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1. Introduction 

Many chemical and biochemical analysis methods involve performing a 
sequence of processes that can be broadly classified in terms of sample 
preparation, reactions, and product analysis. Since the reaction products 
often contain mixtures of multiple chemical species, subsequent analytical 
steps must be capable of separating and identifying the individual compo-
nents. Electrophoresis, which relies on inducing detectable differences in 
migration behavior between charged species under the influence of an 
applied electric field, has proven to be a highly versatile analytical tech-
nique owing to a favorable combination of characteristics including rela-

recently, there has been considerable interest in adapting electrophoresis 
technology to miniaturized microfluidic formats with the aim of producing 
portable low-cost versions of conventional benchtop-scale instrumentation. 
Ultimately, it is envisioned that these efforts will enable electrophoresis to 
become an integral component of self-contained “lab-on-a-chip” devices 
capable of putting the power to perform a variety of sophisticated chemi-
cal, biological, and biomedical assays directly in the hands of those who 
need the information most. 

On the macroscale, the development of capillary electrophoresis (CE) 
marked a breakthrough that overcame many limitations of early slab gel  

 

tively simple hardware design and compatibility with a wide range of 
analytes including biological macromolecules (e.g., DNA, proteins). More 
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Fig. 1. Electrophoresis modes employed in miniaturized systems include (a) free 
solution electrophoresis, (b) gel electrophoresis, (c) isoelectric focusing, and (d) 
micellar electrokinetic chromatography (negatively charged analytes are depicted) 

diameter) provided more efficient heat dissipation and allowed higher elec-
tric fields to be applied while minimizing temperature nonuniformities 
arising from Joule heating effects. This helped make it possible to achieve 
faster analyte mobilities and shorter run times without sacrificing separa-
tion performance. In addition to these benefits, the capillary format inher-
ently requires reduced sample and reagent quantities and offers a greater 
capacity for automation. Since capillary cross-sectional dimensions are on 
the same scale as typical microfluidic channels, it is not surprising that 
many miniaturization efforts have focused on direct scale-down of proven 

instruments. The use of ultra-narrow capillaries (typically 50–100 µm inner 
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CE technologies. A number of different microscale implementations of 
this fundamental phenomenon have been explored in order to suit the 
requirements of specific analytes and applications, including adaptations 
of slab gel and capillary-based techniques as well as chromatographic 
methods [16, 30, 59, 61, 91, 106, 112, 146, 153, 175, 200, 206, 301, 342]. 
Some of the most common variations that have been reported include the 
following (Fig. 1). 

1.1. Free Solution Electrophoresis 

This technique involves separation of molecular analytes on the basis of 
their migration speed in response to an applied electric field (typically ex-
pressed in terms of electrophoretic mobility µ = v/E where v is the migration 
speed and E is the electric field strength). When analytes are suspended in an 
ionic buffer environment at a specific pH, each species migrates with a dif-
ferent mobility allowing them to be resolved as distinct zones and separated 
on the basis of size and charge (Fig. 1a). Depending on the substrate material 
used to construct the separation channel, surface charge effects may also in-
duce a bulk electroosmotic flow component superimposed on the analytes’ 
electrophoretic migration. This can be advantageous or detrimental to the 
separation depending on the relative magnitudes of electrophoretic and elec-
troosmotic effects. Consequently, the ability to precisely control surface 
charge and buffer pH is critical to achieving optimal separation performance. 

1.2. Gel Electrophoresis 

This approach differs from free solution methods by the introduction of a 
sieving matrix material (often a polymer gel) into the separation channel, 
and is frequently employed for separation of DNA and proteins. The use of 
a sieving matrix is essential in the case of DNA, where the free draining 
molecular configuration adopted in free solution results in mobilities that 
are independent of fragment size. The gel matrix reintroduces a size de-
pendence to the electrophoretic migration as analytes travel through the 
porous gel network, with smaller fragments experiencing less resistance 
and eluting faster (Fig. 1b). Gel electrophoresis also offers advantages as-
sociated with decreased diffusional broadening of the separated zones and 
a reduction in electroosmotic flow due to adsorption of the gel matrix 
along the microchannel walls that neutralizes surface charges. The need to 
load or cast a viscous polymer gel into a small-diameter microchannel, 
however, can pose challenges. 
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1.3. Isoelectric Focusing (IEF) 

This method is often applied in protein separations and involves a process 
whereby analytes are separated on the basis of their isoelectric points. 
Here, migration occurs in free solution through a pH gradient established 
along the length of the separation channel. Electrophoretic migration con-
tinues until each analyte reaches a location where the local pH renders it 
neutrally charged (Fig. 1c). The quality and reproducibility of the pH 
gradient are key factors that determine achievable separation perform-
ance associated with IEF techniques. 

