
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. Ural et al. (eds.), Testing of Communicating Systems

10.1007/978-0-387-35516-0_20

http://dx.doi.org/10.1007/978-0-387-35516-0_20

4 TESTING OF COMMUNICATING SYSTEMS

Existing approaches of the problem are based on a co-simulation of the test
case with the specification. This is the case with TTCN-Link [12] for SDL
specifications and TTCN test cases [7]. The same principle was also used
in [4] using the Tetra tool for Lotos specifications and test cases translated from
TTCN. Co-simulation is useful for the early detection of errors in test cases but
is not sufficient in general for exhaustively checking test cases. The reason is
that this technique only allows to look at particular sequences. The first problem
is due to possible loops in test cases which may be unfolded only a bounded
number of times. It is also not sound for non-deterministic specifications (due to
hiding of internal actions for example), as correctness involves the comparison
of possible outputs of the specification with the inputs of the test case after
the same trace. This problem was mentionned but not solved in [4]. Thus
correctness of test cases with respect to the behaviors contained in a formal
specification requires the installation of a complex algorithmic comparable with
model-checking. We precisely have this experience in the development of the
test generation tool TGV [8] I.

Based on some basic blocks of TGV, we have developed a toolset called
VTS (for Verification of Test Suites), specialized for the verification of tests.
In this case, the test case plays the role of a complete test purpose2 which
strongly guides the traversal of the specification state graph. As the algorithm
works on-the-fly by building in a lazy way only the part of the specification
state graph (and its observable behavior) corresponding to the test case, the
performances are very satisfactory. The principal limitations that one met
relate to the necessary abstraction of the test cases expressed in TTCN in the
general format of graphs we have in VTS. The suggested technique is illustrated
by the validation of the test suite of the SSCOP protocol proposed by the ATM
Forum. We found several errors and proposed some corrections.

The continuation of the article is structured as follows: Section 2 presents the
testing theory which constitutes the basis of the test-checking toolset. Section 3
is devoted to the principles of test-checking. Section 4 presents the application
of VTS to the verification of part of the SSCOP test suite. The article ends in
a conclusion and some prospects.

2. FORMAL CONFORMANCE TESTING
In this section we introduce the models used to describe specifications,

implementations and test cases. We then define a conformance relation that
precisely states which implementations conform to a given specification. We
report to [13] for a precise definition of the testing theory used.

ITOV generates test cases from specifications in SOL and LOTOS and fonnalized test purposes.
2This means that all observable actions are present in the test purpose, while TOV allows more abstraction.

Verification o/Test Suites 5

2.1 Models

The model used for specifications, implementations and test cases is based
on the classical model of labelled transition systems with distinguished inputs
and outputs.

Definition 1 An JOLTS is an LTS M = (QM, AM, -+M' with QM a finite set
of states, AM a finite alphabet partitioned into three distinct sets
AM = A7 U U 1M where A7 and are respectively inputs and outputs
alphabets and 1M is an alphabet of unobservable, internal actions,
-+M C QM X AM X QM is the transition relation and is the initial state.

We use the classical following notations of LTS for IOLTS.
Let q, q', q(i) E QM, Q QM, a(i) E U 7(i) E 1M, and a E U

£ I (I V T, ... Tn ') • q q == q = q q -+ M q
q I:J £ a <; I

• q q == :Jq" q2 : q q, -+M q2 q
a, .. . a n I _ :J al.'l!> I

• q M q = :Jqo, .. ·qn : q = qo q, ... =?M qn = q .
• tracesM(q) = {alq =*M} and tracesM(M) =
• q afterM a = {q'lq =*M q'} and Q afterM a = UqEQq afterM a.

For an IOLTS M, we sometimes use M after a for afterM a.

• outM(q) = {a E and outM(Q) = {outM(q)lq E Q}.

Specifications. A specification is modelled by an IOLTS 5 = (Qs, AS, -+s,
This IOLTS describes the complete behavior of the specification, including in­
ternal actions. We consider quiescence (livelock and output quiescence) as
observable (by timeouts). So we need to model possible quiescence in the
specification. Formally, a state q of 5 is quiescent if -.(3a E U JS, q
(outputquiescence)3 or 30: E q(livelock)4. Thesuspensionautoma­
ton 56 of 5 is then obtained by considering the special label 8 as an output
and adding self loops labelled by 8 in all quiescent states. This corresponds
to [13] except that we also consider livelocks. In practice, 56 is not build but
its construction is mixed with T-closure (see below).

