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Abstract Agent based intrusion detection systems (lOS) have advantages such as scalabil­
ity, reconfigurability, and survivability. In this paper, we introduce a mobile­
agent based lOS, called ABIOE (Agent Based Intrusion Oetection Environ­
ment). ABIOE is comprised of various types of agents, all of which are mo­
bile, lightweight, and specialized. The most common form of agent is the OMA 
(Oata Mining Agent), which randomly moves around the network and collects 
information. The OMA then relays the information it has gathered to a OFA 
(Data Fusion Agent) which assesses the Iikelihood of intrusion. As we show 
in this paper, there is a quantifiable relationship between the number of DMA 
and the probability of detecting an intrusion. We study this relationship and its 
implications. 
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1. INTRODUCTION 

An intrusion to a computer system may be indicated by abnormal network 
traffk, anomalous user activity, or application misbehavior. Intrusion detection 
systems (IOS)* which focus on detecting abnormal network activity are called 
network-basedlOS, whereas intrusion detection systems that focus on detecting 
abnormal host activity are called host-based lOS. In addition, some "hybrid" 
lOS have sensors which collect both host and network data. 

Traditional lOS which use a monolithic architecture (Le., a centralized ar­
chitecture of data collection and analysis) have a variety of problems. These 
problems include introducing a single point of failure (which is bad for sur­
vivability), lack of scalability, and in addition traditional lOS may be difficult 
to reconfigure. To overcome these shortcomings, agent based lOS which are 
distributed, scalable, and re-configurable have become popular [1],[2]. To take 
advantage of this agent based lOS idea, the US Naval Research Laboratory is 
designing a host-based intrusion detection system called ABIDE (agent based 
intrusion detection environment),t. that uses mobile agent technology. ABIOE 
differs from other agent-based lOS, which usually introduce some level of co­
ordinated communications among lOS components, in the following way: 

To avoid a targeted attack to disable the IDS, all agents randornly move around 
monitoring hosts. There is no fixed infrastructure, except that each host needs to 
be monitored, and has an agent-platform that can host agents when they decide 
to move in. There is neither a central site for analysis, nor a scheduler for agents 
in ABIDE. Also, to make the agent lightweight (Le., using a small amount of 
code, which reduces network overhead associated with agent movement), tasks 
are split among different kinds of agents that perform different functions. 

In ABIOE, there are fourdifferent kinds of agents. These agents have an implied 
hierarchy for the purpose of data and command flow. 

1 A data mining agent (DMA) roams around (i.e., randomly chooses hosts 
and moves to the hosts) and acquires environmental information. It is 
small, lightweight, and specialized. For example, a OMA may be tasked 
to verify a checksum on an import system binary such as the Unix PS 
binary. If the agent finds suspicious data, it will acquire it for further 
analysis. 

2 A data fusion agent (OFA) roams around and randomly interacts with 
the various OMA. It receives the OMA data paytoad and builds a targer 
picture of events from this data. As the OFA collects data, it can apply 
classic lOS techniques to determine whether an intrusion is taking place. 
Of course, when the OMA and OFA meet up is a function of time and 
the size of the network . 

• A detailed version of this paper is available as NRL CHACS Tech. Repon TMlOO2l003. Abbreviations 
can be taken as either singular or plural depending upon the context. 
tThe ABIDE idea grew out ofthe work ofMichael Reed while he was at NRL [3, 4] 
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3 A probe agent (PA) is dispatched by a OFA to perform a test to confirm 
intrusion. 

4 Once the OFA has decided that a system has been compromised, a cor­
rective agent (CA) can be dispatched to take actions. Tbe CA is the only 
agent empowered to change system state on the host systems. 

In this paper, we focus on the first two types of agents about which ABIOE 
is concemed. We study the probabilistic behavior of the OMA reporting to a 
OFA. Specifically, we are concemed with two questions: 

• Q 1 - Given a network of a fixed number of hosts and a fixed number of 
OMA, what is the probability of detecting an intrusion? 

• Q2 - Given a network of a fixed number of hosts, if we want to detect an 
intrusion with a certain confidence, how many OMA have to be deployed? 

