
ACLA: A Framework for Access Control List (ACL)
Analysis and Optimization

Jiang Qian, Susan Hinrichs, and Klara Nahrstedt
University oflllinois at Urbana-Champaign 1•3: Cisco System, Inc.1.2

Key words: network security, security mechanisms, security evaluation, security policy,
intranet security, vulnerability test, policy based management, global policy,
access control list, ACL optimisation, ACL analysis, packet classification,
firewall, packet filtering

Abstract: It is a challenging task for network administrators to correctly implement
corporate security policies in a large network environment Much of the
security policy enforcement at the network level involves configuring the
packet classification strategies using Access Control List (ACL). A gateway
device performing traffic filtering can deploy ACLs with thousands of rules.
Due to the difficulties of ACL configuration language, large ACLs can easily
become redundant, inconsistent, and difficult to optimise or even understand.
This problem is augmented by extrinsic factors such as administrator
turnovers, unstructured and ill-planned topology changes. With multiple
routers in the topology, all of the ACLs need to be configured in a consistent
manner to enforce the corporate security policy. In such an environment,
manual examination of ACLs to ensure security policy is implemented
correctly is a nearly impossible task.

In this paper, we propose a novel framework to automate ACL analysis, thus
greatly simplifying the network administrator'S task of implementing and
verifying corporate security policies. A set of algorithms is introduced to
detect and remove redundant rules, discover and repair inconsistent rules,
merge overlapping or adjacent rules, map an ACL with complex interleaving
permit/deny rules to a more readable form consisting of all permits or denies,
and finally compute a meta-ACL profile based on all ACLs along a network
path. When applied to traffic filtering ACLs, the meta-profile provides
insights to the administrator as to what traffic will flow successfully from
source to destination. Based on the ideas presented in this paper, weve
developed a generic library called ACLA (ACL Analyser).

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. Steinmetz et al. (eds.), Communications and Multimedia Security Issues of the New Century

10.1007/978-0-387-35413-2_36

http://dx.doi.org/10.1007/978-0-387-35413-2_36

198

1. INTRODUCTION

One of the fundamental tasks entrusted to a network administrator is to
correctly implement the corporate security policies. It is especially a
challenging task in a large corporation or Internet Service Providers (ISP)
environment. When size of the network increases, so does the number of
firewalls and routers, typically resulting in complex topology and
exponential growth in network management efforts.

Much of the security policy enforcement at the network level involves
packet classification using Access Control List (ACL). ACL in a router
consists of an ordered list of rules, or Access Control Entries (ACE) that
collectively define a packet classification scheme (we will use the term ACE
and rule interchangeably).

The process of differentiating traffic using ACL is commonly referred to
ACL matching, packet classification or packet filtering. In this paper, we
use these terms interchangeably. A packet flowing through the router or
firewall is examined at various stages of processing to determine if it
matches any particular ACLs. If a match is discovered, a pre-configured set
of actions takes place. For example, the ACL is used for traffic filtering on a
network gateway. Packets matching a particular ACL are either permitted
to pass through the gateway or denied. , Traffic filtering offers a powerful
packet flow-control tool for administrators. ACL can be combined with
security protocols such as IPSec to form corporate Virtual Private Network
(VPN). Taking advantage of readily available Internet infrastructure, VPN is
a compelling alternative to dedicated leased lines. In a VPN, the gateway
devices are configured with ACLs to classify traffic that flows into secure
tunnels. Even though ACL plays an important role in corporate network
security, evaluating and even understanding an ACL configuration remains a
tedious, time consuming and error prone process. The following sequence of
Cisco router commands (figure 1) defme a simple ACL configuration for
traffic filtering:

MP ·/!start ACLriari19d listt
p.S:rm1ttt!).192J6Ef1D:O o:o.Q.2P5 ·. (1.0,0.:;255 !!qBO . ·· p 1 $tAGf:
.peirrijfkp192.1t)fj,J1:p OD.0:25S 192168:2D.{l l):0,0:?55e.q80 ll?nd ,A,CE

o.O:tl;$5 1$2:.1Sf1;4Q:O eq $. {t3fdAcE
deM{ip anY any 114thAC.E

· exit /fend AGL!istl
EiliernetO iiit. · ip Jisll in /!use tistfto fillerinbl:uir.d traffic

