be 
gained by facilitating a three-way dynamic and automatic cooperation 
between consumer electronics devices that the owner brings into the vehicle, 
the embedded computing devices of the vehicle itself, and external networks 
that the vehicle passes within wireless range of. 

Such a three-way setup enables an exiting and innovative suite of new 
applications that can: use location dependent information; share the 
processing power and other resources of several devices; achieve fault-
tolerance by dynamic role allocation; and automatically collect and filter 
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information (news, traffic, entertainment) in context-specific ways depending
on who is in the vehicle, where they are and where they are travelling to.
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A paradigm shift towards software-centric and network-centric ECU 
development is occurring. Software is becoming the dominant component of 
electronic automotive features. New opportunities are arising in the 
automotive electronics sector with networked and collaborating ECUs, 
which form an “automotive control grid” in which software components are 
no longer bound to specific hardware components, but can be executed on 
various units within the vehicles, and potentially even migrate during run-
time. In this way each device can act as on-line replacement for other ECUs. 
In this scenario more devices means lower susceptibility to failure.  

To maximise benefits from this opportunity, proprietary solutions will 

There is a lot of research into the migration of tasks from software to 
hardware. For example for hardware acceleration of image and video 

The AUTOSAR effort [3] has the purpose to provide an increasing 
flexibility with respect to the design time allocation of functions to different 
ECUs, by standardizing the software infrastructure and its services. 
Although this would be a large achievement, the AUTOSAR approach does 
not support dynamic system reconfigurations. 

3. FUTURE VEHICULAR CONTROL SYSTEMS 

The future vehicular control system takes the form of an embedded 
network system. This will comprise a wired core-network of processing 
nodes and sensor nodes spread throughout the vehicle. There will also be 
opportunities to incorporate mobile devices such as cell-phones, PDAs and 
other devices carried by the vehicle occupants. Such devices may have 
external connections to cellular networks and may also form ad-hoc 
networks between themselves. The automotive system will attempt to take 
advantage of the processing resources and connectivity of these devices 
when they are present.  
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give way to standardised HW/SW component architectures and infrastruc-
tures. This provides developer freedom, better interoperability and service
re-use, ultimately leading to lower development cost and higher reliability.

software based architectures are very attractive for implementation of run-time
processing, specialized DSPs and FPGAs are used. Reconfigurable hardware/

reconfigurable embedded systems. The hardware/software allocation of app-
lications tasks to dynamically reconfigurable embedded systems (by means
of task migration) allows for customization of their resources during run-time
to meet the demands of executing applications, as can be seen in [1, 2]. 
DySCAS will focus mainly on the reconfiguration or self-configuration of
software tasks in the middleware. 
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4. SOFTWARE TECHNIQUES FOR SELF-
CONFIGURATION 

Context awareness and the ability to adapt behaviour to suit current 

In answer to the complexity problem, the autonomic computing paradigm 
[6] advocates self-adaptation in which applications modify their behaviour to 
suit their environment and context, see for example [7] and [8]. There are 
many different types of adaptation [9], including self-configuration, self-
healing, self-optimisation and self-protection [10, 11]; collectively referred 
to as ‘self-management’. Self-management implies that the system is able to 
adjust some aspect of its own behaviour. When the adjustment is made to 
enable a new configuration to be supported, for example the dynamic 
incorporation of newly discovered devices the adjustment is termed ‘self-
configuration’. Adjustments to improve performance or efficiency are more-
specifically referred to as self-optimisation. When the adjustment is made to 
mask or recover from a component failure it is referred to as self-healing. 
Adjustments made to deal with threats, such as dynamically detecting a 
denial-of-service attack by recognizing a ‘pattern’ in the requests to the 
system, are classed as self-protection.  

The applications that populate the automotive system will have 
‘pervasive’ and ‘ambient’ qualities. This concept involves embedding 
context-aware and location-aware services into infrastructure and portable 
devices. Ideally such services are so embedded that the user is not even 
aware of it [12]. To support this ideal, self-management moves the emphasis 
away from manual configuration of components, towards inbuilt learning 
and discovery capabilities [9, 10].  