2. SPECIAL CASE 

In this section, we consider the situation of KOMA randomly visiting nodes 
of a network to discover various pieces of information and report this informa­
tion back to one OFA. Each individual piece of information that a OMA obtains 
may not be in itself, enough to alert the OFA to an intrusion; however an aggre­
gate of the individual pieces of information collected by the DMA may alert the 
OFA to an intrusion. It is this threshold criteria with which we are concemed. 
Once this threshold is reached, the OFA deploys a PA. Our analysis stops at 
the decision to deploy a PA. We refer to each host which a OMA visits as a 
node J..ti, i = 1, ... , M. We assurne that, as each OMA randomly travels from 
node to node, it picks up a unique atom of information 0i at each node J..ti. In 
our special case,a OMA never visits the same node twice. (In reality, a OMA 
may visit the same node more than once, due to the randomness of its travels, 
but it must visit a given fixed number of unique nodes during its sojoum. We 
examine the simple case, which is equivalent.) For simplicity, we assurne that, 
at a specific time, the OMA transfers its atoms to the OFA. (In reality both 
the OMA and the OFA randomly travel the network. When a OMA meets up 
with a OFA, it then transfers its atoms to the OFA.) For simplicity, we assurne 
that there is only one OFA. If the OFA has sufficient atoms, it declares that the 
intrusion threshold e has been reached and therefore it deploys a PA: 

This is similar to the threshold schemes discussed in [5], in that below the 
threshold level of e, one can assurne no knowledge, but at or above S, the 
game is up. In this paper we do not discuss how S is determined, nor do we 
discuss the case where, below S, the OFA has no knowledge of an intrusion. 
In addition, we have made further simplifying assumptions and will discuss the 
general situation in future work. What is salient about our work in this paper 
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is that even with the assumptions made for simplification, the mathematics are 
quite difficult to derive and computationally quite expensive to perform. We are 
presently investigating approximations to the formulas presented in this paper 
to speed up the computation and to develop "roles of thumb." 

2.1. Formalism 

We will now formally present our problem. 

• The network is made up of M nodes J.'i , i = 1, ... , M. 

• There are KOMA Ak, k = 1, ... ,K. 

• Each Ak visits n and only n nodes, and each node is distinct. Ak obtains 
a unique atom from each node. Every OMA that visits the same node J,Li 

receives the same atom ai. 

• After Ak has visited n nodes, it gives the n (unique) atoms ak., i = 
1, ... , n to (the single) OFA. 

Note that even though Ak has n unique atoms, Ak, might have some of the 
same atoms as Ak. Therefore, when a11 ofthe Ak have reported to the OFA, we 
can then view the OFA as a bag of atoms, i.e., an atom might be in OFA more 
than once. We are only interested in the unique number of atoms in the OFA. 
Note that since visiting the node lJi is equivalent to obtaining the atom ai, so 
we will sometimes blur the distinction. 

Let PK(M, n : T) be the probability that the OFA contains exactly T unique 
atoms, given that K agents have searched through M nodes, picking n (distinct) 
nodes per agent. Keep in mind the actual probabilistic term of interest, when 
a threshold e is given, is the more complicated ET>e PK(M, n : T). This 
allows us to answer Q 1 in this special case. -

Calculating the probabilistic terms PK(M, n : T) quickly becomes quite 
complicated. Therefore we present a closed form solution. Bach agent is con­
sidered a draw. Without any restrietions there are ways for a DMA to pick 
n nodes out of the total of M nodes. Lrt us start with K = 2 . The total number 
of draws, without restrietion, are ,which is the number of elements in the 
sampIe space. Now let us consider the event under question - this is where 
the combined number of distinct nodes picked by both agents is T. Al has no 
restrietion so there are ways for Al to pick n nodes. Now A2 has to pick 
nodes so that there are exactly T distinct nodes between the two nodes. Since 
Al has chosen n distinct nodes M - n nodes are left unchosen. Thus, A2 must 
pick T - n nodes from the M - n. A2 still has n - (T - n) = 2n - T nodes 
to pick from the n that Al has chosen. Therefore there are (2n':T) ways 

for A2 to choose. Combining this with the ways for Al to pick, we see 
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that P2(M, n : T) = = Of course for things 

tomakesensewemusthavethatn T min(M,2n). Thereforewehavethat 

{ 
n T min(M,2n) , 

P2(M,n: T) = 

o otherwise. 
To simplify terminology we use the extended definition of the binomial coeffi­
cient (:) as: 

( :) = a b O. a and bareintegers 

o otherwlse. 

So we see that 

P2(M,n: T) = -1 (1) 

Similarly P3(M, n : T) = 

(M) -2 t {( n) (M - n) ( 2n - n2 ) (M - 2n + n2)}. (2) 
n "2=0 n2 n - n2 3n - T - n2 T - 2n + n2 

Of course this will only result in non-zero values for n T min(M, 3n). 
Similarly for 4 agents we can derive the following formula for P" (M, n : T). 

