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4 TESTING OF COMMUNICATING SYSTEMS 

Existing approaches of the problem are based on a co-simulation of the test 
case with the specification. This is the case with TTCN-Link [12] for SDL 
specifications and TTCN test cases [7]. The same principle was also used 
in [4] using the Tetra tool for Lotos specifications and test cases translated from 
TTCN. Co-simulation is useful for the early detection of errors in test cases but 
is not sufficient in general for exhaustively checking test cases. The reason is 
that this technique only allows to look at particular sequences. The first problem 
is due to possible loops in test cases which may be unfolded only a bounded 
number of times. It is also not sound for non-deterministic specifications (due to 
hiding of internal actions for example), as correctness involves the comparison 
of possible outputs of the specification with the inputs of the test case after 
the same trace. This problem was mentionned but not solved in [4]. Thus 
correctness of test cases with respect to the behaviors contained in a formal 
specification requires the installation of a complex algorithmic comparable with 
model-checking. We precisely have this experience in the development of the 
test generation tool TGV [8] I. 

Based on some basic blocks of TGV, we have developed a toolset called 
VTS (for Verification of Test Suites), specialized for the verification of tests. 
In this case, the test case plays the role of a complete test purpose2 which 
strongly guides the traversal of the specification state graph. As the algorithm 
works on-the-fly by building in a lazy way only the part of the specification 
state graph (and its observable behavior) corresponding to the test case, the 
performances are very satisfactory. The principal limitations that one met 
relate to the necessary abstraction of the test cases expressed in TTCN in the 
general format of graphs we have in VTS. The suggested technique is illustrated 
by the validation of the test suite of the SSCOP protocol proposed by the ATM 
Forum. We found several errors and proposed some corrections. 

The continuation of the article is structured as follows: Section 2 presents the 
testing theory which constitutes the basis of the test-checking toolset. Section 3 
is devoted to the principles of test-checking. Section 4 presents the application 
of VTS to the verification of part of the SSCOP test suite. The article ends in 
a conclusion and some prospects. 

2. FORMAL CONFORMANCE TESTING 
In this section we introduce the models used to describe specifications, 

implementations and test cases. We then define a conformance relation that 
precisely states which implementations conform to a given specification. We 
report to [13] for a precise definition of the testing theory used. 

ITOV generates test cases from specifications in SOL and LOTOS and fonnalized test purposes. 
2This means that all observable actions are present in the test purpose, while TOV allows more abstraction. 
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2.1 Models 

The model used for specifications, implementations and test cases is based 
on the classical model of labelled transition systems with distinguished inputs 
and outputs. 

Definition 1 An JOLTS is an LTS M = (QM, AM, -+M' with QM a finite set 
of states, AM a finite alphabet partitioned into three distinct sets 
AM = A7 U U 1M where A7 and are respectively inputs and outputs 
alphabets and 1M is an alphabet of unobservable, internal actions, 
-+M C QM X AM X QM is the transition relation and is the initial state. 

We use the classical following notations of LTS for IOLTS. 
Let q, q', q(i) E QM, Q QM, a(i) E U 7(i) E 1M, and a E U 

£ I ( I V T, ... Tn ') • q q == q = q q -+ M q 
q I:J £ a <; I 

• q q == :Jq" q2 : q q, -+M q2 q 
a, .. . a n I _ :J al.'l!> I 

• q M q = :Jqo, .. ·qn : q = qo q, ... =?M qn = q . 
• tracesM(q) = {alq =*M} and tracesM(M) = 
• q afterM a = {q'lq =*M q'} and Q afterM a = UqEQq afterM a. 

For an IOLTS M, we sometimes use M after a for afterM a. 

• outM(q) = {a E and outM(Q) = {outM(q)lq E Q}. 

Specifications. A specification is modelled by an IOLTS 5 = (Qs, AS, -+s, 
This IOLTS describes the complete behavior of the specification, including in­
ternal actions. We consider quiescence (livelock and output quiescence) as 
observable (by timeouts). So we need to model possible quiescence in the 
specification. Formally, a state q of 5 is quiescent if -.(3a E U JS, q 
(outputquiescence)3 or 30: E q(livelock)4. Thesuspensionautoma­
ton 56 of 5 is then obtained by considering the special label 8 as an output 
and adding self loops labelled by 8 in all quiescent states. This corresponds 
to [13] except that we also consider livelocks. In practice, 56 is not build but 
its construction is mixed with T-closure (see below). 