/(find inte'rfac,e ·

Figure 1. Simple ACL Configuration

199

Without going in to details of the command syntax, the goal of the ACL
named list] is to permit HyperText Transport Protocol (HTTP) traffic from
networks 192.168.10.0, 192.168.11.0 , and 192.168.15.0 to network
192.168.20.0, and deny all other types of traffic. This ACL is then
associated with interface EthernetO to perform traffic filtering on inbound
packets. An incoming packet is compared with each ACE starting from the
181 rule in an ordered fashion. A match happens if and only if all the
attributes of the packet match the ACE rule. In this example, a packet with
source address = 192.168.10.5, destination address = 192.168.20.10,
protocol= TCP, and port= 80 is a match with the 1st ACE. This packet will
be permitted. Figure 2 illustrates the ACL matching sequence common to all
ACL applications [12]:

Figure 2. ACL Matching Algorithm

A gateway device performing traffic filtering can easily deploy ACLs
with thousands of rules. As illustrated in the previous example, ACL
configuration language is low-level and order-specific. As the network
evolves with changing corporate needs, keeping these ACL configurations
up to date is a challenging task. An ACL with large number of entries can
easily become redundant, inconsistent, and difficult to optimise or even
understand. This problem is augmented by extrinsic factors such as
administrator turnovers, unstructured and ill-planned topology changes.
With multiple routers in the topology, all of the ACLs need to be configured
in a consistent manner to enforce the corporate security policy. In such an
environment, manual examination of ACLs to ensure the security policy is
implemented correctly is a nearly impossible task.

1.1 Contributions

In this paper, we propose a novel framework to automate ACL analysis,
thus greatly simplifying the network administrators task of implementing

200

and verifying corporate security policy. More specifically, we introduce
efficient algorithms to:

- detect and remove redundant rules
- discover and repair inconsistent rules
- merge overlapping or adjacent rules to speed up packet classification

and improve clarity
- map or filter an ACL with complex interleaving permit/deny rules to a

more readable form consisting of all permits or denies
- compute a meta-ACL profile along a network path based on all ACLs

encountered. This is typically applied to traffic filtering ACLs. The
rule list generated as the result of this computation can be queried to
answers questions such as:

1. What are all the permitted traffic from src = X to dest = Y?
2. What are all the permitted traffic from src = any to dest = Y 1 .• Y n?
3. Will traffic flow with src =X, dest = Y, protocol= TCP, port= 80 be

permitted?

These high level queries greatly simplifies the network manager'S task
of analysing ACLs and verifying correct implementation of corporate
security policy.

In addition, we present a set of formal rule relation definitions. The
meaning of intersect, contain, overlap, disjoin, adjacent, inconsistent and
redundant are defined in precise mathematically terms. Internally, we use a
dynamic multidimensional interval tree data structure [7][8] to store the rule
list. Using a tree-based structure allows for efficient query, insert, and delete
operations. To the best of our knowledge, no literature currently exists that
performs such formal and complete analysis of ACLs.

Based on the ideas presented in this paper, we ve developed a generic
library called ACLA (ACL Analyser) that implements the above set of queries
and operations. The algorithms and data structures proposed in this paper
can easily be incorporated into other network management tool that would
benefit from similar type of manipulation and optimisation of ACLs.

Section 2 discusses related work in this area. Section 3 defines mapping
between an ACE and a multidimensional interval tree node, then describes
the dynamic multidimensional interval tree data structure. Based on the data
structure outlined in Section 3, Section 4 presents each ACL analysis
algorithm in detail. A set of relations between rules is defined to formalise
the analysis process. Finally, we conclude with future directions.

201

2. RELATED WORK

There are numerous vulnerability testing and intrusion detection tools on
the market that analyse network security by active probes or monitors. Some
of the leading products in this area are the Internet Security Systems Internet
Scanner [13], Network Associates CyberCop Scanner [17], Cisco Secure
Scanner [6], NESSUS [16], and SATAN [9][19]. The goal is to check for
well-known security vulnerabilities, and report the result back to
administrator. Vulnerability tests are an important part of security analysis
process. However, it still operates at a low-level and does not give
administrator a high-level view of the security policy. In addition, it can
only detect security vulnerabilities after the fact. A separate mechanism is
needed to prevent these vulnerabilities. The analysis proposed in this paper
is a passive approach, and operates at a higher level. Potentially security
vulnerabilities can be analysed before ACLs are deployed. Our work serves
as a nice complement to the active vulnerability testing and intrusion
detection tools.