( 3n - n2 - n3 ) (M - 3n + n2 + n3) } 
. 4n - T - n2 - n3 T - 3n + n2 + n3 . 

In general, for K picks of n distinct things from a total out of M the probability 
of picking T unique items is: 

. (K - 2)n - n2 - ... - nK- 2) (M - (K - 2)n + n2 + ... + nK-2) 
nK-l n- nK-l 
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Figure 1: Limiting behavior, as M grows, of P3(M, 2: 5) and P3(M, 2 : 6) 

. ((K -l)n - n2 - ... - n K- 1) (M - (K -l)n + n2 + .. , + n K- 1)}, 

Kn.,... T - n2 - , . . - nK-l T - (K -l)n + n2 + ... + nK-l 

K 4. (3) 

Thus Eqs. (1), (2), and (3) give us PK(M, n : T) for all K > 1. As dis­
cussed before, concentrating solely upon the probability PK(M, n : T) is not 
sufficient. PK(M, n : T) is the probability of getting exactly T unique atoms 
of information. If the information that the agents are attempting to retrieve is 
revealed when T = C, then the correct probabilistic term of interest (as previ­
ously discussed with respect to the threshold) is defined as: 

This is the probability of K DMA obtaining at least C unique atoms. 
Let us consider PK (M, n : T) and its limiting behavior for some small values 

of M, n, and K. The only non-zero probabilities are PK(M, n : T), for n 
T min(M, K . n). Now let us consider how PK(M, n : T) behaves as 
M -+ 00. This is the situation when the agents are searching over a large 
network. 

Let M be very large with respect to K n. The larger M is the smaller the 
chance of intersection between nodes picked by different agents. In Figure 1 
we see a plot of the probability P3(M, 2 : 6) (approaches 1) and P3(M, 2 : 5) 
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Figure 2: Simulated 1000 times Iimitiog behavior, as M grows, of 
P30(M, 20 : 381), P30 (M, 20: 599) aod P30(M, 20: 600) 

(approaches 0) against M. Of course Figure 1 is only dealing with a very 
few picks of a small number of nodes. The total number of nodes M must 
be several orders of magnitude larger that K n before the limiting behavior 
becomes apparent. We will return to limiting behavior in the next subsection. 

2.2. Some Simulation Results 

In this subsection we study the behavior of P30(M, 20 : T). Simulations are 
used since the time to run the closed form solution is on the order of n K , and thus 
closed form calculations are only feasible for very small values of the various 
terms. Simulations of 1000 were sufficient for Figure 2 (in later plots we use 
much larger simulations). Of course one should keep in mind that theoretically 
PK(M, n : T) is never 0, for M T Kn, and that PK(M, n : T) is 
never 1, for M T K n. The simulations might have a value of 0 or I, 
but this is because in reality the probability is either extremely smalI, or large, 
respectively. Thus we will often say that a probability is "essentially" 0 or 
"essentially" 1. 

In Figure 2 we see what happens when K = 30 and n = 20. Figure 2 shows 
the plots of P30(M, 20 : 381), P30(M,20 : 599), and P30(M, 20 : 600) for 
M = 600,1000,10000,105,106,107,108,109. FortheP30(M, 20: T) case, M 
must be at 109 before we start seriously approaching the limiting probabilities. 
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We see that the distribution ofthe T values indexed by M, TM (T) (index over 
M and let T ron through its values in PK(M, n : T) with K, n fixed.) behaves 
like IKn(T), which is the distribution that has probability 1 when T = Kn and 
is zero elsewhere, as M grows. To be precise: 

Given  > 0 and for any value of T, there. exists a W such that 
ITM(T) - IKn(T)1 < €, for all M > W. 

We need not discuss the various types of probabilistic convergence for our 
needs. It suffices that TM(T) behave like IKn(T) for large m. We can also 
heuristically state this as 

{ I T= Kn 
PK(oo,n: T) = 0 

otherwise 
(4) 

The limiting behavior of PK (M, n : T) determines the limiting behavior of 
PK(M, n : C+) which we mayaiso state this heuristically as 

P ( . C+) - {I C $ Kn 
K 00, n . - 0 th . o erwlse 

(5) 

Let us continue to use P30 (M,20 : T) as an example. Above we have 
shown that for M large the only value of T of interest is the limiting value of 
600 = 30 . 20. This agrees with our intuition. If the ''universe'' of the network 
is essentially infinite, then the different DMA do not have to be concemed 
with visiting the same nodes - probabilistically, it will not happen. Therefore, 
T = K n is the only non-zero probability, and it is of course 1. Now let us look 
at M values near the minimum limiting value of M = 20. The smallest M can 
be, and for the problem to still make sense, is that M is bounded from below 
by n. Of course, when M = n the probability collapses to 

{ I T=n 
PK(n, n: T) = 0 th . o erWIse 

M = n is the smallest that M can be. What happens when M is small, but not 
at its minimum value of n. Here we have 30 DMA, and each DMA randomly 
travels through a network of M nodes, and each DMA selects 20 distinct nodes 
from the network, and then transfers the atoms of information to the DFA. 