The Control-Theoretic approach for automatic control is receiving 
increasing attention [13] [14]. This approach has many characteristics which 
make it suitable for adoption within an autonomous computing framework: 
1. Sensing of the system behaviour and model-based estimation of other 
interesting (and not measurable) system states; 2. Control based on feedback 
from sensed and estimated system states. Feedback control provides 
robustness to system disturbances and to uncertainties about the actual 
system behaviour; 3. Feedforward control, based on system models, to 
improve the system behaviour in response to known changes in the 
environment and changes of the desired behaviour; 4. Systems identification 
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environmental conditions are key requirements for projects such as DySAS.
Configurational complexity arises from the number of components, the 
interactions between these components and between the components and 
their environment. This can be a barrier to achieving optimal or efficient
performance and can be highly problematic for externally-manged run-time
configuration [4, 5]. 
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and adaptive control as means to develop the models of the controlled 
environment, during design time and run-time.  

ingredients include delays (due to queues) and dynamics are introduced 
through sensors. Despite this challenge, recent advances indicate that there is 
a lot to learn from control engineering. Combinations of feedforward and 
feedback control are useful and it seems that simple controllers are often 
sufficient. 

Example application uses of a control approach include load balancing 
and QoS optimization. Typical application areas include multimedia, web 
storage systems, and network routers [15]. For embedded control systems, 
issues covered in the research include for example feedback-based resource 
scheduling, RTOS and middleware support for control activities, dynamic 
models of real-time systems, control and real-time co-design, and integration 
of quality-of-service and resource management [16]. 

5. A DYNAMICALLY RECONFIGURABLE 
ARCHITECTURE 

Automated fault detection, analysis and reporting: Trends in fault 
patterns can be learnt, and solutions devised. Over the longer-term solutions 
can be re-used.  

Automated resilience through software relocation: Once a hardware or 
software fault has been identified it will be possible to automatically relocate 
the required functionality to another device.  

Dynamic reconfiguration based on current resource demands: Processing 
power and storage capacity of ECUs and CE devices is typically quite 
limited. It will be possible to dynamically reconfigure resource provision and 
usage.  

Automatic support for both push and pull software patching: The external 
connectivity permits automatic pushing of software revisions from the 
manufacturer side and faulty software needing replacement can be pulled by 
a specific system.  
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or other discrete-event formalisms. The dynamics differ where central 
Computer systems are traditionally modelled using e.g. queuing theory 

The architecture needs to be capable of flexible and automatic reconfi-
guration in order to facilitate the technological advances targeted by the
project. These advances include:  

Software downloads of plug-and-play components: When passing through
hot-spots, wireless connectivity to external systems will be automatically
utilized to download new components and services, as well as for uploading
fault status reports if necessary.  
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Sporadically available resources, as provided by a user’s mobile device 
or accessible via a global network, will be included seamlessly into the 
vehicle’s electronic system. The resources of a PDA or notebook could, for 
example, be used to improve the rendering of a 3D-view for navigation 
directions. The middleware needs to provide services that handle the 
availability and integration of such resources.  

a multitude of different formats and thus removes the burden of 
interoperability from developers. 

Services identified so far include: 
 
• Discovery (of location, of physical devices and of the services / 

capabilities provided by those devices), 
• Interface provisioning / negotiation (brokering of service agreements 

between components), 
• Resource mapping (dynamic determination of which resources 

should be allocated to which services), 
• Security (authentication of devices offering or requesting services or 

resources), 
• Storage management (especially when downloading SW; keeping 

track of versions), 
• Rollback management (if a SW update fails, or an untested 

component configuration arises, a previously stable configuration 
must be reinstated), 

• Reliable download (of SW, configuration parameters, data, or 
policy), 

• SW / policy installer / upgrader (must ensure that the upgrade is 
performed at a safe moment, and if unsuccessful must invoke the 
rollback manager), 

• Error management (dynamic fault detection, and on-board 
diagnostics), 

• Migration of service (moving code and or data to balance load and 
to recover from faults), 

• Data logging (sensor data is collated for subsequent diagnostics), 
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The core of the DySCAS architecture will be a self-managing middle- 

provision of common interfaces to hardware and software components leads 

ware containing a number of services able to be dynamically composed

Simplification and standardisation of the software developer role: The 

to provide functionalities required by a wide range of use-cases (see next

to a set of open standards. This avoids the complexity of having to deal with 

section).  
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• Dynamic service prioritization (based on context, to support gradual 
degradation in the presence of HW or SW faults, battery-low 
condition etc.), 

• SW / HW reconfiguration (low-level service to facilitate migration 
of service). 