Now, as testing only deals with observable events (including quiescence), 
we define a deterministic IOLTS 5 v,s with same observable behavior as 56. 
5 = (QVIS AVIS -+ qVIS) where QVIS C 2Qs A v's = AVIS U A VIS with 

VIS "VIS, 0 _, I 0 

AVIS = AS U {8} and AVIS = AS qVIS = qS after E Va E AVIS VP pI E QVIS 
() 0 I I' 0 0 s' " , 

P pI pI = P afters a. 

3 A deadlock (..,(3a E AS, q is a particular case of output quiescence. 
4 As we consider finite state JOLTS, a livelock is a loop of internal actions. A livelock in the specification is 
not necessarily an error as it may occur due to abstraction. 
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SO does not need to be built because transitions labelled with 8 can be 
added directly to SYIS during T-closure. This is easy for deadlocks and output 
quiescence but involves the computation of strongly connected components 
(SCCs) of T actions for livelocks (8 are only synthesized on SCC roots). This 
is done on-the-fly by a part of TGV called FERMDET [9, 8] which adapts 
Tarjan's algorithm [11]. 

Implementations. We assume (usual test hypothesis) that an implementation 
can be modelled by an IOLTS Imp = (Qlmp , Almp, -?Imp, with 
Almp = A:mp U A:;"P U pmp and A: A:mp and A:;"p. As usually, we assume 
that implementations can never refuse an input. We note IOLTS the set of 
input-complete IOLTS. For the definition of conformance, we also need to 
consider the suspension automaton Impo of Imp. 

Test cases. A test case is modelled by a deterministic IOLTS 
TC = (QTC ATC -? qTC) where ATC = ATC U ATC with ATC C AS and , , TC, 0 I 0 0 - I 

A:-C Two disjoint subsets of states Pass QTC and 
Inconc QTC and a state Fail E QTC(Fail rt Pass U Inconc) are associated 
to TC. They correspond to arrival states of transitions carrying verdicts as in 
TTCN. We assume that a test case is complete for inputs in A:-C in each non 
controllable state (state where no output is possible). This is in general the 
case also for TTCN test cases with the special label ? otherwise. We restrict 
ourselves to deterministic test cases without internal actions. This restriction 
could be avoided to deal with more general test cases including internal actions 
such as distributed tests. In this case, T-reduction and determinization should 
be applied to test cases with FERMDET. 

2.2 Conformance Testing 

In order to speak about correctness of test cases, we need to define the 
conformance relation that the test cases are supposed to check. As in [8], we 
consider the ioeo relation [13]. Note that it is in fact an extension of ioeo as 
we consider livelocks. It says that conformant implementations are IOLTS that 
allow only outputs of the specification (including 8) after any trace of So (also 
called suspension trace of Sin [13]). It is defined as follows: 

Definition 2 Let Imp (implementation) and S (specification) be two IOLTS, 
Imp ioeo S == Vu E traces(SO), out(Impo after u) out(SO after u). 

3. VERIFICATION PRINCIPLE 
Different properties can be checked on test cases. First some static properties 

can be checked such as syntactical correctness, existence of verdicts, input 
completeness, controllability, timer management. These properties can be 
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checked using test cases only. We are more interested in dynamic properties 
which involve the observable behavior of the specification. We do not pretend 
to check all properties but only some of them in particular those involving the 
specification. We could also check some properties involving the test purpose 
(are Pass verdicts correctly assigned) but this neccessitates also to formalize 
test purpose which are often very informal. 

First, we tackle the problems of laxness and unsoundness. A test is lax if 
it accepts non conformant implementations which it could be able to reject. 
Almost conversely, a test is unsound if it rejects conformant implementations. 
Then in a second part, we deal with the problems of controllability. 

