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Abstract In this paper we motivate and analyze a version of the implicit filtering 
algorithm by viewing it as an extension of coordinate search. We then 
show how implicit filtering can be combined with the damped Gauss­
Newton method to solve noisy nonlinear least squares problems. 
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1. Introduction 

The purposes of this paper are to show how a version of the implicit 
filtering algorithm [24, 17, 16] can be motivated and analyzed by viewing 
it as an elaboration of coordinate search, and to describe and analyze 
a implicit filtering Gauss-Newton method for nonlinear least squares 
problems. 

Our approach to nonlinear least squares problems is based on a finite­
difference form of the damped Gauss-Newton method [11, 24, 32], but 
differs from that in the MINPACK [30] routine lmdif .f. That code 
uses forward difference Jacobians with a user-defined difference incre­
ment, but that increment is set only once. lmplicit filtering uses a cen­
tral difference not only to compute more accurate Jacobians, but more 
importantly to avoid local minima and to decide when to reduce the 
difference increment . 

lmplicit filtering, which we describe in § 2, is a deterministic stencil­
based sampling method. In general terms, implicit filtering is a finite­
difference quasi-Newton method in which the size ofthe difference stencil 
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decreases as the optimization progresses. In this way one hopes to "fil­
ter" low-amplitude, high-frequency noise in the objective function. 

Sampling methods do not use derivatives, but rather sample the ob­
jective function on a stencil or pattern to determine the progress of the 
iteration and whether or not to change the size, but not the shape, of 
the stencil. Many of these methods, like implicit filtering, the Hooke­
Jeeves [20] method, and multidirectional search [38, 39], reduce the size 
of the stencil in the course of the optimization. The stencil-size reduction 
policy leads to a convergence theory [24, 5, 39]. 

The best-known sampling method is the Nelder-Mead [31] algorithm. 
This method uses an irregular pattern that changes as the optimization 
progresses, and hence is not stencil-based in the sense of this paper. 
Analytical results for the Nelder-Mead algorithm are limited [24, 5, 26]. 
Theoretical developments are at also a very early stage for more aggres­
sive sampling methods, like the DIRECT [22] algorithm, [14, 15]. 

Sampling methods, for the most part, need many iterations to obtain 
a high-precision result. Therefore, when gradient information is avail­
able and the optimization landscape is relatively smooth, conventional 
gradient-based algorithms usually perform far better. Sampling meth­
ods do well for problems with complex optimization landscapes like the 
ones in Figure 1, where nonsmoothness and nonconvexity can defeat 
most gradient based methods. 

Figure 1. Optimization Landscapes 

We caution the reader that sampling methods are not designed to be 
true global optimization algorithms. Problems with violently oscillatory 
optimization landscapes are candidates for genetic algorithms [19, 35], 
simulated annealing [25, 41], or the DIRECT algorithm [22, 21]. 

The paper is organized as follows. In § 2 we briefly describe the im­
plicit filtering method and some of the convergence results. We describe 
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the new algorithm in§ 3 and prove a local convergence result. In§ 4 we 
illustrate the ideas with a parameter identification problem. 

2. Implicit Filtering 

In this section we introduce implicit filtering. We show how the 
method can be viewed as an enhanced form of a simple coordinate search 
method. Convergence analysis for methods of this type is typically done 
in a setting far simpler than one sees in practice. Many results require 
smooth objective functions [28, 26, 12, 39, 8, 9] or objective functions 
that are small perturbations of smooth functions [29, 17, 23, 5, 24, 7, 44]. 
The main results in this paper make the latter assumption. We will also 
assume that the noise decays near an optimal point. Such decay has 
been observed in practice [36, 10, 42, 43, 37, 4] and methods designed 
with this decay in mind can perform well even when the noise does not 
decay to zero as optimality is approached. 

2.1 Coordinate Search 

We begin with a discussion of a coordinate search algorithm, the sim­
plest of all sampling methods, and consider the unconstrained problem 

min f(x). 
xERN 

(1) 

From a current point Xe and stencil radius or scale he we sample f 
at the 2N points 

(2) 

where ej is the unit vector in the jth coordinate direction. Then either 
Xe or he is changed. 

• If 
f(xe) min f(x) 

xES(xc,hc) 

then we replace he by h+ = hc/2 and set x+ = Xe. 