 

The DySCAS architecture is specified in three stages: the System 
Architecture Framework (SAF), the System Architecture (SA) and the 
System Architecture Specification (SAS), see figure 1. 

 

 
Figure 1. Specification of the DySCAS architecture. 

The SAF identifies the system contents and provides the concept at a 
high-level. The list of system services is also included in SAF. Additionally, 
the SAF defines the notation for the SA and gives a description of the 
working process (i.e. how the components / services will interact, 
composition etc.). Together with the list of available technologies, the SAF 
defines the draft abstractions for the communication, the used operating 
system (OS), the underlying hardware resources, possible component models 
and software patterns. Therefore, the SAF covers all aspects of the 
implementation constraints. 

The system structure (the applied APIs and components) are provided in 
the SA. Here protocol state machines are used for the description. This is 
more an abstract description of the functionalities and the APIs, but without 
a formal model. The formal model for this purpose is defined in SAS. 
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By providing these services the DySCAS middleware facilitates run-time 
reorganisation to balance workloads, expedite urgent processes, and to recon-
figure components for survivability despite hardware failures. Components
will also be able to automatically discover new components and establish
service level agreements based on the resources and services that they are
able to provide to each other. 
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Components and APIs require an interface with attributes, properties and 
also timing information. This is also described in SA.  

The SAS is as generic as possible to be open and easily adaptable and 

Therefore, the development of an abstract bus description, a so-called virtual 
function bus, including the communication properties to enable a design is 

architecture with guidelines for the implementation. This includes also the 
tool environment. Therefore, the SAS serves as documentation for 
application developers. 

6. USE-CASES 

The technologies under development within DySCAS are based on 
requirements derived from a rigorous analysis of future use-cases. A model 
describes three levels of use-case, in which generic use-cases represent 
groupings of specific use-cases requiring similar subsets of functionalities. 
These are atomic functionalities which can not be further broken down. 
Functionalities, in turn, map onto one or more services. A service may 
directly configure resources (in the technology layer) or may require further 
assistance from, or delegate to, other services. This structure (shown in 
figure 2) is important in the derivation of services and technology that form 
the DySCAS architecture, which has to be simultaneously very flexible and 
highly efficient. 

One example of a system functionality is the function which enables a 
device (for example a smartphone) to connect to the car information 
systems. System functionalities are abstracted in the sense that they describe 
the functional requirements but not how they will be realized. The actual 
realization (below the horizontal line in figure 2) is done by defining 
services which will be implemented on top of the technical components.  

Each of the use cases considered consists of a sequence of systems 
functionalities. When considering different use cases it was realised that 
groups of use cases exist which are each built up by a similar suite of system 
functionalities. To reflect this generic use cases are defined. The generic use 
cases identified so far are: 

 
• New device automatically attached to the car, 
• Integrating new software functionality,   
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tion of services. Here the formal model for the system including an abstract
description of the functionalities, APIs and the interfaces are given. Besides
this, QoS assumptions and requirements for the used OS are defined. 

extendable. The specification described in an ADL provides the classifica-

necessary. To summarize, the SAS provides the user of the DySCAS 
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• Closed re-configuration. 
 

 

 

Figure 2. Mapping Use-cases onto DySCAS Services and Technology. 

 
a) New device automatically attached to the car 

 
If an appropriate new device is detected by the vehicle system it is 

automatically attached to the vehicle IT systems. This can be a mobile 
device brought into the car such as a PDA or smart phone, but it can also be 
a Hotspot outside of the car. 

In these use-cases the information system of the vehicle is complemented 
by another device which may open access to external services, possibly 
extending the functionality of the system by increasing computing resources 
such as memory, computing capabilities etc, or it may act as a new source of 
data (e.g. an MP3 player). The task is to integrate the new device seamlessly 
and for the driver as transparently as possible. 