This separation corresponds to a difference in algorithmic design. The first 
problems are solved by a forward traversal of state graphs, while some con­
trollability conflicts are only corrigible by a backward traversal. Moreover, the 
problems of laxness and unsoundness are strongly dependent on the specifica­
tion. This is not the case for controllability. 

3.1 Test Case against Specification 

In this part, we define the types of errors of a test case which are detectable 
by comparing the behavior of the specification with that of the test. 

The concept of comparison leads us to define the synchronous product 
denoted by P SVTS between a test case TC and the observable behavior of the 
specification SYIS' Let TC = (QTC, ATC, ---*TC' q;;) provided with two sets of 
states PassTC and InconcTC a Fail state and let SYIS = (QSVj, Asvj, ---*. qSVj,) , , SVIS' 0 

be the T-reduced and determinized specification. 

Definition 3 The synchronous product is an JOLTS 
P S = (Qm Am ---* qm) where 

\I'lS "vr.n 0 

• Am = Am u Am with Am = ATC U AVIS outputs oifthe product are the o [' 0 0 I' 

outputs of the test case and the inputs of the specification; 
= U inputs of the product are the inputs of the test case and 

the outputs of the specification, 
• Qm (QVIS U { ..1 } ) x (QTC U { ..1 } and ---*m are the smallest sets defined 

by application of the following rules. 

(qVlS, qTC) E QVTS 1\ qVlS .!:.VlS q'VIS 1\ qTC .!:.TC q'TC 
(qIViS, q'TC) E QVTS 1\ (qVlS, qTC) .!:.m (qIViS, q'TC) 

(qVlS, qTC) E Qm 1\ qVlS .f+vIS I\qTC .!:.TC q'TC, 
(..L, q'TC) E Qm 1\ (qVIS, qTC) .!:.m (..L, q'TC) 

(qVlS, qTC) E QVTS 1\ qVlS .!:.VlS q'VlS 1\ qTC .f+TC 
(qIViS, ..L) E QVTS 1\ (qVIS, qTC) .!:.m (qIVlS, ..L) 



8 TESTING OF COMMUNICATING SYSTEMS 

The two last rules say that the traces of the specification (resp. of the test) 
which do not exist in the test (resp. in the specification) end in particular 
states noted l.. in the synchronous product. 

Verification and correction of laxness. A test case is lax if it could reject 
a non-conformant implementation but does not. More precisely, TC is lax if 
there exists an implementation Imp which does not conform to S because after 
a trace 0" it allows an output a that S does not, TC can perform the trace O".a 
but does not produce a Fail verdict. Formally: 

Definition 4 Let S be a specification and TC a test case. TC is lax W.r.t S for 
ioco iff "3Imp E fOLTS,"3O" E traces(SO) n traces(ImpO) n traces(TC), 
"3a E such that O".a E traces(TC), a E out (I mpo after 0") 1\ 

a (j. out(SO after 0") 1\ TC after O".a :I Fail. 

If we notice that I mpo is characterized by O".a, it is easy to see that the 
existential quantification on Imp can be eliminated. Thus the laxness property 
can be reformulated while using only the traces of TC and So, thus the product 
PSYTS ' 

Proposition 1 A test case is lax iff 
"3(qVlS, qTC) E QVTS, a E q'TC:I Fail E QTC : (qVIS, qTC) (l.., q'TC) 

We propose a correction which eliminates any laxness from a given test case. 
Each time an input of the test case TC not leading to Fail does not correspond to 
an output of the specification, this transition is replaced by a transition leading 
to Fail in the corrected test case TC'. We thus obtain the inclusion of the 
outputs of the specification in the inputs of the test in each state of the test 
where an input is possible and accessible by a trace of the specification. This 
is formalized by the following transformation rule: 

(qYIS, qTC) (l.., q'TC) 1\ a E 1\ lTC :I Fail 

qTC -f+TC' q'TC 1\ qTC Fail 

Verification and correction of unsoundness. A test is sound if it rejects 
only non conformant implementations. Conversely, it is unsound if there exists 
a conform ant implementation which can be rejected by the test case. Formally: 