• Otherwise, we replace Xe by any point in x+ E S such that 

and let h+ =he. 

f(x+) = min f(x) 
xES(x,h) 

(3) 

We refer to (3) as stencil failure. If f is Lipschitz continuously 
differentiable, then [24, 5] stencil failure implies that 

IIV'f(xe)ll = O(he)· (4) 
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Now, if i has bounded level sets, h will be reduced infinitely many times 
because there are only finitely many points on the grid with function 
values smaller than i(xc) [38]. Hence, by (4), the gradient of i will be 
driven to zero, giving subsequential convergence to a point that satisfies 
the necessary conditions for optimality. 

One-sided stencils [24, 36] and more general stencils with < 2N di­
rections have also been used [1, 2, 27] and have similar theoretical prop­
erties. Our experience has been that a full centered-difference stencil is 
better in practice. 

Sampling methods do more than solve smooth problems. Consider an 
objective which is the sum of a smooth function ix and a non-smooth 
function¢, which we will refer to as the noise. 

i(x) = is(x) + ¢(x) (5) 

We assume that ¢ is uniformly bounded and small relative to is, but 
make no smoothness or even continuity assumptions beyond that. High­
frequency oscillations in ¢ could result in local minima of i which would 
trap a conventional gradient-based method far from a minimizer of is· If 
¢ decays sufficiently rapidly near a minimizer of i, then the coordinate 
search method responds to is and, in a sense, "does not see" ¢. 

To quantify the claim above, we return to the concept of stencil failure. 
Define 

ll¢11s(x,h) = max l¢(x)l. 
zES(x,h) 

If (3) holds and i satisfies (5), then [24, 5] 

ll\7 is(Xc)ll = 0 (he+ · (6) 

Now, let {xn} be the sequence of coordinate search iterations and {hn} 
be the sequence of stencil radii, which we will refer to as scales. If i has 
bounded level sets, then the set of possible iterations for a given scale h 
is finite, as they lie on a grid [39], hence hn -+ 0. If, moreover, the noise 
decays rapidly enough so that 

lim ll¢1is(xn,hn) = O 
n--+oo hn ' 

(7) 

then \7 is(Xn) -+ 0, by (6). 
This asymptotic result does not address an important practical issue. 

The number of times that h will be reduced during the optimization 
needs to be specified when the optimization begins or a limit on the 
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number of calls to f must be imposed. Most implementations of sam­
pling methods use one or both of these as termination criteria. 

In the simple case where fs is a convex quadratic, for example, co­
ordinate search, therefore, "jumps over" oscillations in ¢ early in the 
iteration, when his large, and, after finding a neighborhood of the min­
imizer, increases the resolution {i. e. decreases the scale) and converges. 

2.2 Implicit Filtering 
The version of implicit filtering which we discuss in this paper acceler­

ates coordinate search with a quasi-Newton method. We use the sample 
values to construct a centered difference gradient "ihf(xc)· We then try 
to take a quasi-Newton step 

X+= Xc- H;hihJ(xc) {8) 

where He is a quasi-Newton model Hessian. We find that the BFGS 
[6, 18, 13, 34] works well for unconstrained problems. We reduce the 
scale when either the norm of the difference gradient is sufficiently small 
or stencil failure occurs. 

We formally describe implicit filtering below as a sequence of calls 
to a finite-difference quasi-Newton algorithm {fdquasi) followed by a 
reduction in the difference increment. The quasi-Newton iteration is 
terminated on entry if stencil failure is detected. The other termination 
criteria of the quasi-Newton iteration reflect the truncation error in the 
difference gradient. The tolerance for the gradient 

{9) 

is motivated both by the heuristic that the step should be at least of the 
same order as the scale, by the implication {6) of stencil failure, and by 
the error estimate [24] [24] 

JIVfs(x)- Vhf(x)ll = 0 ( h2 + {10) 

The performance of implicit filtering can be sensitive to the choice of 
the parameter T if, as was the case for the earliest implementations of 
implicit filtering [36, 17, 10], the test for stencil failure is not incorporated 
into the algorithm. 

The line search is not guaranteed to succeed because the gradient is 
not exact, therefore we allow only a few reductions in the step length 
before exiting the quasi-Newton iteration. If the line search fails, then 
sufficient decrease condition 
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has been violated. Here, as is standard, [11, 24], a is a small parameter, 
typically 10-4 . If both (9) and (11) fail, then one can show in some cases 
[17] that the noise is sufficiently larger that the scale to justify terminat­
ing the entire optimization. This leads to the question of selection of the 
smallest scale, which is open. In some special cases, [17] failure of the 
line search can be related to the size of noise, motivating termination of 
the entire optimization because the assumption that 11¢11 is much smaller 
than h is no longer valid. 