1.4. Micellar Electrokinetic Chromatography (MEKC) 

This is a hybrid technique involving a combination of electrophoretic and 
chromatographic principles that can be applied to the separation of both 
neutral and charged species. Here, negatively charged micelles are formed 
by adding an appropriate concentration of surfactant to the buffer solution. 
Since the micelles are formed by association of the hydrophobic and 
hydrophilic groups comprising individual surfactant molecules, the hydro-
phobic or hydrophilic character of the analyte dictates the extent of interac-
tions with the micelles. Consequently, an analyte’s mobility is determined 
by an interplay between charge, size, and hydrophobicity. Hydrophobic 
analytes will preferentially interact with the hydrophobic micellar interior 
resulting in net migration speeds close to that of the micelles, while the 
migration of hydrophilic species will not be strongly affected. Separation 
of neutral species can be achieved by superimposing a bulk electroosmotic 
flow. 

represent a subset of the much broader field of electrophoresis technology. 
Miniaturized electrochromatography techniques represent another impor-
tant class of analytical techniques, and are reviewed separately in an 
accompanying chapter. Here we focus on developments reported in refe-
reed journals, with the understanding that additional studies may be docu-
mented in sources such as conference proceedings and patent literature.  

2. Electrophoresis in Microfabricated Systems 

The design of most microfabricated electrophoresis systems is relatively 
simple, consisting of the following fundamental elements: (1) a sample 

It should be emphasized that the techniques described above, while 
encompassing the majority of methods adapted to microfabricated systems, 
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injection zone, (2) an electrophoresis separation channel, and (3) a system 
for detection of the migrating analytes (Fig. 2). Despite this underlying 
simplicity, advances in micro- and nanofabrication technology have en-
abled greater sophistication to be incorporated through integration with 
other on-chip processes to achieve enhanced throughput and efficiency. 

In terms of economics, the benefits of miniaturization include reduced 
reagent consumption and an increased capacity for automation so that the 
costs associated with performing chemical and biochemical reactions can 
be dramatically lowered. In terms of hardware, the use of batch photolitho-
graphy-based microfabrication and micromachining technology allows 
hundreds or thousands of devices to be produced simultaneously at virtually 
the same cost per wafer. Consequently, as has been repeatedly demonstrated 
in the microelectronics industry, the cost benefits of microfabrication be-
come most compelling when the device size becomes as small as possible. 
For electrophoresis applications, this means that the ability to construct sepa-
ration columns of sufficient length to deliver the required level of resolution 
and sensitivity while occupying the most compact allowable on-chip area is 
of critical importance. 

 
 

 

Fig. 2. A typical microscale electrophoresis run begins by electrokinetically intro-
ducing a sample into the device, after which the voltage is switched so that a nar-
row band is injected into the separation channel. Different species migrate with 
different mobilities and separate into distinct zones that are detected downstream 
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2.1. Injection and Separation 

To effectively separate comigrating species, the difference in their electro-
phoretic mobilities must allow them to move apart and separate into dis-
tinct zones at a faster rate than the zones broaden due to the cumulative 
effects of diffusion and dispersion during the elution time. Often, a finish-
line mode of detection is employed whereby an optical or electronic signal 
is generated as the migrating species travel past a fixed downstream detec-
tion point. The ability to distinguish neighboring zones or peaks can then 
be quantified in terms of a parameter called the separation resolution R 
that expresses the ratio of the distance between peaks (t2 – t1) to the sum of 
their half-widths at the base [95] (Fig. 3). If the zones follow a Gaussian 
profile, the half width of each peak can be taken as twice its standard 
deviation σ, yielding the following expression 

R =
t2 − t1

2(σ1 + σ 2 )
. (1)

 

Fig. 3. In a typical electrophoresis experiment, the intensity of fluorescently la-
beled migrating analytes is recorded as they travel past a fixed detection point in 
the separation channel. The ability to distinguish two neighboring zones can be 
expressed in terms of the separation between peaks relative to their widths 
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Peak widths may also be expressed in terms of their full width at half 
maximum (FWHM), which can be related to the standard deviation 
according to FWHM = 2 2 ln 2⎡⎣ ⎤⎦σ  such that (1) becomes 

R = 2 ln2⎡⎣ ⎤⎦
t2 − t1

1 2 )
. (2)

By convention, a value of R ≥ 0.5 is often taken as a criterion to indicate 
that two neighboring peaks are clearly distinguishable.  

The observed widths of the migrating zones reflect contributions from a 
number of factors including diffusional broadening, the initial width of the 
injected sample plug, and the finite detection volume. Considering only the 
diffusional contribution, the quantities in (1) can be expressed in terms of 
mobility (i.e., the migration speed) and a diffusion coefficient (i.e., the rate 
of band broadening during electrophoretic migration) yielding the follow-
ing equivalent expression for separation resolution [18, 188] 

R =
1
4

∆µ
µ

⎛
⎝⎜

⎞
⎠⎟

L
2D (L /µE)

. (3)

Here, the term ∆µ/µ is the selectivity (i.e., the relative mobilities between 
neighboring zones), µ is the average mobility of the neighboring zones, 
and L is the separation length (i.e., the distance between injection and de-
tection points). D is a coefficient characterizing the rate of longitudinal 
zone broadening and is generally larger than the field-free diffusion coeffi-
cient. An important point to note from (3) is that resolution scales with 
separation length as R ∝ L , establishing a limit on the extent to which 
the length of a separation column can be reduced. Separation lengths can 
vary widely (millimeters to tens of centimeters) depending on the specific 
application, sample type, and resolution requirements. In cases where L 
cannot be reduced without adversely affecting performance, longer separa-
tion columns can be folded into spiral or serpentine geometries, often with 
specially designed turns to minimize dispersion (Fig. 4). These designs 
permit a more compact arrangement on the chip surface (Table 1). 