Definition 5 Let S be a specification and TC a test case. 
TC is unsound W.r.t. S for ioco iff 
"3Imp E JOLTS, Imp ioco SI\"3O" E traces(SO)ntraces(ImpO)ntraces(TC), 
"3a E Ab, TC after O".a = Fail 

Again, the existential quantification on Imp can be suppressed and unsound­
ness can be expressed on P SVTS' 
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Proposition 2 A test case TC is unsound iff 
3(qVIS, qTC) E QVTS, a E A;m, q'VlS i= -L E QVlS: (qVIS, qTC) (q'VlS, Fail) 

In this case, the correction consists in replacing the incorrect transition 
leading to Fail in TC with a new transition in the corrected test case TC' 
with same label and leading to a new state in the INCONCLUSIVE set. This 
correction is reflected by the following rule: 

(qVIS, qTC) (qlvlS, -L) /\ q'VIS i= -L /\ a E /\ q'TC ¢ QTC 

qlTC E QTC /\ qlTC E I nconcTC' /\ qTC q'TC' 
It is easy to see that corrections of laxness and unsoundness do not interfere 

(correction of laxness cannot produce unsoundness and vice versa). Correc­
tion of laxness replaces lax inputs by sound Fail verdicts while correction of 
unsoundness remove unsound Fail verdicts by unlax inputs leading to Inconc. 

Verification and correction of controllability conflicts. Test cases should 
be controllable in the sense that they should never have the choice between an 
output and another output or input. 

Definition 6 A test case has a controllability conflict if: 
3qTC E QTC, 3a E A:;, 3x E U A:;\ { a}: qTC and qTC 3..tTC 

Detection of controllability conflict can be done by any forward search in 
the test case. But correction is more difficult in the general case where test 
cases have loops. While pruning a test case, accessibility to Pass states must be 
preserved. The solution is then to perform a search (breadth-first or depth first) 
on the reverse transition relation, to prune other transitions in case of conflict 
and to forget parts of the test case that become unreachable. This algorithm is 
detailed in [8] as it is also part of TGV. 

Implementation in V TS. The algorithm takes as input a test case in Aldebaran 
format (general purpose graph format) and a specification described in LOTOS, 
8DL, BCG (compressed format for graphs) or Aldebaran. In the case of testing 
in context, the specification should include this context as conformance is de­
fined for the specification in its context. It checks the correctness of the test case 
(laxness and unsoundness) with respect to the specification behavior. For 8DL 
and LOTOS this behavior is given by simulators (respectively ObjectGeode [14] 
and the OPEN/C}ESAR interface [5]) which are driven by VTS. VTS imple­
ments these verifications by a breadth-first traversal of the synchronous product 
between the r-reduced and determinized specification and the test case. This 
r-reduction and determinization are performed on-the-fly by the FERMDET 
tool only on the common traces of the test case and the specification (in fact 
traces of P Svrs). The traces of the test case not leading to Fail must be in­
cluded in those of the specification. Thus for any trace of the test case, we 
check two aspects. On the one hand, if inputs of the test case are possible, the 
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algorithm checks the equality between these possible inputs not leading to Fail 
and the possible outputs of the specification after the same trace. In addition, 
if outputs are possible in the test case, then they should be possible inputs of 
the specification (the equality is not required in this case). The controllability 
conflicts are detected when a state of the test case has several possible outputs 
or an output and inputs. Correction is performed by a backward traversal. 

4. APPLICATION TO THE ATM SSCOP TEST SUITE 
We have decided to experiment VTS with a real case study. We chose 

the B-ISDN ATM Adaptation Layer-Service Specific Connection Oriented 
Protocol (SSCOP) from the ITU Q.211O document [10]. It presents several 
advantages: 

• this protocol has been studied for test generation with various tools such 
as Samstag [6], TVeda [3] and TestGen [2], 

• we have a formal SDL specification, which has already been validated 
and used for automatic test generation [1]; 

• there is a complete conformance test suite, standardized by the ATM 
Forum, publicly available at http://www.atmforum.com 

4.1 The SSCOP Protocol 
The Service Specific Connection Oriented Protocol resides in the Service 

Specific Convergence Sublayer (SSCS) of the ATM Adaptation Layer (AAL) 
(see figure 1). SSCOP is used to transfer variable length Service Data Units 
(SDUs) between SSCOP users. SSCOP provides its service to a Service Spe­
cific Coordination Function (SSCF). The SSCF maps the service of SSCOP to 
the needs of the AAL user. SSCOP uses the service of the CPCS (Common 
Part Convergence Sublayer) and SAR protocols which provide an un-assured 
information transfer and a mechanism for detecting corruption of SSCOP Pro­
tocol Data Units (PDUs). One currently defined use of SSCOP is within the 
signaling AAL (SAAL). 