Now, as testing only deals with observable events (including quiescence),
we define a deterministic IOLTS 5 v,s with same observable behavior as 56.
5 = (QVIS AVIS -+ qVIS) where QVIS C 2Qs A v's = AVIS U A VIS with

VIS "VIS, 0 _, I 0

AVIS = AS U {8} and AVIS = AS qVIS = qS after E Va E AVIS VP pI E QVIS
() 0 I I' 0 0 s' " ,

P pI pI = P afters a.

3 A deadlock (..,(3a E AS, q is a particular case of output quiescence.
4 As we consider finite state JOLTS, a livelock is a loop of internal actions. A livelock in the specification is
not necessarily an error as it may occur due to abstraction.

6 TESTING OF COMMUNICATING SYSTEMS

SO does not need to be built because transitions labelled with 8 can be
added directly to SYIS during T-closure. This is easy for deadlocks and output
quiescence but involves the computation of strongly connected components
(SCCs) of T actions for livelocks (8 are only synthesized on SCC roots). This
is done on-the-fly by a part of TGV called FERMDET [9, 8] which adapts
Tarjan's algorithm [11].

Implementations. We assume (usual test hypothesis) that an implementation
can be modelled by an IOLTS Imp = (Qlmp , Almp, -?Imp, with
Almp = A:mp U A:;"P U pmp and A: A:mp and A:;"p. As usually, we assume
that implementations can never refuse an input. We note IOLTS the set of
input-complete IOLTS. For the definition of conformance, we also need to
consider the suspension automaton Impo of Imp.

Test cases. A test case is modelled by a deterministic IOLTS
TC = (QTC ATC -? qTC) where ATC = ATC U ATC with ATC C AS and , , TC, 0 I 0 0 - I

A:-C Two disjoint subsets of states Pass QTC and
Inconc QTC and a state Fail E QTC(Fail rt Pass U Inconc) are associated
to TC. They correspond to arrival states of transitions carrying verdicts as in
TTCN. We assume that a test case is complete for inputs in A:-C in each non
controllable state (state where no output is possible). This is in general the
case also for TTCN test cases with the special label ? otherwise. We restrict
ourselves to deterministic test cases without internal actions. This restriction
could be avoided to deal with more general test cases including internal actions
such as distributed tests. In this case, T-reduction and determinization should
be applied to test cases with FERMDET.

2.2 Conformance Testing

In order to speak about correctness of test cases, we need to define the
conformance relation that the test cases are supposed to check. As in [8], we
consider the ioeo relation [13]. Note that it is in fact an extension of ioeo as
we consider livelocks. It says that conformant implementations are IOLTS that
allow only outputs of the specification (including 8) after any trace of So (also
called suspension trace of Sin [13]). It is defined as follows:

Definition 2 Let Imp (implementation) and S (specification) be two IOLTS,
Imp ioeo S == Vu E traces(SO), out(Impo after u) out(SO after u).

3. VERIFICATION PRINCIPLE
Different properties can be checked on test cases. First some static properties

can be checked such as syntactical correctness, existence of verdicts, input
completeness, controllability, timer management. These properties can be

Verification 01 Test Suites 7

checked using test cases only. We are more interested in dynamic properties
which involve the observable behavior of the specification. We do not pretend
to check all properties but only some of them in particular those involving the
specification. We could also check some properties involving the test purpose
(are Pass verdicts correctly assigned) but this neccessitates also to formalize
test purpose which are often very informal.

First, we tackle the problems of laxness and unsoundness. A test is lax if
it accepts non conformant implementations which it could be able to reject.
Almost conversely, a test is unsound if it rejects conformant implementations.
Then in a second part, we deal with the problems of controllability.

This separation corresponds to a difference in algorithmic design. The first
problems are solved by a forward traversal of state graphs, while some con­
trollability conflicts are only corrigible by a backward traversal. Moreover, the
problems of laxness and unsoundness are strongly dependent on the specifica­
tion. This is not the case for controllability.

3.1 Test Case against Specification

In this part, we define the types of errors of a test case which are detectable
by comparing the behavior of the specification with that of the test.

The concept of comparison leads us to define the synchronous product
denoted by P SVTS between a test case TC and the observable behavior of the
specification SYIS' Let TC = (QTC, ATC, ---*TC' q;;) provided with two sets of
states PassTC and InconcTC a Fail state and let SYIS = (QSVj, Asvj, ---*. qSVj,) , , SVIS' 0

be the T-reduced and determinized specification.

