A NEW APPROACH TO SOFTWARE
INTEGRATION FRAMEWORKS FOR
MULTI-PHYSICS SIMULATION CODES*

Eric de Sturler, Jay Hoeflinger, Laxmikant Kale, Milind Bhandarkar
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Abstract Existing software integration frameworks typically require large manual
rewrites of existing codes, or specific tailoring of codes written to be used
in the framework. The result is usually a special-purpose code which is
not usable outside of the framework. In this paper, we propose an alter-
native to that model - a framework that requires little hand-modification
of the programs which use it. Qur proposed framework is compiler-
based, mesh-aware, numerics-aware, and physics-aware. Descriptions of
the codes and the system make it possible to semi-automatically gener-
ate interfacing code, while the internal parallelization, communication
and numerical solution methods are left intact. We report on some pre-
liminary experiments with an automatic load balancing framework that
demonstrate the feasibility of this approach.

Keywords: component architectures, software integration, automatic load balanc-
ing

1. INTRODUCTION

It has become increasingly clear in the large-scale simulation commu-
nity that developing efficient programs for complex simulations on large
parallel computers is a laborious and difficult task. Therefore, several
frameworks have been developed to ease the implementation of large-
scale, parallel, simulations, such as POOMA [3], Overture [7], SAM-
RAI [12], ALEGRA [6], ALICE [1], and SIERRA [22]. These frame-
works generally blend innovations in computational techniques with in-
novations in software technology; however, typically focusing on a few

*This work was supported in part by the US Department of Energy through the University
of California under Subcontract number B341494.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35407-1_22

R. F. Boisvert et al. (eds.), 7he Architecture /g]‘l%l'/w/f/ﬁl' Sr{ffzmw
© IFIP International Federation for Information Processing 2001

http://dx.doi.org/10.1007/978-0-387-35407-1_22

88 ARCHITECTURE OF SCIENTIFIC SOFTWARE

techniques and applications. Since these frameworks simplify the imple-
mentation of parallel applications, it was assumed that these frameworks
would be the right platforms for implementing the combined simulations
of physical processes. However, although the efforts of constructing these
frameworks in themselves have been successful, none of these frameworks
has attracted a large user base or been widely adopted outside their field
of application. A major concern of the application community is the re-
quired complete conversion of their software to make use of one of these
frameworks, which means rewriting, loss of control over many aspects
of their software, and the code’s resulting dependence on the existence
of and continued support for the framework. Moreover, no framework
supports the wide variety of discretization schemes and numerical tech-
niques that exist, and combining codes from different frameworks is still
hard.

The Common Component Architecture (CCA) [2] and initiatives like
PAWS [4] have been started to address this problem. Most research
focuses on either the general aspects of components (CCA) or the devel-
opment of very specific components, such as linear solvers (ESI) [8] and
their interface to finite element programs (FEI) [10].

We aim to apply component principles at the level of whole applica-
tions, so that parallel applications can run both stand-alone and with
other applications in our programming environment. The changes to
existing parallel programs should remain minimal.

In this paper, we will describe our first experiments with this ap-
proach using the Charm++ [14] parallel runtime system in the Center
for Simulation of Advanced Rockets.

We are building an integrated multi-physics Rocket Code from sev-
eral stand-alone pieces, including a computational fluid dynamics code
(ROCFLO), and a structural analysis code (ROCSOLID). These codes
are tied together using an interface code (ROCFACE). Jointly these
codes are used to simulate solid propellant rockets. ROCFLO solves
the equations describing the core flow in the inner part of the rocket.
ROCFLO also models the combustion of the propellant, at present (while
a full 3D combustion code is being developed). ROCSOLID solves the
equations describing the movement (deformation) of the solid propellant,
liner, and casing. ROCFACE takes care of the transfer of data and the
necessary (conservative) interpolation of physical values (temperature,
pressure, and displacement) between these two applications. Since the
two applications were originally constructed independently for different
purposes, they contain disparate meshes. The transfer of data between
these meshes involves finding a matching between adjacent elements on

Frameworks for Multi-physics Simulation Codes 89

the two meshes, and determining the functions that need to be used to
interpolate values between those elements.

In the future, we hope to be able to integrate additional codes to
handle specific situations within the rocket. A 3D combustion code may
be added to the system. A crack propagation code will be used to model
cracks that sometimes open up within the solid propellant. These are
important because if a pressurized crack reaches the rocket casing, the
combustion can burn through the case, causing the rocket to explode.
A code simulating the paths of particles of aluminum, released from
the solid propellant, which enter and burn within the core flow of the
rocket, is being prototyped. Other capabilities may be implemented as
stand-alone codes or additions to existing code, such as models of the
mechanical joints in the rocket case, turbulence within the core flow, and
the ablation of the rocket nozzle.