 
 

(FWHM + FWHM
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Fig. 4. Numerically simulated analyte transport through a U-shaped microchannel 
segment with (a) a uniform cross-section and (b) a low-dispersion turn geometry 
to minimize distortion of the migrating zone [100] (reproduced with permission, 
copyright 2001 American Chemical Society) 

 

Table 1. Electrophoresis microchips incorporating separation channels folded into 
compact geometries 

Compact geometry method References 
Serpentine [21, 44, 126, 131, 135, 136, 143, 187, 

215, 238, 269, 273, 287] 
Serpentine (low dispersion geometry) [15, 58, 99, 100, 166, 207, 226–228, 236, 

268, 297, 337] 
Serpentine (surface modification) [139, 169] 
Spiral [45, 98] 

The process by which samples are injected into the separation channel 
is also important. Injection of a nonconcentrated and unfocused sample 
zone not only requires a long separation distance in order to distinguish 
each component, but the corresponding signal from each species may fall 
below the detectable range as the zones spread by diffusion. Injection of a 
concentrated and focused sample zone allows each component to be de-
tected in a considerably shorter separation distance. A variety of schemes 
are possible, the majority of which involve a perpendicularly crossed chan-
nel geometry where analytes are electrokinetically transported across the 
separation channel after which the voltage is switched such that only the 
sample volume at the intersection is injected [71, 107, 108, 131, 135, 140, 

retic trapping [2, 3, 40], nanocapillary array interconnects [28], combined 
electrophoretic and electroosmotic processes at microchannel–nanochannel 

151, 154, 159, 167, 179, 194, 239, 241, 272, 305, 339] (Fig. 2). A sampling
of other techniques includes bulk flow [123], capillary [271], diffusion-
based [270], pressure-driven [170], hydrodynamic [8], dielectropho-

intersections [49, 56, 318], and on-chip microelectrode arrays [19, 65, 177, 
178, 262]. 
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2.2. Sieving Gels 

A variety of sieving matrix formulations have been employed in electropho-
resis microdevices, most notably in applications involving DNA and protein 
separations where analyte mobilities in free solution are either not size de-
pendent or only weakly so [1, 330] (Table 2). Polyacrylamide gels (both 

Table 2. Sieving matrix materials used in electrophoresis microchips 

Gel matrix References 
Agarose [119, 120, 155, 300] 
Bacterial cellulose fibrils [283] 
GeneScan polymer [264, 286, 303] 
Hydroxyethyl cellulose (HEC) [77, 118, 125, 142, 144, 163–165, 

202, 203, 217, 226, 249, 263, 265, 
271, 285, 288–291, 321, 322,  
324–326] 

Hydroxypropyl cellulose (HPC) [70, 74, 250, 251] 
HPC/HEC combination [313] 
Hydroxypropylmethyl cellulose (HPMC) [316, 328, 329] 
HPMC/latex nanoparticles [284] 
Methylcellulose [52, 235, 274, 294–296, 341] 
Pluronic [278, 300] 
Polyacrylamide (noncrosslinked; LPA) [15, 27, 34, 72, 73, 96, 101, 151, 157, 

166, 183, 184, 187, 204, 205, 207, 
211, 220, 221, 227, 228, 239, 240, 
248, 253–256, 271, 273, 287, 309, 
310, 323, 332, 337] 

LPA nanogel [58, 261] 
Polyacrylamide (crosslinked, photopoly-
merized) 

[19, 32, 115, 116, 177, 178, 222, 229, 
262, 298–300] 

Polyacrylamide (crosslinked, chemically 
polymerized) 

[24, 306] 

Polydimethylacrylamide (PDMA) [68, 75, 152, 190, 192, 252, 292, 319, 
320] 

Polyethylene glycol (PEG)/polylactic acid 
(PLA) nanospheres 

[281] 

Polyethylene oxide (PEO) [293, 331] 
POP-6 [6, 7, 85–87] 
Polyvinylpyrrolidone (PVP) [12, 154, 217, 235, 244, 297, 344] 
SDS 14-200 [260] 
SNAP solution [44] 

LPA-co-alkylacrylamide [38] 
LPA-co-dihexylacrylamide [39] 
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2.3. Detection 

Another critical component of electrophoresis microdevices is the ability to 
detect migration of the separated zones (Table 3). Typically, a laser-induced 

crosslinked and noncrosslinked) are widely used owing to favorable proper-
ties including optical transparency, electro-neutrality, and overall separation 
performance. Crosslinked gels generally yield a denser pore network how-
ever, the necessity to polymerize a gel inside the separation channel means 
the matrix is generally not replaceable, limiting device reusability. Photo-
polymerization techniques have been used to precisely position gels inside 
microchannel networks by using a photomask to selectively illuminate the 
device with UV light after which the unpolymerized reagents can be easily 
removed. Noncrosslinked polyacrylamide gels (i.e., linear polyacrylamide; 
LPA) that form entangled networks at concentrations exceeding a critical 
threshold are also useful for electrophoretic separations and are replace-
able. Since formation of this entanglement network is accompanied by an 
increase in viscosity, the pressure required to inject the gel matrix into the 
microseparation channel is one factor that limits the available range of 
polymer concentrations. Thermoreversible gels such as agarose (a polysac-
charide) and Pluronic (an amphiphillic block copolymer) have also been   
investigated as a means to aid loading and allow for replacement of the
sieving matrix. These formulations undergo a thermally induced transition
from gel-like to liquid-like behavior over a specific temperature range.
Other sieving gels that have been studied include hydroxyethyl cellulose,
hydroxypropyl cellulose, methylcellulose, polydimethylacrylamide, and
polyvinylpyrrolidone. 