Definition 3 The synchronous product is an JOLTS
P S = (Qm Am ---* qm) where

\I'lS "vr.n 0

• Am = Am u Am with Am = ATC U AVIS outputs oifthe product are the o [' 0 0 I'

outputs of the test case and the inputs of the specification;
= U inputs of the product are the inputs of the test case and

the outputs of the specification,
• Qm (QVIS U { ..1 }) x (QTC U { ..1 } and ---*m are the smallest sets defined

by application of the following rules.

(qVlS, qTC) E QVTS 1\ qVlS .!:.VlS q'VIS 1\ qTC .!:.TC q'TC
(qIViS, q'TC) E QVTS 1\ (qVlS, qTC) .!:.m (qIViS, q'TC)

(qVlS, qTC) E Qm 1\ qVlS .f+vIS I\qTC .!:.TC q'TC,
(..L, q'TC) E Qm 1\ (qVIS, qTC) .!:.m (..L, q'TC)

(qVlS, qTC) E QVTS 1\ qVlS .!:.VlS q'VlS 1\ qTC .f+TC
(qIViS, ..L) E QVTS 1\ (qVIS, qTC) .!:.m (qIVlS, ..L)

8 TESTING OF COMMUNICATING SYSTEMS

The two last rules say that the traces of the specification (resp. of the test)
which do not exist in the test (resp. in the specification) end in particular
states noted l.. in the synchronous product.

Verification and correction of laxness. A test case is lax if it could reject
a non-conformant implementation but does not. More precisely, TC is lax if
there exists an implementation Imp which does not conform to S because after
a trace 0" it allows an output a that S does not, TC can perform the trace O".a
but does not produce a Fail verdict. Formally:

Definition 4 Let S be a specification and TC a test case. TC is lax W.r.t S for
ioco iff "3Imp E fOLTS,"3O" E traces(SO) n traces(ImpO) n traces(TC),
"3a E such that O".a E traces(TC), a E out (I mpo after 0") 1\

a (j. out(SO after 0") 1\ TC after O".a :I Fail.

If we notice that I mpo is characterized by O".a, it is easy to see that the
existential quantification on Imp can be eliminated. Thus the laxness property
can be reformulated while using only the traces of TC and So, thus the product
PSYTS '

Proposition 1 A test case is lax iff
"3(qVlS, qTC) E QVTS, a E q'TC:I Fail E QTC : (qVIS, qTC) (l.., q'TC)

We propose a correction which eliminates any laxness from a given test case.
Each time an input of the test case TC not leading to Fail does not correspond to
an output of the specification, this transition is replaced by a transition leading
to Fail in the corrected test case TC'. We thus obtain the inclusion of the
outputs of the specification in the inputs of the test in each state of the test
where an input is possible and accessible by a trace of the specification. This
is formalized by the following transformation rule:

(qYIS, qTC) (l.., q'TC) 1\ a E 1\ lTC :I Fail

qTC -f+TC' q'TC 1\ qTC Fail

Verification and correction of unsoundness. A test is sound if it rejects
only non conformant implementations. Conversely, it is unsound if there exists
a conform ant implementation which can be rejected by the test case. Formally:

Definition 5 Let S be a specification and TC a test case.
TC is unsound W.r.t. S for ioco iff
"3Imp E JOLTS, Imp ioco SI\"3O" E traces(SO)ntraces(ImpO)ntraces(TC),
"3a E Ab, TC after O".a = Fail

Again, the existential quantification on Imp can be suppressed and unsound­
ness can be expressed on P SVTS'

Verification of Test Suites 9

Proposition 2 A test case TC is unsound iff
3(qVIS, qTC) E QVTS, a E A;m, q'VlS i= -L E QVlS: (qVIS, qTC) (q'VlS, Fail)

In this case, the correction consists in replacing the incorrect transition
leading to Fail in TC with a new transition in the corrected test case TC'
with same label and leading to a new state in the INCONCLUSIVE set. This
correction is reflected by the following rule:

(qVIS, qTC) (qlvlS, -L) /\ q'VIS i= -L /\ a E /\ q'TC ¢ QTC

qlTC E QTC /\ qlTC E I nconcTC' /\ qTC q'TC'
It is easy to see that corrections of laxness and unsoundness do not interfere

(correction of laxness cannot produce unsoundness and vice versa). Correc­
tion of laxness replaces lax inputs by sound Fail verdicts while correction of
unsoundness remove unsound Fail verdicts by unlax inputs leading to Inconc.