SSCOP performs the following functions: 

• Sequence integrity: this function preserves the order of SSCOP SDUs 
that were submitted for transfer by SSCOP. 

• Error correction by selective retransmission: through a sequencing mech­
anism, the receiving SSCOP entity can detect missing SDUs. This func­
tion corrects sequence errors through retransmission. 

• Flow control. 
• Error reporting to layer management. 
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• Keep alive: this function verifies that the two peer SSCOP entities par­
ticipating in a connection are remaining in a link connection established 
state even in the case of a prolonged absence of data transfer. 

• Local data retrieval: this function allows the local SSCOP user to retrieve 
in-sequence SDUs which have not yet been released by the SSCOP entity. 

• Connection control: this function performs the establishment, release, 
and re-synchronization of an SSCOP connection. It also allows the trans­
mission of variable length user-to-user information without a guarantee 
of delivery. 

• Transfer of user data: SSCOP supports both assured and un-assured data 
transfer. 

• Protocol error detection and recovery. 
• Status reporting. 

Q2931 

Prlmltlves 

SSCF (Q2130) 
Service Specific Coordlnatlon functions 

Signaux 

sscoP (Q2110) 
Service Specific Connectlon Oriented Protocol 

Signaux 

CPCS 
Common Part Convergence Sublayer 

t 
Service 
Speclllc 
Convergence 
Sublayer (SSCS) 

MLFunctlons 

+-Common Part 

SAR (Segmentatlon and Reassemblage) ML Functlons ________________ __________ t 
ATililSAP 

Figure 1. Situation of SSCOP in the ATM stack 

The SDL executable specification of SSCOP was written by Serge Gauthier 
from CNET (the research center for France-Telecom). The specification was 
written in 1995 using SDL based on the SDL description given in the final draft 
document XIIQ2210 of ITU-T study group. It consists in approximately 5000 
lines of textual SDL code. The specification was dedicated to test generation, 
thus it makes some simplifications which do not comply with all the aspects 
of the standard. Later on, the formal specification has been slightly corrected 
during the verification works of the FORMA project [1]. 

4.2 The ATM Test Suite 
We considered the conformance abstract test suite for SSCOP, which was 

published by the ATM Forum Technical Committee on September 1996 under 
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the title "Conformance Abstract Test Suite for the SSCOP for UNI 3.1.". This 
test suite aligns with the principles defined in the OSI conformance testing 
methodology and framework ISO 9646 Parts 1-2 [7]. The test scripts are 
written in TTCN. 

The testing architecture considered is the remote testing architecture (see 
figure 2) with only one lower tester (and PCO). The asynchronous communica­
tion on this PCO is reflected in the formal specification by the intercalation of 
a retransmission process between the SSCOP entity and the environment. This 
palliates the absence of queue between the SDL model and its environment in 
the ObjectGeode simulator. 

u ertest 

TCP 
Upper I I Tester 

Lower 
Tester ASP(N).* 

I 
IUT I I vco SP(N-l ASP(N-l)* 

Service (N-I) 

Figure 2. Remote testing architecture 

While the test suite consists of 317 test cases (approximately 500 pages of 
TTCN), the test cases viable for verification based on our formal specification 
of the protocol were found to be 110 test cases. The abstraction resulted in the 
following: 

• the test cases testing invalid PDUs (INV) were not considered as the 
specification does not describe the behavior of the SSCOP on reception 
of invalid PDUs. INV test cases arise to 186 cases. 

• UD and MD PDUs were not considered in the SDL specification. Thus 
these PDUs have been abstracted in TTCN test cases. Moreover the 12 
test cases related to valid UD and MD PDUs were not considered. 