Although our approach seems to be an effective way to solve highly
complex problems, separate the concerns of simulations of different phys-
ical processes, and preserve past effort in developing simulation pro-
grams, we know of no group that has pursued it as a systematic ap-
proach. That is, to our knowledge, no programming environment has
been developed, to date, that couples, with minimal changes, existing
stand-alone applications.

Several groups have worked on the mathematical and physical aspects
of simulating two interacting processes (such as fluid-structure interac-
tion) by simulating each part separately and solving the combined prob-
lem by forcing consistent solutions on the interfaces. This is referred
to as a partitioned solution procedure [9]. However, this has only been
done for specific and special problems, and the main results are specific,
detailed schemes for those problems. Probably these schemes can be
extended to other problems, and this has been pointed out [19]. How-
ever, again it seems a general programming environment that supports
combining multiple grid-based applications for complex multi-physics
simulations, especially involving highly dynamic adaptive simulations,
has not been studied or built.

1.1. THE INTEGRATION OF NUMERICAL
METHODS

The efforts in the CCA and other component projects aim at exchang-
ing data without any semantics (meaning) associated with the data.
These projects address flexible, but raw, data transfer. The aim of these
standards is to be able to carry out the exchange of data between as wide
a class of components as possible by setting standards for generic mech-

90 ARCHITECTURE OF SCIENTIFIC SOFTWARE

anisms and by encouraging components to support multiple formats for
data exchange.

Although this is important and should greatly enhance re-usability
and inter-operability, it is not enough to really ease the composition of
multiple numerical codes that were not developed together or with a
different use in mind. Moreover, in order to reach true plug-and-play
for numerical components, as advocated in [2], especially without the
need to bring all specialists together for each extension of the simulation
code, we need an environment that is aware of the interaction between
numerical methods.

On the other hand, existing component projects which do deal with
the semantics of data at the interface, such as the FEI (Finite Element
Interface), are very limited in scope (and they do not share a strict
definition of components with the CCA group). They address only one
important coupling: finite element codes with linear solvers.

2. A NEW TYPE OF INFRASTRUCTURE
FOR COUPLED SIMULATIONS

The emphasis in this paper is on an infrastructure to facilitate the
implementation of multi-physics simulations. Addressing the special re-
quirements of coupled applications significantly complicates the imple-
mentation, and we briefly outline the most important functionality here.
We divide the functionality into three major categories:

= Application coupling technology,

» Orchestration of multiple independent simulation programs with
highly dynamic behavior,

s Computational Steering (physical model, mathematical model,
and performance).

Without going into great detail, we would like to outline here some of
the most important issues for partitioned, coupled simulations.

2.1. APPLICATION COUPLING
TECHNOLOGY

The coupling of applications in a partitioned simulation involves four
major issues: mesh matching, physically and mathematically consistent
mapping of boundary data, the coupling of the separate solution pro-
cesses in each application, and the coordination of the separate time-
stepping procedures.

Frameworks for Multi-physics Simulation Codes 91

Generally, the constituent applications come with their own meshes,
discretizations, and internal data structures. As the meshes may differ
in type from application to application, they may not be aligned or
even coincide at the physical interface. Moreover, these meshes will
typically have been partitioned independently for parallelization. In
addition, they may differ significantly in spatial resolution. As a result,
the transfer of data in a physically and mathematically correct way is
very complicated.

We need to compute a matching between the meshes of interacting
applications. This matching will indicate the interaction between in-
terdependent applications at the level of individual elements or cells.
Together with the equations that must be satisfied on the boundary,
constraints on the mapped values, and possible conditions to be satis-
fied, the results of the mesh matching will define the mapping of variables
between applications [18, 13, 15, 19].

After identifying which parts of separate meshes correspond, we need
to define mappings of those variables that are needed to make the math-
ematical model in the neighbor application well-defined. The physics of
the underlying application or mathematical stability constraints may re-
quire that certain functions of mapped variable fields be conserved. This
can be relatively simple as in the conservation of a single variable like
mass, or it can be more complicated as in the conservation of an inte-
gral over a function of multiple variables, such as work expressed as the
product of displacement times force, and momentum expressed as mass
times velocity [5, 9]. However, even the conservation of a single variable
may not be trivial if we map variables between meshes that differ in
type of discretization (finite element versus finite volume), element type
(tetrahedral vs hexahedral), finite element basis functions, or if meshes
vary widely in spatial resolution (note that there may be accuracy con-
straints). In addition, some variables may have specific constraints. For
example, a mass value would be required to be non-negative.

