Skip to main content

Abstract

During the past 20 years there has been a remarkable growth in the use of fluorescence in the biological sciences. Fluorescence spectroscopy and time-resolved fluorescence are considered to be primarily research tools in biochemistry and biophysics. This emphasis has changed, and the use of fluorescence has expanded. Fluorescence is now a dominant methodology used extensively in biotechnology, flow cytometry, medical diagnostics, DNA sequencing, forensics, and genetic analysis, to name a few. Fluorescence detection is highly sensitive, and there is no longer the need for the expense and difficulties of handling radioactive tracers for most biochemical measurements. There has been dramatic growth in the use of fluorescence for cellular and molecular imaging. Fluorescence imaging can reveal the localization and measurements of intracellular molecules, sometimes at the level of single-molecule detection.

Fluorescence technology is used by scientists from many disciplines. This volume describes the principles of fluorescence that underlie its uses in the biological and chemical sciences. Throughout the book we have included examples that illustrate how the principles are used in different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herschel, Sir JFW. 1845. On a case of superficial colour presented by a homogeneous liquid internally colourless. Phil Trans Roy Soc (London) 135:143–145.

    Article  Google Scholar 

  2. Gillispie CC, ed. 1972. John Frederick William Herschel. In Dictionary of scientific biography, Vol. 6, pp. 323–328. Charles Scribner’s Sons, New York.

    Google Scholar 

  3. Undenfriend S. 1995. Development of the spectrophotofluorometer and its commercialization. Protein Sci 4:542–551.

    Article  Google Scholar 

  4. Martin BR, Richardson F. 1979. Lanthanides as probes for calcium in biological systems, Quart Rev Biophys 12:181–203.

    Article  CAS  Google Scholar 

  5. Berlman IB. 1971. Handbook of fluorescence spectra of aromatic molecules, 2nd ed. Academic Press, New York.

    Google Scholar 

  6. Jablonski A. 1935. Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys 94:38–46.

    Article  CAS  Google Scholar 

  7. Szudy J, ed. 1998. Born 100 years ago: Aleksander Jablonski (1898–1980), Uniwersytet Mikolaja Kopernika, Torun, Poland.

    Google Scholar 

  8. Acta Physica Polonica. 1978. Polska Akademia Nauk Instytut Fizyki. Europhys J, Vol. A65(6).

    Google Scholar 

  9. Stokes GG. 1852. On the change of refrangibility of light. Phil Trans R Soc (London) 142:463–562.

    Article  Google Scholar 

  10. Kasha M. 1950. Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:14–19.

    Article  Google Scholar 

  11. Courtesy of Dr. Ignacy Gryczynski.

    Google Scholar 

  12. Birks JB. 1970. Photophysics of aromatic molecules. John Wiley & Sons, New York.

    Google Scholar 

  13. Lakowicz JR, Balter A. 1982. Analysis of excited state processes by phase-modulation fluorescence spectroscopy. Biophys Chem 16:117–132.

    Article  CAS  Google Scholar 

  14. Photo courtesy of Dr. Ignacy Gryczynski and Dr. Zygmunt Gryczynski.

    Google Scholar 

  15. Birks JB. 1973. Organic molecular photophysics. John Wiley & Sons, New York.

    Google Scholar 

  16. Strickler SJ, Berg RA. 1962. Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37(4):814–822.

    Article  CAS  Google Scholar 

  17. See [12], p. 120.

    Google Scholar 

  18. Berberan-Santos MN. 2001. Pioneering contributions of Jean and Francis Perrin to molecular luminescence. In New trends in fluorescence spectroscopy: applications to chemical and life sciences, Vol. 18, pp. 7–33. Ed B Valeur, J-C Brochon. Springer, New York.

    Google Scholar 

  19. Förster Th. 1948. Intermolecular energy migration and fluorescence (Transl RS Knox). Ann Phys (Leipzig) 2:55–75.

    Google Scholar 

  20. Stryer L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846.

    Article  CAS  Google Scholar 

  21. Lakowicz JR. 1995. Fluorescence spectroscopy of biomolecules. In Encyclopedia of molecular biology and molecular medicine, pp. 294–306. Ed RA Meyers. VCH Publishers, New York.

    Google Scholar 

  22. Haugland RP. 2002. LIVE/DEAD BacLight bacterial viability kits. In Handbook of fluorescent probes and research products, 9th ed., pp. 626–628. Ed J Gregory. Molecular Probes, Eugene, OR.

    Google Scholar 

  23. Gryczynski I, Lakowicz JR. Unpublished observations.

    Google Scholar 

  24. Lakowicz JR, Gryczynski I, Laczko G, Wiczk W, Johnson ML. 1994. Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin, C, and phospholipids. Protein Sci 3:628–637.

    CAS  Google Scholar 

  25. Morrison LE, Stols LM. 1993. Sensitive fluorescence-based thermo-dynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32:3095–3104.

    Article  CAS  Google Scholar 

  26. Santangelo PJ, Nix B, Tsourkas A, Bao G. 2004. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32(6):e57.

    Article  CAS  Google Scholar 

  27. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell, 4th ed. Garland Science, New York.

    Google Scholar 

  28. Diaspro A, ed. 2002, Confocal and two-photon microscopy, foundations, applications, and advances. Wiley-Liss, New York.

    Google Scholar 

  29. Masters BR, Thompson BJ, eds. 2003. Selected papers on multiphoton excitation microscopy. SPIE Optical Engineering Press, Bellingham, Washington.

    Google Scholar 

  30. Zipfel WR, Williams RM, Webb WW. 2003. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnol 21(11):1369–1377.

    Article  CAS  Google Scholar 

  31. Rigler R, Elson ES. 2001. Fluorescence correlation spectroscopy. Springer, Berlin.

    Google Scholar 

  32. Hegener O, Jordan R, Häberlein H. 2004. Dye-labeled benzodi-azepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy. J Med Chem 47:3600–3605.

    Article  CAS  Google Scholar 

  33. Rigler R, Orrit M, Basché T. 2001. Single molecule spectroscopy. Springer, Berlin.

    Google Scholar 

  34. Zander Ch, Enderlein J, Keller RA, eds. 2002. Single molecule detection in solution, methods and applications. Wiley-VCH, Darmstadt, Germany.

    Google Scholar 

  35. Li Q, Ruckstuhl T, Seeger S. 2004. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules. J Phys Chem B 108:8324–8329.

    Article  CAS  Google Scholar 

  36. Ha T. 2004. Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43(14):4055–4063.

    Article  CAS  Google Scholar 

  37. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A. 2004. Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101(19):7317–7322.

    Article  CAS  Google Scholar 

  38. Kasha M. 1960. Paths of molecular excitation. Radiation Res 2:243–275.

    Article  CAS  Google Scholar 

  39. Hagag N, Birnbaum ER, Darnall DW. 1983. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Biochemistry 22:2420–2427.

    Article  CAS  Google Scholar 

  40. O’Neil KT, Wolfe HR, Erickson-Viitanen S, DeGrado WF. 1987. Fluorescence properties of calmodulin-binding peptides reflect alpha-helical periodicity. Science 236:1454–1456.

    Article  Google Scholar 

  41. Johnson DA, Leathers VL, Martinez A-M, Walsh DA, Fletcher WH. 1993. Fluorescence resonance energy transfer within a heterochro-matic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation. Biochemistry 32:6402–6410.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Introduction to Fluorescence. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_1

Download citation

Publish with us

Policies and ethics