Algorithm 1 fdquasi(x, f,pmax, r, h, amax) 
p=1 
while p:::; pmax and IIV'hf(x)ll 2: rh do 

compute f and V' hf 
if (2) holds then 

terminate and report stencil failure 
end if 
update the model Hessian H if appropriate; solve Hd = -V'hf(x) 
use a backtracking line search, with at most amax backtracks, to 
find a step length .X 
if amax backtracks have been taken then 

terminate and report line search failure 
end if 
X f- X+ Ad 
p+---p+1 

end while 
if p > pmax report iteration count failure 

Implicit filtering is a sequence of calls to fdquasi with the difference 
increments or scales reduced after each return from fdquasi. 

Algorithm 2 imfilter(x, j,pmax, r, {hn}, amax) 
fork= 0, ... do 

fdquasi(x,j,pmax,r,hn,amax) 
end for 

Our analysis of coordinate search depended on the fact that 

(12) 

when stencil failure occurred and that h was reduced when that hap­
pened. Since stencil failure directly implies success, as do (6) and (9) 
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together, the convergence result for coordinate search will hold for im­
plicit filtering provided the line search only fails finitely often and the 
quasi-Newton iteration terminates because of stencil failure or satisfac­
tion of (9), We summarize these observations in a theorem from [24]. 

Theorem 1 Let f satisfy (5) and let \1 fs be Lipschitz continuous. Let 
hn -+ 0 and let {xn} be the implicit filtering sequence. Assume that 
either (3) or (11) hold after each call to fdquasi (i. e. there is no line 
search failure or iteration count failure} for all but finitely many k. Then 
if 

lim (hn + h:;/ 11</>lls(x h )) = 0 
k-+oo ' n 

{13} 

then any limit point of the sequence { Xn} is a critical point of fs. 

Theorem 1 does not explain the performance of implicit filtering in 
practice. In fact, other methods, such as coordinate search, Hooke­
Jeeves, and MDS, also satisfy the conclusion of Theorem 1 if (13) holds, 
[24, 40]. Implicit filtering performs well only if a quasi-Newton model 
Hessian is used. The reasons for the efficacy of the quasi-Newton meth­
ods are not fully understood. A step toward such an understanding is 
in [7], where a superlinear convergence result is presented. That result 
is somewhat like the one we give in§ 3 and we will summarize it here. 

Assumptions on the rate of decrease of { hn} and of the size of ¢ must 
be made to prove convergence rates. Landscapes like those in Figure 1 
motivated the qualitative decay assumption (13). To obtain superlinear 
convergence one must ask for much more and demand that h and ¢ 
satisfy 

(14) 

for some p > 0. Here x* is a local minimizer of fs· Satisfaction of (14) 
is possible in practice if both ¢ and the scales h decrease near x*. As 
an example, suppose that fs has a local minimizer x*, \12 fs is Lipschitz 
continuous in a neighborhood of x*, \12 fs ( x*) is positive definite, and 
for x sufficiently near x*, 

l¢(x)l = O(llx- x*II2+2P), (15) 

for some p > 0. In that case, if one sets 

(16) 

and other technical assumptions hold, then one can show that the im­
plicit filtering iteration, with the BFGS update, is locally superlinearly 
convergent to x*. 
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3. Gauss-Newton Iteration and Implicit 
Filtering 

For the remainder of this paper we focus on nonlinear least squares 
objective functions 

1 M 1 
f(x) = 2 = 2R(xfR(x). (17) 

We assume that 
R(x) = R 8 (x) + <P(x) (18) 

where Rs : RN -+ RM is Lipschitz continuously differentiable. Here the 
noise <P in the residual does not correspond to noise in any data in the 
problem, but rather noise in the computation of R. As an example, if 
one is doing a nonlinear fit to data, R might have the form R = M ( x)-d, 
where d is a vector of data and x are the model parameters. The noise 
we have in mind is in the computation of M, not in d. 

The noise <P in R can be related to the noise ¢ in f by 

¢(x) = R(x)T <P(x) + <P(xf <P(x)/2. 

3.1 Implicit Filtering Gauss-Newton (IFGN) 
Algorithm 

(19) 

Our implementation of implicit filtering for nonlinear least squares 
differs from the one described in § 2 in two ways: 

• The Jacobian of the residual, not the gradient of the objective 
function, is approximated by finite differences. 