species are illuminated by a laser (e.g., argon ion) that excites fluoropho-
res conjugated with the migrating analytes. The resulting fluorescence 
signal is filtered to block background illumination from the excitation 
source and recorded using a photodetector (e.g., photomultiplier tube). In 
some cases, optical microscope systems are employed whereby the elec-
trophoresis chip is mounted on a stage and the fluorescently labeled 

fluorescence (LIF) system is employed whereby fluorescently labeled  

migrating zones are observed and recorded under magnification using a 
digital (e.g., CCD) camera. Under sufficiently high magnification, it is 
even possible to observe the dynamics of individual DNA molecules as 
they migrate through the separation channel (Fig. 5). 
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116, 118, 125, 126, 130–138, 142, 143, 
144, 147, 149, 151, 152, 154, 157, 
160–167, 181, 183–187, 190, 192, 
194–196, 201, 203–205, 207, 211, 215, 
217, 218, 223, 224, 226–228, 230, 
235–237, 239, 240, 244–246, 248–258, 
260, 261 263–265, 268, 269, 271, 273, 
274, 285–293, 303, 306, 309–313, 315, 
316, 319, 320, 322–325, 332, 333, 
335–337, 340, 344, 345] 

Microscope/digital camera [5, 10, 19, 25, 26, 29, 32, 41, 64, 104, 
105, 114, 115, 119–121, 141, 156, 177–
179, 202, 208, 213, 214, 220, 221, 229, 
238, 242, 243, 262, 266, 267, 276, 278, 
294–296, 298–300, 317, 327, 334, 338] 

Mass spectrometry [55, 145, 173, 174, 182, 219] 
On-chip photodiode [24, 222, 321] 
Raman spectroscopy [314] 
Single molecule imaging [39, 66, 69, 103, 127, 209, 297, 307] 
Two beam fluorescence cross correlation 
spectroscopy 

[20] 

Fig. 5. Images of single λ-DNA molecules migrating through three different gel 
matrices [39]. The gel concentration and composition both influence the dynamics 
of interactions with the matrix during electrophoresis (reproduced with permis-
sion, copyright 2006 American Chemical Society) 

Table 3. Detection techniques employed in electrophoresis microchips 
Detection technique References 
Absorbance [122, 176, 197] 
Chemiluminescence [124] 
Electrochemical [8, 11, 77, 93, 94, 150, 155, 168, 193, 

198, 199, 279, 326] 
Infrared [231] 
Laser-induced fluorescence (LIF) [4, 6, 7, 9, 12, 15, 21, 22, 27, 34–39, 

42–48, 51, 52, 58, 68, 70–75, 78–88, 
92, 96–98, 101, 102, 107–109, 113, 

Linear poly(acrylamide)
1.3 million g/mol 0.3 wt%

Transient Entanglement Coupling

Electric Field ~ 130 V/cm

Linear poly(acrylamide 1.3 million g/mol 1.8 wt%
Reptation

0.75 wt% linear poly(acrylamide-co-dihexylacrylamide)
4.3 million g/mol - 0.17 mol% dihexylacrylamide

"Stationary Entanglement Coupling"

Time
0 sec

Time
0 sec

Time
0 sec

0.06

0.08 0.16 0.25 0.33 0.41 0.48 0.56

0.20 0.27 0.33 0.40 0.50 0.57 0.63

0.10

0.13

0.37

0.62

0.70

0.78

0.80
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Optical detection techniques generally require an illumination source 
and photodetection components that in many cases contribute significantly 
to the overall size of the system. These issues have stimulated interest in 
the development of miniaturized detection technology, as has been demon-
strated through construction of silicon-based microelectrophoresis chips 
incorporating on-chip integration of photodiode circuitry. Nonoptical de-
tection techniques have also been investigated as a means of providing 
more compact device designs. Electrochemical detection, for example, in-
volves monitoring electrochemical potential variations as analytes migrate 
past a working electrode positioned within the separation channel [304]. 

2.4. Device Construction 

The majority of electrophoresis microchips are constructed using silicon or 
glass substrates (Table 4). Typical microchannel cross-sectional dimensions 
range from tens to hundreds of microns in width to 5–100 µm in depth. 

corresponding flat piece of glass or silicon in order to form a sealed enclo-
sure. In the case of electrophoresis, at least one of the substrates is typi-
cally glass or quartz in order to provide optical transparency for analyte 
detection. Access holes are drilled in order to inject surface treatments, 
sieving gels, and samples into the microchannel. Subsequent packaging 
may involve adding connections to external liquid handling hardware and 
electronic voltage or temperature control components. The use of silicon 
substrates can be advantageous by offering the potential to incorporate 
on-chip electrodes, heaters, temperature sensors, and photodetection circuitry. 