In the partitioned approach we run each application separately, and
they interact through their boundaries. If we require at each (major)
time step that values on a shared boundary be consistent among appli-
cations, then we call such an approach strongly coupled [9]. In this case
we have to decide on the tolerances on the convergence across applica-
tions. If we do not require this consistency we call the approach loosely
coupled [20]. We envision using both approaches. These choices have
an influence on the overall solution accuracy and efficiency. A potential
problem that arises in the strongly coupled procedure is divergence or
stagnation of convergence across multiple applications. Even though in

92 ARCHITECTURE OF SCIENTIFIC SOFTWARE

each step all applications converge, their shared representation of the
(fields of) variables on one or more boundaries may not.

The issues involved in setting time steps are closely linked with or-
chestration, but there are also independent issues. We need a sequence
of global (maximum) time steps at which each application must deliver
a solution. In the case of a strongly coupled approach, we require consis-
tency at these global time steps. Within the limits of a global time step,
each application can choose its own time steps. The global time steps
will generally be determined by accuracy constraints, the time-scale of
relevant physical phenomena, or a global CFL-like condition.

2.2, ORCHESTRATION

The orchestration of a collection of applications defines at a high level
how the various simulations interact, how each does its time integration,
and how these different time integration schemes are combined. Further-
more, several problems can arise while running such a multi-application
simulation in a partitioned approach. Convergence problems may occur,
in a single application or across multiple applications. Moreover, the en-
vironment may have to dynamically start additional applications, such
as turbulence in a Computational Fluid Dynamics (CFD) application,
or crack propagation in a structural application, and dynamically swap
applications if required by the simulation. The programming environ-
ment must orchestrate highly dynamic interactions of parallel partitions
of applications, based on assumptions of applications, requirements on
boundary exchanges, and convergence across applications.

2.3. STEERING

Since simulations may run for long periods of time on parallel super-
computers, we must be able to interact intelligently with these simula-
tions and maybe spin-off additional simulations derived from intermedi-
ate results of the main simulation. It may also be necessary to adjust
load balancing and parallelization schemes periodically, to optimize the
performance while the application is running or to adjust these schemes
to changes in the computational environment. Therefore, our program-
ming environment needs to include steering, both from a mathemati-
cal/physical point of view and from a computational/performance point
of view [16, 21]. Given that these programs will run for very long times,
it is unlikely that the results will be continuously monitored. Hence,
we envision the use of smart, event-driven check pointing. Based on a
description of the relevant states of the simulated processes, or of the rel-
evant dynamic behavior, the programming environment should be able

Frameworks for Multi-physics Simulation Codes 93

to save the necessary data when triggered by the appropriate condition.
The check-pointed data could be used later to run the simulation with
higher precision or with more appropriate models.

Conceptually, a control channel would be kept open between the
codes, facilitating orchestration and steering. This channel would allow
a code to request services from, and report conditions to, the framework
and other codes. This control channel would allow the framework to
“call” the individual codes at the appropriate times, initiate data trans-
fers, start codes in response to dynamic events, and handle exceptional
situations.

3. AUTOMATIC TRANSLATION INTO A
FRAMEWORK

The simulation codes should be independent, each capable of running
by itself, but also able to cooperate with others when used within the
framework. To avoid re-writing a code to fit into the framework, we pro-
pose the use of automatic tools which could do the translation required
to allow the code to fit into the framework.

The translation of a given code would be guided by a Code Description
(CD). The CD would essentially be an interface specification for the
code, giving all the information necessary to

m locate data within the code which would be available for other
codes,

m drive the conversion of data from one code to another,

n define the conditions placed on data passed to the code from the
outside, and

m describe special functionality of the code which might be used un-
der exceptional conditions.

An Orchestration Description (OD) would be used to describe how the
various component codes should interact. It would describe which mod-
ules should exchange data, how to convert the data from one component
to the other (including the matching of mesh points [13]), conditions un-
der which certain modules should be invoked, a system-wide coordinate
system for the various meshes, and any system-wide constraints or in-
formation which spans components. Trigger conditions could be spelled
out in this specification which show how unusual situations should be
handled, when it is necessary to switch to a different simulation code,
and when check-pointing should occur.