We wish to investigate how PK(M,n : T) behaves as M -+ n+. Figure 3 
shows the results ofsimulations, ron 100000 times each, of P30(M, 20 : T) for 
M = 20,21, ... ,45. We see that, for small M, we have 

For M"near and greater than" n, 

P (M n : T) = 1 T = M 
K, essentlally 0 otherwise 

This is because the universe is so small when M is small that, with probabiIity 
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Figure 3: Plots of essentially non-zero values of (simulated 100000 
times1M) of P30 (M, 20 : T), for M = 20,21, .. . ,45, Note the simulated 
distributions have all their mass at T = M, 

very close to 1, all of the nodes are chosen by the 30 DMA. The question is 
how "near" is "near." In our example, the above property holds approximately 
for M 2n, however, it does not hold much beyond. In Figure 4 we see 
what happens as M increase from 45 to 165 in steps of 10. For M = 55, 
PK(M, n : T) has two essentially non-zero values. We stay with two values in 
the simulations until M = 85. As M increases the number of essentially non­
zero probabilities increase, and by hooking the values up with a curve they start 
to slide into a bell shape. The bell shape is very obvious in Figure 5, where we 
are investigating M in the intermediate range of 200 to 1000, in increments of 
100. As M increases greatly, as shown in Figure 6, the bell shape slowly "hits 
the wall" at T = 600 and finally we have the limiting behavior as discussed 
with respect to Eq. 4. From this analysis we see that PK(M, n : T) behaves 
like a uni-valued distribution for M small- PK(small M, n ; T) . 

F P ( all M . T) _ {essentiallY 1 T = M 
or K sm ,n . - essentially 0 otherwise 

and it is essentially uni-valued for M large as given by Eq. 4. In the intermedi­
ate range the graph of PK(M, n : T) slides into a bell shape from the right as 
M increases, then behaves like as a bell shape (normal distribution), and then 
slides into a uni-valued distribution from the left as M -t 00. 
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2.3. Cumulative Distributions from the Simulations 

Recallthat the actualterm ofinterest is PK(M, n : C+). Wecould of course 
just sum the results from the simulations for the T values that are greater than 
or equal to C. However we wish to exploit the bell shape of the distribution for 
M in the intermediate range. 

We do not know why the distribution has a bell shape. (We hypothesize 
that it is related to the normal approximation to the binomial distribution.) 
We are presently investigating it and we hope to discuss it with the workshop 
participants. With knowledge of the mean of T, J.L and variance of T, (72 we 
could easily compute the probability, for intermediate M , by 

(6) 

We are viewing , with M, n, K fixed, PK(M, n : T) as a random variable T . 
Of course this approximation introduces error by approximating a discrete mass 
function by a continuous density function. If C = J.L then we have, independent 
of the value of the variance (72, that 
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Note that this only holds in the intermediate range of M values, which is a 
relative term with respect to the size of K and n. We cannot determine how to 
get a computable term for the mean T value from the closed form Eqs. (1),(2), 
and (3). However, we are able to theoretically determine an approximation to 
the mean. In fact, when we compare it with our simulations it seems to be better 
than an approximation! The problem is that the same approach does not work 
for the variance. In our problem a OMA must pick n unique nodes. There is 
nothing probabilistic about the number n, it is a hard constraint. However, if 
we pick one particular node and ask "What is the probability that a particular 
OMA picked this node (given no other information)?" one would answer nj M . 
In our problem knowledge of certain nodes being picked affects the conditional 
probability. For example if we know that a particular OMA did not pick any 
of the first M - n nodes it picks node J1.M-n+1 with probability 1. In other 
words we cannot assume independence. Now we perform our approximation, 
assuming independence. For a given node, we say that a OMA has a probability 
of picking that node equal to nj M, and all of the nodes are independent. (We 
see that on the average, independence does not matter. We note though that the 
variances derived assuming independence are larger than sampie simulation 
variances.) Therefore the probability that anode is not picked by a OMA 
is 1 - (njM) . Hence, the probability that no OMA picks a particular node 
is (1 - (njM))K . So the probability that at least one OMA picks the node 
is 1 - (1 - (njM))K . Now we are in the situation of a binomial random 
variable, with M trials, where the probability of a success is 1- (1 - (n j M) ) K . 