Another security management approach related to our work is policy­
based management. In [1 0], Guttman described a language for global
policies and algorithms to generate local filtering rules. Similarly, Bartal,
Mayer, Nissam, and Wool introduced the Firmato firewall toolkit [1].
Firmato derives per-device configuration from global policy with emphasis
on firewall filtering rules. The leading commercial product in this area is
CSPM (CiscoSecure Policy Manager) [5][11]. CSPM is a sophisticated tool
that produces extensive device configurations based on the global policy.
The tools presented in this work can be incorporated into the policy
compilation process or used during post-processing to optimise the AC12.s
generated. More recently, Mayer, Wool and Ziskind introduced Fang [15].
Fang allows user to perform queries based on source range, destination range
and service range. The result of query returns all traffic types that are
permitted between source range and destination range. This is in spirit
similar to our query on the meta-ACL profile. However, Fang does not offer
ability to perform consistency checks, optimisation or filtering.

There has been much effort in recent years in developing efficient range
searching data structures. Other data structures such as k-d tree [2], range
tree [4], segment tree [3], and their variants are all possible alternatives to
the interval tree data structure. K-d tree has a slower query time for this class
of data structure. Range tree requires complex fractional cascading to
reduce the query time. Segment tree is designed to handle non-axis parallel
lines, which is not the case in our application. External-memory
multidimensional search data structures such as grid file [18] and hB-tree
[14] are common in database applications. We assume our ACL size is

202

small enough to perform query in memory. The interval tree data structure
is chosen due to the simple mapping from rule to intervals, intuitive
generalisation of higher dimensions, efficient insert, delete, and query time.

3. THE DYNAMIC MULTIDIMENSIONAL
INTERVALTREEDATASTRUCTURE

This section describes the fundamental data structure used in ACL
analysis algorithms. First, a mapping between ACE attribute type and
interval tree dimension is derived. The exact attribute types available in an
ACE are vendor dependent. We will use Ciscos extended access list as an
example. An ACE in an extended access list provides the following attribute
types: source address, destination address, protocol, and port number. All
values specified in each attribute form an interval. A special key work any
can be used to specify all possible values for an attribute. Let J mtn and Xi max

denote the minimum and maximum values of an interval in dimension i, and
D 1 min and D i max denote the minimum and maximum possible values of
dimension i. The mapping can be performed as follows:

Table 1. Sample ACE to Interval Tree Node Mapping
ACE Attribute Interval Tree Node

Source Address x1 min = min address in range
:x! max = max address in range

Destination Address x2 min = min address in range
:x! max = max address in range

Protocol x3 min = x3 max =protocol number
Port X4min = X 4max =port number
Any Xi min= D imin

A Cisco extended access list maps to an interval tree node with 4
dimensions, with 0 1 corresponding to source address, 0 2 to destination
address, 0 3 to protocol, and 0 4 to port number.

More formally, let V := {[v1: vl'], ... , [F. Vn·]} be the set of n attribute
values in an ACE. A corresponding multidimensional interval tree node is
constructed as follows:

The special attribute value any is always mapped to the interval [D imin :D
1max].

Using this mapping, we can easily convert any ACE into a
multidimensional interval tree node. An interval tree is binary tree

203

constructed based on the end points of intervals. For example, let X be a set
of intervals in one dimension, and let m be the median of the interval end
points. The set of intervals containing m is stored at the root. The set of
intervals to the left or right of m forms the left and right subtree. These
intervals are recursively partitioned based on their median. Search, insert,
and delete operations in a one-dimensional interval tree takes 0(/ogn) time
[7][8].