 
Specific examples of the generic use-case include:  
 

• Accessing a navigation system on mobile devices, 
• Connecting a trailer and incorporating the computing and sensor 

systems the trailer is hosting,  
• Internet access via an attached mobile phone (smart phone), 
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• Sending/receiving traffic data via an attached mobile phone, 
• Streaming of entertainment data (MP3, video) from the mobile 

phone to the vehicle’s entertainment system, 
• Extracting the destination from the calendar application of the 

mobile device, 
• Vehicle connecting to a wireless network hotspot, 
• Determination of location, affecting context. Such as detecting 

the vehicle has entered the proximity of the owners workplace. 
 
System functionalities include: 
 

• SW is migrated to new HW, 
• Wireless connection is established, 
• Capabilities are negotiated, 
• Authentication and all security mechanisms needed to protect the 

system. 
 
b) Integrating new software functionality   
 
This generic use-case covers all specific use-cases in which new software 

is included in the system. Software includes application software as well as 
operating software. The system must integrate the new software patches and 
ensure that the new configuration works properly. If not then the old 
software configuration must be reinstalled. This must be done as seamlessly 
as possible for the driver and it must not interrupt or impact in any way 
driving. Therefore the reconfiguration must be performed only in absence of 
safety related situations.  

 
Examples of system functionalities are:  
 

• Self-test, 
• Security features, 
• Reconfiguration. 

 
Specific Use Cases include: 
 

• Software download from hotspots, 
• Software download from storage media (DVD), 
• Replace system functionality, 
• Replace applications (e.g. navigation, MP3 software players). 
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c) Closed re-configuration 
 
In contrast to the other generic use-cases the closed re-configuration 

includes all use cases which perform any kind of reconfiguration which is 
not initiated by external events or by the integration of external hardware or 
software, but is performed to make the system work better or react to 

 
Specific use case examples are: 
 

• Graceful degradation in case of power problems,  
• 

• Migration of services in the case of HW failure. 
 
System functionalities include: 
 

• Detection, monitoring features, 
• Re-configuraton features, 
• Self-testing / diagnostics. 

 
By means of an illustrated example, consider that an ECU failure is 

detected. The affected service must be migrated to an alternative ECU. If 
none are available, running services must be prioritised, so that an ECU can 
be made available by shutting down some services. This use-case is 
‘Migration of services in the case of HW failure’ which is in the ‘Closed re-
configuration’ generic class of use-cases. The composition of services 
needed to achieve the reconfiguration is illustrated in figure 3. 
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unexpected situations. To detect re-configuration opportunities, all compo-
nents of the system must be monitored. Free devices or devices which do not
show expected behaviour must be detected and well working configurations
must be identified, migration must be planned and executed.  

Efficient usage of redundancy, e.g. ECUs which are used tempo-
rally, such as the (normally dedicated) security/immobilizer ECU, 
unused once the vehicle has been started. 
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Figure 3. Composing DySCAS services to satisfy the ‘Migration of services in the case of 

HW failure’ use-case. 

7. CONCLUSION 

This paper comes at an early stage in the DySCAS project, and as such, it 
represents our preliminary design solution for self configuration. The project 
targets an ambitious collection of use-cases, requiring dynamic adaptation 
and thus the proposed middleware must provide a number of new services in 
a flexible and efficient manner. 

Due to the timing of this paper, the architecture has been described at a 
high level. Some specific services have been identified and this set will 
stabilize as the use-cases are scrutinized during the next stage of the project. 
It is important that the services are clearly defined and differentiated to avoid 
duplication and to ensure that flexible composition of these services is 
possible. 

Numerous use-cases have been identified at two levels, generic and 
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specific. This approach facilitates identification of the required finctionalities,
whilst once again avoiding duplication. Some of the use-cases have been
discussed in outline. 
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8. NEXT STEPS 

Now that the basic architecture has been determined, it needs to be 
refined. Further detail will be added by analyzing the use-cases in more 
detail and also by examining the features (capabilities, performance, 
resource constraints, interface issues) of the various platforms (ECUs, 
sensors etc.) and mapping the services onto these platforms. 

A demonstrator application is under development; this will eventually 
showcase some of the use-cases in a real-time emulation. Further details of 
the project are available at the DySCAS website, see [17].  
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