Plastic substrates have also been explored for use in electrophoresis. 
One of the most widely used plastic substrates in microfluidics is polydi-
methylsiloxane (PDMS), a silicone rubber possessing excellent optical 
transparency and the ability to form strong bonds with both glass and 
PDMS surfaces. The use of plastic substrates can considerably simplify 
fabrication by allowing molding or soft lithography processes to be em-
ployed whereby microchannel structures are cast against a rigid master 
mold. PDMS is an elastomeric material, a property that can also be ex-
ploited to construct mechanical fluidic control components such as on-chip 
valves and pumps. Unfortunately, many plastics are gas permeable making 
it difficult to polymerize gels inside the microchannel because any oxygen 
present within the substrate inhibits the reaction. 

The substrate containing the microchannel network is then bonded to a  
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214, 224, 327] 
PDMS/glass [8, 15, 69, 70, 74, 113, 119, 124, 147, 

155, 156, 162, 269, 334] 
Polyethylene terephthalate glycol (PETG) [111] 
Polymethylmethacrylate (PMMA) [50–54, 89, 139, 149, 179, 187, 219–

221, 235, 246, 252, 260, 261, 273, 
274, 287, 293, 295, 311–313, 328, 
329, 331, 335, 341] 

PMMA/glass [20] 
PMMA/PDMS [120] 
Polyvinyl chloride embedded capillary [306] 
Quartz [10, 13, 42, 83, 93, 134, 135, 141, 

197, 294, 296, 297, 345] 
Silicon [26] 
Silicon/glass [5, 19, 23–25, 29, 32, 66, 103–105, 

109, 177, 178, 222, 225, 229, 262, 
298–300, 307, 338] 

Silicon/parylene [321] 
Silicon/silicon oxide [41] 
Thermoplastic elastomer [278] 
Vivak [317] 
Zeonor [145] 

Table 4. Substrate materials used to construct electrophoresis microchips 

Substrate material References 
Acrylic [114, 202] 
Calcium fluoride [231] 
Glass, fused silica [4, 6, 7, 9, 11, 12, 17, 21, 22, 27,  

288–292, 303, 309, 310, 314–316, 
319, 320, 322–326, 332, 333, 336, 
337, 340, 343, 344] 

Glass/polyester film [122] 
Polydimethylsiloxane (PDMS) [64, 94, 127, 198, 199, 208, 209, 213, 

75–82, 84–88, 90, 92, 96–98, 101, 
34–39, 42–48, 55, 58, 68, 71–73, 

102, 107, 108, 115, 116, 118, 121, 
125, 126, 128–133, 136–138, 142, 
142–144, 150–152, 154, 157, 160–169, 
173, 174, 176, 181–186, 190, 
191–196, 201, 203–205, 207, 211, 
215–218, 223, 226–228, 230, 236–240, 
242–244, 248–251, 253–258, 
263–268, 271, 276, 279, 280, 285, 286,
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While glass substrates are desirable for use in electrophoresis applica-
tions due to their optical transparency, they also possess a characteristic 
negative surface charge at pH values above ~3 due to deprotonation of sur-
face silanol (Si-OH) groups to form silanoate (Si–O–). The resulting nega-
tive surface charge attracts positively charged counterions dispersed in the 
buffer solution such that a thin layer near the channel walls is formed 
where their concentration is locally in excess of the bulk value. When an 
electric field is applied, this positively charged counterion layer migrates 
toward the negative electrode in a sheath-like manner, transporting the 
bulk liquid with it (Fig. 6). This electroosmotic flow (EOF) phenomenon 
may be advantageous in terms of providing a means to pump liquids and 
reagents in microchannels, but is generally undesirable for DNA separa-
tions because the EOF direction is opposite to that of the electrophoretic 
migration of negatively charged DNA.  

The magnitude and reproducibility of EOF can also be challenging to 
precisely control because it is highly sensitive to surface chemistry and 
buffer pH. Electroosmotic flow phenomena have been extensively studied 
in conventional CE systems where glass and fused silica capillaries are 
routinely used. These efforts have resulted in the development of robust 
coating procedures capable of effectively neutralizing surface charges [14, 
57, 60] (Table 5). The most widely used process, originally developed by 
Hjertén [117], involves covalently polymerizing a thin layer of poly-
acrylamide or other passivating polymer along the inner surface of the cap-
illary or microchannel. Electroosmotic effects are not as problematic in gel 
electrophoresis because the gel matrix often acts to neutralize or screen the 
negative surface charge. Characterization and control of EOF is less well 
studied in other substrate materials (e.g., plastics), but is an active area of 
ongoing research. 

 

 

Fig. 6. The intrinsically negative surface charge along the walls of a glass micro-
channel induces formation of a positively charged counterion layer that is trans-
ported toward the cathode when an electric field is applied. This layer acts as a 
sheath around the bulk liquid, generating an electroosmotic flow with characteris-
tic speed µEOF. These EOF effects are superimposed on an analyte’s electropho-
retic migration (µEP) and may act to either reinforce or oppose it 
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322, 336, 337] 
HNO3 [70] 
HNO3/NaOH [43] 
Hydroxypropylmethyl cellulose (HPMC) [261] 
LPA (in PDMS microchannel) [327] 
LPA (photopolymerized) [115, 116] 
Methanol [224] 
Methyl hydroxyethyl cellulose (MHEC) [260] 
NaOH [21, 22, 35, 42, 48, 102, 138, 143, 147, 

154, 162, 167, 181, 182, 185, 213, 214, 
230, 242, 276, 317, 332, 333, 345] 