A multidimensional interval tree is a straightforward generalisation of the
one-dimensional interval tree. An interval tree can be constructed first based
on the intervals in the first dimension only. This frrst level interval tree
(sometimes referred to as component tree) contains a set of elements in each
tree node. Each node in turn stores its element using an interval tree based on
the second dimension. Any query is reduced to a sequence of binary
searches in each dimension. The multidimensional interval tree data
structure implemented in our work is a dynamic interval tree in the sense that
it can support inserts and deletes. Query, insert and delete operations take
O(nlolnJ time [7][8], where d is the dimension.

4. ACL ANALYSIS ALGORITHMS

Before examining the ACL analysis algorithms in detail. We present a set
of formal definitions on the relation between two rules. Precise definitions
allow us to describe the algorithms in a concise and unambiguous manner.

Definition 1.
Given interval M = [m:m], N= [n:n]
1. M intersect N if m <=n <= m' or m<=nl<=m' or n<=m<=n' or

n<=ml<=n'
2. M contain N ifm <=nand n' <= m'
3. M, N is atljacent ifmH =nor n!.f-1 = m

Definition 2.
Given rule X, Y, where X= [xt. x2, . . . andY= [Yh Y2. . . .
1. X ,Y intersect iffor each xi and Yi> xi and Yi intersect
2. X , Y is disjoint if ! intersect
3. X contain Y if for each Xi and Yi> xi contains Yi
4. X ,Y overlap if there exist an xi and Yi where xi intersect Yi> for all other

dimensions, x1 = Y.J
s. X ,Y is adjacent if there exist an xi and yithat is adjacent, for all other

dimensions, xi = YI

204

Contain and overlap are more specialised intersect relationship.
Adjacency is a more specialised disjoint relationship. Figure 3 illustrates
these relations.

' ·A2. I' ::' -- - ' :: --Ai: ·E§J· -:GE , _ ·m ... ····· ··_
A-1 . . : A-1 : A-2-- ' A1'· A2- : r "; :-- , ·.-...... ..

· ·· _ . -. . '.. -, . . . _ -·- :: . lYl ·.

Figure 3. Rule relations: a) intersect b) contain c) overlap d) adjacent e) disjoint

The important observation to make here is that the geometric shape
projected by an ACE is always rectilinear. Consequently, the relation tests
only take a few simple comparisons in each dimension, which takes O(d)
time, where d is the number of dimensions. Performing intersection test
between two arbitrary shapes is a much harder task.

Based on the primitive relationships defined, we can formalise the notion
of consistency and redundancy.

Given ACE X, Y, where X precedes Yin the ACL (note: the subscript p
is used if the rule is a permit rule, dis used if its a deny rule):

Definition 3.
X or Y is redundant if any ofthe following sufficient conditions apply
1. XP contain Yp
2. Xd contain Y d
3. YP contain XP and there does not exist rule Zd between XP and Yp such

that Zd intersect Xp and Xp !contain Zd
4. Y d contains Xd and there does not exist rule Zp between Xd and Y d such

that Zp intersect Xd and Xd !contain Zp

The first two conditions determine if Y is redundant. X contains Y
implies packets that match Yare matched by X. Since X precedes Y, Y will
never be used. Conditions 3 and 4 determine if X is redundant. The extra
check for rule Z is needed because if such rule Z exists, and if rule X is
removed, any packet with values that falls in the intersection region of X and
Z could be matched by Z. The action specified in Z will be taken, not X. The
packet classification property would be altered. If X contains Z, then Z is a
inconsistent rule (see Definition 4), and would be removed. Figure 4
illustrates both cases.

205

Zd

.YP· .IX.P= ,_
- :

\(p-
·:

"§0 XP . ·.

a)·
;:, ·.·

b)
.;:· './. :

Figure 4. Redundancy Check. a) Xp is redundant, any packet that is permitted by X will be
permitted by Y. b) Xp is not redundant, ifXp is removed, any packet that falls in the shaded

region could be denied by Z

Definition 4.
X and Y are inconsistent if any of the following sufficient conditions
apply
1. Xp contain Y d

2. Xd contain Yp

In case 1 and 2, rule Y is in some sense redundant. However, since the
action Y triggers is opposite of X, different filtering behaviour will result if
Y is used. This could indicate an inconsistency in terms of the packet
classification goal of the ACL. Most likely, the network manager configured
Y without realising it is contained in X. This could lead to a serious security
compromise. (Note: It is a common and recommended practice to specify X
and Y such that Y contains X. Figure 1 is an example such configuration.
The idea is the administrator would first configure the rules corresponding to
exceptional cases, and then one broad rule to cover the default case).