94 ARCHITECTURE OF SCIENTIFIC SOFTWARE

The CD and the OD could take the form of a set of annotations, in-
terspersed with the statements of the simulation code itself, such as the
structured comments of OpenMP [17]. It could also take the form of a
separate description file, written in some language, such as Python [23].
The structured comment approach has the advantage that a direct cor-
respondence could be drawn between the description and the code itself.
The separate description file has the advantage that it pulls all the pieces
of the description together in one place.

The CD would guide the placement of data ports [2] within a given
code, allowing the code to communicate the values of certain variables
with other codes and the Framework. The Framework would employ in-
terpolation functions appropriate to the quantities and numerical meth-
ods described in each code’s CD.

The OD would guide the automatic creation of a “driver” routine for
the simulation, calling the individual components in the proper order and
with the proper parameters. The driver routine would contain the proper
convergence criteria, and tests for the trigger conditions, as specified in
the OD.

A well-known guiding principle from Software Engineering is to auto-
mate those programming tasks that can be best done by the computer,
while giving human programmers the tools to carry out tasks best done
by them. The CDs and the OD for a simulation system would give the
programmer a human-friendly way of describing the complex codes to
be combined, and how to combine them.

The framework would employ compiler technology to analyze each
component code, the CDs and the OD. It would then carry out the
tedious transformation to automatically generate the combined code.

4. PRINCIPLES OF APPLICATION
INTEGRATION

To guide the implementation of our model of application integration,

we state a set of general principles. A framework which adheres to
these principles should be able to couple multiple stand-alone application
codes successfully.
Cooperative Interoperability Principle: “Different stand-alone ap-
plication modules should coexist as a part of a single simulation.” The
codes should execute concurrently and exchange the results of their com-
putations without human intervention. The framework would not im-
pose its own restrictions on the parallelization or memory usage of the
codes. It should accept whatever code optimizations are used by each
code.

Frameworks for Multi-physics Simulation Codes 95

Minimal Source Change Principle: “The changes required of a
stand-alone simulation code for use within a framework should be mini-
mal.” This principle addresses the software engineering issues of using
an integration framework. The idea is that there should be only a single
version of a code. That code is then converted automatically for use in
the framework. Development may then continue on the single version,
which is converted for use in the framework whenever necessary. This
lessens the error-prone work needed for converting the code by hand, al-
lows the programmer to maintain a single version of a code. and allows
the code author to retain ownership of the code.

Correct Data Exchange Principle: “The framework should exchange
data between codes in a mesh-, numerics-, and physics-aware fashion.
” This principle addresses the ease of converting data between codes.
The framework should contain facilities for mesh-cell-matching and data
conversion, relieving the programmer from the effort of programming
these things. The framework should have a set of physically-correct,
numerically stable conversion techniques already deployed.

Dynamic Adaptation Principle “The framework should dynamically
respond to exceptional situations within the simulation.” This principle
addresses the ability of the simulation system to adjust the operation of
the overall simulation in a very fine-grained way, in response to dynamic
situations. If the conditions within the simulation go beyond the bounds
of a given code in one part of the mesh, a different code may have to be
started to take over the simulation from that code, for that part of the
mesh.

5. PROOF OF CONCEPT WITH A LOAD
BALANCING FRAMEWORK

The class of frameworks described thus far in this paper is broad.
Many frameworks could be built, based on the principles outlined in
Section 4. In our own project, we have proceeded in measured steps
toward the general goal of an integration framework for simulation codes.
We are building on the experience of integrating our rocket simulation
code by hand. The Rocket Code developers (Prasad Alavilli, Dennis
Parsons, Ali Namazifard, and Jim Jiao) manually integrated the two
simulation components (ROCFLO and ROCSOLID) with an interface
code (ROCFACE).

However, the task of building a general multi-simulation code integra-
tion framework from scratch is a daunting one, so we have decided to do
a proof-of-concept with a less ambitious task - implementing a frame-
work for doing load-balancing for our hand-integrated Rocket Code. The

96 ARCHITECTURE OF SCIENTIFIC SOFTWARE

basis of the load-balancing system is the Charm++ system, developed
by Kale, et al.

Toward that end, we first chose to implement the hand-integrated
rocket simulation code on top of the Charm++ system. We chose to use
Charm++ as a substrate for our integration framework because of its
support for automatic interleaving of multiple components, and because
of its dynamic load balancing abilities. We developed a methodology
for converting this code to the Charm++ system that we believe is au-
tomatable, so that a compiler-based tool could be built for automatically
converting a code for use with Charm++. This automation of the con-
version process will satisfy the Minimal Source Change Principle.

