
A USER FRIENDLY GUARD WITH MOBILE
POST-RELEASE ACCESS CONTROL POLICY

Douglas E. Williams, Amgad Fayad, Sushi! Jajodia, Daniel Calle
The MITRE Corporation

7515 Colshire Boulevard, McLean, VA 22102-3481, USA

{dewillia,afayad, jajodia, dcalleJ@mitre.org

Abstract: Information security guards perform an important function in multillevel
security (MLS) environments. To perform their functions correctly, guards
mLlst contain data release and sanitization rules that accurately rcnect the
reclassitication or declassification requirements to move data across
information security boundaries. The current guards, however, require
considerable technical skill to express release and sanitization mles, which
data producers typically do not possess. Another limitation of the CUITent
guards is that once the data passes through a guard, all access control
requirements to that data is lost. In this paper, we propose a high-level
language to express release and sanitization rules, as well as post-release
access control rules. Wc also describe a prototype that demonstrates the
applicabi lity of our approach.

1. INTRODUCTION

Information security guards regulate the transfer of data across security
boundaries in multilevel security (MLS) environments. In addition to an
allow or deny release decision, guards frequently perform operations such as
sanitization of data by removing portions that are still considered too
sensitive to be released. While some complex data will always require
manual review, the ability to have automated review capability has the

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003

10.1007/978-0-387-35691-4_52

D. Gritzalis et al. (eds.), Security and Privacy in the Age of Uncertainty

http://dx.doi.org/10.1007/978-0-387-35691-4_52

266 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

potential for being very cost effective when considering the large quantities
of classified data that government organisations are reclassifying or releasing
from classification over a period of time.

Traditionally, the source of data that passes through the guard is called
the high side and the destination of the data the low side [5, 8]. On the high
side, security guard operations generally involve two groups. The first
group, which we will refer to as Data Producers, is responsible for
producing the data and establishing associated release and sanitization rules.
The second group, which we will refer to as Guard Administrators. is
responsible for interpreting the Data Producers' rules to generate accredited
executable release and sanitization rules on the guard. This relationship is a
weakness of the current system. It requires accurate, rapid, effective, and
consistent communication between the Producers and Administrators. If the
Data Producers miscommunicate with the Guard Administrators about the
correct policy rules to apply to a data object, the guard will not function
correctly. This is further exacerbated in the current trend in dynamic
multinational coalitions, where communication is even more difficult. It is
therefore a necessity that guard rules must be communicated quickly and
accurately between the Producers and Administrators.

Another challenge for writing software security guards is their
certification for a formal evaluation of trust. Since guards become the
responsible parties for information declassification, they must operate with a
very high degree of reliability. To achieve this, the software code must be
meticulously inspected for correctness and, if confirmed, certified correct.
Therefore, the simpler the guard source code is, the more confident one can
be to its reliability to perform correctly.

Finally, in addition to release control rules, Data Producers may wish to
request that certain access control rules be enforced after the data is released
beyond the guard to the low side. We refer to this capability as post-release
access control, and could consist of both access provisions and access
obligations [1, 6]. Unfortunately, existing guard mechanisms do not provide
such a capability, and once a document is released, all control over that
document is lost. Providing such control could enhance the security and
tlexibility of an information system.

Doshi et al. [4] propose a mobile policy framework that allows policies to
move through the distributed system, accompanying the data it is intended to
protect. In this framework, policy administration is separated from policy
enforcement: policy is specified and administered at only those elements of

A User Friendly Guard with Mobile Post-release Policy 267

the distributed system authorized to do so (frequently the "owner" of the
data), whereas any trustworthy component in the distributed computing
environment can enforce the policy.

In this paper we build on the idea presented by Doshi, et al. [4) and Felt,
a Guard language currently in use [5, 8], and propose a high-level tool that
acts as a front-end to legacy guard systems. We will also explore the use of
mobile policy to implement post-release access control.