Verification and correction of controllability conflicts. Test cases should
be controllable in the sense that they should never have the choice between an
output and another output or input.

Definition 6 A test case has a controllability conflict if:
3qTC E QTC, 3a E A:;, 3x E U A:;\ { a}: qTC and qTC 3..tTC

Detection of controllability conflict can be done by any forward search in
the test case. But correction is more difficult in the general case where test
cases have loops. While pruning a test case, accessibility to Pass states must be
preserved. The solution is then to perform a search (breadth-first or depth first)
on the reverse transition relation, to prune other transitions in case of conflict
and to forget parts of the test case that become unreachable. This algorithm is
detailed in [8] as it is also part of TGV.

Implementation in V TS. The algorithm takes as input a test case in Aldebaran
format (general purpose graph format) and a specification described in LOTOS,
8DL, BCG (compressed format for graphs) or Aldebaran. In the case of testing
in context, the specification should include this context as conformance is de­
fined for the specification in its context. It checks the correctness of the test case
(laxness and unsoundness) with respect to the specification behavior. For 8DL
and LOTOS this behavior is given by simulators (respectively ObjectGeode [14]
and the OPEN/C}ESAR interface [5]) which are driven by VTS. VTS imple­
ments these verifications by a breadth-first traversal of the synchronous product
between the r-reduced and determinized specification and the test case. This
r-reduction and determinization are performed on-the-fly by the FERMDET
tool only on the common traces of the test case and the specification (in fact
traces of P Svrs). The traces of the test case not leading to Fail must be in­
cluded in those of the specification. Thus for any trace of the test case, we
check two aspects. On the one hand, if inputs of the test case are possible, the

10 TESTING OF COMMUNICATING SYSTEMS

algorithm checks the equality between these possible inputs not leading to Fail
and the possible outputs of the specification after the same trace. In addition,
if outputs are possible in the test case, then they should be possible inputs of
the specification (the equality is not required in this case). The controllability
conflicts are detected when a state of the test case has several possible outputs
or an output and inputs. Correction is performed by a backward traversal.

4. APPLICATION TO THE ATM SSCOP TEST SUITE
We have decided to experiment VTS with a real case study. We chose

the B-ISDN ATM Adaptation Layer-Service Specific Connection Oriented
Protocol (SSCOP) from the ITU Q.211O document [10]. It presents several
advantages:

• this protocol has been studied for test generation with various tools such
as Samstag [6], TVeda [3] and TestGen [2],

• we have a formal SDL specification, which has already been validated
and used for automatic test generation [1];

• there is a complete conformance test suite, standardized by the ATM
Forum, publicly available at http://www.atmforum.com

4.1 The SSCOP Protocol
The Service Specific Connection Oriented Protocol resides in the Service

Specific Convergence Sublayer (SSCS) of the ATM Adaptation Layer (AAL)
(see figure 1). SSCOP is used to transfer variable length Service Data Units
(SDUs) between SSCOP users. SSCOP provides its service to a Service Spe­
cific Coordination Function (SSCF). The SSCF maps the service of SSCOP to
the needs of the AAL user. SSCOP uses the service of the CPCS (Common
Part Convergence Sublayer) and SAR protocols which provide an un-assured
information transfer and a mechanism for detecting corruption of SSCOP Pro­
tocol Data Units (PDUs). One currently defined use of SSCOP is within the
signaling AAL (SAAL).

SSCOP performs the following functions:

• Sequence integrity: this function preserves the order of SSCOP SDUs
that were submitted for transfer by SSCOP.

• Error correction by selective retransmission: through a sequencing mech­
anism, the receiving SSCOP entity can detect missing SDUs. This func­
tion corrects sequence errors through retransmission.

• Flow control.
• Error reporting to layer management.

Verification of Test Suites 11

• Keep alive: this function verifies that the two peer SSCOP entities par­
ticipating in a connection are remaining in a link connection established
state even in the case of a prolonged absence of data transfer.

• Local data retrieval: this function allows the local SSCOP user to retrieve
in-sequence SDUs which have not yet been released by the SSCOP entity.

• Connection control: this function performs the establishment, release,
and re-synchronization of an SSCOP connection. It also allows the trans­
mission of variable length user-to-user information without a guarantee
of delivery.

• Transfer of user data: SSCOP supports both assured and un-assured data
transfer.

• Protocol error detection and recovery.
• Status reporting.

