
NETLOGGER
A Toolkit for Distributed System
Performance Tuning and Debugging

Dan Gunter (dkgunter@lbl.gov), Brian Tierney
(bltierney@lbl.gov)
Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Berkeley, CA 94720

Abstract: Developers and users of high-performance distributed systems often observe
performance problems such as unexpectedly low throughput or high latency.
Determining the source of the performance problems requires detailed end-to
end instrumentation of all components, including the applications, operating
systems, hosts, and networks. In this paper we describe a methodology that
enables the real-time diagnosis of performance problems in complex high
performance distributed systems. The methodology includes tools for
generating timestamped event logs that can be used to provide detailed end-to
end application and system level monitoring; and tools for visualizing the log
data and real-time state of the distributed system. This methodology, called
NetLogger, has proven invaluable for diagnosing problems in networks and in
distributed systems code. This approach is novel in that it combines network,
host, and application-level monitoring, providing a complete view of the entire
system. NetLogger is designed to be extremely lightweight, and includes a
mechanism for reliably collecting monitoring events from multiple distributed
locations.

Key words: distributed systems performance analysis and debugging

1. INTRODUCTION

The performance characteristics of distributed applications are complex, rife
with "soft failures" in which the application produces correct results but has much
lower throughput or higher latency than expected. Bottlenecks can occur in any
component along the data's path: applications, operating systems, device drivers,

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66

98 Dan Gunter, Brian Tierney

Logger), for monitoring, under realistic operating conditions, the behavior of all the
elements of the application-to-application communication path in order to determine
exactly what is happening within a complex system.

Distributed application components, as well as some operating system
components, are modified to perform precision times tamping and logging of
"interesting" events, at every critical point in the distributed system. The events are
time-correlated with the system's behavior in order to characterize the performance
of all aspects of the system and network in detail during actual operation.

NetLogger has demonstrated its usefulness in a variety of contexts, but most
frequently in loosely coupled client-server architectures. We began developing
NetLogger in 1994, and in previous work we have shown that detailed application
monitoring is vital for both performance analysis and application debugging [6].
This paper gives a very brief summary of the main NetLogger components and
provides a case study. A longer version of this paper that includes extended
descriptions, details on recent NetLogger enhancements, and a more complete set of
references, is [6].

There are a number of systems that address application monitoring. log4j, part of
the Apache Project [4], has produced a flexible library for Java application logging.
However, the performance of log4j is far lower than is necessary for detailed
monitoring.

Another instrumentation package is the Open Group's Enterprise Management
Forum's [5] Application Response Measurement (ARM) API, which defines
function calls that can be used to instrument an application for transaction
monitoring. Tools to visualize and discover patterns of ARM events are described in
[3].

2. NETLOGGER TOOLKIT COMPONENTS

The NetLogger Toolkit consists of four components: an API and library of
functions to simplify the generation of application-level event logs, a set of tools for
collecting and sorting log files, a set of host and network monitoring tools, and a
tool for visualization and analysis of the log files. Instrumentation is performed by
modifying source code and linking with the NetLogger library. All the tools in the
NetLogger Toolkit share a common log format, and assume the existence of
accurate and synchronized system clocks. We have found that the NTP tools that
ship with most Unix systems (e.g.: ntpd) can often provide the desired level of
synchronization.

Figure 1 shows sample results from the NetLogger Visualization tool, nlv, using
a remote data copy application. The events being monitored are shown on the y-axis,
and time is on the x-axis. From bottom to top, one can see CPU utilization events,
application events, and TCP retransmit events all on the same graph. Each semi
vertical line represents the "life" of one block of data as it moves through the
application. The gap in the middle of the graph, where only one set of header and
data blocks are transferred in three seconds, correlates exactly with a set of TCP
retransmit events. Thus, this plot makes it easy to see that the "pause" in the transfer
is due to TCP retransmission errors on the network.

NetLogger

VVe have found
exploratory, visual anal
ysis of the log event
data (as opposed to rule
based correlation such
as that presented in [3])
to be the most useful

l1.tLQggar Yls,allra'Uon 0' Data 1,.;arl.'." AlDpllca1:lon

means of determining c"., ... ", ,·

the causes of perform
ance anomalies. The
NetLogger Visualiza
tion tool, nlv, has been
developed to provide a
flexible and interactive
graphical representation

Figure 1. NetLogger Visualization Tool

of system-level and application-level events. For more details, see [7].