This paper is organized as follows. Section 2 describes current
approaches to guards and their limitations. Section 3 outlines the
architecture of our proposed solution. Section 4 describes our proposed
guard language. Section 5 provides examples of guard rules using our
language. Section 6 describes our prototype implementation. Finally,
section 7 outlines conclusions and future directions for this work.

2. CURRENT APPROACHES AND THEIR
LIMITATIONS

In this section, we give an overview of current guard systems. As
outlined in the Director of Central Intelligence Directive (DCID) 6/3 [3], a
guard is defined as a process (or set of controls) that function as a
"controlled interface" mediating transfers across security boundaries.
Guards typically control the flow of data from a "high" domain to a "low"
domain, where the "high" domain is at a higher level of security
classification than the "low" domain. However, this is not always the
situation, because Guards may also control the "horizontal" flow of data
between two domains of equal security classification levels. Finally, a
Guard can also control the flow of data to more than one domain as in a one­
to-many relationship. The guard is considered part of a domain's security
architecture and it enforces a well-defined security policy.

Many variations of software security guards are in existence today. They
provide services at security boundaries that include filtering, sanitization,
transliteration, and integrity checks. Guard types range from low-to-high,
high-to-low, manual review, and fully automated. As expected, many
guards today consist of computer software, and one such guard development
environment is Felt [5, 8] currently used by two popular guards: the
Information Support Server Environment (ISSE) and the Command and
Control Guard (C2G) of the U.S. Department of Defense.

268 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

Felt is a software development environment that was developed by The
MITRE Corporation under funding from the Rome Laboratory of the United
States Air Force Electronics Systems Command, and the Defense
Information Systems Agency (DIS A). Felt partly consists of a computer
programming language with a special notation for defining data structures.
This language has a special-purpose notation for defining message structures
and it provides operations that can be used in writing constraint-checking
procedures to determine whether a structured message is releasable, or to
sanitize portions of it [5, 8]. The other part of Felt consists of an executable
pre-processor that converts Felt code into the C programming language code.
The code is then inspected by the guard administrators for correctness, is
certified if it is, and then compiled with a regular C compiler.

While Felt provides a powerful mechanism for building guard filters and
has proven to be quite successful, it has two disadvantages. First, it requires
considerable expertise to use because of its power and flexibility. While
Guard Administrators typically have the required expertise to use Felt, guard
rules frequently originate from the Data Producers who often do not have the
necesssary skills or training to accurately define policy for a document. A
good solution to this problem is to develop a high-level language that is
easier to use by the Data Producers.

Another limitation that Felt has pertains to release rules. In many
situations release rules are sufficient, but at times it is useful to be able to
control access to a document after it is released by the guard. For example,
the Data Producer may wish to specify Role-Based Access Control (RBAC)
rules that limit access to the data within the low side to individuals with
particular role or rank credentials. Current guard tools, such as Felt, provide
good release control, but do not provide any post-release access control
functionality. For this additional flexibility a more comprehensive and
extendable guard language is needed.

Before using a guard in a Department of Defense (DoD) environment, the
guard and its rules must be officially certified to provide assurance that the
guard will function properly and protect sensitive data from leaking to less
secure domains. The Felt environment has gone through the rigorous,
lengthy, and expensive verification program using formal methods and is
consequently known to be correct. To replace an existing tool that works, in
spite of its limitations, is an undesirable choice. Therefore, we chose to
build on the existing Felt system.

A User Friendly Guard with Mobile Post-release Policy 269

3. OURAPPROACH

In this section, we outline our proposed solution to the limitations of
usability and post-release access controls that we identified with current
guard tools in Section 2 of this document. Figure 1 shows the data and
policy flow between Data Producers and Guard Administrators. In order to
improve this communication, we propose a high-level tool to bridge the gap
between the Data Producers and the Guard Administrators. Using the tool,
Data Producers can use a high-level language, called MoPEd, to specify the
release and sanitization rules. See Section 4. The tool then translates these
rules into Felt so that the Guard Administrator can produce the accredited
executable release and sanitization rules to be applied by the guard. In
addition to the release and sanitization rules, Data Producers can also use
MoPEd to specify post-release access control rules. These rules are attached
to the data in the form of a mobile policy [2, 4, 7].