Definition 5.
1. X can be merged with Y (rule X is removed, rule Y is expanded) if any

of the following sufficient conditions apply
2. Xp and Yp overlap or are adjacent and there does not exist rule Zd

between Xp and Yp such that Zd intersect Xp and Xp !contain Zd
3. Xd and Y d overlap or are adjacent and there does not exist rule Zp

between xd andy d such that Zp intersect xd and xd !contain Zp

The rational for the extra check for Z is similar to the redundancy case.
If such rule Z exists, and if rule X is merged, any packet with values that
falls in the intersection region of X and Z could be matched by Z. The action
specified in Z will be taken, not X. The packet classification property would
be altered. In this case, X can not be merged. Figure 5 illustrates both cases.

206

·.yP

Figure 5. Merge Check. a) Xp can be merged with Yp. b) Xp may not be merged, ifXp is
merged, any packet that falls in the shaded region could be denied by Z

4.1 ACL analysis, optimisation and query

The frrst algorithm, optimise, merges adjacent or overlapping ACEs,
detects, reports and resolves inconsistencies, and removes redundancies.
After optimise, an ACL is mapped to a simpler form without any
modification to the packet classification properties. This simplified
representation is easier for administrators to understand, and can replace the
original ACL on the router. During optimise, redundancies and
inconsistencies are identified. optimise can be executed offline or
incorporated directly in to the routers command line interface. In this case,
an administrator would receive interactive feedback as he is configuring the
ACLs, thus detecting security risk at the earliest possible time. The
following notations are used: IP and Id are two interval trees that store permit
rules and deny rules respectively. Sp and Sd are sets that stores the query
returned from each tree. The variable a defined in line 4 serves as an index
to the appropriate interval tree or query set. For example, if a is permit, then
s . refers to Sp, S1• refers to Sd.

Algorithm optimise (L)
Input. An ACL
Output. An optimised ACL
1. for each rule y in L
2. Sp = lp.query (y); II return permit rules that intersect or adjacent y
3. Sd = Io..query (y); II returns deny rules that intersect or adjacent y
4. let a = action type ofy II permit or deny
5. if any rule in s. contains y
6. continue II redundancy rule 1,2
7. if any rule in S1• contains y
8. continue II inconsistency rule 1,2
9. for each rule x ins. that is contained by y
10. if (there does not exits a rule z in S1. , where z is between x andy

11. and x intersects z and x does not contain z)
12. Ia.remove (x) II redundancy rule 3,4
13. for each rule x in Sa that overlaps or is adjacent to y

207

14. if (there does not exits a rule z in S18, where z is between x and y
15. and x intersects z and x does not contain z)
16. 18 .remove (x)
17. y=merge(x, y) II merge rule 1,2
18. l8 .insert (y);
19. build Lre.uJt using lp and Ib
20. return

This algorithm is organised to clearly illustrate each consistency,
redundancy and merge condition. The actual implementation can be less
verbose. lp and LI are empty initially. Line 5 to 8 checks the simple cases
first. Line 9 to 12 checks for redundancy of a previously defined rule. Line
13 to 17 merges a previously defined rule with the current one (Note: in
order to fmd the adjacent rules, y needs to be expanded by 1 in all
dimensions before performing the query in line 2 and 3). Finally, if line 18
is reached, this new rule is inserted into the appropriate interval tree. A
warning or informational message can be issued to the administrator each
time a redundancy and inconsistency is detected, or when a merge happens.
Each rule stores an order number that corresponds to the original order in the
ACL. The order number is maintained in throughout the optimisation
process. The merge operation on line 17 does not change ys order number.
The new optimised rule list can be generated by a simple traversal of the lp
and LI tree and return the result according to the original rule order. If each
query returns results proportional to n, where n is the size of original ACL,
this algorithm requires O(n2) time. However, such an ACL configuration is
impractical to say the least. We can safely assume that the query returns a
constant size set. Therefore, the two for loops in line 9 .. 12 and 13 .. 17 runs
in constant time. The running time of this algorithm is thus dominated by the
query time, or O(nlogdn).