Q2931

Prlmltlves

SSCF (Q2130)
Service Specific Coordlnatlon functions

Signaux

sscoP (Q2110)
Service Specific Connectlon Oriented Protocol

Signaux

CPCS
Common Part Convergence Sublayer

t
Service
Speclllc
Convergence
Sublayer (SSCS)

MLFunctlons

+-Common Part

SAR (Segmentatlon and Reassemblage) ML Functlons ________________ __________ t
ATililSAP

Figure 1. Situation of SSCOP in the ATM stack

The SDL executable specification of SSCOP was written by Serge Gauthier
from CNET (the research center for France-Telecom). The specification was
written in 1995 using SDL based on the SDL description given in the final draft
document XIIQ2210 of ITU-T study group. It consists in approximately 5000
lines of textual SDL code. The specification was dedicated to test generation,
thus it makes some simplifications which do not comply with all the aspects
of the standard. Later on, the formal specification has been slightly corrected
during the verification works of the FORMA project [1].

4.2 The ATM Test Suite
We considered the conformance abstract test suite for SSCOP, which was

published by the ATM Forum Technical Committee on September 1996 under

12 TESTING OF COMMUNICATING SYSTEMS

the title "Conformance Abstract Test Suite for the SSCOP for UNI 3.1.". This
test suite aligns with the principles defined in the OSI conformance testing
methodology and framework ISO 9646 Parts 1-2 [7]. The test scripts are
written in TTCN.

The testing architecture considered is the remote testing architecture (see
figure 2) with only one lower tester (and PCO). The asynchronous communica­
tion on this PCO is reflected in the formal specification by the intercalation of
a retransmission process between the SSCOP entity and the environment. This
palliates the absence of queue between the SDL model and its environment in
the ObjectGeode simulator.

u ertest

TCP
Upper I I Tester

Lower
Tester ASP(N).*

I
IUT I I vco SP(N-l ASP(N-l)*

Service (N-I)

Figure 2. Remote testing architecture

While the test suite consists of 317 test cases (approximately 500 pages of
TTCN), the test cases viable for verification based on our formal specification
of the protocol were found to be 110 test cases. The abstraction resulted in the
following:

• the test cases testing invalid PDUs (INV) were not considered as the
specification does not describe the behavior of the SSCOP on reception
of invalid PDUs. INV test cases arise to 186 cases.

• UD and MD PDUs were not considered in the SDL specification. Thus
these PDUs have been abstracted in TTCN test cases. Moreover the 12
test cases related to valid UD and MD PDUs were not considered.

• the test cases testing the behavior of clocks and timeouts were abstracted
as timers are treated as internal unobservable actions. Timer test cases
arise to 9 cases.

Most of the test cases have the same structure: a preamble tries to drive
the implementation under test (IUT) to a particular control state of the SSCOP
entity as defined in the specification; then a test body is applied to check that
the IUT behaves correctly; then follows a state identification behavior which
checks the arrival control state; finally a postamble drives the IUT to the initial
state.

Verification o/Test Suites 13

4.3 Our Approach to Use VTS

We proceeded through the successive following steps.
1. The development of a compiler for the generation of test cases from the
test suite. The input is a test suite written in TICN machine processable
(TICN.MP) format. The output is a set of automata (one for each test case)
in the Aldebaran format that the VTS program can process. The compiler also
maintains a set of state variables similar to the set maintained by SSCOP. The
values of the state variables are used to generate the values of the constraints that
VTS can deal with. The compiler has to simulate the operations that are to be
executed on the contents of the state variables of the SSCOP protocol mentioned
by the test case. This simulation is essential for the sake of generation of
PDUs and ASPs to be fired by the tester. It also simulates the changes in the
state variables associated with firing transitions that are normally not explicitly
mentioned in the test case. This is essential for the sake of generation ofPDUs
and ASPs expected from the specification.
2. The development of a program for the automatic generation of the sup­
plementary files needed as inputs to the VTS program, namely the "feed" and
the "hide" files. The feed file is used during the construction of the transition
system of the specification as an input to the ObjectGeode API. The feed file
contains the various signals that to be feed into the SSCOP specification from
the external environment. The environment refers to both upper and lower
layers. The hide file is used to hide the unobservable transitions that are gener­
ated but are not observable at the point of control and observation (PCO) due
to the test architecture. Unobservable transitions in the test suite may be 11
inputs or outputs of the queue of the retransmission process representing the
asynchronous channel, 21 signals between the user and the SSCOP specification
that cannot be observed form the lower tester, and thus are not mentioned in
the test script, 3/ actions on timers of the specification.
3. The use by VTS of the test cases generated by the compiler from the TTCN
test suite and of the supplementary files in order to check and correct test cases.
4. The analysis of the errors found by the VTS tool and the variance between
the hand written test cases of the ATM Forum test suite and the corrected test
cases generated by VTS.
5. The proposal for corrections of the ATM test suite by providing alternatives
to incorrect test cases with respect to the SSCOP specification.