• the test cases testing the behavior of clocks and timeouts were abstracted 
as timers are treated as internal unobservable actions. Timer test cases 
arise to 9 cases. 

Most of the test cases have the same structure: a preamble tries to drive 
the implementation under test (IUT) to a particular control state of the SSCOP 
entity as defined in the specification; then a test body is applied to check that 
the IUT behaves correctly; then follows a state identification behavior which 
checks the arrival control state; finally a postamble drives the IUT to the initial 
state. 
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4.3 Our Approach to Use VTS 

We proceeded through the successive following steps. 
1. The development of a compiler for the generation of test cases from the 
test suite. The input is a test suite written in TICN machine processable 
(TICN.MP) format. The output is a set of automata (one for each test case) 
in the Aldebaran format that the VTS program can process. The compiler also 
maintains a set of state variables similar to the set maintained by SSCOP. The 
values of the state variables are used to generate the values of the constraints that 
VTS can deal with. The compiler has to simulate the operations that are to be 
executed on the contents of the state variables of the SSCOP protocol mentioned 
by the test case. This simulation is essential for the sake of generation of 
PDUs and ASPs to be fired by the tester. It also simulates the changes in the 
state variables associated with firing transitions that are normally not explicitly 
mentioned in the test case. This is essential for the sake of generation ofPDUs 
and ASPs expected from the specification. 
2. The development of a program for the automatic generation of the sup­
plementary files needed as inputs to the VTS program, namely the "feed" and 
the "hide" files. The feed file is used during the construction of the transition 
system of the specification as an input to the ObjectGeode API. The feed file 
contains the various signals that to be feed into the SSCOP specification from 
the external environment. The environment refers to both upper and lower 
layers. The hide file is used to hide the unobservable transitions that are gener­
ated but are not observable at the point of control and observation (PCO) due 
to the test architecture. Unobservable transitions in the test suite may be 11 
inputs or outputs of the queue of the retransmission process representing the 
asynchronous channel, 21 signals between the user and the SSCOP specification 
that cannot be observed form the lower tester, and thus are not mentioned in 
the test script, 3/ actions on timers of the specification. 
3. The use by VTS of the test cases generated by the compiler from the TTCN 
test suite and of the supplementary files in order to check and correct test cases. 
4. The analysis of the errors found by the VTS tool and the variance between 
the hand written test cases of the ATM Forum test suite and the corrected test 
cases generated by VTS. 
5. The proposal for corrections of the ATM test suite by providing alternatives 
to incorrect test cases with respect to the SSCOP specification. 

4.4 Results 

Most test cases failed because of forgotten signals due the classical problem 
of message crossing inherent to asynchronous communication. In fact these 
signals are observable due to the expiration of timers before the reception by 
SSCOP of a signal sent by the tester. One can imagine that those are not real 
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errors but are due to implicit assumptions on the transmission delay between the 
tester and the rUT. Nevertheless, as the remote testing architecture is considered 
this assumption should not be done or should at least be documented. 

Out of the 110 test cases, 16 test cases failed for other reasons. They all fail 
in the state identification step: 2 tests in control state 4, 1 in control state 5, 4 
in control state 7 and 9 in control state 10. 

Out of the 16 defective tests, the following have been corrected: 
1. 2 tests of state 4, 1 test of state 5, 2 tests of state 10 by adding a step to 

correct the value of the state counters. For example, in state 4, V R_SQ is not 
changed on receiving RS or ER PDUs. The S4_VERIFY test step fails if the 
last transition performs an RS or ER PDUs as V R_SQ is not incremented. 
Thus the B G N PDU of the test step is not detected as a retransmission. As VTS 
does not manipulate symbolic variables but only values, it does not provide a 
useful correction. Once the problem identified, it can nevertheless be easily 
corrected by hand by decrementing the value of VT _SQ in the test case before 
conducting the state verification step. 

2. 4 tests of state 7 by adding a step to initialize the values of the state 
counters. This is detected by VTS as incorrect values of the U ST AT PDU 
in the SlO_VERIFY step (state 10 is the arrival state of these test cases). The 
SSCOP specification resets its state variables after sending a BG AK PDU at 
state 3. The initialization is not reflected in the test cases. This can be manually 
corrected by inserting the initialization procedure before state verification. 