It is often insightful to view an ACL as a sequence of permits followed
by an implicit deny-all rule, or vice versa. Arbitrary interleaving of deny
and permit rules can be difficult to decipher. This is especially true if the
ACL is modified or expanded over time by different administrators. The
following algorithm Filter maps ACL with interleaving permit and deny
rules to an ACL with one type of rule only, followed by a broad rule to cover
the opposite action at the end. We assume Ip and Id has been built already
using optimise.

Algorithm.fiiter (Ip, Id> a)

208

Input. Two rule trees of an optimised ACL and a filter based on rule
action (permit or deny)
Output. Optimised ACL containing only rules with action a (assume final
broad implicit rule)
1. for each rule y in I.
2. s,. = I1 •• query (y) II return all rules intersect y
3. for each rule x ins,.
4. remove x if it is defined after y
5. if any rule ins,. contains y
6. continue
7. queue.push_back (y)
8. while queue is not empty
9. t = queue.pop()
1 0. if (t is disjoint from all rules in S 1.)

11. Lresuu.append (t);
12. else
13. if (there exist a rule x inS !a that intersects t)
14. queue.push (rules generated by splitting t around x)
15. return Optimise CLresuit)

If the filter a is permit. filter algorithm iterates through all the permit
rules, for each permit rule, the set of intersecting deny rules that precedes it
is found (line 2 . .4). Next, if this permit rule is contained by any of the deny
rules that precedes it, we do not add it to Lresult· If the ACL has been
optimised correctly already, this should not happen. Line 7 to 14 splits the
permit rule around the deny rules. A queue is used to store the temporary
split permit rules. The result is a set of new rule that is pushed onto the
queue. This new permit rule is not added to Lresuit unless it does not intersect
with any preceding deny rules. We rely on the fmal optimisation step in line
15 to merge any rules that becomes adjacent or overlap as the result of the
splits. The running time of this algorithm is dominated by the query, or
O(nloln), where n is the size of ACL.

Next, we present an algorithmjoint that fmds common set of rules within
an ordered set of ACLs.joint can be used to examine the set of ACL along a
path from a source to destination. The result would inform the administrator
what type of traffic will be permitted or denied. The user can pass in a filter
to indicate the desired output format. For each ACL we assume its
corresponding Ip and Id are computed already.

Algorithmjoint (L1 •• Ln, a)
Input. A set of optimised ACL and a filter based on rule action (e.g.,
permit or deny)

Output. An optimised ACL with rules of type a
1. for each ACL 1 in L1 • .Ln
2. 1 =filter (I, a)
3. Iresult = Lt.Ia
4. for each 1 in .. L,
5. if (a is permit)
6. ltemp·clearO
7. for each rule yin 1
8. Sp = Iresult·query (y) II return all rules intersect y
9. for each rule x in Sp
10. Itemp·insert (intersection ofx andy)
11. Iresult = lterop;
12. else
13. simply insert all rules in 1 to Iresuit
14. return optimise(Lresutt)

209

Filtering is performed first to simplify the actual joint operation. If the
filter action is permit, all rules will be mapped to permit rules. A packet that
traverses from source to destination has to be permitted by all the ACLs
along the way. Therefore, to joint ACLs in this sense is to fmd the
intersection of permit rules between ACLs. The common set that remains
represent the meta-ACL profile, it specifies which traffic type will
successfully flow from source to destination along the path. Line 5 to 11
joints two ACLs in the permit case. The result is used for the next ACL. If
the filter action is deny, we can simply insert all deny rules. We again rely
on the final optimisation step in line 14 to reduce the number of rules. Each
joint operation takes O(m1olmJ time, where m is the size of ACL. The joint
algorithm takes O(n *m1ogdm), where n is number of ACLs.

A point query operation to match a packet condition can be implemented
by performing a query on the internallp and Id tree. The rule with the lowest
order number is the matching rule. A range query operation can intersect
multiple permit/deny rules, so a list of all intersecting rules should be
returned.