In the following sections, we will briefly describe the Charm++ sys-
tem, and how we chose to use it with our Rocket Code.

5.1. THE CHARM++4 SYSTEM

Charm++ is an explicitly parallel object-oriented system. Charm++
programs are typically written using C++, and use a small interface
description language, along with the Charm++ runtime support system
(RTS).

The basic entity in Charm++ programs is a data-driven object. A
computation comprises many such objects (or indexed collections of
such objects), which are mapped to processors under the control of
the Charm++ RTS. Such objects have a global, system-wide ID, and
can communicate with each other via asynchronous method invocations
using these IDs. As the IDs remain the same, even when the RTS mi-
grates objects from processor to processor, the application-writer can
write their code without concerning themselves with load balancing (i.e.
they write the code for one object to communicate with the other with-
out concerning themselves with where these objects live).

The core of the Charm++ RTS consists of a message-driven sched-
uler. Messages in Charm++ represent computations to be performed
(methods to be invoked on data-driven objects). The scheduler repeat-
edly chooses messages from a processor-wide pool and executes methods
denoted by them. Thus, messages directed at different objects (possi-
bly belonging to different modules) are interleaved allowing concurrency
across different components on the same processor.

The data-driven objects provide a natural “grain” of execution to
be monitored for possible load imbalance. The Charm++ RTS incor-
porates a load balancing support module, which keeps track of execu-
tion times for each object, and communication patterns among objects.
These statistics are then provided to a “plug-in” load balancing strategy

Frameworks for Multi-physics Simulation Codes 97

module that decides whether and how to remap these objects among
processors, to get better load balance.

5.2. OUR APPROACH TO USING
CHARM++

The component codes, ROCFLO and ROCSOLID, were both written
in Fortran 90, using MPI to implement parallelism and message passing.
MPI forces the user to identify processors with integers representing the
processor numbers. With MPI, the number of MPI processes is equal to
the number of processors. To connect the MPI code with Charm++, we
chose to replace the MPI runtime library with a library implemented on
top of Charm++. In this form, the integers in the source code no longer
represent processor numbers, but instead indicate chunk numbers.

A chunk in this context refers to the combination of a thread of execu-
tion and its data. In the context of an MPI program, a chunk is similar
to an MPI process, but without the separation of address spaces that is
normally present with MPI processes.

By doing this, we decouple the application code from a specific number
of processors, and decouple a specific chunk from a specific processor.
Then, Charm++ is free to allocate more chunks than processors, and
move chunks around from processor to processor, if load-balancing is
required.

5.3. LOAD BALANCING METHODOLOGY

The approach that we are exploring for the load balancing framework
involves multi-partition decompositions. Computations in each individ-
ual module are partitioned into a large number of chunks, such that
there are many more chunks than processors. The code and data for
simulating each chunk is encapsulated within a data-driven object. The
program is written in such a way that the objects send messages to other
objects, rather than sending messages to processors. As processors are
not part of the programmer’s ontology, the system is free to move or
migrate objects among processors, thus effecting load balancing when
needed.

As multiple chunks, possibly belonging to different modules (or ap-
plications) are mapped to each processor, their execution must be inter-
leaved by the runtime system. Data-driven interleaving, which depends
on a scheduler to schedule computations of individual chunks, depending
on the availability of their data (messages), accomplishes such interleav-
ing efficiently. As the chunks are migrated from processor to processor,

98 ARCHITECTURE OF SCIENTIFIC SOFTWARE

their messages must be correctly forwarded. Both of these features are
effectively supported by the Charm++ system.

For accomplishing load balancing, Charm++ incorporates a sophisti-
cated load balancing subsystem. The particular strategy we use exploits
the “principle of persistence”: the fact that in most scientific compu-
tations, the computational loads of the chunks, and their communica-
tion patterns, are highly correlated with their values in the immediate
past. This is true even for computations that require abrupt adaptive
refinements, since such refinements are relatively infrequent. The load
balancing framework carries out measurements of these characteristics,
and then balances the load when needed, using a suite of strategies that
are useful in different circumstances.