O2 plasma [120] 
Polydimethylacrylamide (PDMA) [44, 64, 84] 
PDMA/alkyl glycidyl ether [208, 209] 
Polydimethylsiloxane (PDMS) [9] 
PDMS/Pluronic [201] 
Polyethylene glycol (PEG) [220] 
Polyhydroxyethylacrylamide [38, 39] 
Polyvinylpyrrolidone (PVP) [12, 118, 141, 244, 288–290, 344] 
Silane [323] 

 

3. Applications of Microchip Electrophoresis 

Microfabricated electrophoresis systems have been used to analyze sam-
ples ranging from small molecules, to DNA, to proteins (Table 6). Analy-
sis of both single- and double-stranded DNA is of particular interest 

Table 5. Surface passivation techniques used in electrophoresis microchips 

Surface passivation technique References 
[Acryloylamino)propyl] trimethylammo-
nium chloride (BCQ) 

[55, 173, 174] 

Bio-Rad run buffer [152] 
HCl [119] 
HCl, NaOH [92, 113, 264] 
Hydroxyethyl cellulose (HEC) [249] 
Hjertén process [15, 27, 34, 58, 68, 75, 77, 96, 101, 

125, 134, 136, 142, 144, 151, 157, 
163–166, 183, 184, 197, 203–205, 207, 
211, 217, 218, 227, 228, 248, 253–256, 
263, 265, 285, 292, 294, 296, 319, 320, 



          Microfluidic Technologies for Miniaturized Analysis Systems 408 

because of the central role it plays in a variety of biomedical and molecu-
lar biology applications. Separation of single-stranded DNA fragments 
labeled with covalently attached fluorophores are typically performed un-
der denaturing conditions generated by addition of chemical denaturants 
and/or running at an elevated temperature (~50°C) to inhibit secondary 
structure formation that would alter migration behavior. Fragment sizes
typically range from oligonucleotides tens of bases in length up to around 
one kilobase. Double-stranded DNA separations are not performed under 
denaturing conditions and fragments can be labeled with intercalating dyes 
that do not require covalent attachment. Fragment sizes that can be sepa-
rated extend from around 100 bases to the kilobase size range. DNA mole-
cules in the 40–50 kilobase vicinity and longer are large enough to be 
directly observable using an optical microscope, enabling migration of in-
dividual molecules to be recorded. Protein separations differ somewhat 
from DNA because they possess a variable charge to size ratio. Two 
dimensional configurations are often employed to deal with this added 
level of complexity whereby species are first separated in one dimension 

Table 6. Analytes separated using electrophoresis microchips 

Analyte separated References 
DNA (double-stranded) [5, 7, 10, 12, 19, 24–26, 29, 32, 34, 39, 41, 44, 52, 64, 

66, 68–70, 74, 75, 77, 78, 85–88, 101, 103–105,  
118–121, 125, 127–129, 136, 141, 142, 144, 148, 
151, 152, 154, 155, 163–166, 177–179, 190, 202, 
203, 208, 209, 212, 216, 217, 222, 226, 229, 233, 
235, 240, 244, 250–252, 263–265, 271, 274, 278, 
281–288, 290, 291, 293, 295, 297, 300, 307, 311, 
313, 316, 319–322, 324–326, 328, 329, 331, 338, 
341, 343, 344] 

DNA (single-stranded) [6, 15, 58, 71, 72, 76, 78, 96, 157, 183, 184, 187, 192, 
204, 205, 207, 211, 227, 228, 239, 248, 253–256, 261, 
271, 273, 289, 292, 294, 296, 298–300, 302, 303, 323, 
332, 337] 

Proteins [9, 17, 27, 35, 38, 42, 84, 90, 97, 98, 114–116, 122, 
124, 138, 156, 185, 186, 197, 220, 221, 234, 236, 249, 
260, 327, 335] 

Small molecules [4, 8, 20–22, 36, 37, 43–48, 50, 51, 53–55, 71, 79–83, 
92–94, 102, 107–109, 113, 126, 130–135, 137, 143, 
145, 147, 149, 150, 155, 160–162, 167, 168, 173, 174, 
176, 181, 182, 193–196, 198, 199, 201, 213–215, 218, 
219, 223, 224, 230, 231, 237, 238, 242, 243, 246, 257, 
258, 266–269, 276, 279, 306, 309, 310, 312, 314, 315, 
317, 326, 333, 334, 336, 340, 345] 
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3.1. Advanced Electrophoresis Methods 

Recent advancements have resulted in the development of separation tech-
nologies offering capabilities beyond those found in adaptations of con-
ventional electrophoresis techniques [180] (Table 7). One notable example 
is the use of micro- and nanofabricated pillar arrays as separation matrix 
structures in place of polymer gels (Fig. 7a). These post arrays can be eas-
ily mass produced using micromachining technology and possess inher-
ently uniform monodisperse two-dimensional pore morphologies. By 
manipulating the size, shape, and spacing of the pillars, separation proper-
ties can be tuned to make them compatible with a wide range of samples 
and analyte sizes. In addition, since the sieving structures are prefabricated 
inside the microchannel, the gel loading process is eliminated. The detailed 
physics associated with collisions and interactions that occur between the 
migrating analytes and the array of obstacles are responsible for introduc-
ing size-dependent mobilities. The size of the nanostrucutred pillars is limited 
by the resolution of photolithographic patterning, typically in the vicinity 
of a few hundred nanometers. Consequently, these designs are most effec-
tive for separation of large analytes (e.g., kilobase sized DNA). Another 
class of micromachined sieving structures that have been employed for 
electrophoresis involves patterning of periodically spaced nanometer size 
gaps between the floor and ceiling of the separation channel (Fig. 7b). 
Unlike pillars, the gaps are vertically spaced and can be fashioned rela-
tively straightforwardly by controlled etching. The physics of DNA elec-
trophoresis through these nanogap arrays can be described in terms of an 
entropic trapping mechanism whereby excursions into the nanogaps pro-
duce migration characterized by rapid hops between gaps, with larger 
fragments experiencing a higher probability of excursions into the nano-
gaps and thereby eluting faster than smaller ones.  