1;#"

- .+-;---
, ,

R C' h-r i(Je , , ,
S('n -rr , ,

Mobil. I'o!icy:

(("(,"Co,,, cO llt rol nllr5
frolll l ilt SOU J-tf shit

Guard

Advanced
Filters

and
Tools

(e.g ., Fell)

D:lI:. ProtJUfrr

lialan", bt'C \\C't' n
3nrl or

____ ---, ,, .K ,,-:;r-.J>"'"'t1
,.;

3ml '" ,.
onuullnica1ion ." ,.

,,'

Ii.' t\ I O llilt 1'0

ndlllini Ira'Or

Figure 1. The Guard Policy Tool

The benefits of this approach include the following: First,
communications between Data Producers and Guard Administrators about
guard rules is easier and faster to use because the policy language more
closely approximates human languages than Felt does. A result of this rule
simplification should be that guard rule generation is also less prone to
human error. Second, guard rule certification can be pipelined. This can be
advantageous in two different ways. First, rather than being a wrapper, if a
pre-processor approach is used there is no compelling need for the pre­
processor to be certified, because all output from the pre-processor must next

270 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

be processed by Felt before being put into operation. Second, if one does
elect to certify the system using the pre-processor, this is more easily done
because the pre-processor is separate and distinct from Felt and consequently
can be considered alone. This is especially advantageous in dynamic
environments that require quick changes to the software guards, or in
environments where cost is an issue.

4. GUARD LANGUAGE

As we have indicated, one of the difficulties in implementing software
guards is the problem of constructing reliable and accurate filtering rules for
data crossing security boundaries. The ideal language used to describe the
filtering rules must be sufficiently powerful to accurately apply security
policies, yet also must be user-friendly enough to help, and not hinder, the
correct operation of the guard. This is indeed one of the fundamental
challenges of information security: making security as transparent to the
users as possible.

Earlier we described the Felt language and compiler as a means of
generating release filtering code for a guard. While FELT is a powerful and
flexible language, it has two shortcomings. First, Felt is a relatively low­
level language so it requires well-trained personnel because all details must
be explicitly stated. Second, Felt expresses only filtering rules for release
control, and does not provide any access control or rule provisions for the
data after it is released. To overcome these shortcomings, we first developed
a high-level and user-friendly language for generating Felt source code.
Next, we extended our language by adding post-release access control
features.

It is worth noting that since our language is at a higher level and a lower
complexity, it does not provide all the functionality that Felt provides. Our
intent is to strike a balance between functionality and ease of use. We do not
consider our language is a replacement for Felt, but rather an enhancement to
the Felt rule composition process. We believe this is justified, because the
majority of guard rules are very similar and we intend to provide constructs
in the language to describe these common rules.

The style chosen for this high-level language was similar to that proposed
by Doshi, et a\. [4], which in turn was similar to the grammar and syntax of
the Structured Query Language (SQL) developed by IBM in the 1970s. Our
language, named Mobile Policy Editor (MoPEd), was designed to satisfy the

A User Friendly Guard with Mobile Post-release Policy 271

majority of needs for typical guard configuration and can be considered a
high-level meta-language for Felt. MoPEd was deliberately kept simple to
handle the majority of situations that occur in normal operations, but because
it generates Felt code any filtering rule that can not be described using this
language can instead still be written in Felt. The syntax of MoPEd is
described in a Backus-Naur Form (BNF) style in Figure 2. This language
should be considered as under development and may evolve in future
releases.