5.4. AUTOMATIC CODE CONVERSION TO
THE CHARM++ FRAMEWORK

One of the challenges we faced was reconciling the need for Charm++,
with our desire to make minimal changes to existing application codes.
This challenge was overcome with the development of an additional run-
time library. The Adaptive MPI (AMPI) library was built on top of
Charm++ to provide a complete implementation of the MPI library
routines. The MPI calls in the original code are intercepted by this
library. With these techniques, it became possible to port the existing
MPI codes, written using Fortran 90, to our run-time framework.

A few other changes to the applications were still needed within the
application codes. When the MPI processes of the application codes
are converted to chunks, they lose the address space separation of the
original codes. This means that all globally-visible data of the original
codes for the chunks executing on a single processor would be placed
at the same memory locations, and interfere with each other during
execution. So, such references had to be eliminated from the application
codes. This is possible by dynamically allocating them at run-time, or
else by statically allocating expanded versions of the global variables and
indexing them by the chunk number.

In addition, subroutines that pack and unpack the chunk’s private
data were coded by hand. However, this process is quite mechanical,
and could be completed easily once the principles were understood.
ROCFLO and ROCSOLID were converted with a few days of effort,
whereas ROCFACE (which was written in C++ with MPI) was con-
verted in 45 minutes. The observations made during this conversion
process, coupled with the compiler expertise in our team, led us to real-
ize that this conversion process can be fully automated with the help of a

Frameworks for Multi-physics Simulation Codes 99

Table 1 Comparison of MPI and AMPI versions of ROCFLO & ROCSOLID. All
times are in seconds. Note that this is scaled problem.

Processors ROCFLO ROCSOLID

MPI AMPI MPI AMPI
1 9.0192 8.8122 18.240 17.797
8 8.0796 8.0958 18.413 18.458
16 8.1908 8.2682 18.564 18.830
32 8.3415 8.3093 19.410 18.947
64 8.5535 8.6183 19.236 19.500
128 9.4889 9.6370 19.766 20.499

compiler that can perform interprocedural analysis and source-to-source
transformations. Work on such an automatic conversion program is in
progress.

With these conversions, the rocket simulation programs are now ready
for adaptive automatic load balancing. We expect to test these abilities
in the near future, when the application incorporates such features as
adaptive mesh refinements, and also when running on dynamic environ-
ments such as workstation clusters.

6. EXPERIMENTAL RESULTS

Original ROCSOLID and ROCFLO performance results were com-
pared with their implementations on our framework. Refer to Table 1
for the performance results. Experiments were performed at National
Center for Supercomputing Applications (NCSA) on an Origin2000 ma-
chine (250 MHz R10000 processors). A version of Charm++ that uses
native MPI as a communication layer was deliberately chosen in order
to measure the overhead that AMPI incurs over MPI. Charm++ can
also be made to use shared memory arenas for communication, resulting
in better performance.

In the process of conversion to our framework, the global data items
used by both codes were “privatized” with respect to threads, so that
multiple threads could co-exist on the same processor. Timings on one
processor point to the effects of this privatization. In ROCFLO, this pri-
vatization was done by extending the dimensions of global data items,
where the thread number was used as an index to access thread-private
data. In ROCSOLID, we encapsulated the global data items in a sin-
gle user-defined type, which is dynamically allocated by every thread at

100 ARCHITECTURE OF SCIENTIFIC SOFTWARE

initialization. Each data item was then accessed with an indirect ref-
erence. Surprisingly, this speeded up execution of both ROCFLO and
ROCSOLID on one processor. We suspect this effect was due to co-
incidental rearrangement of data items, reducing cache misses. These
are still preliminary results, and more thorough experiments are being
performed.

It should be noted that the communication overhead due to the ad-
ditional communication layer of Charm++ and AMPI is eclipsed by
better cache behavior, and is less than 4% even on a higher number
of processors. We suspect that the overhead on more processors is be-
cause collective operations in AMPI are not tuned for higher number of
Processors.

7. SUMMARY

Existing code integration frameworks have not attracted a large num-
ber of users. We believe that this is due to primarily Software Engineer-
ing issues, such as the need to rewrite a code to use a framework, the
need to maintain multiple copies of a code, and the error-prone nature
of recoding a working program.

We have proposed a set of code integration principles that we believe
will make integration frameworks more widely accepted by the applica-
tions community, because frameworks adhering to these principles would
support the plug-and-play use of a code within any of them.

A preliminary experiment has targeted codes for a Charm++ load
balancing framework and we have found that automatic translation of
codes for that framework is indeed feasible.

References

[1] ALICE Web page. http://www.mcs.anl.gov/alice, Mathematics and
Computer Science Division, Argonne National Laboratory.