4.4 Results

Most test cases failed because of forgotten signals due the classical problem
of message crossing inherent to asynchronous communication. In fact these
signals are observable due to the expiration of timers before the reception by
SSCOP of a signal sent by the tester. One can imagine that those are not real

14 TESTING OF COMMUNICATING SYSTEMS

errors but are due to implicit assumptions on the transmission delay between the
tester and the rUT. Nevertheless, as the remote testing architecture is considered
this assumption should not be done or should at least be documented.

Out of the 110 test cases, 16 test cases failed for other reasons. They all fail
in the state identification step: 2 tests in control state 4, 1 in control state 5, 4
in control state 7 and 9 in control state 10.

Out of the 16 defective tests, the following have been corrected:
1. 2 tests of state 4, 1 test of state 5, 2 tests of state 10 by adding a step to

correct the value of the state counters. For example, in state 4, V R_SQ is not
changed on receiving RS or ER PDUs. The S4_VERIFY test step fails if the
last transition performs an RS or ER PDUs as V R_SQ is not incremented.
Thus the B G N PDU of the test step is not detected as a retransmission. As VTS
does not manipulate symbolic variables but only values, it does not provide a
useful correction. Once the problem identified, it can nevertheless be easily
corrected by hand by decrementing the value of VT _SQ in the test case before
conducting the state verification step.

2. 4 tests of state 7 by adding a step to initialize the values of the state
counters. This is detected by VTS as incorrect values of the U ST AT PDU
in the SlO_VERIFY step (state 10 is the arrival state of these test cases). The
SSCOP specification resets its state variables after sending a BG AK PDU at
state 3. The initialization is not reflected in the test cases. This can be manually
corrected by inserting the initialization procedure before state verification.

3. 4 tests of state 10 by introducing an alternative sequence for verification
of state 10. S 10_ VERIFY assumes the reception of an U ST AT PDU before
entering in the verification step. VTS has shown that there exist situations in
which the SSCOP entity transfer directly to state 10 without the generation of
an USTAT PDU. The only solution is to change completely the SlO_VERIFY
procedure.

4. 2 tests of state 10 by changing the values of the USTAT PDU in the
procedure for verification of state 10.

4.5 Example of Verification/Correction
We present here an example of the experimentation of the VTS tool on the

test case numbered SlO_V -.P17 in the ATM Forum Test Suite. This test case
and its following checking sequence (S 10_ VERIFY) are presented below in
TTCN.GR format. They are exact copies of the ATM Forum test case and test
step except that UD and MD PDUs have been abstracted. According to the
informal test purpose, this test case verifies that the rUT, in control state 10
(DataTransferReady), saves an SD PDU that sequence number is between the
sequence number of the next in sequence and the next highest expected SD
PDUs.

Verification of Test Suites 15

SIO.V.P17

I Nr I Label I Behaviour Description I Constraint Ref I Verdict

I +SIO.PREAMBLE
2 LT..PCO!SD SD.s.N.s(VT.s+2)
3 STARTT.Wail
4 LBI LT.PC01USTAT(VT..MS:= USTAT..lLLlST(VT.s.

BIT.1ll..lNT(USTAT.N..MR» VT.s+2. VT.s)
5 LT.PCOISD SD.s.N.s (VT.s+l)
6 LT.PCO!SD SD.s.N.s (VT.s)
7 LT.PCO!POu.(VT.PS:= POLL.5.N.s(VT.s+3)

INC..MOD..24 (VT.PS.I))
8 STARTT .. Wait
9 LB2 LT.PC01STAT(CHECK.N.PS STAT..R..N.R(VT.s+3) (P)

(VT.PA, BIT .2.lNT(STAT.N.PS).
VT'ps)](VT..MS:=BIT.1ll..lNT
(STIJ.N..MR))