• The Gauss-Newton model Hessian is used instead of a quasi-New­
ton model Hessian. 

We let '''hR(x) be the centered difference gradient of R based on 
the stencil S(x, h). Our finite difference Gauss-Newton iteration Algo­
rithm fdgauss, must be prepared for stencil failure and failure of the 
line search. The sufficient decrease condition is now 

where 
d = -('\hR(xc)T'\hR(xc))-1.\hR(xcf R(xc) 

is the IFG N direction. 
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Algorithm 3 fdgauss(x, R,pmax, T, h, amax) 
p=l 
while p pmax and ll(\7hR(x))TR(x)ll Th do 

compute f = R(x)T R(x)/2 and \7hR 
if (2) holds then 

terminate and report stencil failure 
end if 
setH= (\7hR(x))T(\7hR(x)); solve Hd = -\7hR(x)TR(x). 
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use a backtracking line search, with at most amax backtracks, to 
find a step length >. 
if amax backtracks have been taken then 

terminate and report line search failure 
end if 
X+-- X+ ).d 

p+-p+l 
end while 
if p > pmax report iteration count failure 

The implicit filtering form of the damped Gauss-Newton method, (Al­
gorithm IFGN) calls fdgauss repeatedly, reducing the scale with each 
iteration. 

Algorithm 4 IFGN(x, R,pmax, T, {hn}, amax) 
fork= 0, ... do 

fdgauss(x, R,pmax, T, hn, amax) 
end for 

3.2 Convergence Analysis 

We will make a distinction between the central difference gradient of 
f = RT R/2 and the difference gradient computed via (\7 hR)T R, since 
the two approximate gradients have different errors, especially in the 
small residual case. 

For any function 'lj; : RN ---+ RL (here L = 1 or L = M), define 

117/JJis(x,h) = 117/J(x)ll· 

and 

E(x, h, 'lj;) = h2 + 
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We can rewrite {10) as 

IIVfs(x)- \7hf(x)ll = O(E(x,h,¢)). {21) 

Lemma 3.1 gives the analog of {21) for nonlinear least squares problems 
in {24) and refines {21) in {23). The error in (\7hR(x))T R(x) is scaled 
by the residual norm, a fact we exploit for zero residual problems in 
Lemma 3.3. 

Lemma 3.1 Let R be given by {18). Assume that there is K > 0 such 
that 

II<I>IIs(x,h) :::; KIIRs{x)ll· {22} 

Then 

ll\7 fs(x) _ \7hf(x)ll = O ( h2 + IIRslls{x,hhii<I>IIs{x,h)) , (23) 

ll\7 !s(x) - (\7 hR(x))r R(x)ii = O(IIRs{x)IIE{x, h, <I>)), {24) 

and 
(\7hR(x))T\7hR(x)ll = O(E(x, h, <I>)). {25) 

The constants in the 0-terms depend on the norm and the Lipschitz 
constant of R'. 

Proof. The estimate {23) follows from {10) and {19). 
We now prove {24). By definition, 

(\7hR(x))T R(x) = (\7h(R8 (x) + <I>(x)))T(Rs(x) + <I>(x)) 

as asserted. 

= (\7hRs(x))rRs(x) + 0 

'i1 f,(x) + 0 (JIR, (x) IIE(x, h, iii) + 

= \7 !s(x) + o (IIRs{x)IIE{x, h, <I>)). 

The proof of {25) is similar. D 
Lemma 3.1 leads directly to a simple convergence result. which, for 

zero residual problems with only a few stencil failures, requires only that 
E(xn, hn, <I>) be bounded, a weaker condition than (7). 
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Theorem 2 Let R satisfy (18) and assume that R' is Lipschitz continu­
ous. Let hn --r 0 and let { xn} be the implicit filtering sequence. Assume 
that all but finitely many calls to fdgauss return with stencil failure or 

{26) 

that the model Hessians R(xn)T R(xn) are nonsingular, and that the 
model Hessians and their inverses are uniformly bounded. Then if 

{27) 

then any limit point of Xn is a critical point of f. If, moreover, all but 
finitely many calls to fdgauss return with (26), then (27) can be replaced 
by 

(28) 

Proof. The convergence assumption (27) requires that 

II<I>IIs(xn,hn)/hn --r 0. 

In view of (19), this is equivalent to (7) if (22) holds. Hence the first 
assertion of the theorem is simply a restatement of Theorem 1. 