3. 4 tests of state 10 by introducing an alternative sequence for verification 
of state 10. S 10_ VERIFY assumes the reception of an U ST AT PDU before 
entering in the verification step. VTS has shown that there exist situations in 
which the SSCOP entity transfer directly to state 10 without the generation of 
an USTAT PDU. The only solution is to change completely the SlO_VERIFY 
procedure. 

4. 2 tests of state 10 by changing the values of the USTAT PDU in the 
procedure for verification of state 10. 

4.5 Example of Verification/Correction 
We present here an example of the experimentation of the VTS tool on the 

test case numbered SlO_V -.P17 in the ATM Forum Test Suite. This test case 
and its following checking sequence (S 10_ VERIFY) are presented below in 
TTCN.GR format. They are exact copies of the ATM Forum test case and test 
step except that UD and MD PDUs have been abstracted. According to the 
informal test purpose, this test case verifies that the rUT, in control state 10 
(DataTransferReady), saves an SD PDU that sequence number is between the 
sequence number of the next in sequence and the next highest expected SD 
PDUs. 
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SIO.V.P17 

I Nr I Label I Behaviour Description I Constraint Ref I Verdict 

I +SIO.PREAMBLE 
2 LT..PCO!SD SD.s.N.s(VT.s+2) 
3 STARTT.Wail 
4 LBI LT.PC01USTAT(VT..MS:= USTAT..lLLlST(VT.s. 

BIT.1ll..lNT(USTAT.N..MR» VT.s+2. VT.s) 
5 LT.PCOISD SD.s.N.s (VT.s+l) 
6 LT.PCO!SD SD.s.N.s (VT.s) 
7 LT.PCO!POu.(VT.PS:= POLL.5.N.s(VT.s+3) 

INC..MOD..24 (VT.PS.I)) 
8 STARTT .. Wait 
9 LB2 LT.PC01STAT(CHECK.N.PS STAT..R..N.R(VT.s+3) (P) 

(VT.PA, BIT .2.lNT(STAT.N.PS). 
VT'ps)](VT..MS:=BIT.1ll..lNT 
(STIJ.N..MR)) 

10 +SIO. VERIFY 
11 +POSTAMBLE 
12 LT.PC01POLL POLL..1UlEN 
13 GOl'OLB2 
14 +TS .. Wail 
15 LT.PC01POLL POLL.R.GEN 
16 GOl'OLBI 
17 +TS_Wait 

SIO.VERIFY 

Nr I Label I Beltaviour Description Constraint Ref I Verdict 

I LT.PCO!SD SD.s.N.s(VT..MS+3) 
2 STARTT.Wail 
3 LBI LT.PCO?USTAT(VT..MS:= USTAT..lLLlST(VT.s. (P) 

BIT.1ll.lNT(USTAT.N..MR» VT..MS. VT.s) 
4 LT.PC01POLL POLL.R.GEN 
4 GOl'OLBI 
5 +1'S .. Wait 

The graph drawn on the left hand side of Figure 3 represents the test case 
(body) with its different test steps (preamble, checking sequence and postamble) 
in a graph format as processed by our TICN compiler. For the sake of clarity we 
did not represent the transitions ? otherwise producing Inconclusive verdicts 
in states 2 and 4 and Fail verdicts in states 6, 10, 12 and 15. In the SDL 
specification and the test suite we have set the parameter VT..MS to 20 and 
Max_CC to 1 in order to shorten the preambles. The variable VT _S is initially 
set to O. 

As for most test cases, the VTS tool detects unsoundness (forgotten inputs of 
END PDU in states 6,10 and 12) because of a bad treatment of asynchronism. 
According to the specification, once in control state DataTransferReady an 
END PDU can be sent if TimerNoResponse expires. The implicit hypothesis 
made in this test is that the PDUs SD (lines 2 and 5 or transitions 5 6 and 
11 12) and POLL (line 7, transition 8 9) sent by the tester are received 
before the timer expires. 