IUlCY
<CRIIDS:>
<ClASS>
<fILlFR>
<SANlllZlI'O>
<EXQlJIlNG>
<PRAC>
<CRANllNG>
<REVOKING>
<ACXF5S>
<READ>
<WRIlE>
<SPATlR>
<L8E'RS>
<RCliS>
<RANKS>

Figure 2. MoPEd Language BNF

.. - "REJ..PA5E" <CRIECTS> "AT' <ClASS> "APPLY' <fILTFR> "Wlll-f' <PRAC>

.. - <CRIIDS:> I <dJLregex>

.. - "UNClASSIAED" I "CXNAaMlAL" I "SECRET" I "lU'SECRET"

.. - <SANl1lLJ1'O> < EXQlJIlNG> ...

.. - "SANl11ZE" I <eIllXY>

.. - "EXCllJ[E" <exCJeg;:x> I <e1ll1y>

.. - <CRANllNG> I <REVOKING> I <efIlX)'>

.. - "mANT" <Aa:FSS> "10' <SPATlR> "'Mlli' <PROVISICNS>

.. - "REVOKE' <Aa:FSS> "10' <SPATlR>

.. - <RPAD><WRIlE>

.. - "REAl)' I <eI11XY>

.. - "WRIlE" I <CfIlXy>

.. - <L8E'RS> <RCliS> <RANKS> ...

.. - "USER" <l.EerJisl> I <e1llX)'>

.. - "RUE' <mleJisl> I

.. - "RANK" <lwlkJiSl> I <CfIlXy>

A description of the MoPEd language semantics is given below.

• "RELEASE" - A flag denoting the stmt of a policy statement.
• <OBJECTS> - A list of objects the policy it to affect. It is designated by

a regular expression, but in its simplest form could simply be limited by
the operating systems file naming constraints.

• "AT" - A flag denoting the start of the security classification the
released object is to have.

• <CLASS> - The permitted security classifications
• "APPL Y" - A flag denoting filtering to be applied before release of the

object.
• <FILTER> - The set of possible release filters. Currently there are only

"SANITIZE" and "EXCLUDE", but this list will probably grow in the
future. The difference between the two types of filters is that
"SANITIZE" means to replace a specific expression with a word such as

272 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

"censored", while "EXCLUDE" deletes any paragraph containing a
specified expression.

• <san_regex> - The list of expressions to be sanitized from the object.
Currently this is interpreted as simply omitting the sanitized part of the
object.

• <exc_regex> - The list of expressions to be sanitized from the object.
Currently this is interpreted as omitting the part of the object.

• <PRAC> - Post-Release Access Control (PRAC) rules, or those that
apply to the object after the object leaves its security domain when a
security principal attempts to access it. Currently the two options are
"GRANT" and "REVOKE."

• <ACCESS> - The current attributes for the released object. Currently
there are only "READ" and "WRITE," but this list will probably grow in
the future.

• <SPATTR> - Security Principal ATTRibutes, or people or processes that
may interact with the released object. Currently these may be a list of
specified users, roles, and ranks.

• "USER" - A flag denoting the start of the list of users affected.
• <user_list> - A user, a delimited list of users, or the empty set of users.
• "ROLE" - A flag denoting the start of the list of roles affected.
• <role_list> - A role or a delimited list of roles, or the empty set of roles.

Some examples are "radio operator", "system administrator", or
"coalition members only".

• "RANK" - A flag denoting the start of the list of affected ranks.
• <rank_list> - An organisational rank or a delimited list of ranks, or the

empty set of ranks. Some examples are "Colonel", "department
manager". Whether ranks include those above the specified level, or
only those at the specified level, depends on the environment's security
policy.

• <prac_regex> - The post-release access control list is a delimited list of
environmentally specific restrictions placed on access control outside the
object originating boundary. Some examples might be "delete after
reading" or "access only after a specified date".

Finally, definitions for release rules, and post-release access control
Grant and Revoke rules in MoPEd are given.