If the finite-difference Gauss-Newton iteration terminates all but 
finitely many times with (26), then 

by (24). This completes the proof. 0 

3.3 Local Convergence 

To analyze the local convergence behavior of the IFGN iteration, we 
must assume that the model Hessians are well conditioned and bounded. 
Let x* be a local minimizer of fs(x) = Rf(x)Rs(x) for which the stan­
dard assumptions for convergence of the Gauss-Newton iteration 

= Xc-

hold (smoothness, nonsingularity of the model Hessian, sufficiently small 
residual). 

To quantify this we will assume: 

Assumption 3.1 There is Po > 0 such that 

• Rs is Lipschitz continuously differentiable in the set 

V = {x lllx- x*ll :S Po}, 
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• the Gauss-Newton model Hessian and its inverse are 
uniformly bounded in 1), and 

• there are raN E {0, 1) and CaN > 1 such that for all Xc E V, 

:::_:; CcN(IIecll 2 + IIRs{x*)llllecll) :::_:; rcNIIecll· {29) 

As is standard, we let e = x - x* for x E RN, with the iteration index 
for e being inherited from the one for x. 

Lemma 3.2 Let R be given by {18). Let {22) and Assumption 3.1 hold 
and let Xc E 1J. Then if 

supE(x,h,4!>) 
xE'D 

is sufficiently small, the IFGN model Hessian (''VhR(xc))T\lhR(xc) zs 
nonsingular. Moreover, if 

X+= Xc- ((\lhR(xc)f\lhR(xc))- 1\lhR(xc)TR(xc) 

then 

Proof Let Xc E V. Assumption 3.1 and {25) imply that 

((\lhR(xc))T\lhR(xc))-1 11 = O(E(xc, h, 4!>)). 
{31) 

Now, 

where 

and 
E 9 = 'Vfs(x)- (\lhR(x)fR(x). 

Since \7 fs(xc) = O(llecll), we apply {31) to obtain 

EH\7 fs(xc) = O(IIRs(xc)IIE{xc, h, 4!>)). 

The conclusion now follows from {22) and (24). D 

Theorem 3 Let R be given by (18). Let {22) and Assumption 3.1 hold. 
Let xo E V. Let hn ---+ 0. Assume that the implicit filtering sequence 
{xn} C 1) and that the line search fails only finitely many times. Then 
if (27) holds then Xn ---+ x*. 
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3.4 Rates of Convergence 
To obtain rates of convergence we must make stronger assumptions 

on <I>, on the scales, and on the convergence rates of the Gauss-Newton 
iteration for the smooth problem. We must augment (29) with a lower 
bound that states that the Gauss-Newton iteration for R 8 converges no 
faster than the standard Gauss-Newton convergence rate. This latter 
assumption is a nondegeneracy condition on R" and is needed for the 
superlinear convergence results. 

Assumption 3.2 There are p E (0, 1] and Cp > 0 such that 

II<I>(xc)ll :S Cpllecii2+2P 

for all Xc E 'D. In addition to (29), 

for all Xc E 'D. 

{32) 

{33} 

Lemma 3.3 Let Assumptions 3.1 and 3.2 hold. Then if Xc is suffi­
ciently near x* and 

{34) 

then there are raN < r < 1 and C > 1 such that 

{35) 

Proof. We will show that 

(36) 

for Xc near x*. The result will follow from Lemma 3.2 for Xc sufficiently 
near x*. 

Lemma 3.3 and (32) imply that 

E(xc, h, <I>) = O(lleclll+P). 

We consider two cases. If the smooth problem is a zero residual prob­
lem (R8 (x*) = 0), then 

IIRs(Xc)IIE(xc, he, <I>)= O(llecii 2+P). 

In this case, (33) implies (36). 
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If R8 (x*) =/:. 0, then 

1/Rs(xc)IIE(xc, he, <P) = O(lleclll+P). 

However, in that case (33) implies that 

and (36) holds. This completes the proof. D 
In order to apply Lemma 3.3 we need to make sure that (34) holds 

throughout the iteration. The most direct way to do this is to update 
hn with an analog of (16) 

(37) 

Theorem 4 Let Assumptions 3.1 and 3.2 hold. The if xo is sufficiently 
near x*, 

{38} 

and the implicit filtering sequence is defined by Algorithm IFGN and (37), 
then Xn --+ x* and 

for all n 0. 