A novel and entirely different class of fabricated sieving structure con-
sists of magnetic microspheres that become assembled into a packed ma-
trix upon application of an external magnetic field (Fig. 7c). Here, the pore 
network morphology depends on an interplay between the size and con-
centration of the particles and the separation channel geometry. This ar-
rangement allows sieving matrices with tunable reproducible pore sizes to be 
formed in-situ, and the aggregated particle network can be instantaneously 

according to charge (e.g., using isoelectric focusing in a pH gradient), after 
which each constant-charge zone is separated according to size. Finally, 
applications involving separation of neutral or weakly charged analytes 
can be accomplished using MEKC techniques. 
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dispersed once the magnetic field is removed. Another novel separation 
phenomenon of interest to miniaturized systems is surface electrophoresis of 
DNA. Here, size dependent mobility is induced via interactions between the 
substrate (typically silicon) and DNA chains adsorbed on its surface. In this 
way, surface electrophoresis can be used to perform size selective fractiona-
tion in the absence of conventional sieving gels.  

Table 7. Variations of electrophoretic separation adapted to the microchip format 

Separation mechanism References 
Atomic force microscope (AFM) [302] 
Electric field flow fractionation (EFFF) [33] 
Entropic recoil [26] 
Entropic trapping [31, 62, 103–105, 247, 277] 
Isoelectric focusing (IEF) [114, 122, 124, 197, 249] 
Isotachophoresis (ITP) [314] 
Magnetic bead array [63, 64, 208–210] 
Micellar electrokinetic chromatography 
(MEKC) 

[45, 160, 215, 236, 238, 243, 260, 279, 
310, 315] 

Microfabricated pillar array [5, 10, 25, 29, 41, 65–67, 121, 127, 141, 
225, 232, 307, 308, 334, 338] 

Microstructured periodic cavities [69] 
Optical fractionation [191] 
Single molecule fluorescence bursts [88] 
Surface electrophoresis [171, 172, 189, 233, 259] 

 

Finally, an intriguing adaptation of electrophoresis for separation of 
short oligonucleotide fragments has been demonstrated using an electric 
field imposed parallel to an atomic force microscope (AFM) tip [302] (Fig. 
7d). The DNA fragments to be separated are first electrokinetically col-
lected at the base of the AFM cantilever, then released by a periodically 
reversing electric field applied between the cantilever and substrate. The 
DNA fragments display a size-dependent mobility as they migrate along 
the length of the AFM tip, and the inherently small dimensions allow very 
high electric fields to be applied with minimal Joule heating. By tuning the 
frequency at which the electric field is reversed, desired fragment sizes can 
be transferred from the tip to the surface of a substrate while slower mov-
ing fragments are driven back to the reservoir before reaching the tip. 
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con substrate using a deep reactive ion etching (DRIE) process capable of produc-
ing pillar diameters and spacings of order 500 nm (reproduced with permission, 
copyright 2006 IOP Publishing LTD). (b) Illustration of a typical geometry used 
to perform separations based on entropic trapping effects [103] (reproduced with 
permission, copyright 1999 The American Physical Society). (c) Schematic of an 
arrangement incorporating a separation channel inside a magnetic coil (left) [64]. 
A columnar network morphology is formed in a suspension of 1 µm dia super-
paramagnetic particles when a magnetic field is applied (right) that can function as 
a sieving matrix for DNA separations (reproduced with permission, copyright 
2002 American Association for the Advancement of Science). (d) Concept of 
separating DNA using atomic force microscopy [302]. When an electric field is 
applied between an AFM cantilever and a substrate, DNA fragments initially at 
the base of the AFM tip migrate toward the substrate with size-dependent mobili-
ties and can be selectively deposited by tuning the electric field reversal frequency 
(reproduced with permission, copyright 2006 American Institute of Physics) 

3.2. Integrated Systems 

Considerable efforts have also been directed toward combining electropho-
resis-based analysis with other operations to produce integrated lab-on-a-
chip systems (Table 8). Many genomic analysis applications, for example, 
involve using the polymerase chain reaction (PCR) to chemically amplify 
minute DNA samples to detectable levels prior to analysis. The PCR proc-
ess involves repeatedly cycling a reagent mixture (template DNA, primers, 
dNTPs, a thermostable polymerase enzyme, and other buffering additives) 
through temperatures corresponding to denaturation of the double-
stranded template (~95°C), annealing of single-stranded oligonucleotide 
primers at locations adjacent to the target region (~50–65°C), and enzyme 

Fig. 7. (a) Scanning electron micrograph of microfabricated high-aspect ratio 
pillar arrays in two different arrangements [29]. The structures are etched into a sili-
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directed synthesis (extension) of the complementary target strand (~72°C). 
The inherently high efficiency of this process, yielding an exponential in-
crease in the number of copies with each cycle, has helped make PCR one 
of the key enabling technologies in molecular biology. Thus, it is not sur-
prising that considerable efforts have been directed toward integrating 
PCR with electrophoretic separation of the amplified DNA fragments. 
Miniaturization of PCR is challenging, however, due to the potential for 
evaporation when minute volumes of aqueous reagents are repeatedly 
heated to temperatures in the vicinity of 95°C, and due to the potential for 
non-specific adsorption of reagents at the reactor walls in high surface to 
volume microchannels that can inhibit the reaction [158, 245, 275]. 