Definition 1 (Release Rule): A guard policy release rule is a rule of the
following form:

RELEASE <OB} EeT>

AT <CLASS>

A User Friendly Guard with Mobile Post-release Policy

APPLY <FILTER>
WITH <PRAC>

273

Definition 2 (Post-Release Access Control Grant Rule): A post-release
access control (PRAC) grant rule is a rule that is applied when access to the object is
made after its release from the guard. Consequently. the post-release access control
grant rule, if one exists, is inserted into the <PRAC> field of Definition 1 above. It

has the following form:

GRANT <ACCESS>
TO <SPATTR>
WITH <PROVISIONS>

Definition 3 (Post-Release Access Control Revoke Rule): A post-release

access control (PRAC) revoke rule is a rule that is applied when access to the object
is made after its release from the guard. Consequently, the post-release access
control revoke rule, if one exists, is inserted into the <PRAC> field of Definition I
above. It has the following form:

REVOKE <ACCESS>
TO <SPATTR>
WITH <PROVISIONS>

5. LANGUAGE EXAMPLES

In this section some guard policy rules are presented to illustrate the
power of the MoPEd system. First, an example demonstrating the economy
and user friendliness of the language is given. This is followed by an
example demonstrating the power of MoPEd has in integrating release rules
and post-release access control rules into a single policy rule.

Consider, for example, that the words "cat" and "dog" must be removed
from data and replaced with the word "censored" before the data can be
declassified. In Felt, the following lines of program would be requ ired.

% {
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <regex.h>
%}

struct main
fields {

/* Required for regex */

/* This filter */
/* rejects lines */

274 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

string "\n" line; /* that contain one */

action check_line /* of four words */
j;

% (
/* Ilne_checker returns true if its arg matches

the given regular expression. */
felt_regex_gen(line_checker,

"cat I dog",
REG_EXTENDED)

void check_line (fflnstance i)
(

f_main d = (f_maln)l->data;
If (strstr(d->line->str, "cat"))

d->line->str = 'censored";
d->line->len = strlen(d->line->str);
d->ffattributes.line.string = d->line;

void check_line (fflnstance i)

%)

I_main d = (f_main)i->data;
if (strstr(d->li:le->str, "dog"))

d->line->str = 'censored';
d->line->len = strlen(d->line->str);
d->ffattributes.line.string = d->line;

Using the MoPEd language proposed in this paper, the entire previous
policy would become:

RELEASE FILE
A T UNCLASSIFIED
APPL Y SANITIZE CAT DOG.

Next, a more complex example showing the combination of guard release
rules and post-release access control is presented. For given collection of
classified data, a Data Producer might create the following guard filtering
rule:

RELEASE FILE
AT SECRET
APPL Y SANITIZE OVERLORD
WITH GRANT READ

TO CAPT AINS 82AIRBORNE
WITH NOPRINT

This guard release policy states that the object file may be released at a
secret level, and the codeword "OVERLORD" is sanitized from it. In

A User Friendly Guard with Mobile Post-release Policy 275

addition, the post-release access control rules state that only Captains of the
82nd Airborne Division are permitted to read the file, but they may not print
the file. The voluminous Felt code that would be generated from the release
control portion of this policy is omitted due to space limitations of this
paper.

6. IMPLEMENTATION

As a prototype to process the MoPEd language, we are developing the
MoPEd tool. MoPEd functions in the following manner: A Graphical User
Interface (GUI) is presented to the Data Producer allowing him or her to
specify release and sanitization rules for a data object. The MoPEd tool
translator then "translates" the guard release rules into Felt code and in turn
the Felt translator converts it into C code. which it attaches along with the
post-release access control rules to the data object. The Guard Administrator
reviews the attached policy and applies any other relevant global release and
sanitization rules. The Guard Administrator then compiles the Felt generated
C code into an executable guard, which in turn processes the data object to
determine whether it is releasable. If releasable, the data object is released
after stripping it of the Felt release rules and leaving attached only the post­
release access control rules.

Users have options available for specifying policy using the MoPEd
language. For standalone use by a Data Producer (Le., an environment that
does not provide a MoPEd web server), a simple command-line translator is
available to transform a policy specified in MoPEd into Felt. This policy can
then be sent to the Guard Administrator along with the data itself.