Proof Our assumptions imply that (38) is equivalent to (34) with, 
for example, 

ch =sup ll\72 fx(x)ll· 
xEV 

Hence, proceeding by induction, we need only show that 

for n > 0. 
By (24), if hn satisfies (40), then 

hn+l = (ll\7 fs(Xn+I)II + IIRs(Xn+I)IIE(xn+l, hn, <P))l+P 

(I ( GN )l+p = IY'fs Xn+I)II + o(llen+lll) 

Hence hn+l satisfies ( 40) for xo sufficiently near x*. D 
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Remark: Theorem 4 says that the local convergence of IFGN is 
as good asymptotically as Gauss-Newton, if one counts only nonlinear 
iterations. For zero residual problems, one need not reduce the scales as 
rapidly. If we replace (34) by 

(41) 

then (35) becomes 

This will imply superlinear convergence for zero residual problems for 
which (22) and (32) hold if hn --+ 0. The computations in § 4 illustrate 
this. 

4. Numerical Example 

We report on the performance of IFGN on a parameter identification 
problem taken from [24, 7, 3]. Here N = 2 and M = 100. The problem 
is to identify the stiffness k and damping c in a harmonic oscillator so 
that the numerical solution of 

u" + cu' + ku = 0; u(O) = uo, u'(O) = 0 

best fits the data in the least squares sense. 
For this example the data are values of the exact solution at ti = 

i/100 for 1 ::; i ::; 100. The numerical solution was computed with the 
MATLAB ODE15s integrator [33]. 

We compare three variations of implicit filtering, IFGN with a fixed 
sequence of scales and an adaptive sequence that attempts to satisfy 
(37), and a version of the implicit filtering/BFGS algorithm from [24, 7] 
that has been modified to use adaptive scales. In all three we limit 
the optimization to a budget of 100 calls to the function. This does 
not mean that an iteration is terminated before completion, rather we 
monitor the number of function evaluations after a call to the finite 
difference optimizer returns and stop the optimization if the number of 
function evaluations has exceeded the budget after the completion of the 
iteration. 

For all the computations the initial iterate is (c, k) = (2, 3). The 
sequence of scales used in the examples is 

h(l) - 2-n - 4 13 n - 'n- , ... , . (43) 
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Following [7], we implement adaptive scales based on a scaled and safe­
guarded form of (37), 

h(2) _ ( . [h(l) (11(\7hnR(xn+l)TR(xn+1)11)1+pl h . ) 
n+l - max mm n+l' II (\7 hoR(xo)T R(xo) II ' mm 

(44) 
where p = 1/2 and hmin = 10-5 . hmin is roughly the cube root of 
machine roundoff and is the optimal choice of h for a central difference. 

In the examples the line search strategy is to reduce the step by half 
if the sufficient decrease condition (either ( 11) for implicit filtering or 
(20) for IFGN) fails. Within both algorithms fdquasi and fdguass, 
amax = 10 and pmax = 100. 

tol=1.d-6 
105 

10-15 
0 50 100 150 

Function Evaluations Function Evaluations 
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105 

tol=1.d-3 
104 .---------, 

E 
0 z 
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10° \ __ _ 13 . 
" I => 

u.. 10-' I 
I 

10-10 
0 50 100 150 

10-40'----5-0 --10-:-0 

Function Evaluations Function Evaluations 

Figure 2. Parameter Identification Example 

In Figure 4 we plot the norm of the difference gradient and the size of 
the function for the three variations of implicit filtering and two values, 
10-6 and 10-3 , of the tolerance given to ODE15s. One can see that the 
two variations of IFGN did substantially better than an implementation 
of implicit filtering that did not exploit the least squares structure. A 
more subtle difference, explained by the remark at the end of § 3, is 
that while the use adaptive scales made no visible difference in IFGN's 
ability to reduce the residual (the curves overlap, indicating that the rate 
of convergence for both methods is equally fast, i. e. superlinear), it did 
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make the difference gradient a much better indicator of the progress of 
the optimization {the scales that are reduced most rapidly produce more 
accurate gradients). 

We see similar behavior for a small, but non-zero, residual problem. 
In Figure 2 we show the results from the parameter ID problem with 
uniformly distributed random numbers in the interval [0, w-4] added to 
the data. The gradients behave in the same way as in the experiment 
with exact data, while the limiting function values reflect the non-zero 
residual in the high-accuracy simulation. In the low-accuracy simulation, 
the tolerances given to the integrator are smaller than the noise in the 
data, so the figures are almost identical to the one for the noise-free case. 
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Figure 3. Parameter Identification Example; Random Noise in Data 

References 

[1] C. AuDET AND J. E. DENNIS, Analysis of generalized pattern searches. submit­
ted for publication, 2000. 