10 +SIO. VERIFY
11 +POSTAMBLE
12 LT.PC01POLL POLL..1UlEN
13 GOl'OLB2
14 +TS .. Wail
15 LT.PC01POLL POLL.R.GEN
16 GOl'OLBI
17 +TS_Wait

SIO.VERIFY

Nr I Label I Beltaviour Description Constraint Ref I Verdict

I LT.PCO!SD SD.s.N.s(VT..MS+3)
2 STARTT.Wail
3 LBI LT.PCO?USTAT(VT..MS:= USTAT..lLLlST(VT.s. (P)

BIT.1ll.lNT(USTAT.N..MR» VT..MS. VT.s)
4 LT.PC01POLL POLL.R.GEN
4 GOl'OLBI
5 +1'S .. Wait

The graph drawn on the left hand side of Figure 3 represents the test case
(body) with its different test steps (preamble, checking sequence and postamble)
in a graph format as processed by our TICN compiler. For the sake of clarity we
did not represent the transitions ? otherwise producing Inconclusive verdicts
in states 2 and 4 and Fail verdicts in states 6, 10, 12 and 15. In the SDL
specification and the test suite we have set the parameter VT..MS to 20 and
Max_CC to 1 in order to shorten the preambles. The variable VT _S is initially
set to O.

As for most test cases, the VTS tool detects unsoundness (forgotten inputs of
END PDU in states 6,10 and 12) because of a bad treatment of asynchronism.
According to the specification, once in control state DataTransferReady an
END PDU can be sent if TimerNoResponse expires. The implicit hypothesis
made in this test is that the PDUs SD (lines 2 and 5 or transitions 5 6 and
11 12) and POLL (line 7, transition 8 9) sent by the tester are received
before the timer expires.

Formally speaking, the test case is also lax as ? otherwise in states 2 and
4 should produce a Fail verdict and not an Inconclusive verdict. In fact it is
common practice to deliver only Inconclusive verdicts in preambles but the
VTS tool does not make this distinction.

The test case is really incorrect in the S 10_ VERIFY step as the value of
the first and last parameters of the USTAT PDU (line 3, transition 12 13)
are not correct. The VTS tool found this error (which is both laxness and

16 TESTING OF COMMUNICATING SYSTEMS

16, PASS ________________________________ 16, PASS

t LT_PCO?ENDAK t LT_PCO?ENDAK
15 15

t LT_PCO!END(user) t LT]CO!END(user)
14 14 t Problem! t

t LT?USTAT(O,20,20,O) t LT?USTAT(3,20,20,3)

12 LT]CO?POLL(I,O) LT_PCO?END(sscop) 12 LT_PCO?POLL(l,O) t LT_PCO!SD(23) /t LLPCOISD(23)

t - - - - - - - tl'

17,INCONC

t LT]CO!POLL(I,3) t LT]CO!POLL(I,3)

9 9

t LT]CO!SD(O) t LT]CO!SD(O)

8 8

t LT_PCO!SD(l) t LT_PCO!SD(I)

7 7 t LT]CO?USTAT(O,2,20,O) t LLPCO?USTAT(O,2,20,O)

6 LT_PCO?POLL(l,O) 6 LT]CO?POLL(l,O)

t _ ___________________________ t LT]CO!SD(2)

t LT_PCO?BGAK(20) t LT]CO?BGAK(20)

4 4 t LT]COlBGN(l,20) t LT_PCOlBGN(l,20)

3 3

t LT]CO?ENDAK t LT_PCO?ENDAK

2 2 t LT]CO!END(user) t LT_PCO!END(user)

I I t LT_PCO!BGREJ t LT]CO!BGREJ

0------------------------- ___________ 0

Original test case Corrected test case

Figure 3. Initial and corrected test cases

Verification of Test Suites 17

unsoundness) and proposed to correct the test case. The right hand side of
Figure 3 corresponds to the corrected test case produced by the VTS tool.
New transitions lead to the Inconclusive state 17 for missing ENO POUs and
the transition labelled by USTAT is corrected by changing the first and last
parameters values from 0 to 3.

This error was further analyzed by a close look to the TTCN test case. The
real reason is that the variable VT _S of the test case is not updated when sending
an SO POU (lines 2, 5, 6 in S 10_ V .1>17) but this variable is used in USTAT
POU (line 3 of SI0_VERIFY). Thus it still has value 0 which is sent in USTAT
while in the specification the corresponding variable is incremented and the
resulting parameter has value 3.