99

NetLogger events can be formatted as an easy to read and parse ASCII format.
To address the overhead issues discussed above, NetLogger includes a highly
efficient self-describing binary wire format, capable of handling over 600,000
events per second. NetLogger also includes a remote activation mechanism, and
reliability support.

3. CASE STUDIES

Note: due to space limitations, the figures illustrating these two case studies are
online at http://www-didc.lbl.gov/NetLogger/examples/ under radiance_pic.png
and giobus-iogs/gridftp_seleccbug.png for the first and second case study,
respectively.

In the first case study, NetLogger was used to instrument a 3-dimensional
visualization engine called Radiance [2] that read data off disk, rendered it, and sent
it out to clients for display. The lifelines in these graphs represent the data flow to
generate one image. The upper graph shows the results before NetLogger tuning.
The developer in this case had assumed that the 110 time was greater than the image
rendering time, and therefore didn't bother to make the program multi-threaded and
overlap processing with 110. After seeing these results, however, the developer
made the program multi-threaded. The new code produced the results in the lower
graph; almost double the performance.

In the second case study a high-performance FTP client/server called GridFTP
[1] was instrumented. Among other enhancements, GridFTP extends the FTP
protocol to transfer a single file across several parallel TCP streams. In some VV AN
environments this can cause a dramatic (almost linear) speedup.

The bottom three groups of lifelines show headers and packets arriving on three
sockets for a parallel FTP client. Data should be steadily arriving on all three
sockets, but clearly the client was not servicing all three sockets equally. Further
analysis showed that there was a months-old bug in the way the Unix selectO call
was being used. Despite the bug, the multi-stream version of the FTP client was

100 Dan Gunter, Brian Tierney

faster than the single stream version, so no one had noticed this problem. This is the
type of subtle bug that NetLogger is very good at tracking down.

These two case studies demonstrate the NetLogger's ability to analyze a single
application. In both cases nlv made it easy to spot problems. However, NetLogger's
real power is demonstrated by analyzing a distributed application, and time
correlating monitoring from the application, host, and network.

4. CONCLUSIONS

In order to achieve high end-to-end performance in widely distributed
applications, a great deal of analysis and tuning is needed. The top-to-bottom, end
to-end approach of has proven to be a very useful mechanism for
analyzing the performance of distributed applications in high-speed wide-area
networks. All NetLogger Toolkit components under an Open Source license, and
can be downloaded from http://www-didc.lbl.govlNetLogger/.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science. Office of Advanced
Scientific Computing Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy Contract No. DE-AC03-
76SF00098. This is report no. LBNL-51276.

REFERENCES

[1] Allcock B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., et.al. Secure, Efficient
Data Transport and Replica Management for High-Performance Data-Intensive
Computing. IEEE Mass Storage Conference, 2001.

[2] Bethel, W., B. Tiemey, J. Lee, D. Gunter, S. Lau. Using High-Speed WANs and Network
Data Caches to Enable Remote and Distributed Visualization. Proceeding of the IEEE
Supercomputing 2000 Conference, Nov. 2000.

[3] Bums, L., JL Hellerstein, SMa, CS Pemg, DA Rabenhorst, D Taylor, A Systematic
Approach to Discovering Correlation Rules for Event Management, IPIP/IEEE
Intemational Symposium on Integrated Network Management, 200!.

[4] log4j: http://jakarta.apache.orgllog4j1docs/index.html
[5] Open Group, Enterprise Management Forum. 2002,

http://www.opengroup.orglmanagementlarm.htm.
[6] Tierney, B., W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter. The Netl.ogger

Methodology for High Performance Distributed Systems Performance Analysis.
Proceeding of IEEE High Performance Distributed Computing, July 1998, LBNL-42611.
http://www-didc.lbl.govlNetLogger/

[7] Tierney, B. and D. Gunter, NetLogger: A Toolkit for Distributed System Performance
Tuning and Debugging, LBNL Tech Report LBNL-51276. htto:llwww
didc.lbl.gov/paperslNetLogger.overview.pdf

	9NETLOGGERA Toolkit for Distributed SystemPerformance Tuning and Debugging
	1. INTRODUCTION
	2. NETLOGGER TOOLKIT COMPONENTS
	3. CASE STUDIES
	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