[2] --, A pattern search filter method for nonlinear programming without deriva­
tives. submitted for publication, 2000. 

[3] H. T. BANKS AND H. T. TRAN, Mathematical and experimental modeling of 
physical processes. Department of Mathematics, North Carolina State Univer­
sity, unpublished lecture notes for Mathematics 573-4, 1997. 



88 

(4] A. BATTERMANN, J. M. GABLONSKY, A. PATRICK, c. T. KELLEY, T. COFFEY, 
K. KAVANAGH, AND C. T. MILLER, Solution of a groundwater control problem 
with implicit filtering, Optimization and Engineering, 3 (2002), pp. 189-199. 

(5] D. M. BORTZ AND C. T. KELLEY, The simplex gradient and noisy optimization 
problems, in Computational Methods in Optimal Design and Control, J. T. 
Borggaard, J. Burns, E. Cliff, and S. Schreck, eds., vol. 24 of Progress in Systems 
and Control Theory, Birkhiiuser, Boston, 1998, pp. 77-90. 

(6] C. G. BROYDEN, A new double-rank minimization algorithm, AMS Notices, 16 
(1969), p. 670. 

(7] T. D. CHOI AND C. T. KELLEY, Superlinear convergence and implicit filtering, 
SIAM J. Optim., 10 (2000), pp. 1149-1162. 

(8] A. R. CONN, K. ScHEINBERG, AND P. L. TOINT, On the convergence of 
derivative-free methods for unconstrained optimization, in Approximation The­
ory and Optimization: Tributes toM. J. D. Powell, A. Iserles and M. Buhmann, 
eds., Cambridge, U.K., 1997, Cambridge University Press, pp. 83-108. 

(9] --, Recent progress in unconstrained optimization without derivatives, Math. 
Prog. Ser. B, 79 (1997), pp. 397-414. 

(10] J. W. DAVID, C. T. KELLEY, AND C. Y. CHENG, Use of an implicit filter­
ing algorithm for mechanical system parameter identification, 1996. SAE Paper 
960358, 1996 SAE International Congress and Exposition Conference Proceed­
ings, Modeling of CI and SI Engines, pp. 189-194, Society of Automotive Engi­
neers, Washington, DC. 

(11] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Op­
timization and Nonlinear Equations, no. 16 in Classics in Applied Mathematics, 
SIAM, Philadelphia, 1996. 

(12] J. E. DENNIS AND V. TORCZON, Direct search methods on parallel machines, 
SIAM J. Optim., 1 (1991), pp. 448- 474. 

(13] R. FLETCHER, A new approach to variable metric methods, Comput. J., 13 
(1970), pp. 317-322. 

(14] J. M. GABLONSKY, Modifications of the DIRECT Algorithm, PhD thesis, North 
Carolina State University, Raleigh, North Carolina, 2001. 

(15] J. M. GABLONSKY AND C. T. KELLEY, A locally-biased form of the DIRECT 
algorithm, Journal of Global Optimization, 21 (2001), pp. 27-37. 

(16] P. GILMORE, An Algorithm for Optimizing Functions with Multiple Minima, 
PhD thesis, North Carolina State University, Raleigh, North Carolina, 1993. 

(17] P. GILMORE AND C. T. KELLEY, An implicit filtering algorithm for optimization 
of functions with many local minima, SIAM J. Optim., 5 (1995), pp. 269-285. 

(18] D. GoLDFARB, A family of variable metric methods derived by variational means, 
Math. Comp., 24 (1970), pp. 23-26. 

[19] J. H. HoLLAND, Genetic algorithms and the optimal allocation of trials, SIAM 
J. Comput., 2 (1973). 

(20] R. HooKE AND T. A. JEEVES, 'Direct search' solution of numerical and statis­
tical problems, Journal of the Association for Computing Machinery, 8 (1961), 
pp. 212-229. 

(21] D. R. JONES, The DIRECT global optimization algorithm. to appear in the 
Encylopedia of Optimization, 1999. 



Implicit Filtering 89 

[22) D. R. JONES, C. C. PERTTUNEN, AND B. E. STUCKMAN, Lipschitzian opti­
mization without the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), 
pp. 157-181. 

[23] C. T. KELLEY, Detection and remediation of stagnation in the Nelder-Mead 
algorithm using a sufficient decrease condition, SIAM J. Optim., 10 (1999), 
pp. 43-55. 