As the VTS tool manipulates instantiated test cases, it was only possible
to find the correct values. But finding that incrementations were missing was
done by hand. Finding this kind of correction automatically is not possible
in general. But some improvements can be made by a symbolic treatment of
variables, the help of provers, abstractions and static analysis.

5. CONCLUSION AND PERSPECTIVES
VTS was originally conceived for testing the TGV tool. Test cases produced

by TGV were checked by VTS in order to track bugs in the main algorithm of
TGV. But the main interest of VTS is to check manual test cases. This was
demonstrated here by its application on an industrial size specification and a
significant part of a test suite in which some errors have been found.

The interest of such a tool is evident for complex systems. This is in
particular the case for distributed systems because of the difficulty to foresee
all behaviors of these systems due to asynchronism, hiding of internal actions
and non-determinism. This leads directly to checking distributed test cases.
VTS can be easily extended to check the correctness of this kind of test cases by
using FERMOET as a front end. Nevertheless correction is more problematic
as observed errors can be caused by internal actions.

But VTS suffers from the limitation inherent to enumerative tools. Param­
eters of specifications and test cases have to be fixed thus correctness cannot
be guaranteed for all values of these parameters. Moreover, some of the errors
detected by VTS on the SSCOP test suite are errors on values of message
parameters. Analyzing the errors and correcting them would be easier with a
symbolic treatment of data.

References

[1] M. Bozga, l-C. Fernandez, L. Ghirvu, C. Jard, T. Jeron, A. Kerbrat, P. Morel, and
L. Mounier. Verification and test generation for the SSCOP protocol. Journal oj Science
oj Computer Programming, 36(1), 2000.

18 TESTING OF COMMUNICATING SYSTEMS

[2] A. Cavalli, B. Lee, and T. Macavei. Test generation for SSCOP-ATM networks protocol.
In SDL Forum, (!NT, Evry). Elsevier, September 1997.

[3] I. Disenmayer, S. Gauthier, and L. Boullier. L' outil tveda dans une cha'ne de production
de tests d'un protocole de telecommunication. In CFlP'97 : Ingenierie des Protocoles,
pages 271-286. Hermes, September 1997.

[4] M. Dubuc, G. Bochmann, O. Bellal, and F. Saba. Translation from ttcn to lotos and the
validation oftest cases. Technical Report PUB 732, Universite de Montreal, may 1990.

[5] Hubert Garavel. Open/ca:sar: An open software architecture for verification, simulation,
and testing. In Proceedings of TACAS'98 (Lisbon, Portugal), volume 1384 of LNCS,
pages 68-84, Berlin, March 1998. Springer Verlag.

[6] J. Grabowski, R. Scheurer, and D. Hogrefe. Applying SAMSTAG to the B-ISDN Protocol
SSCOP. Technical Report A-97-01, part I, University of LUbeck, January 1997.

[7] OSI-Open Systems Interconnection, Information Technology - Open Systems Intercon­
nection Conformance Testing Methodology and Framework. ISO/IEC International Stan­
dard 9646-11213, 1992.

[8] Thierry Jeron and Pierre Morel. Test generation derived from model-checking. In Nicolas
Halbwachs and Doron Peled, editors, CAV'99, Trento, Italy, pages 108-122. Springer,
LNCS 1633, July 1999.

[9] P. Morel. Une algorithmique efficace pour la generation automatique de tests de confor­
mite. PhD thesis, Rennes I Univ., France, February 2000.

[10] lTV Q.211O: B-ISDN ATM Adaptation Layer - Service Specifi c Connection Oriented
Protocol (SSCOP), 1994.

[11] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal Computing,
1(2):146-160, June 1972.

[12] Te1elogic. The SDTTTCN Link Reference Manual, 1997.

[13] 1. Tretrnans. Test generation with inputs, outputs and repetitive quiescence. Software­
Concepts and Tools, 17(3): 103-120, 1996.

[14] Veri1og. ObjectGeode SDL Simulator Reference Manual, 1996.

	1 VERIFICATION OF TEST SUITES
	1. INTRODUCTION
	2. FORMAL CONFORMANCE TESTING
	2.1 Models
	2.2 Conformance Testing
	3. VERIFICATION PRINCIPLE
	3.1 Test Case against Specification
	4. APPLICATION TO THE ATM SSCOP TEST SUITE
	4.1 The SSCOP Protocol
	4.2 The ATM Test Suite
	4.3 Our Approach to Use VTS
	4.4 Results
	4.5 Example of Verification/Correction
	5. CONCLUSION AND PERSPECTIVES
	References