[2] R. Armstrong, D. Gannon, A. Geist, S. Kohn K. Keahey, L.C.
Mclnnes, S. Parker, and B. Smolinski. Toward a common com-
ponent architecture for high performance scientific computing. In

Proceedings of High Performance Distributed Computing, August
4-6, 1999.

[3] S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant,
J. V. W. Reynders, and M. Tholburn. Pooma: A high performance
distributed simulation environment for scientific applications. In
Proceedings Supercomputing ’95.

(4]

[5]

(6]

(8]
[9]

[10]
[11]

[12]

[13]

[14]

Frameworks for Multi-physics Simulation Codes 101

Pete Beckman, Pat Fasel, Bill Humphrey, Sue Mniszewski,
and MaryDell Tholburn. PAWS technical description, 1997.
http://www.acl.lanl.gov/PAWS /docs/TechDescription.html

C. Bernardi, Y. Maday, and A. Patera. A new nonconforming ap-
proach to domain decomposition: the mortar element method. In
H. Brezis and J.L. Lions, editors, Nonlinear Partial Differential
Equations and their Applications. Pitman, 1989.

K. G. Budge and J. S. Peery. Experiences developing alegra: A c++
coupled physics framework. In M.E Henderson, C. R. Anderson,
and S. L. Lyons, editors, Object oriented methods for interoperable
scientific and engineering computing, proceedings of the 1998 SIAM
workshop, October 21-23, 1998.

William D. Henshaw D. L. Brown and Daniel J. Quinlan. Over-
ture: An object-oriented framework for solving partial differential
equations on overlapping grids. In Proceedings of the SIAM Work-
shop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, pages 58-67. SIAM, 1998.

Equation Solver Interface Forum. http://z.ca.sandia.gov/esi/

C. Farhat, M. Lesoinne, and P. LeTallec. Load and motion trans-
fer algorithms for fluid structure interaction problems with non-
matching discrete interfaces: Momentum and energy conservation,
optimal discretization and application to aeroelasticity. Computer
methods in applied mechanics and engineering, 157:95-114, 1998.

Finite Element Interface web page. http://z.ca.sandia.gov/fei/

M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Detect-
ing Coarse-grain Parallelism Using An Interprocedural Parallelizing
Compiler. Supercomputing 95, December 1995.

Richard Hornung and Scott Kohn. The use of object-oriented design
patterns in the SAMRALI structured AMR framework. In Proceed-
ings of the STAM Workshop on Object-Oriented Methods for Inter-
Operable Scientific and Engineering Computing, October 1998.

X. Jiao, H. Edelsbrunner, and M. T. Heath. Mesh association: For-
mulation and algorithms. In Proceedings of the 8th International
Meshing Roundtable 1999, October 10-13, 1999, South Lake Tahoe,
California, pages 75-82, 1999.

L. V. Kale and S. Krishnan. Charm++: Parallel programming with
message-driven objects. In G. V. Wilson and P. Lu, editors, Parallel
Programming using C++, pages 175-213. MIT Press, 1996.

102

[15]

[16]

[17

(18]

(19]

20]

[21]

[22]

[23]

ARCHITECTURE OF SCIENTIFIC SOFTWARE

N. Maman and C. Farhat. Matching fluid and structure meshes
for aeroelastic computations: A parallel approach. Computers &
Structures, 54(4):779-785, 1995.

J. E. Moreira, V. K. Naik, and D. W. Fan. Design and implementa-
tion of computational steering of parallel scientific applications. In
M.T Heath e.a, editor, Proceedings of the Eight SIAM Conference
on Parallel Processing for Scientific Computing, Minneapolis, MN,
March 14-17, 1997, 1997.

OpenMP web page. http://www.openmp.org, OpenMP Consor-
tium.

S. Plimpton, B. Hendrickson, and J. Stewart. A parallel rendez-vous
algorithm for interpolatio between multiple grids. In Proceedings
of the 8th International Meshing Roundtable 1999, October 10-13,
1999, South Lake Tahoe, California, pages 75-82, 1999.

R. Lohner. Robust, vectorized search algorithms for interpolation
on unstructured grids. Journal of computational Physics, 118:380-
387, 1995.

R. Lohner and C. Yang and J. R. Cebral and J. D. Baum and H.
Luo and D. Pelessone and C. Charman. Fluid-structure interaction
using a loose coupling algorithm and adaptive unstructured grid. In
Computational Fluid Dynamics Review 1995, pages 755-776, New
York, 1995. John Wiley.