[24] --, Iterative Methods for Optimization, no. 18 in Frontiers in Applied Math­
ematics, SIAM, Philadelphia, 1999. 

[25] S. KIRKPATRICK, C. D. GEDDAT, AND M. P. VECCHI, Optimization by simu­
lated annealing, Science, 220 (1983), pp. 671-680. 

[26] J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT, Conver­
gence properties of the Nelder-Mead simplex algorithm in low dimensions, SIAM 
J. Optim., 9 (1998), pp. 112-147. 

[27] R. M. LEWIS AND V. TORCZON, Rank ordering and positive bases in pattern 
search algorithms, Tech. Rep. 96-71, Institute for Computer Applications in 
Science and Engineering, December 1996. 

[28] S. LUCID! AND M. SciANDRONE, On the global convergence of derivative free 
methods for unconstrained optimization. Reprint, Universita di Roma "La 
Sapienza", Dipartimento di Informatica e Sistemistica, 1997. 

[29] --, A derivative-free algorithm for bound constrained optimization. Reprint, 
Instituto di Analisi dei Sistemi ed Informatica, Consiglio N azionale delle 
Richerche, 1999. 

[30] J. J. MORE, B.S. GARBOW, AND K. E. HILLSTROM, User guide for MINPACK-
1, Tech. Rep. ANL-80-74, Argonne National Laboratory, 1980. 

[31] J. A. NELDER AND R. MEAD, A simplex method for function minimization, 
Comput. J., 7 (1965), pp. 308-313. 

[32] J. NocEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, New York, 
1999. 

[33] L. F. SHAMPINE AND M. W. REICHELT, The MATLAB ODE suite, SIAM J. 
Sci. Comput., 18 (1997), pp. 1-22. 

[34] D. F. SHANNO, Conditioning of quasi-Newton methods for function minimiza­
tion, Math. Comp., 24 (1970), pp. 647-657. 

[35] M. SRINIVAS AND L. M. PATNAIK, Genetic algorithms: a survey, Computer, 27 
(1994), pp. 17-27. 

[36] D. STONEKING, G. BILBRO, R. TREW, P. GILMORE, AND C. T. KELLEY, Yield 
optimization using a GaAs process simulator coupled to a physical device model, 
IEEE Transactions on Microwave Theory and Techniques, 40 (1992), pp. 1353-
1363. 

[37] D. E. STONEKING, G. L. BILBRO, R. J. TREW, P. GILMORE, AND c. T. 
KELLEY, Yield optimization using a GaAs process simulator coupled to a physical 
device model, in Proceedings IEEE/Cornell Conference on Advanced Concepts 
in High Speed Devices and Circuits, IEEE, 1991, pp. 374-383. 

[38) V. ToRCZON, Multidirectional Search, PhD thesis, Rice University, Houston, 
Texas, 1989. 

[39] --, On the convergence of the multidimensional direct search, SIAM J. Op­
tim., 1 (1991), pp. 123-145. 



90 

[40] --, On the convergence of pattern search algorithms, SIAM J. Optim., 7 
(1997), pp. 1-25. 

(41] P. VAN LAARHOVEN AND E. AARTS, Simulated annealing, theory and practice, 
Kluwer, Dordrecht, 1987. 

[42] T. A. WINSLOW, R. J. TREW, P. GILMORE, AND C. T. KELLEY, Doping profiles 
for optimum class B performance of GaAs mesfet amplifiers, in Proceedings 
IEEE/Cornell Conference on Advanced Concepts in High Speed Devices and 
Circuits, IEEE, 1991, pp. 188-197. 

[43] --, Simulated performance optimization of GaAs MESFET amplifiers, in 
Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed 
Devices and Circuits, IEEE, 1991, pp. 393-402. 

[44] S. K. ZAVRIEV, On the global optimization properties of finite-difference local 
descent algorithms, J. Global Optimization, 3 (1993), pp. 67-78. 


	IMPLICIT FILTERING AND NONLINEAR LEAST SQUARES PROBLEMS

	1. Introduction
	2. Implicit Filtering
	2.1 Coordinate Search
	2.2 Implicit Filtering

	3. Gauss-Newton Iteration and Implicit Filtering

	3.1 Implicit Filtering Gauss-Newton (IFGN) Algorithm

	3.2 Convergence Analysis
	3.3 Local Convergence
	3.4 Rates of Convergence

	4. Numerical Example
	References