Therefore the mean is M· (1- (1- (njM))K). Hence, we use this for our 

approximation of the mean T value, we call the approximation F, thus F :::::: 
mean ofT, where 

F = M· (1 - (1 - (njM))K) (7) 

Table 1. mean values 

I distribution I # simulation I sampie mean I F I 
P42(500 , 17 : T) 10' 383 383 
P42(1000, 17 : T) 10' 513 513 
P3o(600,20 : T) 10" 383 383 
P3o(950, 20 : T) 10" 448 448 
P3o (1000, 20 : T) 10" 455 455 
P30(10' , 20 : T) 10" 583 583 
P3o (lif,20 : T) 10" 598 598 
Pao(16", 20 : T) 10" 600 600 
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Based on Table I, and other data we have obtained, it seems that the ap­
proximation might actually be an equality, but we cannot prove it. There are 
slight differences between the F values and the sampie means derived from 
our simulations. Of course, simulation sampie means are only approximations 
themselves. Unfortunately, since the closed form for PK(M, n : T) is so 
computationally expensive, we cannot use it to compare F to the actual mean 
J-t of PK(M, n : T). We note in Table I, that Eq. 7 agrees with the limit­
ing value of the distributions, as M grows, and the distributions collapse to a 
single non-trivial value. Thisisbecause (1- (n/M))K = (1- (K 
Since eX = limK (1 + X) K we have for large K that (1 - (K :r / K))K 

-Kn ( -Kn) e---xl. Therefore, for large K, F R: M· 1 - e---xl . By using the Taylor 

series for eX we have for very large M that F R: K n. 
The usefulness of F is that it gives us a way of determining if the probability 

associated with a given threshold is more or less than 50%. Of course, if we 
find a way of approximating the variance we could use any probability, not just 
1/2. 

In Figure 7 we see the plot of F against different K values (only the integers 
make sense) for M = 1000 and n = 20. Ifthe threshold value is above (below) 
F, then there is less (greater) than a 50% chance of detecting the intrusion. 

Hence, we have developed a useful rule of thumb, for intermediate M, that 
is easily calculated from only knowing M, n, and K. Of course, one should 
keep in mind that M being in the intermediate range is relative to the sizes of 
K and n. For very large M, with moderate n, one would need to deploy a large 
amount of OMA to use the cut-off regions. For non-intermediate M values 
we can use the our previous limiting results to handle the case where M is 
either very small or very large.· Thus we have some handle on the probabilistic 
behavior of PK(M, m : C+). 

Let us go through a specific example using F, Figure 7, and Table 1. Consider 
a network of size M = 1000, K = 30 OMA, and each OMAvisits n = 20 
nodes, and we assurne that an intrusion is detected as soon as the OFA has 
e = 400 atoms of information. Since 400 < F = 455, the probability of 
detecting the intrusion is greater than 1/2. If we use a different e that is less 
than 400, the probability of detecting the intrusion is even greater. On the other 
hand if e = 500, we have less than a 50% chance of detecting the intrusion. 

3. MORE GENERAL SCENARIOS 

We have seen in the previous section that even for the simple scenario put 
forward we can derive a closed form solution for the probability, but it is not 
computationally feasible. Then why did we derive it? Intellectual integrity 
demands that we attempt to solve the problem. We do not have the tools to 
simplify the closed form bot we are working on it. The terms making up the 
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Figure 7: 50% cut-ofT regions 

closed form are special functions and one can do approximations with them. We 
have also used the closed form to verify our simulations in simple cases. Another 
important reason that we presented the closed form solution was to show that 
if the solution is so computationally complex, even in the simple scenario put 
forward, how can we expect to derive and use a closed form solution in more 
complex scenarios? With this in mind, until we can approximate the special 
functions in PK(M, n : T), we suggest only simulations for the more general 
scenarios. 

4. CONCLUSION 
We have presented a model for a mobile-agent based IDS, called ABIDE. 

Using ABIDE as a framework we have analyzed a probabilistic scenario for 
determining if an intrusion alarm should be sounded. We have presented the 
closed form solution and detailed simulation results for a simple scenario. A 
rule of thumb has been obtained for determining certain probabilistic regions 
of interest. We have also discussed how our results can be used and extended 
to more complex scenarios. 
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