R. S. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed.
Autopilot: Adaptive control of distributed applications. Fu-
ture Generation Computer Systems. special issue (Perfor-
mance Data Mining), to appear, available from http://www-
pablo.cs.uiuc.edu/Publications/publications.htm.

L. M. Taylor. Sierra - a software framework for developing massively
parallel, adaptive, multi-physics, finite element codes, 1999. presen-
tation at the International conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), June 28 -
July 1, Las Vegas, Nevada, USA.

G. van Rossum. Glue it all together with python. In Craig Thomp-
son, editor, Workshop on Compositional Software Architectures,
Workshop Report, Monterey, California, January 6-8, 1998, 1998.

Frameworks for Multi-physics Simulation Codes 103

DISCUSSION
Speaker: Milind A. Bhandarkar

Morven Gentleman : How much of your approach depends on the
open context in which RCSOLID and ROCFLO were developed? Would
it be possible in a context where, perhaps for proprietary reasons, the
code, designs, data structures, algorithms, etc. were not so exposed?
Eric de Sturler : [This reply was provided after the conference. — Ed.]
First of all, the prime intention of this framework is to help collaborat-
ing researchers to combine their codes for multiphysics simulations with
minimal efforts and in a short time frame. To this end the code offers
functionality to exchange boundary data, to match disparate meshes,
coordinate timesteps, and compute physically correct solutions of the
joint physical processes taking place on the boundary. The mathematics
and physics needed for a correct time integration generally needs to be
written for the specific applications, but can then be implemented easily
within the framework.

Clearly, this requires the framework to have access to several types
of data from each application and the associated geometric information:
field variables defined on the boundary, time step constraints, the geo-
metric information that defines the mesh on the boundary, type of finite
elements/volumes, shape functions, and potentially other data. The
way this has been done for currently integrated codes is that developers
added a single (well-defined) module in which the data needed in other
applications is extracted or computed and declared and in which the
data needed from other applications is declared. This is the only data
that needs to be visible to the framework. In order to (dynamically)
start a partition of an application with its own data (chunk), to migrate
it to another processor (load balancing), or to remove it, the framework
must be able to interact with the application (partition). Some handle
must be passed to the framework to allow it to signal a chunk that it
will be moved. The chunk must then be able to export its data to the
framework, after which it will be removed. After migrating to another
processor the chunk will be restarted with its data.

Following encapsulation and separation of concerns principles the
framework is designed such that the handles mentioned above should be
the only features required to implement the functionality of the frame-
work. The importance of such a design is that new codes can be added
to the framework without undue changes in other codes and without
significant interaction with developers of other codes. In general some
interaction will be needed if new/different data is required for interac-

104 ARCHITECTURE OF SCIENTIFIC SOFTWARE

tion with the new code. For example new coupling algorithms may need
to be added.

If one wants to integrate a code that is not available as source code,
some wrappers will be needed. For example, many finite element pack-
ages are available as a library of object modules that can be called in
the user’s program. The internal data structures, algorithms and so on
are typically unknown. Only the (public) interface is described. In this
case we would write a small subroutine that has the required handles,
initializes the data for the subroutine(s) that will compute the solution
to the sub-problem of interest, call the library routine(s), extract the
required data from the results and provide those in a form that is usable
and visible to the framework.

One could think of strategies to use simulation codes that are available
only as a single monolithic executable, but we think this would not be
useful.

	A NEW APPROACH
 TO SOFTWARE INTEGRATION FRAMEWORKS FOR MULTI-PHYSICS SIMULATION CODES*
	1. INTRODUCTION
	1.1. THE INTEGRATION OF NUMERICALMETHODS

	2. A NEW TYPE OF INFRASTRUCTUREFOR COUPLED SIMULATIONS
	2.1. APPLICATION COUPLINGTECHNOLOGY
	2.2. ORCHESTRATION
	2.3. STEERING

	3. AUTOMATIC TRANSLATION INTO AFRAMEWORK
	4. PRINCIPLES OF APPLICATIONINTEGRATION
	5. PROOF OF CONCEPT WITH A LOADBALANCING FRAMEWORK
	5.1. THE CHARM++ SYSTEM
	5.2. OUR APPROACH TO USINGCHARM++
	5.3. LOAD BALANCING METHODOLOGY
	5.4. AUTOMATIC CODE CONVERSION TOTHECHARM++FRAMEWORK

	6. EXPERIMENTAL RESULTS
	7. SUMMARY
	References
	DISCUSSION