For extended use, the MoPEd Server presents a web-based interface to
Data Producers allowing them to specify release and sanitization rules for
data items. The server allows users to upload data and to specify additional
policy in one of three ways: (1) Upload a text file containing a MoPEd
policy specification; (2) Type lines of MoPEd directly into the web interface;
or Use the provided GUI to define the policy via "point and click".

For the receiving end, our prototype system uses a Microsoft SharePoint
portal to handle the post-release access control requirements. For proof of
concept purposes, each receiving realm is represented by a workspace in
SharePoint. Each workspace has its own body of Windows users and
groups. The post-release access control specifications are implemented with

276 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

operating system level access control by using groups corresponding to the
various ranks, roles, and other access levels.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a high-level tool that will provide a front-end to low­
level guard tools, such as Felt. We defined a language to express release,
sanitization, and post -release access control rules. We also developed a
prototype to demonstrate the applicability of our approach to Felt-based
guard systems. We succeeded in striking a balance between ease of use, and
functionality in our language. We plan additional features for our language
in order to broaden its power and functionality. Another direction for future
work involves the actual binding of the post-release access control policy to
the protected object.

REFERENCES

I. CI.ludio [lettini, Sushi I J .. jooi .. , X. Se .. n W .. ng. Dumind .. Wijeseker .. , "Oblig .. tion monitoring in policy

management," Pro(. 3rdll1fl'nwtionnl Worbhop Oil PoJlcin./()r Distributed Systems alld Nf!tlVorb (POLICY

20021. Monterey, CA. June 2002, To .. ppe .. r.

2. S Ch .. pin. S, J .. jooi .. , .. nd D. F tz, "Distributed Policies for o .. t .. M .. n .. gement M .. king Policies Mobile,"

Proc. 14th I Fl P 11.3 Working COII/en'IlI e Oil DfI!ovwe St'cltrit)" Schoorl, Netherlands. August 2000 .

. 3. O(,ID 613, Avail.tble at: htlp:l/wwv ..

-I. V. Doshi, A. F .. y .. d, S, J .. jooi .. , .. no R. M .. cle .. n. "Using Attribute Celtific .. tes .. nd Mobile Policies in Electronic

Commerce Applic .. tions," Proc. !61h AIIIIUIi/ COJllpuier S(,C'llritl, App!IC{Jlioll.l COIlt:, 2000, pages 298-307,

5. Joshu .. D. Guttman, John D. Ramsdell. and Vipin Sw .. mp, "Felt: A Security Filter Compiler," Revision 2,

Technical Repolt,The MITRE Corporation, 1999.

6. Sushil Jajodia, Michiharu Kudo, V. S. Subrahmanian, "Provisional authorizations," in E-COIIJIIJeJ'Cf SeclImv

(Jill! PnI'lIJY, Anup Ghosh, eo .. KlulVcr Academic Publishers. BasIOn, 2001. pages 133-159.

7. K. Smith. D. Faatz, A Fayad, and S. Jajotiia. "Propagating Modifications to Mobile Policies," Prot. I7lh !FIP

II lI/fer/wfI(mal conjert'II!"£' 011 h!!ol"/l/(ItU)fJ Sl'(lIrily. Cairo, Egypt, May 2002, To appear.

8. V. S\\anliJ. "Automatic generation of high assurance security guard filters," Pro('. 17th National Computt'r

Secllriry Baltimore. Md .. October 199.l.

	A USER FRIENDLY GUARD
 WITH MOBILE POST-RELEASE ACCESS CONTROL POLICY
	1. INTRODUCTION
	2. CURRENT APPROACHES AND THEIRLIMITATIONS
	3. OURAPPROACH
	4. GUARD LANGUAGE
	5. LANGUAGE EXAMPLES
	6. IMPLEMENTATION
	7. CONCLUSIONS AND FUTURE WORK
	REFERENCES