Table 8. Integrated microfluidic devices incorporating electrophoresis 

Integrated functions References 
2-D separation [98, 236, 238, 260] 
Band capture [73, 177, 178] 
Cell lysis [201, 319] 
Immunoassay [37] 
Isothermal amplification [24, 110, 285] 
Labeling [35, 42, 83, 97, 102, 132, 133, 186, 264] 
Polymerase chain reaction (PCR) [68, 70, 119, 152, 163–166, 228, 229, 319, 

324, 344] 
Purification [15, 228] 
Restriction digest [97, 136, 229] 
Sanger sequencing [15] 

 
 Examples of other operations integrated with microchip electrophoresis 

include cell lysis, sample purification, multi-dimensional separations, 
labeling, and hybridization. Progress has also been made toward incorpo-
rating multiple sample processing and analysis steps in a single microflu-
idic device, as demonstrated in a hybrid glass–silicon design developed in 
the Burns group capable of amplifying a 106 bp DNA target from a bacte-
rial genomic template via an isothermal strand displacement amplification 
(SDA) process followed by gel electrophoresis with integrated photodetec-
tion of the fluorescently labeled reaction products [24]. Subsequent work 
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Fig. 8. (a) Schematic (upper) and photograph (lower) of a 1.5 × 1.6 cm microflu-
idic device capable of performing a sequential PCR, restriction enzyme digestion, 
and gel electrophoresis [229] (reproduced with permission, copyright 2006, The 
Royal Society of Chemistry). (b) Layout of a microfluidic bioprocessor for per-
forming Sanger cycle sequencing of DNA (scale bar = 5 mm) [15] (reproduced 
with permission, copyright 2006, The National Academy of Sciences of the USA) 

has resulted in development of an ultra-compact 1.5 × 1.6 cm hybrid 
glass/silicon microfluidic chip capable of performing a PCR-RFLP assay 
for influenza A virus detection involving two sequential reactions followed 
by an electrophoretic separation [229] (Fig. 8a). Most recently, the Mathies 
group has reported a multilayer glass/PDMS design capable of performing 
integrated Sanger cycle sequencing of DNA (a reaction requiring similar 
thermal cycling parameters as PCR) followed by product purification and 
electrophoretic separation in a 30-cm long folded channel [15]. Read 
lengths of 556 bases were achieved with 99% accuracy (Fig. 8b). 
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Commercial DNA analysis systems based on microchip capillary elec-
trophoresis technology have also appeared on the market (Table 9). For 
example, the Agilent 2100 Bioanalyzer, the most widely used commercial 
chip-based DNA analysis device, is based on a Caliper LabChip design 
incorporating arrays of glass electrophoresis microchannels that can be 
loaded with a low viscosity gel-dye mixture. This system uses interchan-
geable electrophoresis chips that interface with a benchtop power supply 
and optical detection system. The Hitachi SV1100 Microchip CE system is 
based on a similar concept, but the electrophoresis microchips are con-
structed using PMMA. The BioMEMS-768 DNA sequencer from Network 
Biosystems/Shimadsu takes a slightly different approach by using micro-
fabrication technology to construct arrays of hundreds of 40 cm long sepa-
ration channels in 50 × 25 cm glass substrates to provide higher throughput 
and integration with conventional automated liquid handling systems. 

Table 9. Commercial microchip electrophoresis systems 

Commercial system References 
Agilent 2100 [17, 76, 90, 128, 129, 212, 216, 343] 
Hitachi SV1100 [50, 51, 53, 54, 76, 110, 129, 148, 234, 281–284, 

328, 329, 331, 341] 

Considerable strides have been made since microfabricated electrophoresis 
devices were first developed in the early 1990s [194]. These advancements 
have been made possible through a combination of improvements in 
micromachining technology, sieving matrix materials, and instrumenta-

systems generally have yet to demonstrate benefits in cost or performance 

ventional benchtop-scale CE technology. Some of the challenges that re-
main to be addressed include reducing device size to the point where the 
enormous cost savings associated with photolithographic microfabrication 

miniaturized detection technology. Systematic fundamental studies are also 
important in order to provide a more complete understanding of the physics 
of electrophoresis in micro- and nanoscale environments. Future develop-
ments in these areas over the next few years are likely to lay the foundation 
for a new generation of rapid, sensitive, and inexpensive instrumentation 

4. Summary and Outlook 

to interface with the external macroscale environment, and developing 

that are compelling enough to make them seriously competitive with con-

can be fully realized, enhancing integration, improving the capability 

tion. Despite these advancements, the current generation of miniaturized 
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with separation performance exceeding that in many of the conventional 
benchtop-scale analytical systems available today. 
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