Formally speaking, the test case is also lax as ? otherwise in states 2 and 
4 should produce a Fail verdict and not an Inconclusive verdict. In fact it is 
common practice to deliver only Inconclusive verdicts in preambles but the 
VTS tool does not make this distinction. 

The test case is really incorrect in the S 10_ VERIFY step as the value of 
the first and last parameters of the USTAT PDU (line 3, transition 12 13) 
are not correct. The VTS tool found this error (which is both laxness and 
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16, PASS ________________________________ 16, PASS 

t LT_PCO?ENDAK t LT_PCO?ENDAK 
15 15 

t LT_PCO!END(user) t LT]CO!END(user) 
14 14 t Problem! t 

____________________ 

t LT?USTAT(O,20,20,O) t LT?USTAT(3,20,20,3) 

12 LT]CO?POLL(I,O) LT_PCO?END(sscop) 12 LT_PCO?POLL(l,O) t LT_PCO!SD(23) /t LLPCOISD(23) 

t - - - - - - - tl' 

17,INCONC 

t LT]CO!POLL(I,3) t LT]CO!POLL(I,3) 

9 9 

t LT]CO!SD(O) t LT]CO!SD(O) 

8 8 

t LT_PCO!SD(l) t LT_PCO!SD(I) 

7 7 t LT]CO?USTAT(O,2,20,O) t LLPCO?USTAT(O,2,20,O) 

6 LT_PCO?POLL(l,O) 6 LT]CO?POLL(l,O) 

t _ ___________________________ t LT]CO!SD(2) 

t LT_PCO?BGAK(20) t LT]CO?BGAK(20) 

4 4 t LT]COlBGN(l,20) t LT_PCOlBGN(l,20) 

3 3 

t LT]CO?ENDAK t LT_PCO?ENDAK 

2 2 t LT]CO!END(user) t LT_PCO!END(user) 

I I t LT_PCO!BGREJ t LT]CO!BGREJ 

0------------------------- ___________ 0 

Original test case Corrected test case 

Figure 3. Initial and corrected test cases 
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unsoundness) and proposed to correct the test case. The right hand side of 
Figure 3 corresponds to the corrected test case produced by the VTS tool. 
New transitions lead to the Inconclusive state 17 for missing ENO POUs and 
the transition labelled by USTAT is corrected by changing the first and last 
parameters values from 0 to 3. 

This error was further analyzed by a close look to the TTCN test case. The 
real reason is that the variable VT _S of the test case is not updated when sending 
an SO POU (lines 2, 5, 6 in S 10_ V .1>17) but this variable is used in USTAT 
POU (line 3 of SI0_VERIFY). Thus it still has value 0 which is sent in USTAT 
while in the specification the corresponding variable is incremented and the 
resulting parameter has value 3. 

As the VTS tool manipulates instantiated test cases, it was only possible 
to find the correct values. But finding that incrementations were missing was 
done by hand. Finding this kind of correction automatically is not possible 
in general. But some improvements can be made by a symbolic treatment of 
variables, the help of provers, abstractions and static analysis. 

5. CONCLUSION AND PERSPECTIVES 
VTS was originally conceived for testing the TGV tool. Test cases produced 

by TGV were checked by VTS in order to track bugs in the main algorithm of 
TGV. But the main interest of VTS is to check manual test cases. This was 
demonstrated here by its application on an industrial size specification and a 
significant part of a test suite in which some errors have been found. 

The interest of such a tool is evident for complex systems. This is in 
particular the case for distributed systems because of the difficulty to foresee 
all behaviors of these systems due to asynchronism, hiding of internal actions 
and non-determinism. This leads directly to checking distributed test cases. 
VTS can be easily extended to check the correctness of this kind of test cases by 
using FERMOET as a front end. Nevertheless correction is more problematic 
as observed errors can be caused by internal actions. 

But VTS suffers from the limitation inherent to enumerative tools. Param­
eters of specifications and test cases have to be fixed thus correctness cannot 
be guaranteed for all values of these parameters. Moreover, some of the errors 
detected by VTS on the SSCOP test suite are errors on values of message 
parameters. Analyzing the errors and correcting them would be easier with a 
symbolic treatment of data. 
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