4.2 ACLA (ACL Analyser)

We developed the ACLA library that implements all of the above
operations. It contains a set of generic algorithms such as optimise, filter,
joint and query, and containers such as the multidimensional interval tree.
The actual implementation makes heavy use of the Standard Template
Library (STL) and follows its generic programming concepts. The client
simply needs to implement the relations specified in Definition 1, which is

210

typically vendor specific. The relation operators are passed to the library as
a template argument. The generic algorithms will work exactly the same.
Clients can experiment with their own container classes by overriding the
default interval tree structure. For example, the client can choose an
efficient external-memory data structure if the ACL size is large.

5. CONCLUSION

In this paper we presented a novel approach to ACL analysis. We
modelled ACEs in an ACL using well-defined constructs, which leads to
precise mathematical definition of their relationships. Based on these sets of
primitive relation and operations, we proposed a set of new algorithms,
optimise,filter,joint, and query. A multidimensional interval tree is used to
facilitate efficient point and range queries. We developed the ACLA library
based on the algorithms and data structures presented in this paper. The
framework proposed in our work should greatly simplify the network
administrators task of implementing and verifying corporate security policy.

It would be interesting to incorporate ACL analysis in to the routers
command line interface. The administrator would get immediate feedback
on any redundancies or inconsistencies as he is configuring the ACL. The
router can also optimise the configured ACLs to increase packet
classification speed.

A significant extension currently under development is to automatically
derive global security policies based on the existing network topology and
router configurations, and test for conformance to the corporate security
policies. Our current framework requires the user to define the path a packet
traverses. If dynamic routing is used with complex network topology, this
information can be difficult to determine. We are currently investigating
alternative approaches.

References
[1] Y. Barta}, A. Mayer, K. Nissim, and A. Wool. Firmato: A Novel Firewall

Management Toolkit. IEEE Symp. on Security and Privacy, Oakland, CA 1999.
[2] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18:509-517, 1975.
[3] J. L. Bentley. Solutions to Klees rectangle problems. Technical report, Carnegie­

Mellon Univ., Pittsburgh, PA, 1977.
[4] J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244-251,

1979.
[5] Cisco Secure Policy Manager 2.2, 2000.

http://www.cisco.com/warplpublic/cc/pd/sqsw/sqpnmn/.
[6] Cisco Secure Scanner 2.0, May, 1999.

211

[7] H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Computer
Mathematics, 13:209-219, 1983.

[8] H. Edelsbrunner. A new approach to rectangle intersections, part II. Int. J.
Computer Mathematics, 13:221-229, 1983.

[9] M. Preiss. Protecting Networks with SATAN. OReilly & Associates, Inc., 1998.
[10] J.D. Guttman. Filtering postures: Local enforcement for global policies. Proc.

IEEE Symp. on Security and Privacy, Oakland, CA 1997.
[11] S. Hinrichs, 'Policy-Based Management: Bridging the Gap': Annual Computer

Security Applications Conference. Scottsdale, AZ, 1999.
[12] Interconnecting Cisco Network Devices: Student Guide, 1999.
[13] Internet Security Systems Internet Scanner, 2000.

http:/ I documents.iss.net!literature/InternetScanner/is ps.gdf.
[14] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with

good guaranteed performance. ACM Transactions on Database Systems, 15(4):625-
658, 1990.

[15] A. Mayer, A. Wool, and E. Ziskind. Fang: A Firewall Analysis Engine. IEEE Symp.
on Security and Privacy, Oakland, CA 2000.

[16] Nessus 1.0.6, Nov. 2000. http://www.nessus.org/.
[17] Network Associates Cybercop Scanner, 2000.

l1ttp:/ /www.pgp.com/producis/cybercon-scanner/default.asp.
[18] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable,

symmetric multikey file structure. ACM Transactions on Database Systems,
9(1):257-276, 1984.

[19] SATAN, Apr. 1995. http://www.cs.ruu.nl!cert-uu!satan.html

	ACLA: A Framework for Access Control List (ACL) Analysis and Optimization
	1. INTRODUCTION
	1.1 Contributions

	2. RELATED WORK
	3. THE DYNAMIC MULTIDIMENSIONALINTERVALTREEDATASTRUCTURE
	4. ACL ANALYSIS ALGORITHMS
	4.1 ACL analysis, optimisation and query
	4.2 ACLA (ACL Analyser)

	5. CONCLUSION

